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  Game Theory – Brief Introduction 



What is Game Theory? 
 We do not live in vacuum. 
 
 Whether we like it or not, all of us are 

strategists.  
 

 ST is art but its foundations consist of some 
simple basic principles. 
 

 The science of strategic thinking is called 
Game Theory. 

 
 

 



Where is Game Theory coming from? 
 Game Theory was created by 

Von Neumann and Morgenstern (1944) 
in their classic book 

The Theory of Games and Economic Behavior 
 
 Two distinct approaches to the theory of 

games:  

1. Strategic/Non-cooperative Approach 
2. Coalition/Cooperative Approach  
 
 



 The key contributions of John Nash: 
 
1. The notion of Nash equilibrium  
 

2. Arguments for determining the two-person 
bargaining problems  
 

 Other significant names: 
N-Nash, A-Aumann, S-Shapley&Selten, H- 
Harsanyi  

Where is Game Theory coming from? 
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The static (simultaneous-move) games 

 
 Informally, the games of this class 

could be described as follows: 
 

 First, players simultaneously choose a move 
(action). 
 

 Then, based on the resulting combination of 
actions chosen in total, each player receives a 
given payoff. 



Example: Students’ Dilemma 
 

 Strategic behaviour of students 
taking a course: 

 
 First, each of you is forced to choose between 

studying HARD or taking it EASY. 
 

 Then, you do your exam and get a GRADE. 
 



Static Games of Complete Information 

Standard assumptions: 
 Players move (take an action or make a 

choice) simultaneously at a moment 

– it is STATIC 
 Each player knows what her payoff and the 

payoff of the other players will be at any 
combination of chosen actions 

– it is COMPLETE INFORMATION 
 
 



Example: Students’ Dilemma 
 

Standard assumptions: 
 

 Students choose between HARD and EASY 
 SIMULTANEOUSLY. 

 

 Grading policy is announced in advance, so it is 
 known by all the students. 
 

Simplification assumptions: 
 

 Performance depends on CHOICE. 
 

 EQUAL EFFICIENCY of studies. 
 
 
 
 
 



 
 Game theory answers two standard 

questions: 
 

1. How to describe a type of a game?  
 

2. How to solve the resulting game-
theoretic problem? 
 

The static (simultaneous-move) games 



How to describe a game? 
 The normal form representation of a game 

contains the following elements: 
 

1. PLAYERS – generally of number n 
 

2. STRATEGIES –    , for i = 1,…,n 
 

3. PAYOFFS –                                ,for i = 1,…,n 
 
 We denote the game of n-players by 
   G =  
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Example: Students’ Dilemma 
 

Normal Form Representation: 
 

1. Reduce the players to 2 – YOU vs. OTHERS 
 

2. Single choice symmetric strategies 
    , for i = 1,…,n 
  

3.  Payoff function: 
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Example: Students’ Dilemma 
 

Grading Policy: 
 

the students over the average have a 
STRONG PASS (Grade A, or 1), 

the ones with average performance get a 
WEAK PASS (Grade C, or 3) and 

who is under the average 
 FAIL (Grade F, or 5).  



Example: Students’ Dilemma 
 

Leisure Rule: HARD study schedule devotes 
twice more time (leisure = 1) to studying 
than the EASY one (leisure = 2). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2 3 -1 
At least one Hard  

Hard At least one Easy 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 1 1 0 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  2 5 -3 

Hard At least one Easy 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 
All Hard 1 3 -2 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 
All Hard 



Example: Students’ Dilemma 
 
Bi-matrix of payoffs: 
 
   Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 
YOU 

OTHERS 



How to solve the GT problem? 
 
 
 
 
 Subgame-Perfect Nash Equilibrium (SPNE)  
 
 Bayesian Nash Equilibrium (BNE) 
 
 Perfect Bayesian Equilibrium (PBNE) 
  

in static games of complete information 

in dynamic games of complete information 

in static games of incomplete information 

in dynamic games of incomplete information 

Solution Concepts: 
 Strategic Dominance 
 Nash Equilibrium (NE) 
 



Strategic Dominance 
Definition of a strictly dominated strategy: 
 

 Consider the normal-form game G = 
 

 Feasible strategy      is strictly dominated by strategy  
  
 if i’s payoff from playing     is strictly less 
      than i’s payoff from playing    : 

 
  
 for each feasible combination 
 that can be constructed from the other players’ 
 strategy spaces        . 
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Strategic Dominance 
 
Solution Principle: Rational players do 

not play strictly dominated strategies. 
 
The solution process is called “iterated 

elimination of strictly dominated 
strategies”.  



Example: Students’ Dilemma 
 Solution by iterated elimination of strictly 

dominated strategies: 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 
YOU 

OTHERS 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 

Easy is strictly dominated by Hard for YOU. 
Easy is strictly dominated by Hard for OTHERS. 

After elimination a single strategy combination 
remains:  

{HARD; HARD} 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 



Weaknesses of IESDS 
 

 Each step of elimination requires a 
further assumption about what the 
players know about each other’s 
rationality 

 The process often produces a very 
imprecise predictions about the play 
of the game 



Example: Students’ Dilemma -2 
 

 Leisure Rule: HARD study schedule devotes 
all their time (leisure = 0) to studying. 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2 3 -1 
At least one Hard  2 5 -3 

Hard At least one Easy 1 
All Hard 3 

0 1 -1 
0 3 -3 
1 0 
1 -2 



Example: Students’ Dilemma -2 
 Solution by iterated elimination of 

strictly dominated strategies: 
 

  Easy Hard 

Easy -1,-1 -3,-1 

Hard -1,-3 -3,-3 

  Easy Hard 

Easy -1,-1 -3,-1 

Hard -1,-3 -3,-3 
YOU 

  Easy Hard 

Easy -1,-1 -3,-1 

Hard -1,-3 -3,-3 

  Easy Hard 

Easy -1,-1 -3,-1 

Hard -1,-3 -3,-3 

  Easy Hard 

Easy -1,-1 -3,-1 

Hard -1,-3 -3,-3 

  Easy Hard 

Easy -1,-1 -3,-1 

Hard -1,-3 -3,-3 

  Easy Hard 

Easy -1,-1 -3,-1 

Hard -1,-3 -3,-3 

No single strategy could be eliminated:  

{EASY/HARD; EASY/HARD} 

OTHERS 



Nash Equilibrium 
 Definition (NE): In the n-player normal form game 
 

G =          
 

the strategies        are a Nash equilibrium if, 
for each player i,    
    is (at least tied for) player i’s best response to the strategies 
specified for the n-1 other players: 
 
 
for every feasible strategy    in     ; that is,     solves 
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Relation between Strategic 
Dominance and Nash Equilibrium  
 

 If a single solution is derived through 
iterated elimination of strictly 
dominated strategies it is also a 
unique NE. 

 

 The players’ strategies in a Nash 
equilibrium always survive iterated 
elimination of strictly dominated 
strategies. 



 

Grading Policy: 
 

the students over the average have a 
STRONG PASS (Grade A, or 1), 

the ones with average performance get a 
PASS (Grade B, or 2) and 

who is under the average 
 FAIL (Grade F, or 5).  

Example: Students’ Dilemma - 2 



Example: Students’Dilemma - 2 
 

Leisure Rule: HARD study schedule devotes 
all their time (leisure = 0) to studying than 
the EASY one (leisure = 2). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2 
At least one Hard  2 5 -3 

Hard At least one Easy 0 1 -1 
All Hard 0 

2 0 

2 -2 

3 -1 

3 -3 



Example: Students’ Dilemma -2 
 Solution by iterated elimination of 

strictly dominated strategies: 
 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 
YOU 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

No single strategy could be eliminated:  

{EASY/HARD; EASY/HARD} 

OTHERS 



Example: Students’ Dilemma -2 
 Nash Equilibrium Solution: 
 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 
YOU 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

Two Nash Equilibria:  

{EASY/EASY; HARD/HARD} 

OTHERS 



Example: Students’ Dilemma - 2 
 

Some useful policy implications: 
 
 Harsh grading of the mediocre behavior 

would motivate the rational students to 
study hard. 

 
 Extremely time-consuming studies 

discourage rational students and make 
them hesitant between taking it easy and 
studying hard. 
 



Summary 
 The simplest class of games is the class of 

Static Games of Complete Information. 
 By ‘static’ it is meant that players choose their 

strategies simultaneously without observing 
each other’s choices. 

 ‘Complete information’ implies that the payoffs 
of each combination of strategies available are 
known to all the players. 

 Static games of complete information are 
usually represented in normal form consisting 
of bi-matrix of player’s payoffs. 
 



Summary 
 A strategy is strictly dominated if it yields lower 

payoff than another strategy available to a player 
irrespective of the strategic choice of the rest of 
the players. 

 The weakest solution concept in game theory is 
the iterated elimination of strictly dominated 
strategies. It requires too strong assumptions for 
player’s rationality and often gives imprecise 
predictions. 

 Nash Equilibrium is a stronger solution concept 
that produces much tighter predictions in a very 
broad class of games. 
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  Dynamic Games of Complete and Perfect Information 



Fast Revision on Lecture 1 

 
Strategic Games of Complete 

Information: 
 

 Description 
 Normal Form Representation 
 Solution Concepts – IESDS vs. NE 



How to solve the GT problem? 

 Perfect Bayesian Equilibrium (PBNE) 

in static games of complete information 

in dynamic games of complete information 

in static games of incomplete information 

in dynamic games of incomplete information 

 Strategic Dominance 
 Nash Equilibrium (NE) 
 

Solution Concepts: 

 Backwards Induction 
 Subgame-Perfect Nash Equilibrium (SPNE) 

 Bayesian Nash Equilibrium (BNE) 



Revision: Students’ Dilemma -2 
(simultaneous-move solution) 

 Nash Equilibrium Solution: 
 

YOU 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 

Two Nash Equilibria:  

{EASY/EASY; HARD/HARD} 

OTHERS 



Dynamic (sequential-move) games 
 

 Informally, the games of this class could be 
described as follows: 
 

 First, only one of the players chooses a move 
(action). 
 

 Then, the other player(s) moves. 
 
 Finally, based on the resulting combination of 

actions chosen in total, each player receives a 
given payoff. 



Example 1: Students’ Dilemma -2 
  (sequential version) 
 

 Strategic behaviour of students 
taking a course: 

 

 First, only YOU are forced to choose between 
studying HARD or taking it EASY. 

 

 Then, the OTHERS observe what YOU have 
chosen and make their choice. 

 

 Finally, both You and OTHERS do exam and get 
a GRADE. 

 
Will the simultaneous-move prediction be defined? 



 

 The aim of the first lecture is to show: 
 

1. How to describe a dynamic game?  
 

2. How to solve the simplest class of 
dynamic games with complete and 
perfect information? 
 

The dynamic (sequential-move) games 



How to describe a dynamic game? 

 The extensive form representation of a game 
specifies: 

 

1. Who are the PLAYERS. 
 
 

2.1. When each player has the MOVE. 
 
 

2.2. What each player KNOWS when she is on a move. 
 
 

2.3. What ACTIONS each player can take. 
 
 

3. What is the PAYOFF received by each player. 
 

 



Example 1: Students’ Dilemma 
(Sequential Version) 

 

Extensive Form Representation: 
 

1. Reduce the players to 2 – YOU vs. OTHERS 
 

2.1. First YOU move, then – OTHERS. 
 

2.2. OTHERS know what YOU have chosen when 
 

 they are on a move but YOU don’t. 
 

2.3. Both YOU and OTHERS choose an ACTION 
 

 from the set        , for i = 1,…,n 
3.Payoffs: 

},{ HardEasyAi =
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Example 1: Students’ Dilemma -2 
(Sequential Version) 

 

Grading Policy: 
 

the students over the average have a 
STRONG PASS (Grade A, or 1), 

the ones with average performance get a 
PASS (Grade B, or 2) and 

who is under the average 
 FAIL (Grade F, or 5).  



Example 1: Students’ Dilemma – 2 
(Sequential Version) 

 

Leisure Rule: HARD study schedule devotes all 
the time (leisure = 0) to studying distinct 
from the EASY one (leisure = 2). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2 -2 0 
At least one Hard  2 -5 -3 

Hard At least one Easy 0 -1 -1 
All Hard 0 -2 -2 



Dynamic Games of Complete and 
Perfect Information 

 The simple class of dynamic games of 
complete and prefect information has the 
following general description: 

 

1. Player 1 chooses and action a1 from the 
feasible set A1. 
 

2. Player 2 OBSERVES a1 and then chooses an 
action a2 from the feasible set A2. 
 

3. Payoffs are u1(a1,a2) and u2(a1,a2). 



Dynamic Games of Complete and 
Perfect Information 
Standard assumptions: 
 Players move at different, sequential moments 
– it is DYNAMIC 
 The players’ payoff functions are common 

knowledge 
– it is COMPLETE INFORMATION 
 At each move of the game the player with the 

move knows the full history how the game was 
played thus far 

– it is PERFECT INFORMATION 
 

 
 



Example 1: Students’ Dilemma -2 
(Sequential Version) 

 

Standard assumptions: 
 

 Students choose between HARD and EASY 
 SEQUENTIALLY. 

 

 Grading is announced in advance, so it is 
 COMMON KNOWLEDGE to all the students. 
 

 Before making a choice in the second stage, OTHERS 
observe the choice of YOU in the first stage. 

 

Simplification assumptions: 
 

 Performance depends on CHOICE. 
 

 EQUAL EFFICIENCY of studies. 
 
 
 
 
 



Example 1: Students’ Dilemma – 2 
(Sequential Version) 

Game Tree VS. Normal-Form 
YOU 

OTHERS OTHERS 

0 
0 

-3 
-1 

-2 
-2 

(HARD, HARD) (HARD, EASY) (EASY, HARD) (EASY, EASY) 

HARD           -2,-2 (NE) -2,-2 -1,-3 -1,-3 
EASY -3,-1            0,0 (NE) -3,-1            0,0 (NE) 

-1 
-3 

Easy Hard 

Easy Hard Easy Hard 



Backwards Induction 
Solve the game from the last to the first stage: 
 

 Suppose a unique solution to the second stage 
payoff-maximization: 

 
 Then assume a unique solution to the first stage 

payoff-maximization: 

 
 Call    a backwards-induction outcome. 
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Example 1: Students’ Dilemma – 2 
(Sequential Version) 

(HARD, HARD) (HARD, EASY) (EASY, HARD) (EASY, EASY) 

HARD           -2,-2 (NE) -2,-2 -1,-3 -1,-3 
EASY -3,-1            0,0 (NE) -3,-1            0,0 (NE) 

YOU 

OTHERS OTHERS 

-2 
-2 

-1 
-3 

0 
0 
0 
0 

Easy Hard 

Easy Hard Easy Hard 

0 
0 

-3 
-1 

-2 
-2 

(HARD, HARD) (HARD, EASY) (EASY, HARD) (EASY, EASY) 

HARD           -2,-2 (NE) -2,-2 -1,-3 -1,-3 
EASY -3,-1          0,0 (SPNE) -3,-1         0,0 (NE) 



Example 2: Students’ Dilemma -2 
(with non-credible threat) 

 Strategic behaviour of students 
taking a course: 

 

 First, only YOU are forced to choose between 
studying HARD or taking it EASY. 

 

 Then, the course instructor warns you: 
 if YOU choose to study HARD in the first stage, all 

students get a WEAK PASS (C or 3) 
 But if YOU choose to take it EASY, OTHERS still have a 

choice and YOU are on a threat to FAIL (F or 5) 
 Is instructor’s threat credible? Should YOU take it seriously? 



Example 2: Students’ Dilemma – 2 
(with non-credible threat) 

 

Leisure Rule: HARD study schedule devotes all 
the time (leisure = 0) to studying distinct 
from the EASY one (leisure = 2). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2,2 -2,-2 0,0 
At least one Hard  2,0 -5,-1 -3,-1 

Hard No Choice 0,2 -1,-1 -1,1 



Example 2: Students’ Dilemma – 2 
(with non-credible threat) 

YOU 

OTHERS OTHERS 
-1 
1 

0 
0 
0 
0 

Easy Hard 

Easy Hard 

0 
0 

-3 
-1 



Subgame Perfect Nash Equilibrium 
 

Informal Definition: 
 
 The only subgame-perfect Nash equilibrium is the 

backwards-induction outcome. 
 

 The backwards-induction outcome does not 
involve non-credible threats. 



Summary 
 Dynamic (sequential-move) games represent 

strategic situations where one of the players 
moves before the other(s) allowing them to 
observe her move before making a decision 
how to move themselves. 

 To represent a dynamic game it is more 
suitable to use extensive form in which in 
addition to players, their strategy spaces and 
payoffs, it is also shown when each player 
moves and what she knows before 
moving. 



Summary 
 Graphically a dynamic game could be represented 

by the so called “game tree”. 
 the number of the subgames is equal to the 

number of decision nodes in the tree minus 1. 
 Distinct from the static games of complete 

information, here the strategy set of the second 
player does not coincide with its set of feasible 
actions. 

 Strategy in a dynamic game is a complete plan of 
action – it specifies a feasible action for each 
contingency (other player’s preceding move) in 
which given player might be called to act. 



Summary 
 Dynamic games of complete information 

are solved by backwards induction i.e. first 
the optimal outcome in the last stage of the 
game is defined to reduce the possible 
moves in the previous stages. 

 Backwards induction outcome does not 
involve non-credible threats – it 
corresponds to the subgame-perfect Nash 
equilibrium as a refinement of the pure-
strategy NE concept. 
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   Dynamic Games of Complete but Imperfect Information 



How to solve the GT problem? 

 Perfect Bayesian Equilibrium (PBNE) 

in static games of complete information 

in dynamic games of complete information 

in static games of incomplete information 

in dynamic games of incomplete information 

 Strategic Dominance 
 Nash Equilibrium (NE) 
 

Solution Concepts: 

  Subgame-Perfect Nash Equilibrium (SPNE) 

 Bayesian Nash Equilibrium (BNE) 

  Backwards Induction 



Revision 
What is information set? 
An information set for a player is a 

collection of decision nodes satisfying: 
 the player has the move at every node 

in the information set, and 
 when the play of the game reaches a 

node in the information set, the player 
with the move does not know which 
node in the information set is reached 
 



Revision 

 What does the extensive form representation 
of a game specifies? 

 

1. Who are the PLAYERS. 
 
 

2.1. When each player has the MOVE. 
 
 

2.2. What each player KNOWS when she is on a move. 
 
 

2.3. What ACTIONS each player can take. 
 
 

3. What is the PAYOFF received by each player. 
 

 



Dynamic games of complete but 
imperfect information 

 
 Informally, the games of this class could be described 

as follows: 
 

 First, Players 1 and 2 simultaneously choose 
actions a1 and a2 from feasible sets A1 and A2, 
respectively 

 

 Second, players 3 and 4 observe the outcome of the 
first stage, (a1, a2), and then simultaneously choose 
actions a3 and a4 from feasible sets A3 and A4, 
respectively. 

 

 Finally, based on the resulting combination of actions 
chosen in total, each player receives a given payoff 
ui(a1,a2,a3,a4) for i=1,2,3,4 



Dynamic Games of Complete and 
Imperfect Information 
Standard assumptions: 
 Players move at different, sequential moments 

– it is DYNAMIC 
 The players’ payoff functions are common 

knowledge 

– it is COMPLETE INFORMATION 
 At each stage of the game players move 

simultaneously 

– it is IMPERFECT INFORMATION 
 

 
 



 

 The aim of the third lecture is to show: 
 

1. What is the difference between perfect 
and imperfect information?  
 

2. How to solve games of complete but 
imperfect information? 
 

Dynamic games of complete but 
imperfect information 



Perfect vs. Imperfect 
Information 

What is perfect information? 
 when at each stage the player with 

the move knows the full history of the 
game thus far 

 When each information set is a 
singleton 

Then, what is imperfect information? 
 When there is at least one non-

singleton information set 
 



How to solve dynamic games of 
imperfect information? 

In a game of complete and perfect 
information BI eliminates noncredible 
threads. Why? 

 Because each decision node 
represents a contingency in which a 
player might be called on to act. 

 The process of working backwards 
thus amounts to forcing each player 
to consider carrying out each threat 



How to solve dynamic games of 
imperfect information? 

In a game of imperfect information BI 
does not work so simply. Why? 

 Because working backwards would eventually 
lead us to a decision node in a non-singleton 
information set 

 Then the player does not know whether or not 
that decision node is reached 

 The player is forced to consider what it would 
eventually do if a node is really reached not in 
a contingency in which she is called on to act 



How to solve dynamic games of 
imperfect information? 

How to deal with the problem of 
nonsingleton information sets in BI? 

Work backwards until a nonsingleton information 
set is encountered, then: 

 Skip over it and proceed the tree until a 
singleton information set is found and solve for 
the subgame emanating from it - SGPNE 

 Force the player with the move at the 
information set to consider what she would do if 
that information set was reached – Bayesian NE 



Dynamic games of Complete but 
Imperfect Information – key terms 

 Subgame – a piece of a game that remains 
to be played beginning at any point at which 
the complete history of the game thus far is 
common knowledge among the players, i.e.: 

 
 begins at a singleton information set 

 
 includes all the decision and terminal nodes following but 

not preceding the starting singleton decision node 
 
 does not cut any (non-singleton) information sets. 



Dynamic games of Complete but 
Imperfect Information – key terms 

 Strategy – a complete plan of action – 
it specifies a feasible action which the 
player will take in each stage, for 
every possible history of play through 
the previous stage. 



Dynamic games of Complete but 
Imperfect Information – SGPNE 

 (Selten 1965) Subgame-perfect Nash 
Equilibrium (SGPNE)– a Nash equilibrium 
is subgame perfect if the players’ 
strategies constitute a Nash equilibrium 
in every subgame. 



 BI fails to eliminate noncredible threads in the 
games of imperfect information because of the 
non-singleton information sets. 

 Therefore a stronger solution concept called 
subgame-perfect N.E. is applied. 

 SGPNE includes not only the best response to 
the unique action played in the first stage but 
full plan of action (strategy) how it would be 
best to respond to any possible action in the 
unobserved part of the game (subgame). 
 
 
 

Dynamic games of Complete but 
Imperfect Information – Summary 
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Repeated Games 



 

 The aim of the forth lecture is to 
describe a special subclass of dynamic 
games of complete and perfect 
information called repeated games 
 

 Key question: Can threats and 
promises about future behavior 
influence current behavior in repeated 
relationships? 

Repeated Games 



 

 Let G = {A1,…,An; u1,…,un} denote a static 
game of complete information in which 
player 1 through player n simultaneously 
choose actions a1 through an  

 from the action spaces A1 through An. 
Respectively, the payoffs are u(a,…,a) through u(a,…,a) 
Allow for any finite number of repetitions. 

 Then, G is called the stage game of the 
repeated game 

Repeated Games 



 

 Finitely repeated game: Given a stage 
game G, let G(T) denote the finitely 
repeated game in which G is played T 
times, with the outcomes of all preceding 
plays observed before the next play 
begins. 

 The payoffs for G(T) are simply the sum of 
the payoffs from the T stage games. 

Finitely Repeated Game 



 

 In the finitely repeated game G(T), a 
subgame beginning at stage t+1 is the 
repeated game in which G is played T-t times, 
denoted G(T-t). 

 There are many subgames that begin in stage 
t+1, one for each of the possible histories of 
play through stage t. 

 The tth stage of a repeated game (t<T) is not 
a subgame of the repeated game. 
 

Finitely Repeated Game 



Example: 2-stage Students’ 
Dilemma 

 

Grading Policy: 
 

the students over the average have a 
STRONG PASS (Grade A, or 1), 

the ones with average performance get a 
WEAK PASS (Grade C, or 3) and 

who is under the average 
 FAIL (Grade F, or 5).  



Example: 2-stage Students’ 
Dilemma 

 
Leisure Rule: HARD study schedule devotes 

twice more time (leisure = 1) to studying 
than the EASY one (leisure = 2). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2 3 -1 
At least one Hard  

Hard At least one Easy 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 1 1 0 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  2 5 -3 

Hard At least one Easy 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 
All Hard 1 3 -2 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 
All Hard 



Example: 2-stage Students’ 
Dilemma 

 
Bi-matrix of payoffs: 
 
 
 
 
 

Repeat the stage game twice! 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 YOU 

OTHERS 



Example: 2-stage Students’ 
Dilemma 

 
 
 
 
 
 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 YOU 

OTHERS 

  Easy Hard 

Easy -3,-3 -5,-2 

Hard -2,-5 -4,-4 YOU 

OTHERS 

Stage 2: 

Stage 1: 



Finitely Repeated Game 
 
 Proposition: If the stage game G has 

a unique Nash equilibrium then, for 
any finite T, the repeated game G(T) 
has a unique subgame-perfect 
outcome: 

 

 The Nash equilibrium of G is played in 
every stage. 



Finitely Repeated Game 
 

 What if the stage game has no unique 
solution? 
 If G = {A1,…,An; u1,…,un} is a static 

game of complete information with 
multiple Nash equilibria, there may be 
subgame-perfect outcomes of the 
repeated game G(T) in which the 
outcome in stage t<T is not a Nash 
equilibrium in G. 

 



 

Grading Policy: 
 

the students over the average have a 
STRONG PASS (Grade A, or 1), 

the ones with average performance get a 
PASS (Grade B, or 2) and 

who is under the average 
 FAIL (Grade F, or 5).  

Example: 2-stage Students’ 
Dilemma - 2 



Example: 2-stage Students’ 
Dilemma - 2 

 
Leisure Rule: HARD study schedule devotes 

all their time (leisure = 0) to studying than 
the EASY one (leisure = 2). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2 
At least one Hard  2 5 -3 

Hard At least one Easy 0 1 -1 
All Hard 0 

2 0 

2 -2 



Example: 2-stage Students’ 
Dilemma - 2 

 
 
 
 
 
 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 YOU 

OTHERS 

Suppose each player’s strategy is: 
 

•Play Easy in the 2nd stage if the 1st stage outcome is  
       (Easy, Easy) 

•Play Hard in the 2nd stage for any other 1st stage outcome 



Example: 2-stage Students’ 
Dilemma - 2 

 
 
 
 
 
 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 YOU 

OTHERS 

  Easy Hard 

Easy 0,0 -5,-3 

Hard -3,-5 -4,-4 YOU 

OTHERS 

Stage 2: 

Stage 1: 



Example: 2-stage Students’ 
Dilemma - 2 

 
 
 
 
 
 

  Easy Hard 

Easy 0,0 -5,-3 

Hard -3,-5 -4,-4 YOU 

OTHERS Stage 1: 

The threat of player i to punish in the 2nd stage player j’s 
cheating in the 1st stage is not credible. 



Example: 2-stage Students’ 
Dilemma - 2 

 
 
 
 
 
 

  Easy Hard 

Easy 0,0 -3,-1 

Hard -1,-3 -2,-2 YOU 

OTHERS Stage 1: 

{Easy, Easy} Pareto-dominates {Hard, Hard} 
in the second stage. There is space for re-negotiation 

because punishment hurts punisher as well. 



Example: 2-stage Students’ 
Dilemma - 2 

 
 
 
 
 
 

  Easy Hard C O 

Easy 0,0 -3,-1 -3,-3 -3,-3 

Hard -1,-3 -2,-2 -3,-3 -3,3 
C -3,-3 -3,-3 0,-2.5 -3,-3 
O -3,-3 -3,-3 -3,-3 -2.5,0 

YOU 

OTHERS 

Add 2 more actions and suppose each player’s strategy is: 
 

•Play Easy in the 2nd stage if the 1st stage outcome is (E, E) 
•Play C in the 2nd stage if the 1st stage outcome is (E, w≠E) 
•Play O in the 2nd stage if the 1st stage is (y≠E,z=E/H/C/O) 
•Outcomes{C,C} and {O,O} are on the Pareto frontier. 



 
 Conclusion: Credible threats or promises 

about future behavior which leave no space 
for negotiation (Pareto improvement) in the 
final stage can influence current behavior in 
a finite repeated game. 
 

Finitely Repeated Game 



Infinitely Repeated Game 
 Given a stage-game G, let G(∞,δ) denote 

the infinitely repeated game in which G is 
repeated forever and the players share 
the discount factor δ. 

 For each t, the outcomes of the t-1 
preceding plays of G are observed. 

 Each player’s payoff in G(∞,δ) is the 
present value of the player’s payoffs from 
the infinite sequence of stage games  



Infinitely Repeated Game 
 
 

 The history of play through stage t – in 
the finitely repeated game G(T) or the 
infinitely repeated game G(∞,δ) – is the 
record of the player’s choices in stages 1 
through t. 



 Strategy /in a repeated game/ - the 
sequence of actions the player will take in 
each stage, for each possible history of play 
through the previous stage. 

 Subgame /in a repeated game/ - the piece 
of the game that remains to be played 
beginning at any point at which the 
complete history of the game thus far is 
common knowledge among the players. 
 

Infinitely Repeated Game 



 
 As in the finite-horizon case, there are as 

many subgames beginning at stage t+1 of 
G(∞,δ) as there are possible histories 
through stage t. 

 In the infinitely repeated game G(∞,δ), 
each subgame beginning at stage t+1 is 
identical to the original game. 
 

Infinitely Repeated Game 



 How to compute the player’s payoff of an 
infinitely repeated game? 
 Simply summing the payoffs of all stage-

games does not provide a useful measure 
 Present value of the infinite sequence of 

payoffs: 
 

 

Infinitely Repeated Game 

∑
∞

=
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 Key result: Even when the stage game has a 

unique Nash equilibrium it does not need to 
be present in every stage of a SGP outcome 
of the infinitely repeated game. 

 The result follows the argument of the 
analysis of the 2-stage repeated game with 
credible punishment. 

Infinitely Repeated Game 



Infinitely Repeated Game 

  Easy Hard C O 

Easy 0,0 -3,-1 -3,-3 -3,-3 

Hard -1,-3 -2,-2 -3,-3 -3,3 
C -3,-3 -3,-3 0,-2.5 -3,-3 
O -3,-3 -3,-3 -3,-3 -2.5,0 

YOU 

OTHERS 

Instead of adding artificial equilibria that 
brings higher payoff tomorrow, the Pareto 
dominant action is played. 



Example: Infinite Students’ 
Dilemma 

 

Grading Policy: 
 

the students over the average have a 
STRONG PASS (Grade A, or 1), 

the ones with average performance get a 
WEAK PASS (Grade C, or 3) and 

who is under the average 
 FAIL (Grade F, or 5).  



Example: Infinite Students’ 
Dilemma 

 
Leisure Rule: HARD study schedule devotes 

twice more time (leisure = 1) to studying 
than the EASY one (leisure = 2). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 2 3 -1 
At least one Hard  

Hard At least one Easy 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 1 1 0 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  2 5 -3 

Hard At least one Easy 
All Hard 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 
All Hard 1 3 -2 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 
At least one Hard  

Hard At least one Easy 
All Hard 



Example: Infinite Students’ 
Dilemma 

 
Bi-matrix of payoffs: 
 
 
 
 
 

Repeat the stage game infinitely! 

  Easy Hard 

Easy -1,-1 -3,0 

Hard 0,-3 -2,-2 YOU 

OTHERS 



Example: Infinite Students’ 
Dilemma 

 Consider the following trigger 
strategy: 
 Play Easy in the 1st stage. 
 In the tth stage if the outcome of all t-1 

preceding stages has been (E, E) then 
play Easy, 

 Otherwise, play Hard in the tth stage. 

 Need to define δ for which the 
trigger strategy is SGPNE. 



Example: Infinite Students’ 
Dilemma 

 
 Subgames could be grouped into 2 

classes: 
 Subgames in which the outcome of at least 

one earlier stage differs from (E,E) – 
trigger strategy fails to induce cooperation 

 Subgames in which all the outcomes of the 
earlier stages have been (E,E) – trigger 
strategy induces cooperation 



Example: Infinite Students’ 
Dilemma 

 If HARD is played in the 1st stage 
total payoff is:  
 

 

 If EASY is played in the 1st stage, let 
the present discounted value be V: 

 

δ
δδδ
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Example: Infinite Students’ 
Dilemma 

 In order to have a SGPE where (E, E) 
is played in all the stages till infinity 
the following inequality must hold:  
 

 

 After substituting for V we get the 
following condition on δ: 

 

V≤
−

−
δ
δ

1
2
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Folk’s Theorem 
 In order to generalize the result of 

the SD to hold for all infinitely 
repeated games, several key terms 
need to be introduced: 

 The payoffs (x1,…,xn) are called 
feasible in the stage game G if they 
are a convex (i.e. weighted average, 
with weights from 0 to1) combination 
of the pure-strategy payoffs of G. 



Folk’s Theorem 
 

 The average payoff from an infinite 
sequence of stage-game payoffs is the 
payoff that would have to be received in 
every stage so as to yield the same present 
value as the player’s infinite sequence of 
stage-game payoffs. 

 Given the discount factor δ, the average 
payoff of the infinite sequence of payoffs  

        is: ...,, 321 ΠΠΠ ( )∑
∞

=

− Π−
1
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Folk’s Theorem 
 Folk’s Theorem (Friedman 1971): Let G be 

a finite, static game of complete 
information. Let (e1,…,en) denote the 
payoffs from a Nash Equilibrium of G, and 
let (x1,…,xn) denote any other feasible 
payoffs from G. 

 If xi > ei for every player i and if δ is 
sufficiently close to 1, then there exists a 
subgame-perfect Nash equilibrium of the 
infinitely repeated game G(∞,δ) that 
achieves (x1,…,xn) as the average payoff.  
 



Folk’s Theorem 
 

 Reservation payoff ri – the largest payoff 
player i can guarantee receiving, no matter 
what the other players do. 

 It must be that           , since if ri were 
greater than ei, it would not be a best 
response for player i to play her Nash 
equilibrium strategy. 

 In SD, ri = ei but in the Cournot Duopoly 
Game (and typically) ri < ei  

ii er ≤



Folk’s Theorem 
 
 Folk’s Theorem (Fudenber & Maskin 

1986): If (x1, x2) is a feasible payoff 
from G, with xi>ri for each i, then for δ 
sufficiently close to 1, there exists a 
SGPNE of G(∞,δ) that achieves (x1, x2) 
as the average payoff even if xi<ei for 
one or both of the players. 



Folk’s Theorem 
 

 What if δ is close to 0? 
 1st Approach: After deviation follow the 

trigger strategy and play the stage-game 
equilibrium. 

 2nd Approach (Abreu 1988): After deviation 
play the N.E. that yields the lowest payoff of 
all N.E. Average strategy can be lower than 
the one of the 1st approach if switching to 
stage game is not the strongest credible 
punishment. 



Summary 
 Key question that stays behind repeated 

games is whether threats or promises 
about future behavior can affect current 
behavior in repeated relationships. 

 In finite games, if the stage game has a 
unique Nash Equilibrium, repetition makes 
the threat of deviation credible. 

 If stage game has multiple equilibria 
however there could be a space for 
negotiating the punishment in the next 
stage after deviation. 



Summary 
 In infinitely repeated games, even when the 

stage game has a unique Nash equilibrium it 
does not need to be present in every stage of a 
SGP outcome of the infinitely repeated game. 

 Folk’s theorem implies that if there is a set 
of feasible payoffs that are larger than the 
payoffs from the stage game Nash 
equilibrium, and the discount factor is close 
to one, there is a SGPNE at which the set of 
higher feasible payoffs is achieved as an 
average payoff. 



Summary 

 Extension of the Folk’s theorem implies that for 2-
player infinitely repeated game if there is a set of 
feasible payoffs that exceed the reservation ones, the 
outcome that yields these feasible payoffs as an 
average payoff could constitute a  SGPNE even if they 
are smaller than the payoffs from the stage game 
N.E., provided that the discount factor is close to 1. 

 If the discount factor is close to 0, an alternative 
strategy to the trigger one (where the stage game 
equilibrium is played after deviation) is to play instead 
the N.E. that yields the lowest payoff of all N.E. This 
might be stronger credible punishment. 
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Static Games of Incomplete Information 



Revision 
 When a combination of strategies   
is a Nash equilibrium? 
 If for any player i, is player i’s best 

response to the strategies of the n-1 other 
players 

 Following this definition we could easily 
find game that have no Nash 
equilibrium: 
 Example: Penny Game 

( )∗∗
nss ,...,1



Example: Penny Game 

P1 

  Heads Tails 

Heads -1,1 1,-1 

Tails 1,-1 -1,1 

P2 

No pair of strategies can satisfy N.E.: 
If match (H,H), (T,T) – P1 prefers to switch 
If no match (H,T), (T,H) – P2 prefers to switch  



Extended definition of Nash 
Equilibrium 

 In the 2-player normal-form game G={S1,S2;u1,u2}, 
the MIXED strategies    are a Nash 
equilibrium if each player’s mixed strategy 
is a best response to the other player’s 
MIXED strategy 

 Hereafter, let’s refer to the strategies in Si as 
player i’s pure strategies 

 Then, a mixed strategy for player i is a 
probability distribution over the strategies in Si 

( )∗∗
21 , pp



Example: Penny Game 
 In Penny Game, Si consists of the two pure 

strategies H and T 
 A mixed strategy for player i is the 

probability distribution (q,1-q), where q is 
the probability of playing H, and 1-q is the 
probability of playing T,  

 Note that the mixed strategy (0,1) is simply 
the pure strategy T, likewise, the mixed 
strategy (1,0) is the pure strategy H 
 

10 ≤≤ q



Example: Penny Game 

 Computing P1’s best response to a mixed 
strategy by P2 represents P1’s uncertainty 
about what P2 will do. 

 Let (q,1-q) denote the mixed strategy in 
which P2 plays H with probability q. 

 Let (r, 1-r) denote the mixed strategy in 
which P1 plays H with probability r. 
 



Example: Penny Game 

 P1’s expected payoff from playing (r,1-r) 
when P2 plays (q,1-q) is: 
 

 

 which is increasing in r for q<1/2 (i.e. P1’s 
best response is r=1) and decreasing in r 
for q>1/2 (i.e. P1’s best response is r=0). 

 P1 is indifferent among all mixed strategies 
(r,1-r) when q=1/2. 

)42()12(
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Example: Penny Game 

(Tails) 

(Tails) 

(Heads) 

(Heads) 

1/2 1 q 

r 
1 r*(q) 

Because there is a value of q such that r*(q) 
has more than one value, r*(q) is called P1’s 
best-response correspondence. 



Example: Penny Game 

(Tails) 

(Tails) 

(Heads) 

(Heads) 

1/2 1 q 

r 
1 q*(r) 

The intersection of the best-response 
correspondences r*(q) and q*(r)yields the 
mixed-strategy N.E. in Penny Game. 

r*(q) 



General Definition of Mixed 
Strategy 

 Suppose that player i has K pure strategies, 
Si={si1,…, siK} 

 Then, a mixed strategy for player i is a  
probability distribution (pi1,…, piK), where pik is 
the probability that  player i will play strategy sik, 
k=1,…,K 
 Respectively,    for k=1,…,K 
and  
 Denote an arbitrary mixed strategy by pi 

 

10 ≤≤ ikp
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General Definition of Nash 
Equilibrium 

 Consider 2-player case where strategy sets of 
the two players are S1={s11,…, s1J} and 
S1={s11,…, s1K}, respectively 

 P1’s expected payoff from playing the mixed 
strategies p1 = (p11,…,p1J) is: 

 
 P2’s expected payoff from playing the mixed 

strategies p2 = (p21,…,p2K) is: 
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General Definition of Nash 
Equilibrium 

 For the pair of mixed strategies    to 
be a Nash equilibrium,  must satisfy: 
 
 

 for every probability distribution p1 over S1, 
and    must satisfy: 
 
 
 

 for every probability distribution p2 over S2. 
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Existence of Nash Equilibrium 
 Theorem (Nash 1950): In the n-player 

normal-form game G={S1,…,Sn;u1,…,un), if 
n is finite and Si is finite for every i then 
there exists at least one Nash equilibrium, 
possibly involving mixed strategies. 

 Proof consists of 2 steps: 
 Step1: Show that any fixed point of a 

certain correspondence is a N.E. 
 Step 2: Use an appropriate fixed-point 

theorem to show that the correspondence 
must have a fixed point. 



Revision 

 What is a strictly dominated strategy? 
 If a strategy si is strictly dominated then there is no 

belief that player i could hold such that it would be 
optimal to play si. 

 The converse is also true when mixed 
strategies are introduced 
 If there is no belief that player i could hold such 

that it would be optimal to play si, then there exists 
another strategy that strictly dominates si. 

 



Example /mixed strategy 
dominance/: 

P1 

  B1 B2 

A1 3,— 0,— 

A2 0,— 3,— 

A3 1,— 1,— 

P2 

For any belief of P1, A3 is not a best response 
even though it is not strictly dominated by any 
pure strategy. A3 is strictly dominated by a 
mixed strategy (½ , ½, 0)   



Example /mixed strategy best 
response/: 

P1 

  B1 B2 

A1 3,— 0,— 

A2 0,— 3,— 

A3 2,— 2,— 

P2 

For any belief of P1, A3 is not a best response 
to any pure strategy but it is the best response 

to mixed strategy (q,1-q) for 1/3<q<2/3. 



Introduction to Incomplete 
Information 

 
What is complete information? 

 
What must be incomplete 

information then? 
 



Introduction to Incomplete 
Information 

A game in which one of the players 
does not know for sure the payoff 
function of the other player is a game 
of INCOMPLETE INFORMATION 

Example: 
Cournot Duopoly with Asymmetric 
Information about Production 



Static Games of Incomplete 
Information 

The aim of this lecture is to show:  
 

 How to represent a static game of 
incomplete information in normal form? 

 

 What solution concept is used to solve a 
static game of incomplete information? 



Normal-form Representation 
 
 ADD a TYPE parameter ti to the payoff 

function -> ui(a1,…,an; ti) 
 
A player is uncertain about 
 

{other player’s payoff function} = {other player’s type t-i} 
 

where  
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Normal-form Representation 

 ADD probability measure of types to 
account for uncertainty: 
 

             - player i‘s belief about the other  
players’ types (t-i) given player i‘s knowledge of 

her own type, ti. 
 

 Bayesian Theorem 
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 PLAYERS  
 ACTIONS – A1, … ,An; Ai = {ai1,…, ain}  
 TYPES – Ti = {ti1,…, tin} 
 System of BELIEFS -   
 PAYOFFS -  
which is briefly denoted as  
 

Normal-form Representation 
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Timing of the Bayesian Games 
(Harsanyi, 1967) 

 Stage 1: Nature draws a type vector 
t = (t1,…,tn), where ti is drawn from the set of 

possible types Ti. 
 Stage 2: Nature reveals ti to player i but 

not necessarily to the other players. 
 Stage 3: Players simultaneously choose 

actions i.e. player i chooses ai from the 
feasible set Ai. 

 Stage 4: Payoffs ui(a1,…,an; ti) are 
received. 



Strategy in a Bayesian Game 
 In a static Bayesian game, a strategy for 

player i is a function , where for each type 
ti in Ti, si(ti) specifies the action from the 
feasible set Ai that type ti would choose if 
drawn by nature. 

 In a separating strategy, each type ti in 
Ti chooses a different action ai from Ai. 

 In a pooling strategy, in contrast, all 
types choose the same action.  



How to solve a Bayesian game? 
 Bayesian Nash Equilibrium: 
 

In the static Bayesian game  
 
the strategies                     are a (pure-strategy) Bayesian 

Nash equilibrium if for each player i and for each of i’s 
types ti in Ti,          solves: 

 

 
That is, no player wants to change his or her strategy, even 

if the change involves only one action by one type. 
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Existence of 
a Bayesian Nash Equilibrium 

 

 In a finite static Bayesian game 
(i.e., where n is finite and (A1,…,An) and (T1,…,Tn) 
are all finite sets), there exists a Bayesian Nash 

equilibrium, perhaps in mixed strategies. 
 

Mixed-strategy in a Bayesian game: 
 

Player i is uncertain about player j’s choice not 
because it is random but rather because of 
incomplete information about j’s payoffs.  

 
Examples: Battle of Sexes; Cournot Competition 

with Asymmetric Information 
 



Summary 
 Game Theory distinguishes between pure 

and mixed strategy 
 Mixed strategy is a probability distribution 

over the strategy set 
 To be efficient in solving games including 

uncertainty, N.E. concept needs to be 
extended and defined for mixed strategies 

 Games with uncertainty are called Bayesian 
games and their solution concept – 
Bayesian N.E. 
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   Dynamic Games of Incomplete Information 



How to solve the GT problem? 

 Perfect Bayesian Equilibrium (PBNE) 

in static games of complete information 

in dynamic games of complete information 

in static games of incomplete information 

in dynamic games of incomplete information 

 Strategic Dominance 
 Nash Equilibrium (NE) 
 

Solution Concepts: 

 Backwards Induction 
 Subgame-Perfect Nash Equilibrium (SPNE) 

 Bayesian Nash Equilibrium (BNE) 



How to describe a dynamic game? 

 The extensive form representation of a game 
specifies: 

 

1. Who are the PLAYERS. 
 
 

2.1. When each player has the MOVE. 
 
 

2.2. What each player KNOWS when she is on a move. 
 
 

2.3. What ACTIONS each player can take. 
 
 

3. What is the PAYOFF received by each player. 
 

 



How to describe a game of 
incomplete information? 

 A game in which one of the players does not 
know for sure the payoff function of the other 
player is a game of INCOMPLETE INFORMATION 

 Thanks to Harsanyi (1967) games of incomplete 
information could be represented as dynamic 
games of complete but imperfect information 

 For the purpose, in the first stage a neutral 
player (Nature) is introduced to decide what will 
be the type (payoffs) of the players which is 
private information for at least one of them. 
 

 



 

 PLAYERS  
 ACTIONS – A1, … ,An; Ai = {ai1,…, ain}  
 TYPES – Ti = {ti1,…, tin} 
 System of BELIEFS -   
 PAYOFFS -  
which is briefly denoted as  
 

Normal-form Representation 
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 The aim of the sixth lecture is to 

show: 
 

1. How to strengthen the Bayesian 
equilibrium to hold in dynamic games?  
 

2. How to define the resulting solution 
concept? 
 

The static (simultaneous-move) games 



Example: Students’ Dilemma - 4 
 

 Strategic behaviour of students 
taking a course: 

 
 First, YOU and OTHERS might be called on to 

choose between studying HARD or taking it 
EASY but YOU could reject if YOU feel UNSURE. 
Then, the game ends. 
 

 If YOU do not reject, students do the exam and 
get a grade. 

 



Example: Students’ Dilemma 
 

Standard assumptions: 
 

 Students choose between HARD and EASY 
 SIMULTANEOUSLY. 

 

 Grading is announced in advance, so it is 
 COMMON KNOWLEDGE to all the students. 
 

Simplification assumptions: 
 

 Performance depends on CHOICE. 
 

 EQUAL EFFICIENCY of studies. 
 
 
 
 
 



Example: Students’ Dilemma 
Normal Form Representation: 
 

1. 2 players – YOU vs. OTHERS 
2. Single choice strategies 

 
 
     
 

3.  Payoff function: 
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Example: Students’ Dilemma 
 

Grading Policy: 
 

the students over the average have a 
STRONG PASS (Grade A, or 1), 

the ones with average performance get a 
WEAK PASS (Grade C, or 3) and 

who is under the average 
 FAIL (Grade F, or 5).  



Example 1: Students’ Dilemma – 4 
 

Leisure Rule: HARD study schedule devotes all 
the time (leisure = 0) to studying distinct 
from the EASY one (leisure = 1). 

Player i’s 
 choice 

Others’ choice LEISURE GRADE Player i’ 
payoff 

Easy All Easy 1 -2 -1 
At least one Hard  1 -5 -4 

Hard At least one Easy 0 -1 -1 
All Hard 0 -2 -2 

Rejection -1.5 



Example 1: Students’ Dilemma – 3 

Game Tree VS. Normal-Form 
YOU 

OTHERS OTHERS 

 
-1 
-1 

-4 
-1 

-2 
-2 

EASY HARD 
 

EASY  -1,-1 
(NE) 

-4,-1 

HARD -1,-4 -2,-2 
 

UNSURE -1.5,-1.5 -1.5,-1.5 
(NE) 

-1 
-4 

Easy Hard 

Easy Hard Easy Hard 

Unsure -1.5,-1.5 



Example 1: Students’ Dilemma – 4 
 

 There is a single subgame with 2 NE: 
{E, E} and {U, H} 

 

 However, if YOU do not reject, 
{E,E} is not the only equilibrium 
 

 How to strengthen the solution 
concept to allow for strict prediction? 



Dynamic Games of Incomplete 
Information 

One way to strengthen the equilibrium concept is 
to impose the following two requirements: 
 Requirement 1: At each information set the player 

with the move must have a belief about which 
node in the information set has been reached by 
the play of the game. 

 Requirement 2: Given their beliefs, the players’ 
strategies must be sequentially rational. That is, at 
each information set the action taken by the player 
with the move must be optimal given the player’s 
belief and the other player’s subsequent strategies. 



Example 1: Students’ Dilemma – 4 

 Given OTHER’s belief that YOU would 
move EASY with probability p, their 
expected payoff of playing: 
 EASY is:  

 
 HARD is: 
 

 HARD weakly dominates EASY which 
rules out {E,E} for p<1. 
 

( ) ( ) ( ) 43141)( −=−⋅−+⋅−=Π pppEASYE OTHERS

( ) ( ) ( ) 2121)( −=−⋅−+⋅−=Π pppHARDE OTHERS



Dynamic Games of Incomplete 
Information 

Requirements 1 and 2 insist that the players have 
beliefs and act optimally given these beliefs, but not 
that these beliefs be reasonable. For the solution to 
be strict, the following requirement must also hold: 
 

 Requirement 3: At information sets on the equilibrium 
path, beliefs are determined by Bayes’ rule and the 
players’ equilibrium strategies. 

 

 Definition: For a given equilibrium in a given extensive-
form game, an information set is on (off) the 
equilibrium path if it will (not) be reached with 
positive probability when the game is played according 
to the equilibrium strategies. 



Example 1: Students’ Dilemma – 4 
 If the Nash equilibrium {U, H} holds, the belief 

of OTHERS should be p<1. 
  It is not reasonable for OTHERS to choose H if 

they believe that YOU will play E for sure 
(p=1). 

 Suppose there is a mixed-strategy equilibrium 
in which YOU plays E with probability q1, H with 
probability q2  and U with probability 1- q1- q2. 

  In conformity with the Bayes’ rule, 
 OTHERS’ belief is forced by requirement 3 to 

be p = q1/(q1+q2). 



Perfect Bayesian Equilibrium 
 In simple dynamic games of incomplete 

information – including the signaling game – 
requirements 1 through 3 constitute the 
definition of a perfect Bayesian equilibrium. 

 In richer games, however, more requirements 
need to be imposed: 
 Requirement 4: At information sets off the 

equilibrium path, beliefs are determined by Bayes’ 
rule and the players’ equilibrium strategies. 

 Definition: A perfect Bayesian equilibrium 
consists of strategies and beliefs satisfying 
Requirements 1 through 4. 



Summary 
 

 In order to rule out non-credible threats or 
promises, the Bayesian equilibrium concept needs 
to be strengthened. 

 In the definition of the perfect Bayesian Nash 
equilibrium (PBNE) beliefs are elevated to the level 
of importance of strategies. 

 For the simple games of incomplete information, 
PBNE consists of 3 basic requirements on players’ 
beliefs. 

 Richer dynamic games have more specific 
requirements concerning the beliefs off the 
equilibrium path that also need to be satisfied. 
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