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Lectures by D.

Financial derivatives as tool for protecting volatile underlying
assets

Stochastic differential calculus, 1td’s lemma, It3's integral
Pricing European type of options - Black—Scholes model
Explicit and implicit schemes for pricing European type of
options

Sensitivity analysis — dependence of the option price on
parameters

Path dependent exotic options — Asian and barrier options
Pricing American type options — free boundary problems and
numerical methods

Nonlinear extensions of the Black-Scholes theory and
numerical approximation

Modeling of stochastic interest rates and interest rate
derivatives

Appendix: Fokker—Planck equation and multidimensional Ito's
lemma
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@ The content of these lectures is based on the textbooks:

@ D. Seviovi¢, B. Stehlikovd, K. Mikula:
Analytical and numerical methods for pricing financial
derivatives.
Nova Science Publishers, Inc., Hauppauge, 2011. ISBN: 978-1-61728-780-0
@ D. Seviovi¢, B. Stehlikovd, K. Mikula:
Analytické a numerické metddy oceriovania finanénych
derivdtov,
Nakladatelstvo STU, Bratislava 2009, ISBN 978-80-227-3014-3
© P. Wilmott, J. Dewynne, J., S.D. Howison:
Option Pricing: Mathematical Models and Computation,
UK: Oxford Financial Press, 1995.
Q Hull, J. C.:
Options, Futures and Other Derivative Securities.
Prentice Hall, 1989

@ The lecture slides are available for download from

www.iam.fmph.uniba.sk/institute/sevcovic/derivaty
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Black—Scholes model for pricing financial derivatives

Lecture 1

@ Stochastic character of assets (stocks, indices)
@ Financial derivatives as tool for protecting volatile portfolios

@ Examples of market data for Call and Put options
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Stochastic character of stock prices

Daily behavior of stock prices of General Motors and IBM in 2001.
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Stochastic character of stock prices

Microsoft Corporation as of 25-Noy-2008
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Stochastic character of indices

Daily behavior of Dow—Jones index
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Financial derivatives as a tool for protecting volatile
portfolios

@ Forward
is an agreement between a writer (issuer) and a holder
representing the right and at the same time obligation to
purchase assets at the specified time of maturity of a forward
at predetermined price E

Pricing forwards is relatively simple as soon as we know the
forward interest rate r measuring the rate of the decrease of the

value of money
Vi = Eexp(—rT)

where E is the contracted expiration value of a forward at the
expiration time T. Here V¢ denotes the present value of a forward
at the time when contract is signed
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Financial derivatives as a tool for protecting volatile
portfolios

@ Option (Call option)
is an agreement between a writer (issuer) and a holder
representing the right BUT NOT the obligation to purchase
assets at the prescribed exercise price E at the specified time
of maturity T in the future

Pricing options is more involved as their price depends on:
V. = function of E, T,r,...,777

where E is the contracted expiration value of an options at the
expiration time T, V. is the present value of a Call option at the
time when the contract is signed.
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Call options
Symbol | Last [ Change | Bid [ Ask [ Volume [ Open Int | Strike Price
MQFLE.X 15.20 0.00 15.10 15.20 42 34 5.00
MQFLB.X 10.15 0.00 | 10.10 | 10.20 74 2541 10.00
MQFLM.X 7.20 0.00 7.15 7.25 95 187 13.00
MQFLN.X 6.15 0.00 6.15 6.25 55 211 14.00
MQFLC.X 5.06 0.11 5.20 5.30 11 1348 15.00
MQFLO.X 4.35 0.00 4.25 4.35 263 368 16.00
MQFLQ.X 3.40 0.00 3.30 3.40 122 4157 17.00
MQFLS.X 1.83 0.05 1.89 1.92 36 7567 19.00
MQFLU.X 1.28 0.02 1.27 1.29 56 8886 20.00
MQFLU.X 0.78 0.09 0.75 0.78 105 72937 21.00
MSQLN.X 0.40 0.04 0.41 0.43 350 16913 22.00
MSQLQ.X 0.21 0.01 0.20 0.22 125 20801 23.00
MSQLD.X 0.09 0.02 0.09 0.11 92 12207 24.00
MSQLE.X 0.04 0.02 0.04 0.05 165 14193 25.00
MSQLR.X 0.02 0.00 0.02 0.03 161 9359 26.00
MSQLS.X 0.02 0.00 N/A 0.03 224 3643 27.00
MSQLT.X 0.02 0.00 N/A 0.02 59 2938 28.00
MSQLF.X 0.01 0.00 N/A 0.02 10 1330 30.00

Prices of Call options with different exercise (strike) prices E for
Microsoft stocks from 26. 11. 2008. with expiration 8.12.2008.
The spot price S = 20.12

The Call option price Ve =~ 1.28 >S5S — E =20.12—-20=0.12
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Microsoft Corporation (MSFT) ato41AMET: 20.12 4 0.13 (0.65%)

Options

View By Expiration. Dec 08 | Jan 09 | Apr 09 | Jul 09 | Jan 10 | Jan 11
Options Expiring Fri, Dec 19, 2008

Calls Strike Puts
Symbol Last Change Bid Ask Velume Open Int Price Symbol Last Change Bid Ask Volume Open Int
MQFLEX 15.20 0.00 1510 1520 42 34 5.00 MOFXEX N/A  0.00 NA  NA (¢] 0
MOFLBX 10.15 0.00 10.10 10.20 74 2,541 10.00 MOFXBX 0.03 0.00 0.02 004 97 3.473
MOQFLM X 7.20 0.00 715 725 95 187 13.00 MOQFXMX 0.07 0.00 005 007 459 2,994
MOFXN.X
MOFXC.X

MOFLNX 6.15 0.00 615 625 55 211 14.00 MOFXN.X 0.10 0.00 0.07 010 204 2,147
MQFLCX 5.06 4+0.11 520 530 11 1,348 15.00 MOFXCX 0.14 0.00 013 014 5 B1l183
MOFLO.X 435 0.00 425 435 263 368 16.00 MOFXOX 0.20 #0.02 019 021 2 337
MQFLOX 340 0.00 330 340 122 4,157 17.00 MOFXQX 0.32 4 0.02 0.33 034 11, 8.39

MQFLSX 1.83 40.05 189 192 38 7,567 19.00 MOQFXSX 0.83 +0.06 0.77 0.80 169 31,116
MQFLD.X 1.28 4 0.02 127 129 56 £,886 20.00 MOFXD.X 1.14 $0.06 113 116 109 23,562
MOFLUX 0.78 4+ 0.09 075 0.78 105 72,937 21.00 MOFXUX 1.83 +0.23 165 168 1 72472
MSQLN.X 040 ¥ 0.04 041 043 350 16,913 22.00 MSOXW.X 2.58 +0.23 230 236 3 449
MSQLOQX 0.21 40.01 020 0.22 125 20,801 23.00 MSQXQX 3.10 0.00 305 315 30 3,840

MsQLD.X 0.09 #0.02 009 011 92 12,207 24.00 MSOXDX 3.80 0.00 395 405 167 3,871
MSQLEX 0.04 4 0.02 004 005 165 14,193 25.00 MSOXEX 4.90 0.00 485 495 157 2,075
MSQLRX 0.02 0.00 002 0.03 161 9,359 26.00 MSOXRX 6.15 0.00 585 595 210 1,795

MSOXS X

MSQXT.X

MSOXF X

M5QLS.X ©0.02 0.00 NA 003 224 3,643 27.00 MSOQXS5X 7.00 0.00 685 695 45 1,156
MSQLTX ©0.02 0.00 NA 002 59 2,938 28.00 MSOXTX 7.55 0.00 7.80 785 24 874
MSQLFX ©0.01 0.00 NA 002 10 1,330 30.00 MSOXFX 10.54 0.00 985 1000 26 124

Highlighted options are inthe-money,
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MName Last Change

(MSFT) MICROSOFT i = popy L Optonschain | Add to
CORP. $28.20 0.43(1.54%) Portfolio
Advanced Chart

= MICROSOFT

Intraday behavior (Feb. 7, 2011) of MSFT (Microsoft Inc.) stock.
Source: Chicago Board Options Exchange: www.cboe.com
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Name Last Change
(MSFT) MICROSOFT . Options Chain | Add to
CORP. §28.20 0.43(1.54%) =" p 1t folio
Jul 2011 |» | View Chain
Calls Puts
Contract Name Tr o hange Bid Ask Volume Interest : s Contract Name 'I'|..‘|I(’;\.-‘ hange Bid Ask  Volume
MSFT{11G16115.0 0.00 0.00 0.000.000 V] 15.00 MSFT\11516415.0 0.00 0.00 0,00 0.00 0
MSFT\11G164175 0.00 0.00 0.00 0.000 o 17.50 MSFT\11516417.5 0.00 0.00 0.00 0.00 0
MSFT\11G16\20.0 0.00 0.00 0.00 0.000 1] 20.00 MSFT\11516\20.0 0.00 0.00 0.000.000
MSFT\11G16122.0 0.00 0.00 0.00 0.000 1] 22.00 MSFT\11516\22.0 0.00 0.00 0.000.000
MSFT\11G16123.0 0.00 0.00 0.000.000 0 23.00 MSFT\11516423.0 0.00 0.00 0.000.000
MSFT\11G16\24.0 446 046 44044520 785 24.00 MSFT\11516124.0 0.40 -0.11 0410435
MSFT\11G16125.0 350 0.16 355 3.60 14 3,851 25.00 MSFT\11516\25.0 0.57 -0.15 0.57 0,59 249
MSFT\11G16126.0 284 030 277 2.80 43 3,283 26.00 MSFT\11516'26.0 0.80 -0.20 0.80 0.82 4
MSFT\11G16\27.0 2.13 0.22 2.08 2.11 266 127,259 27.00 MSFT\11516\27.0 1.14 -0.23 '1.12 1.14 138
MSFT\11G16\28.0 155 0.19 1.50 1.52 1,370 20,288 28.00 MSFT\11516\28.0 1.54 -0.29 154 157 40
MSFT\11G16\29.0 1.08 0.16 1.03 1.05 276 19,675 29.00 MSFT\11516\29.0 245 0.14 2.08 2.11 239
MSFT\11G16\30.0 0.70 0.10 0.68 0.70 271 39,363 30.00 MSFT\11516\30.0 266 -0.34 273 2.76 5
MSFT\11G16\31.0 0.40 0.07 043 045 301 9,627 31.00 MSFT\11516\31.0 3.55 -0.20 3.45 350 3
MSFT\11G16132.0 029 006 026 0.28 734 4,502 32.00 MSFT\11516\32.0 5,00 0.22 4.30 4.35 90
MSFT\11G16133.0 0.16 001 015 0.17 100 2,098 33.00 MSFT\11516\23.0 480 0.05 515 525 20
MSFT\11G16135.0 0.06 000 005 006 10 9,857 35.00 MSFT\11516\25.0 6,65 0.056 7.05 7.15 70
MSFT\11G16140.0 0.00 0.00 0.000.000 V] 40.00 MSFT\11516440.0 0.00 0.00 0,00 0,00 0

Call and Put option prices from Feb. 7, 2011, on MSFT (Microsoft Inc.)
stock with expiration July 2011 for various exercise (strike) prices E.
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Stochastic

character of options
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Figure: Top: Stock prices of IBM from 22. 5. 2002. Bottom: Bid and
Ask prices of Call option for IBM stocks (left) and their arithmetic

average value (right).
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Financial derivatives as a tool for protecting volatile
portfolios

@ A natural question arises:
Although the time evolution of the asset price S; as well as its
derivative (option) V; is stochastic (volatile, unpredictable)
CAN WE FIND A FUNCTIONAL DEPENDENCE

Vt — \/(St7 t)

relating the actual stock price S; at time t and the price of its
derivative (like e.g. a Call option) V;7?
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Financial derivatives as a tool for protecting volatile
portfolios

@ This was a long standing problem in financial mathematics
until 1972. The answer is YES due to the pioneering work of
M.Scholes, F.Black and R.Merton.

@ M. Scholes and R. Merton were awarded the Price of the
Swedish Bank for Economy in the memory of A. Nobel in
1997 (Nobel price for Economy).
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Financial derivatives as a tool for protecting volatile
portfolios

@ The Black-Scholes formula
V=Vt TEro)

where S = S; is the spot (actual) price of an underlying asset,
V = V; is a the spot price of the option (Call or put) at time
0 < t< T. Here T is the time of maturity, E is the exercise

price, r > 0 is the interest rate of a secure bond, ¢ > 0 is the
volatility of underlying stochastic process of the asset price S;.
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Black—Scholes model for pricing financial derivatives

Lecture 2

@ Stochastic differential calculus
@ Wiener process, Brownian and geometric Brownian motion

@ [to's lemma, Itd’s integral
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Stochastic differential calculus, 1t0's lemma

@ Stochastic process is a t - parametric system of random
variables {X(t),t € I}, where | is an interval or a discrete set
of indices

@ Stochastic process {X(t),t € I} is a Markov process with the
property: given a value X(s), the subsequent values X(t) for

t > s may depend on X(s) but not on preceding values X(u)
for u < s. More precisely,

If t > s, then for conditional probabilities we have:
P(X(t) < x|X(s)) = P(X(t) < x|X(s), X(v))

for any u <s.
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Stochastic differential calculus, 1td's lemma

@ a stochastic process {X(t),t > 0} is called the Brownian
motion if

i) all increments X(t + A) — X(t) are normally distributed with
the mean value A and dispersion (or variance) o2A,

ii) for any division of times tp =0 < t; < tr < t3 < ... < t, the
increments X(t1) — X(to), X(t2) — X(t1), ..., X(tn) — X(tn=1)
are independent random variables

iii) X(0) = 0 and sample pathes are continuous almost surely

@ Brownian motion {W/(t),t > 0} with the mean =0 and
dispersion 02 = 1 is called Wiener process

Figure: Norbert Wiener (1884-1964) and Robert Brown (1773-1858).
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Stochastic differential calculus, 1t0's lemma

@ Additive (or semigroup) property of the Brownian motion
(BM) {X(t),t >0} — Mean value
let 0 =ty < t; < ... < t, = t be any division of the interval [0, ¢].
Then

X(t) = X(0) =Y X(t:) — X(ti-1).
i=1

Therefore the mean value E and variance Var of the left and right
hand side have to be equal. By definition of the BM we have

E(X(t) — X(0)) = p(t - 0) = pt.
On the other side we have (due to the linearity of the mean value
operator):
E (307 X(t) = X(ti—1)) = 27 E(X(6) — X(ti—1)) = 370, (i — ti—1) = pt
@ In order to verify the equality we had to require that
increments X(t;) — X(tj—1) have the mean value
E(X(ti) — X(ti-1)) = p(ti — ti-1)
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Stochastic differential calculus, 1t0's lemma

@ Additive (or semigroup) property of the Brownian motion
{X(t),t >0} - Variance

For dispersions of the random variables X(t) — X(0) and
Som 1 (X(ti) — X(ti—1)) we have, by definition,

Var(X(t) — X(0)) = o?(t — 0) = o°t.

ReCall that for two random independent variables A, B it holds:

Var(A + B) = Var(A) + Var(B). Hence, assuming independence

of increments X(t;) — X(ti—1) for different i = 1,2, ..., n we have
Var (3071 X(6) — X(ti—1)) = o0 Var(X(t) — X(ti—1)) = 20, 0%(t — ti—1) = ot.

@ In order to verify the equality we had to require that
increments X (t;) — X(tj—1) have the dispersion (variance)
V(X(t) = X(ti-1)) = o°(ti — ti-1)
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Stochastic differential calculus, 1t0's lemma

In summary:

@ The Brownian motion {X(t),t > 0} has the following
stochastic distribution:

X(t) ~ N(ut,ot)

where N(mean, variance) stands for a normal random variable
with given mean and variance

@ The Wiener process {W(t),t > 0} (here u = 0,02 = 1) has
the following stochastic distribution:

W(t) ~ N(O, t).
Moreover, dW/(t) := W(t + dt) — W(t) ~ N(0, dt), i.e.
dW(t) := W(t + dt) — W(t) = dVdt

where ® ~ N(0,1).
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Stochastic differential calculus, 1t0's lemma
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Figure: Two randomly generated samples of a Wiener process.
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Figure: Five random realizations of a Wiener process.
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Stochastic differential calculus, 1t0's lemma

Since W(t) ~ N(0,t) we have Var(W(t)) = t.

1

© o
o

Var(w(t))
»

o o
N

0

0 0.2 0.4 0.6 0.8 1
t

Figure: Time dependence of the variance Var(W/(t)) for 1000 random
realizations of a Wiener process { W(t),t > 0}.
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Stochastic differential calculus, 1t0's lemma

Relation between Brownian and Wiener process:

@ For a Brownian motion {X(t),t > 0} with parameters y and
o we have, by definition,
dX(t) = X(t + dt) — X(t) ~ N(udt,o?dt) Therefore, if we
construct the process
X(t) — pt

Wit ==

we have
dX(t) — pdt
o

dW(t) = W(t+ dt) — W(t) = ~ N(0, dt),

i.e. {W(t),t >0} is a Wiener process
Since X(t) = ut + ocW/(t) we may therefore write a
Stochastic differential equation
dX(t) = pdt + odW(t),

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



Stochastic differential calculus, 1t0's lemma

@ Geometric Brownian motion
If {X(t),t > 0} is a Brownian motion with parameters ;. and o we
define a new stochastic process {Y(t),t > 0} by taking
Y (t) = yoexp(X (1))
where yg is a given constant. The process {Y(t),t > 0} is called
the Geometric Brownian motion.

@ Statistical properties of the Geometric Brownian motion

@ For simplicity, let us take yg = 1. Then

W(t) = In Y(z;) — ut

is a Wiener process with W(t) ~ N(0,t), i.e. we know its
distribution function.
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Stochastic differential calculus, 1t0's lemma

@ Statistical properties of the Geometric Brownian motion:

For the distribution function G(y,t) = P(Y(t) < y) it holds:
G(y,t) =0 for y <0 (since Y(t) is a positive random variable)
and for y >0

Gy, t)=P(Y(t)<y)=P (W(t) < M)

g

—pt+iny

1 o 2
_ —&%/2t
= e d€.
V27t /_OO ¢
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Stochastic differential calculus, 1t0's lemma

@ Statistical properties of the Geometric Brownian motion:

Since E(Y(t)) = f°° vg(y,t)dy and

E(Y(t)?) = [ v?g(y, t) dy, where g(y, t) = £ G(y,t), we can
calculate

E(Y(t)) Z/OO ve(y,t) dy:/Oooyg(% t) dy

—00
ut+2|ny) 1 d
204t e
\/27r oy Y

(&= (—ut +Iny)/(oV't))

2
ut 00 2 ut+Z-t  proo B 2
e e—%+a\ﬂ§ de = e 2 / _ (& azﬂ)

= o) Vor oot %

2
= ehttTt,
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Stochastic differential calculus, 1t0's lemma

@ Naive (and also wrong) formal calculation
Since Y(t) = exp(X(t)) where dX(t) = pdt + odW/(t) we have
dY (t) = (exp(X (1)) dX(t) = exp(X(t))dX(t)
and therefore
dY(t) = pY(t)dt+ oY (t)dW(t).

Hence by taking the mean value operator operator E(.) (it is a
linear operator) we obtain

dE(Y (1)) = E(dY(t)) = uE(Y (t))dt+oB(Y (t)dW(t)) = uE(Y(t))dt

as the random variables Y'(t) and dW/(t) are independent and
E(dW(t)) = 0. Solving the differential equation
SE(Y(t)) = uE(Y(t)) yields

E(Y(t)) = exp(pt)

BUT according to our previous calculus E(Y(t)) = exp(ut + %21“)
Where is the mistake?
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Stochastic differential calculus, 1t0's lemma

@ The correct answer is based on the famous Ito's lemma

@ We cannot omit stochastic character of the process
{X(t),t > 0} when taking the differential of the
COMPOSITE function exp(X(t)) !!!

Ito lemma
Let f(x, t) be a C? smooth function of x, t variables. Suppose that

the process {x(t),t > 0} satisfies SDE:
dx = p(x, t)dt + o(x, t)dW,

Then the first differential of the process f = f(x(t), t) is given by

of ofF 1., 0
df = —dX+ (a + 50' (X, t)w) dt,
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Stochastic differential calculus, 1t0's lemma

RS F

Figure: Kiyoshi 1t (1915-2008).

@ According to Wikipedia Itd's lemma is the most famous
lemma in the world (citation 2009).
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Stochastic differential calculus, 1t0's lemma

@ Meaning of the stochastic differential equation
dx = p(x, t)dt + o(x, t)dW,

in the sense of Ito.

@ Take a time discretization 0 < t; < tp < ... < t,. The above
SDE is meant in the sense of a limit in probability when the
norm v = max; |tji+1 — t;| of explicit in time discretization:

X(tie1)=x(ti) = p(x(ti), ti)(ti1—ti) +o (x(&), &) (W(ti1) - W(t))

tends to zero (v — 0).

@ Random variables x(t;) and W(t;1) — W(t;) are independent
so does o(x(t;), t;) and W(ti+1) — W(t;). Hence

E(o(x(ti), ti)(W(ti11) — W(t))) =0
because E(W(tj+1) — W(t;))) =0.
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Stochastic differential calculus, 1t0's lemma

Intuitive (and not so rigorous) proof of Itd's lemma is based on
Taylor series expansion of f = f(x, t) of th 2nd order

2 2
OF e dt + g(dt)2>+h.o.t.

dx)? +2
()" + 25 5 912

of of 1 [/ 9%f
df = adt—l—adxﬁ- 5 (W

ReCall that dw = ®+/dt, where ® ~ N(0, 1),
(dx)? = 0?(dw)?+2ucdw dt+p?(dt)? ~ o2dt+0((dt)>/?)+0((dt)?)

because E($?) = 1 (dispersion of ® is 1).
Analogously, the term dx dt = O((dt)3/?) 4+ O((dt)?) as dt — 0.
Thus the differential df in the lowest order terms dt and dx can be
expressed:

of (81‘ 1,

df = Zdx+ [ 2+ 2o t)& dt
T ox X T\ or T27 ol ) 9t
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Stochastic differential calculus, 1t0's lemma

@ Example: Geometric Brownian motion
e Y(t) = exp(X(t)) where dX(t) = udt + ocdW(t).
Here f(x, t) = e and Y(t) = f(X(t), t). Therefore

o of of 1 ,0°f

1 1
- eX(t)dX(t)+§o2eX(t)dt = (u+507)Y (t)dt+o Y ()dW(t)

@ As a consequence, we have for the mean value E(Y(t))
1
dE(Y(£)) = (i + 50 E(Y (¢))dt

and so E(Y/(t)) = e*727°t provided that Y(0) = 1.
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Stochastic differential calculus, 1t0's lemma

@ Example: Dispersion of the Geometric Brownian motion
@ Y(t) =exp(X(t)) where dX(t) = udt + odW(t).
o Compute E(Y/(t)?). Solution: set f(x,t) = (€)% = e2*.Then

2
dY(t)? = df = ?dx (% - 302%) dt.

1
= 2e2X(1) dX(t)+§(724e2X(t) dt = 2(u+0?) Y (t)2dt+20 Y (t)2dW(t)
@ As a consequence, for the mean value E( Y (t)?) we have
dE(Y(t)?) = 2(u + o®)E(Y(t)?)dt

and so E(Y/(t)?) = e2#t+20°t Hence

Var(Y(t)) = E(Y(£)?) = (E(Y(£))? = 274 (1 — ™),
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Black—Scholes model for pricing financial derivatives

Lecture 3

@ Pricing European type of options - the Black—Scholes model
@ Explicit solutions for European Call and Put options
o Put — Call parity

@ Complex option strategies — straddles, butterfly
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Black—Scholes model for pricing financial derivatives

@ Derivation of the Black—Scholes partial differential equation
@ the case of Call (or Put) option

@ Call option is an agreement (contract) between the writer
(issuer) and the holder of an option. It represents the right
BUT NOT the obligation to purchase assets at the prescribed
exercise price E at the specified time of maturity t = T in the
future.

@ The question is: What is the price of such an option (option
premium) at the time t = 0 of contracting. In other words,
how much money should the holder of the option pay the
writer for such a derivative security
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Black—Scholes model for pricing financial derivatives

Denote

@ S - the underlying asset price
@ V - the price of a financial derivative (a Call option)

@ T - expiration time (time of maturity) of the option contract

84.2
15.25

15

84

83.8 14.75
83.6 14.5
83. 4| 14.25
83.2 14

13.75

83
13.5
S 0 50 100 150 200 250 300 350 V 0 50 100 150 200 250 300 350
Stock prices of IBM (2002/5/2) Bid and Ask prices of a Call option

Idea

@ Construct the price V as a function of S and time ¢t € [0, T],
ie. V=V(S5,1t)
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Black—Scholes model for pricing financial derivatives

Assumption:
@ the underlying asset price follows geometric Brownian motion

dS = uSdt + oSdw.

Simulations of a geometric Brownian motion with 1 > 0 (left) and p < 0 (right)

30
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Real stock prices of IBM (2002/5/2)
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Black—Scholes model for pricing financial derivatives

A financial portfolio consisting of stocks (underlying assets),
options and bonds

Portfolio

M Bonds M Stocks ' Options
@ The aim is to dynamically (in time) rebalance the portfolio by
buying/selling stocks/options/bonds in order to reduce
volatile fluctuations and to preserve its value
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Black—Scholes model for pricing financial derivatives

Assumption:
@ Fundamental economic balances:
e conservation of the total value of the portfolio

SQs+VQv+B=0

e requirement of self-financing the portfolio
5dQs+ VdQy +0B=0

Qs is # of underlying assets with a unit price S in the
portfolio

Qv is # of financial derivatives (options) with a unit price V
B the cash money in the portfolio (e.g. bonds, T-bills, etc.)

e ©

@ dQs is the change in the number of assets
@ dQy is the change in the number of options
@ 0B is the change in the cash due to buying/selling assets and options
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Black—Scholes model for pricing financial derivatives

Assumption:

@ Secure bonds are appreciated by the fixed interest rate r > 0
B(t) = B(0)e" — dB = rB dt

@ The change of the total value of bonds in the portfolio is
therefore

dB =rBdt+ 6B

because we sell bonds (0B < 0) or buy bonds (6B > 0) when
hedging (re-balancing) the portfolio in the time period
[t,t + dt].
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Black—Scholes model for pricing financial derivatives

@ Differentiating the fundamental balance law:
S Qs+ V Qv+ B =0 in the time period [t, t + dt] we obtain

rB dt+6B
—
0 = d(SQs+ VQv +B)=d(5Qs+ VQy)+ dB
=0

0 = SdQs+ VdQy + B +QsdS + QudV + rB dt
rB

0 = QsdS + QudV = r(5Qs + VQy) dt.

@ Dividing the last equation by Qy we obtain

dV —rVdt—A(dS —rSdt) =0, whereA——ﬁ

4
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Black—Scholes model for pricing financial derivatives

@ ReCall that we have assumed the stock price S to follow the
geometric Brownian motion

dS = pSdt + oSdw.

@ By Itd's lemma we obtain for a smooth function V = V/(S, t)

ov 1 92V oV
V=2 + 202527 — dS.
d <8t+205852> dt’—I—85 dS

@ Inserting the differential dV into the equation
dV — rV dt — A(dS — rS dt) = 0 we obtain

oV 1 , 0%V ov _
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Black—Scholes model for pricing financial derivatives

Assumption:

@ Holding a strategy in buying/selling stocks and options with

the goal to eliminate possible volatile fluctuations. The only
volatile (unpredictable) term in the equation

ov 1 2 50 oV
<E 5 SW—rV—FArS)dt—F(E—A)dS—O
is (‘g—g—

) dS due to the stochastic differential dS

o Setting A = 85 (Delta hedging) we obtain, after dividing the
equation by dt, the following PDE:

ov 1 o*v ov

— + 205 —— +rS———rV =0
ot 2 oS oS
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Black—Scholes model for pricing financial derivatives

@ The parabolic partial differential equation for the option price
V = V(S, t) defined for S > 0,t € [0, T]

ov 1, 2a2v oV -
8t+205 552 585 V=0

is referred to as the Black—Scholes equation.

M. S. Scholes a R. C. Merton were awarded by the Price of the Swedish Bank for
Economy in the memory of A. Nobel in 1997, Fisher Black died in 1995

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



Black—Scholes model for pricing financial derivatives

Terminal conditions for the Black—Scholes equation:

@ At the time t = T of maturity (expiration) the price of a Call
option is easy to determine.

o If the actual (spot) price S of the underlying asset at t = T is
bigger then the exercise price E then it is worse to exercise the
option, and the holder should price this option by the
difference V(5,T)=S - E

o If the actual (spot) price S of underlying asset at t = T s less
then the exercise price E then the Call option has no value, i.e.
V(5,T)=0

@ In both cases V/(S, T)=max(S — E,0).

50

40
30
v
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10

0
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<
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Black—Scholes model for pricing financial derivatives

Mathematical formulation of the problem of pricing a Call option:

@ Find a solution V/(S,t) of the Black—Scholes parabolic partial
differential equation
0’V ov

025 4+ S— —rV=0

ov 1
ot 2 852 0S

defined for S > 0,t € [0, T], and satisfying the terminal

condition
V(S,T)=max(S - E,0)

at the time of maturity t = T.
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Black—Scholes model for pricing financial derivatives

Solution of the Black—Scholes equation.

@ Using transformations x = In(S/E) and 7 = T — t transform
the BS equation into the Cauchy problem

ou_ o Fu_
or 2 Ox2 7
u(x,0) = u°(x),

for —oo < x < oo0,7 €0, T].
@ Solve this parabolic equation by means of the Green's function

@ Transform back the solution and express V/(S,t) in the
original variables S and t
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Black—Scholes model for pricing financial derivatives

Solution of the Black—Scholes equation

@ Transformation x = In(S/E) and 7 = T — t and introduction
of an auxiliary function Z(x,7) lead to

Z(x,7)=V(Ee*, T — 1)

@ Then
oz oV 0?7 282 oV 282V oz
% 35 a2~ 952 t0as T a5t Toax

@ The parabolic equation for Z reads as follows:

0oz 1 2822 o? oy4 B
3~ 3° aX2+<7—r>§—i—r2—0,

Z(x,0) = max(Ee* — E,0), —oco<x<oo, T€]0,T]
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Black—Scholes model for pricing financial derivatives

Solution of the Black—Scholes equation

@ Using a new function u(x, )
u(x,7) = e Z(x, 1)
where «, 5 € R are some constants leads to

ou  o2d%u ou
§—7ﬁ+Aa+BU—O,
u(x,0) = Ee* max(e* — 1,0),

@ Constants

2 2 2 2
A:aa2+%—r, and B:(l—l—a)r—ﬂ—w
can be eliminated (i.e. A=0,B = 0) by setting

_r 1 ﬂ_r+02+ r?

T2 —2778 202
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Black—Scholes model for pricing financial derivatives

Solution of the Black—Scholes equation

@ A solution u(x, 7) to the Cauchy problem 5% — &-54 =0 is
given by Green's formula

u(x,7) = m/ - 2027 u(s,0) ds.

@ Computing this integral and transforming back to the original
variables S, t and V/(S, t), enables us to conclude

V(S,t) = SN(dy) — Ee " (T=IN(dy),

2
where N(x) = \/% I e d¢ is a distribution function of

the normal distribution and

In2+(r+%)(T 1)
dh=—F 2 dh=dcy—oVT —t
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Black—Scholes model for pricing financial derivatives

Solution of the Black—Scholes equation

14 14
12 12
10 10
v 8 v 8
6 6
4 4
2 2
45 50 55 60 65 70 75 45 50 55 60 65 70 75
s s

Graph of a solution V/(S,0) for a Call option together with the terminal condition
V(S, T) (left). Graphs of solutions V/(S, t) for different times T — t to maturity

(right).
Example:
@ Present (spot) price of the IBM stock is S = 58.5 USD
@ Historical volatility of the stock price was estimated to ¢ = 29% p.a., i.e.
o =0.29.
@ |Interest rate for secure bonds r = 4% p.a., i.e. r = 0.04
@ Call option for the exercise price E = 60 USD and exercise time T = 0.3-years
@ Computed Call option price by Black—Scholes formula is:
V=V(58.5, 0) = 3.35 USD.
@ Real market price was V. = 3.4 USD
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Black—Scholes model for pricing financial derivatives

@ Put option

@ Put option is an agreement (contract) between the writer
(issuer) and the holder of an option. It represents the right
BUT NOT the obligation to SELL the underlying asset at the
prescribed exercise price E at the specified time of maturity
t = T in the future.

@ If the actual (spot) price S of the underlying asset at t = T is
less then the exercise price E then it is worse to exercise the
option, and the holder prices this option as the difference
V(S, T)=E-S.

@ If the actual (spot) price S of underlying asset at t = T is
higher then the exercise price E then it has no value for the
holder, i.e. V(S,T)=0.

@ In both cases we have V/(S, T) = max(E — S,0).
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Black—Scholes model for pricing financial derivatives

@ Put option
@ explicit solution to the Black-Scholes equation with the
terminal condition V(S, T) = max(E — S,0)

Vep(S, t) = Ee " (T~ N(—dy) — SN(—dy)

where N(.), di, d> are defined as in the case of a Call option.

12 12

10 10

8 8

V 6 > 6

4 4

2 2
50 55 60 s 65 70 75 50 55 60 S 65 70 75

Graph of a solution V/(S,0) for a Put option and the terminal condition V/(S, T)
(left). Graphs of solutions V/(S, t) for different times T — t to maturity (right)

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



Black—Scholes model for pricing financial derivatives

o Put-Call parity

@ Construct a portfolio of one long Call option and one short
Put option: V#(S, T) = Vec(S, T) — Vep(S, T)

V¢(S, T) = max(S — E,0) —max(E — S5,0) =S — E.

@ The solution to the Black—Scholes equation with the terminal
condition V¢(S, T) =S — E can be found easily

Ve(S,t) =S — Ee~(T—1)

@ According to the linearity of the Black—Scholes equation we

obtain:
Vec(S, t) — Vep(S, t) =S _ Ee—r(T—t)

known as the Put—Call parity: Call - Put = Asset - Forward
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Selected option strategies

@ Bullish spread
Buy one Call option on the exercise price E; and sell one Call
option on Ep where E; < Ep. Therefore the Pay—off diagram:
V(S,T)=max(S — E£1,0) — max(S — E»,0)

10 10
5 % 7

vV 0 vV o0
-10 -10

0 20 40 60 80 100 0 20 40 60 80 100
S s

o

@ The strategy has a limited profit and limited loss (pay-off
diagram is bounded).

@ It protects the holder for increase of the asset price in a short
position (like a single Call option).

@ Linearity of the Black—Scholes equation implies:

V(S,t) = VS, t; E1) — V(S t; Ep), forall0<t<T
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o Butterfly
Buy two Call options - one with low exercise price £; and one
with high E4
Sell two Call options with E; = E3, where E1 < Ey = E3 < E4
and E; + E4, = E> 4+ E3 = 2E5.

V(S, T) = max(S—Ez,0) — max(S—Ez,0)— max(S—Ez, 0) +max(S—Ea, 0)

0 20 40 60 80 100 0 20 40 60 80 100
S S

@ The strategy has a limited profit and limited loss (pay-off
diagram is bounded).
@ |t is profitable when the price of the asset is close to E; = E;.
@ Linearity of the Black—Scholes equation implies for 0 < t < T:
V(S,t) = V(S t; E1) — VE(S,t, E2) — VE(S, t, E3) + VE(S, t; Ey)
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@ Strangle is a combination of purchasing one Call on E;, and
one Put option on strike price E; < E

VS, T)=(S—E) "+ (E.—95)".

@ Condor is a strategy similar to butterfly, but the difference is
that the strike prices of sold Call options need not be equal,
E> 75 Es,ie, E1 < B, < B3 < Ey.

50 10

40
30
Vv \
20

10

o N A o ®

30 40 50 60 70 80 90 100 ] 20 40 60 80 100
S

Left: Strangle option strategy for E; = 50; E; = 70 and prices
S— V(S5,t)
Right: Condor option strategy with £; = 50, E; = 60, E3 = 65, £, = 70
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Black—Scholes equation for divedend paying assets

@ the underlying asset is paying nontrivial continuous dividends
with an annualized dividend yield D > 0

@ holder of the underlying asset receives a dividend yield DSdt
over any time interval with a length dt

@ paying dividends leads to the asset price decrease

dS = (u— D)S dt + oSdw .

@ on the other hand, it is added as an extra income to the
money volume of secure bonds

dB =rBdt+ 0B+ DSQs dt
@ the portfolio balance equation then becomes
QvdV + QsdS + rBdt + DSQs dt =0
@ since B=—QyV — QsS we obtain, after dividing by Qv/,

dV—rVdt—A(dS—(r—D)Sdt) =0 where A =—Qs/Qy.
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@ repeating steps of derivation of the B-S equation, using Ito's
lemma for dV we conclude with the equation

8V 1 52 28 ov
S —-D)S——-rvV=0
at P +(r ) oS
@ similarly as in the case D = 0 we obtain

V(S,t) = Se PT-IN(d) — Ee (T N(db),

N2+ (r—D+2)T—1t)

E 2

, dh=dy—oVT —t
oV T —t ? 17

@ Put option can be calculated from Put-Call parity:
VC(57 t) - VP(S, t) = Se_D(T_t) _ Ee—r(T—t)

1=

0 ’ o *
50 60 70 80 0 100 110 120 0 20 40 60 80 100 120
s s

Solutions V(S,t),0 <t < T, for a European Call option (left) and Put option (right).
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Finite difference method for solving the Black—Scholes
equation

Lecture 4

@ Transformation of the Black—Scholes equation to the heat
equation

@ Finite difference approximation
@ Explicit numerical scheme and the method of binomial trees

@ Stable implicit numerical scheme using a linear algebra solver
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Numerical solution to the Black—Scholes equation

@ using the transformation V/(S,t) = Ee=**~A7u(x, T), where
7=T —t,x=1In(S/E), leads to the heat equation
ou  o?d%u
or 2 0x?
forany x e R,0<7 < T.
°

(x,7) = e+ max(eX — 1,0), for a Call option,
EVGT) = ex+br max(1 — e*,0), for a Put option.

represents the transformed pay-off diagram of a Call (Put)
option
@ It satisfies the initial condition

u(x,0) = g(x,0), forany x € R.

. _r=D _1 _rD , o2 (r=D)?
Here: a= 5 B=5%5+%F+ 552
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Finite difference approximation of a solution u(x, 7)

@ spatial and time discretization yields the finite difference mesh
xi=1ih, i=..,-2,-1,0,1,2,..., 7 =jk, j=0,1,....m.

h=L/nk=T/m.
@ approximation of the solution u at (x;, 7j) will be denoted by
u{ ~ u(xi, 1), and also g{ ~ g(xi,T))
@ using boundary conditions
Call option: V/(0,t) =0 and V/(S,t)/S — e P(7-) for S — oo
Put option: V(0,t) = Ee~"(T=%) and V/(S,t) = 0as S — oo
= the boundary condition at x = +L,L > 1,

o Y 0, for a European Call option,
-N T\ e~ @Nh+(B=rik " for a European Put option,
Y elotDNA+(B=D)jk = for a European Call option,

N 0, for a European Put option.
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@ time derivative forward (explicit) and backward (implicit)
finite difference approximation

ou u{H — U{ Ou U{ - U{_l
) o o) e
forward backward

@ central finite difference approximation of the spatial derivative

Py d-2did,

o K Ti) B 2

@ Explicit and implicit finite difference approximation of the
heat equation
U[+1—U[70_2“{+1_2“{+“{71 W=t o?ul, -2+l

1 1

k 2 h?

explicit scheme implicit scheme

s =
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Explicit scheme and binomial tree

@ explicit scheme can be rewritten as:
j+1 ' j j o’k
U; :7#—1"‘(1_27)%{ ""YU,]'+17 where ~ = 52
@ in matrix form /1 = Aw + b/ for j =0,1,...,m — 1 where
A is a tridiagonal matrix given by

1-2vy « o - 0 78#
ot 1-2y v : ,
A=]| 0 : o 0 . b=
: v 1—-2y v 0
0 e 0 v 1—-2y el
Under the so-called Courant—Fridrichs—Lewy (CFL) stability condition:
0<y < 1 i.e ﬂ <1
T35 e —5 <1

the explicit numerical discretization scheme is stable.
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Explicit scheme and numerical oscillations

@ transforming back to the original variables
S=Ee,t=T—1,V(S,t) = Ee~*PTu(x,T) we obtain
the option price V

20 20
.

15 15

Vv 10 v 10
) AN
.
VAU A
30 0 5

.
v

o

o
0 60 70

30 40 50 60 70

S S
A solution S — V/(S, t) for the price of a European Call option
obtained by means of the binomial tree method with v =1/2 (left)
and comparison with the exact solution (dots). The oscillating
solution S — V/(S, t) which does not converge to the exact solution
for the parameter value v = 0.56 > 1/2, where v > 1/2, does not
fulfill the CFL condition.
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Explicit numerical scheme and binomial tree

o if we choose the ratio between the spatial and time
discretization steps such that h = ov/k then v = 1/2

; 1 - 1 .
+1
w = 5“?-1 + Qufﬂ-

@ the solution u{-.+1 at the time 7;1 is the arithmetic average

between values u{_l and Lr,{Jrl

X,
i+3
i+2
i+1

i-1
i-2
i-3

I3 2 gl ]

A binomial tree as an illustration of the algorithm for solving a
parabolic equation by an explicit method with 2y = 02k/h? = 1.
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Explicit numerical scheme and binomial tree

The binomial pricing model can be also derived from the explicit
numerical scheme.

Vim V(S T - 1), where S; = Ee* = Ee'™.

1

@ since V/(S,t) = Ee~**~FTy(x, t), we obtain
VJ Ee—alh ﬁ_/kuj

@ in terms of the original variable V,-J, the explicit numerical
scheme can be expressed as follows:

. . 1
Vit = ek (q_ Vi +at V,+1> where g+ = Eeiah_(ﬂ_r)k-

@ for k— 0and h = ovk — 0 we have

.1+ ah . 1—ah
G+=—7 " -=—% g-+q+ =1

and these constants are refereed to as risk-neutral
probabilities.
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Explicit numerical scheme and binomial tree

@ underlying stock price at tj11 has a price S. Here
to=T,...,tm=0

@ at the time t; > tj,1 it attains a higher value Sy > S with a
probability p € (0,1), and S_ < S with probability
1-pe(0,1)

@ let V; and V_ be the option prices corresponding to the
upward and downward movement of underlying prices

@ the option price V at time tj;1 can be calculated as

_r Se'k —S_
V=e"(qsVi+q_V_), whereqy = 5.5 q- =1-qy

A binomial tree illustrating calculation of the option price by binomial tree
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Implicit finite difference numerical scheme

@ implicit scheme can be rewritten as:
ul_ oy, = i ok
- + (1 + 27) v i+1 — 5 where Y= W»
@ in matrix form A = /1 + b ~1 for j =1,2,..., m where A
is a tridiagonal matrix given by

142y =y 0 - 0 vt

— 1+2y —v : . 0
A= 0 - L 0 b=

: -y 142y —v 0

0 0 —y 142y AL

The implicit numerical discretization scheme is unconditionally
stable for any
v >0
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Implicit finite difference numerical scheme

@ transforming back to the original variables
S=Ee,t=T—71,V(S,t) = Ee~*PTu(x, 1) we obtain
the option price V

20 20
15 15
V 10 V10
5 5
0 0

30 40 sg 60 70 30 40 50S 60 70

A solution S — V/(S, t) for pricing a European Call option obtained by
means of the implicit finite difference method with v = 1/2 (left) and
comparison with the exact analytic solution (dots). The numerical
scheme is also stable for a large value of the parameter v = 20 > 1/2 not
satisfying the CFL condition (right).
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How we solve linear algebra problem

Successive Over Relaxation method for solving Au = b

@ Decompose the matrix A as as sum of subdiagonal, diagonal and overdiagonal
matrix A = L+ D 4 U where

Lj=A; forj<i, otherwiseL;=0,
D; =A; forj=1i, otherwise Dj=0,
Uj=Aj; forj>i, otherwise U; =0.

@ We suppose that D is invertible. Let w > 0 be a relaxation parameter. A
solution of Au = b is equivalent to

Du = Du+ w(b— Au).

or, equivalently,
(D+wL)u=(1—-w)Du+ w(c — Uu).

@ Therefore u is a solution of
u=Tuu+ co, where T, = (D +wL)™!((1 —w)D — wU)

aco=w(D+ wL)_lb.
@ Define a recurrent sequence of approximate solution

W =0, Pl =TouP +¢c, for p=1,2,...

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



o the SOR algorithm reduces to successive calculation, for
p=0,..., pmax of

p+1 W . ptl P P
uf = b= D AT = Y Al | + (1w
8 j<i J>i
fori=1,...,.N
@ where w € (1,2) is a relaxation parameter

o if | T,|| <1 then the mapping R" > ur— T, u+ ¢, € R"is
contractive and the fixed point argument implies that uP
converges to u for p — oo and Au = b.

08 1 12 14 16 18 2 22
w

Graph of the spectral norm of the iteration operator || T, || as a function of the

relaxation parameter w.

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



Black—Scholes model and sensitivity analysis

Lecture 5

@ Historical and implied volatilities
@ Computation of the implied volatility
@ Sensitivity with respect to model parameters

@ Delta and Gamma of an option. Other Greeks factors.
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Black—Scholes model and sensitivity analysis

@ Historical volatility
How to estimate the historical volatility o of the asset (a
diffusion coefficient in the BS equation)

@ dS = uSdt + oSdw
@ For the process of the underlying asset returns X(t) = In S(t)
we have, by Itd’s lemma

dX = (u — 02 /2)dt + cdw.

@ In the discrete form (for equidistant division
O=th<tpi<..<th=T, t,-+1—t,-:7')we have

X(ti2) = X(8) = (1~ 50°)7 +o(w(tis1) — w(t).

@ as o(w(tiy1) — w(tj)) = o®y/7, where & ~ N(0,1) we can
use the estimator for the dispersion of the normally distributed
random variable o/7® ~ N(0,027)
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Black—Scholes model and sensitivity analysis

@ The historical volatility ¢ = opjs; of the underlying asset price

n—1 5
Tt = = > (In(S(t12)/5(8)) ~ )

i=0

@ where 7y is the mean value of returns

X(ti) = In(S(ti+1)/5(t))

n—1
7= 2 3 n(S(t41)/5(8))
i=0

84.8
84.6
84.4
S g4z
84
83.8

0 50 100 150 200 250 300 350

IBM stock price evolution from 21.5.2002 with 7 = 1 minute. The computed

historical volatility opjss = 0.2306 on the yearly basis, i.e. opisr = 23% p.a.
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Black—Scholes model and sensitivity analysis

0 50 100 150 200 250 300 350
t

IBM Call option price from 21.5.2002 (red).
Computed Ve°(S,eq(t), ti opist) With opise = 0.2306 (blue)
@ In typical real market situations the historical volatility opjs:
produces lower option prices
@ Opst is lower than the value that is needed for exact matching
of market option prices
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Black—Scholes model and sensitivity analysis

@ Implied volatility
The implied volatility is a solution of the following inverse
problem: Find a diffusion coefficient of the Black-Scholes
equation such that the computed option price is identical with
the real market price.

@ Denote the price of an option (Call or Put) as V = V(S, t; 0)
where o - the volatility is considered as a parameter.

@ Implied volatility ojmp at the time t is a solution of the
implicit equation

Vreal(t) = V(Sreal(t)a t; Uimpl)'

where V,e,(t) is the market option price, Syez/(t) is the
market underlying asset price at the time t.

@ Solution o exists and is unique due to monotonicity of the
function o — V/(S, t; o) (it is an increasing function).
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Black—Scholes model and sensitivity analysis

848
846 2
84.4 7
S a2 v
6.8
84
838 6.6

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
t t

IBM stock price evolution from 21.5.2002 (left), the Call option for E = 80 and
T = 43/365 (right)

@ The computed implied volatility &jmp/(t)

0.38
0.3775
0.375

E 0.3725
0.37
0.3675
0.365

0 50 100 150 200 250 300 350

@ The average value of the implied volatility is: &jmp = 0.3733
p.a.
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Black—Scholes model and sensitivity analysis

@ Comparison of market Call option data match for Historical
and Implied volatilities

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
t t

IBM Call option price from 21.5.2002 (red).
Computed Vi = V& (S,eq/(t), t; Opist) With opisr = 0.2306 (left).
Computed Vi = V(Srea(t), t; Oimpr) With oimp = 0.3733 (right).
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Black—Scholes model and sensitivity analysis

Sensitivity of the option price with respect to model parameters -
Greeks

@ Sensitivity with respect to the asset price: Delta - A,

)%

A=_"
05

@ |t measures the rate of change of the option price V w.r. to
the change in the asset price S

@ It is used in the so-called Delta hedging because the
risk-neutral portfolio is balanced according to the law:
Qs _ 0V _ A
Qv 0S

where Qy, Qs is the number of options and stocks in the
portfolio
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Black—Scholes model and sensitivity analysis

@ Delta for European Call and Put options:

ovee over

A = = N(dy AP = = —N(—d).
0.8 -0.2
0.6 -0.4

A A

0.4 -0.6
0.2 -0.8
0 —1f

50 60 70 80 90 100 50 60 70 80 90 100

S S
A€ AP

Parameters: E =80,r = 0.04, T = 43/365
@ Notice that A®® € (0,1) and A® € (—1,0)
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Black—Scholes model and sensitivity analysis

Computation of Delta for market data time series

@ Determine the implied volatility ojmp/(t) from market data
time series of the option price Ve, (t) and the underlying
asset price Syeq(t). We solve

Vreal(t) = Vec(sreal(t)y t; O'impl(t))-
@ Produce the graph of A®(t) = %(S,ea,(t), t; Timpi(t))

0.71
0.7

A
0.69

0.68

0 50 100 150 200 250 300 350
t

@ Observe that the decrease of Delta means that keeping one
Call option we have to decrease the number Qg of owed
stocks in the portfolio.
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Black—Scholes model and sensitivity analysis

@ Sensitivity of Delta with respect to the asset price: Gamma - [
oA _ v
-~ 9S  0§?°

@ |t measures the rate of change of the Delta of the option price
V w.r. to the change in the asset price S

r

one ddy  exp(—3d})
M€ =r*=_—_=N(d)=s = 2 >0
() S  o\2n(T —t)S

oS
@ [t is used for generating signals for the owner of the option to
rebalance his portfolio because change in the Delta factor
means that the change in the ratio Qs/Qy should be done.

@ High Gamma = rebalance portfolio according to Delta
hedging strategy
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Black—Scholes model and sensitivity analysis

Computation of Gamma for market data time series

@ Determine the implied volatility ojmp(t) from market data time series of the
option price Viey(t) and the underlying asset price Syey(t). We solve

Vrea/(t) = Vec(srea/(t)7 t; Uimp/(t))'

@ Produce the graph of M¢(t) = 2% (S,./(), £ Cimpi(£))

952

848
84.6 2
84.4 7

S ga2 v

6.8

84
838 66

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
t t

IBM stock price from 21.5.2002 (left), Call option for E =80 and T = 43/365 (right)

071 0.0335
0.7 0.033
A r
0.69 0.0325
0.032
0.68
0.0315
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
t
t

Delta (left)

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



Black—Scholes model and sensitivity analysis

Other Greeks - Sensitivity of the option price to model parameters

@ Rho
Sensitivity with respect to the interest rate r, P = %—‘r/
@ Theta
o : . _ oV
Sensitivity with respect to time t, © = G
@ Vega
Ce . . - 9V
Sensitivity with respect to volatility o, T = 5
@ Greek version of the Black—Scholes equation.
8V 1 2 0%V ov
— 4 20?4+ rS— —rV =0
ot 2 852 oS
I

o2
@+?52r+rSA—rV:O
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Exotic derivatives

Lecture 6

@ Path dependent options, concepts and applications

@ Barrier options, formulation in terms of a solution to a partial
differential equation on a time dependent domain

@ Asian options, formulation in terms of a solution to a partial
differential equation in a higher dimension

@ Numerical methods for solving barrier and Asian options
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Exotic derivatives - Path dependent options

Path dependent options

@ A path-dependent option = the option contract depends on
the whole time evolution of the underlying asset in the time
interval [0, T]

@ Classical European options are not path dependent options,
the contract depends only on the terminal pay-off V(S, T) at
the expiry T

@ The path dependent options - Examples

@ Barrier options - the contract depends on whether the asset
price jumped over/under prescribed barrier

e Asian options - the contract depends on the average of the
asset price over the time interval [0, T]

@ Many other like e.g. look-back options, Russian options, Israeli
options, etc.

@ Path dependent options are hard to price as the contract
depends on the whole evolution of the asset price S; in the
future time interval [0, T]
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Exotic derivatives - Barrier options

@ Example of an barrier options: Down—and—out Call option.
This is a usual Call option with the terminal pay-off
V(S, T) = max(S — E,0) except of the fact that the option
may expire before the maturity T at the time t < T in the
case when the underlying asset price S; reaches the prescribed
barrier B(t) from above.

70 70
60 60
s 50 s 50
0 40
/ 30 .
30 1 opcia expirovala
0 02 04 06 08 1 0 02 04 06 08 1
t t
The option will expire at the maturity T (left) It will expire prematurely at t < T (right)

o If the option expires prematurely at t < T the writer pays the
holder the prescribed rabat R(t).
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Exotic derivatives - Barrier options

@ A typical exponential barrier function is: B(t) = bEe=(T-1)
with 0 < b <1

@ A typical exponential rabat function is:
R(t) = E (1 — e AT-1)

@ Mathematical formulation - the PDE on a time dependent
domain

83\; ! 252?)5‘2{ + 52—5 —rvV=0
for t €0, T) and B( )< S < oo
V(B(t), t) = R(t), te[0,T)
at the left barrier boundary S = B(t)
V(S, T) =max(S — E,0), S>0,

at t = T (Barrier Call option).
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Exotic derivatives - Barrier options

@ The fixed domain transformation
V(S,t) = W(x,t), where x=1In(5/B(t)), x¢€(0,00),

transforms the problem from the time dependent domain
B(t) < S < oo to the fixed domain x € (0, c0).

@ For an exponential barrier function B(t) = bEe~(T~%) we
have B(t) = aB(t).

@ After performing necessary substitutions we obtain the PDE
for the transformed function W(x, t)

LR Y
ot 2 Ox2
@ The terminal condition for the Call option case:
W(x, T) = E max(be* —1,0).
@ The left side boundary condition
W(0,t) = R(t).
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Exotic derivatives - Barrier options

A numerical solution - a simple code in the software Mathematica

b =0.7; alfa = 0.1; beta = 0.05; X = 40; sigma = 0.4; r = 0.04; d = 0; T = 1;
xmax = 2;

Bariera[t_] := X b Exp[-alfa (T - t)]; Rabat[t_] := X (1 - Exp[-beta(T - t)]);
PayOff[x_] := X«If[b Exp[x] - 1 > 0, b Exp[x] - 1, 0];

riesenie = NDSolve[{
D[wlx, taul, tau] == (sigma~2/2)D[w([x, taul, x, x]
+ (r - d - sigma"2/2 - alfa )* D[w[x, taul, x]
- r *w[x, tau] ,

wlx, 0] == PayOff[x],
w[0, tau] == Rabat[T - taul,
wlxmax, tau] == PayOff [xmax]},

w, {tau, 0, T}, {x, 0, xmax}
1;

wlx_, tau_] := Evaluate[w[x, tau] /. riesenie[[1]] ];
Plot3D[w[x, tau], {x, 0, xmax}, {tau, 0, T}];

V[S_, tau_] :=
If[S > Bariera[T - taul,
w[ Log[S/BarieralT - taull, taul,
Rabat [T - tau]
1;

Plot[ {v(s,0.2 T],V(S,0.4 T], V(S,0.6 T]1, V(S,0.8 T]1, V(S,T]1}, {S,20,50}];
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Exotic derivatives - Barrier options

A numerical solution - an example of a solution to the
Down-and-out barrier Call option

VE/

Graph of the solution of the barrier Call option for different times t € [0, T]

o N M O ®
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Exotic derivatives - Asian options

@ An example of an Asian option:
This is a Call option with terminal pay-off
V(S, T) = max(S — E,0) except of the fact that the exercise
price E is not prescribed but it is given as the arithmetic (or
geometric) average of the underlying asset prices S; within
the time interval [0, T], i.e. the terminal pay-off diagram is:

V(S, T) =max(S —Ar,0)

arithmetic average geometric average

1 [t 1 [t
A, = —/ S,dr, InA = —/ InS, dr.
t Jo t Jo

In the discrete form
1« .
Atn:;;sn, InAtn:;Z;InSt,.,
1= 1=

where t; < th < ... < t,, and tj;1 — tj = l/n.
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Exotic derivatives - Asian options

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-

Simulated price of the underlying asset and the corresponding arithmetic
average.
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Exotic derivatives - Asian options

@ Assume the asset price follows SDE: dS = uSdt + oSdw

@ The average A is the arithmetic average, i.e. A; = %fot S;dr
Then
S — A;

dA 1/t 1
= ——2/ STdT + _St =
t2 J, t t

dt
S—A

an hence, in the differential form, dA = Tdt.

@ In general we may assume

x—1 In x
f(x,t) = —
t (X7 ) t

S
dA:Af(—,t dt, f(x,t) =
A
general form arithmetic average geometric average
@ Construct the option price as a function
V=V(S5 At

It depends on a new variable: A - the average of the asset
price
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Exotic derivatives - Asian options

@ Itd's lemma (extension to the function V = V(S, A, t))

9V % oV a2 L0V

dv = ¥d5+a—AdA+<at +5S asz)dt
l% oV 0% L8V 9V (S
= ﬁdSJr(at —5 852+ﬁAf< >>dt.

|} notice that dA = Af(S/A, t)dt |

oV 282v SOV s o

@ This is a two dimensional parabolic equation for pricing Asian
type of average strike options
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Exotic derivatives - Asian options

@ The pay-off diagram V/(S, A, T) = max(S — A,0) can be
rewritten as V(S,A, T) = Amax(S/A—1,0)
Use the change of variables |}

V(S§,At) = AW(x,t), where x = %, x € (0,00)

@ The parabolic PDE for the transformed function W(x, t) read
as follows:

oW o2 ,0°W ow ow
W—i_ X a2 —l—rxm—kf(x,t) <W—XE>—I’W—0

@ The terminal condition W(x, T) = max(x — 1,0) for an Asian
Call option

@ Although the solution can be found in a series expansion w.r.
to Bessel functions it is more convenient to solve it
numerically
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Exotic derivatives - Asian options

A numerical solution - a simple code in the software Mathematica
sigma=0.4; r=0.04; d=0; T=1; t=0.9; xmax=8;
PayOff([x_] := If[x -1 >0, x - 1, 0];

riesenie = NDSolve[{
D[w([x, taul,tau] == (sigma~2/2) x"2 D[w([x, taul, x,x]
+ (r - d)*x * D[w([x, taul, x]
+ ((x - 1)/(T - tau))*(wlx, taul - x*D[w[x, taul, x])
- rxw[x, tau],
wlx, 0] == PayOff[x],
w[0, tau] == 0,
wlxmax, tau] == PayOff [xmax]},
w, {tau, 0, t}, {x, 0, xmax}
1;

wlx_, tau_] := Evaluate[w[x, tau] /. riesenie[[1]] 1;

V[tau_, S_, A_] := A w[S/A, taul;
Plot3D[ V[t, S, Al, {S, 10, 120}, {A, 50, 80}];

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



Exotic derivatives - Asian options

3D and countourplot graphs of the solution W/(x, t) of the transformed function
W(x, ) for parameters 0 = 0.4,r =0.04,D =0, T = 1.
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Exotic derivatives - Asian options

3D and countourplot graphs of the Asian average strike Call option
V(S,At) = AW(S/A,t) for the time t =0.1and T =1 (i.e. T —t=0.9)
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American type of options

Lecture 7

@ American options
@ Early exercise boundary
@ Formulation in the form of a variational inequality

@ Projected successive over relaxation method (PSOR)
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American type of options

Lectures by D.

American options are most traded types of options

(more than 95% of option contracts are of the American type)
The difference between European and American options
consists in the possibility of early exercising the option
contract within the whole time interval [0, T], T is the
maturity.

the case of Call (or Put) option:

American Call (Put) option is an agreement (contract)
between the writer and the holder of an option. It represents
the right BUT NOT the obligation to purchase (sell) the
underlying asset at the prescribed exercise price E at
ANYTIME in the forecoming interval [0, T] with the specified
time of maturity t = T.

The question is: What is the price of such an option (the
option premium) at the time t = 0 of contracting. In other
words, how much should the holder of the option pay the
writer for such a security.
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American type of options

@ American options gives the holder more flexibility in exercising

@ An American option therefore has higher value compared to
the European option

4
Vee(s,t) > ve(s,t), VP(S,t) > VP(S,t)

@ An American option at time t < T must always have higher
value than the one in expiry, i.e.

4

V3(S,t) > V3(S, T) = max(S — E,0),
V(S t) > V(S, T) = max(E — S,0)

ec, ep indicates the European type of an option
ac, ap indicates the American type of an option
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American type of options

Solutions V(S,t),0 < t < T, for a European Call option (left) and Put option (right).
The solutions V¢¢(S, t), VEP(S, t) always intersect their payoff
diagrams V/(S, T) = these are not the graphs of

Vee(s,t), VaP(S, t)

@ In the left figure we plotted the price V¢¢(S, t) of a Call option on the asset
paying dividends with a continuous dividend yield rate D > 0.
@ The Black-Scholes equation for pricing the option is:

vV 1 , ,0%V v
9 L2622 (- D)sEL v —o,
ot T27 % g5z Tr=D)SGs

V(S,T)=max(S—E,0), S>0,te]|0,T].
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American type of options

40
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S

Comparison of solutions V¢(S, t) and V2¢(S, t) of European and American Call

options at some time 0 <t < T.

@ The problem is to find both the solution V?¢(S, t) as well as
the position of the free boundary S¢(t) (the early exercise
boundary).

@ If S < 5¢(t), then V(S,t) > max(S — E,0) and we keep
the Call option

@ If S > 5¢(t), then V¢(S,t) = max(S — E,0) and we exercise
the Call option
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American type of options

© the function V/(S,t) is a solution to the Black—Scholes PDE

A 5282 1%

ot g5z T(r=D)S55 —rV =0

on a time dependent domain 0 < t < T and 0 < S < S¢(t).
© The terminal pay—off diagram for the Call option

V(S,T)=max(5 — E,0).

© Boundary conditions for a solution V/(S, t) (case of an
American Call option)

ov
85(

at the boundary points S=0a S = 5¢(t) for 0 <t < T

V(0,t) =0, V/(S5¢(t),t)= S¢(t)— E, Se(t), t) =1,
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American type of options

Smooth pasting principle
@ boundary condition V/(S¢(t),t) = S¢(t) — E
represents the continuity of the function V2¢(S, t) across the
free boundary S¢(t)
@ boundary condition ‘g—g(Sf(t), t)y=1
represents the C! continuity of the function V2¢(S, t) across
the free boundary S¢(t)

The C! continuity of a solution (smooth pasting principle) can be deduced from the
optimization principle according to which the price of an American option is given by

V(s t) = max V(S, t;n),
n

where the maximum is taken over the set of all positive smooth functions

n:[0, T] = RT and V(S, t; n) is the solution to the Black—Scholes equation on a time
dependent domain 0 < t < T,0 < S < n(t), and satisfying the terminal pay-off
diagram and Dirichlet boundary conditions V/(0, t;n) = 0, V(n(t), t;n) = n(t) — E.

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



American type of options
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Behavior of the free boundary S¢(t) (early exercise boundary) for the American Call
(left) and Put (right) option.

For the American Put option we must change:
@ the time dependent domain to 0 < t < T and S > S¢(t);

@ the terminal pay-off diagram for the Put option V(S, T) = max(E — S, 0)
@ boundary conditions

V(roo,t) =0, V(SH(0),0)= E = Se(t), Se(5r()6) =1,
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American type of options

Some recent and so so recent results on the early exercise behavior

@ According to the paper by Dewynne et al. (1993) and
Sev¥ovi¢ (2001) the early exercise behavior of an American
Call option close to the expiry T is given by

Se(t) ~ K (1 +0.6380V/T — t) , K =Emax(r/D,1)

@ According to the paper by Stamicar, Chadam, Seviovi¢
(1999) the early exercise behavior of an American Put option
close to the expiry T is given by

S(t) = Ee T V2T-000 55 ¢ T,

where n(t) ~ —\/— In [% 2rn(T — t)er(T—t):|

@ Recently Zhu in papers from 2006, 2007 constructed an
explicit approximation solution to the whole early exercise
boundary problem obtained by the inverse Laplace
transformation.
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American type of options

Valuation of American options by a variational inequality

@ for an American Call option one can show that on the whole
domain 0 < S < oo and 0 < t < T the following inequality
holds:

2
v = "—528

5 552 + (r— )5——rV<O

@ Comparison with the terminal payoff diagram
V(S,t) > V(S,T) =max(S — E,0).
@ A variational inequality for American Call option

o If V(S,t) > max(S— E,0) = L[V](S,t)=0
o If V(S t) =max(S — E,0) = £[V](S,t) <0
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American type of options

An analogy with the obstacle problem from the linear elasticity
theory.
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Left: a solution &I of the unconstrained problem —ii’/(x) = b(x), #(0) = (1) = 0, and
the obstacle (dashed line) g(x).
Right: a solution u to the obstacle problem:
@ —u"(x) = b(x), u(x) = g(x), u(0) = u(1) =0,
and such that
@ if u(x)>g(x) =
@ if u(x) =g(x) =
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American type of options

Idea of the Project Successive Over Relaxation method

@ using the transformation V/(S,t) = Ee=**ATu(x, ), where
7=T —t,x=1In(S/E), leads to the variational inequality

(5 2g>( (1) - g(7) = 0,

2 52

LT E820 uer) -gkr) = 0
forany x e R,0O<7<T.

o g(x,7) = e***P7" max(eX — 1,0) — the transformed pay-off
diagram,

@ It satisfies the initial condition

u(x,0) = g(x,0), forany x € R.

Here: o =

r—D 1 _ r+D o2 (r—D)>?
a2 2 B="%5+%+ 202
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American type of options

Implicit finite difference approximation and transformation to the
linear complementarity problem

@ spatial and time discretization yields the finite difference mesh
xi=ih, i=..,-2,-1,01,2,.., 7 =jk, j=0,1,...,m.

h=L/nk=T/m.
@ approximation of the solution u at (x;, 7j) will be denoted by

u{ ~ u(xi, 1), and also g{ ~ g(xi, 7))
@ transformation of the boundary condition at x = +L, L > 1,

Uj_N:(ﬁj:: g(X—N7TJ')7 ujl'\lzwj:: g(XN7TJ')'
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American type of options

The linear complementarity problem for a solution of the
discretized variational inequality can be rewritten as follows:

Attt >+ b, FH > g:jJrl foreach j=0,1,...,m—1,
(ATt — o/ — b)(W — g/ T); =0 for each i,
where u® = g% The matrix A is a tridiagonal matrix arising from

the implicit in time discretization of the parabolic equation
2 .
Oru= "78)2(u, i.e.

1+2y —y 0o - 0 vt
0
— 1+2y —v : . .
A = 0 . . . 0 , b = : )
: —y 142y —x 0
0 e 0 — 1+ 2y ~ypi Tl

where v = 02k /(2h?).
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American type of options

In each time level the goal is to solve linear complementarity
Au>b, u > g,
(Au—b)i(ui —gi)) = 0 foreach i.
@ We define a recurrent sequence of approximative solution as
0=y, uP™ = max (TP +¢,, g) for p=1,2,...,
where the maximum is taken component-wise
@ here T, is the linear iteration operator arising from the
classical SOR method for the linear problem Au = b. Here
co = w(D +wL)™th
@ in terms of vector components, the Projected SOR algorithm
reduces to

1 1
i —max[ ZA,J Jp+ ZA,JU +(1-w)u?, gi

Jj<i J>i

u

where w € (1,2) is a relaxation parameter, typically w ~ 1.8
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American type of options

A numerical solution to the problem of valuing American Call and
Put options by the Projected Successive Over Relaxation method
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A solution S — V/(S, t) of an American Call (left) and Put option
(right) obtained by solving the variational inequality by means of
the Projected SOR (PSOR) algorithm.

Dotted curves corresponds to European type of options
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American type of options

Two 3D views on the graph of the solution (S, t) — V/(S, t) for the
price of the American Call option. Five selected time profiles and
comparison with the terminal pay-off function. One can see the
effect of the smooth pasting of the solution to the pay-off function.
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Nonlinear extensions of the Black-Scholes theory

Lecture 8

Modeling transaction costs
Modeling investor's risk preferences
Jumping volatility model

Risk adjusted pricing methodology model

e © ¢ ¢ ¢

Numerical approximation scheme
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Nonlinear options pricing models

Nonlinear derivative pricing models

Classical Black-Scholes theory does not take into account

@ Transaction costs (buying or selling assets, bid-ask spreads)

@ Risk from unprotected (non hedged) portfolio

@ Other effects

o feedback effects on the asset price in the presence of a
dominant investor

@ utility function effect of investor's preferences

Question: how to incorporate both transaction costs and risk
arising from a volatile portfolio into the Black-Scholes equation
framework?
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Transaction costs — Leland model

@ Leland model for pricing Call and Put options under the
presence of transaction costs

@ Hoggard, Whaley and Wilmott model - generalization to other
options

Volatility o = o(82 V) is given by
02 = 6%(1 — Lesgn(92V))

where 6 > 0 is a constant historical volatility and

Le = \/2/mC/(6V At) is the Leland number where At is time lag
between consecutive transactions

oV

2 _
5 585 —rV =0

2 2
aa_\t/Jr( D)Sav o2(02V, S, t)
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Transaction costs — Leland model

Transaction costs are described following the Hoggard, Whalley
and Wilmott approach (1994) (also referred to as Leland’s model

(1985) )

dlN =dV +ddS — CSk

where
@ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask — Sbid)/S
@ k is the number of assets sold or bought during one time lag.
Notice that

2
k~ |Ad| = |AdsV| ~|03V||dS|,  E(|dW|) = \/;m
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Transaction costs — Leland equation

2
1 0?5% (1 — Lesgn(92V)) ZT\z/ + rSgg V=0

8V
8t

where Le = \/gg\/cm is the so-called Leland number depending on

@ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask — Sbid)/S

@ At - the lag between two consecutive portfolio adjustments
(re-hedging)

For a plain vanilla option (either Call or Put) the sign of 8§V is
constant and therefore the above model is just the Black-Scholes
equation with lowered volatility.
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Frey - Stremme model for a large trader

@ Frey and Stremme (1997) introduced directly the asset price
dynamics in the case when the large trader chooses a given

stock-trading strategy.

Volatility o = o(82V, S) is given by

0% =6 (1— 0S% V)_2
where 62, 0 > 0 are constants.
ov oV o?(0%2V,S.t) ,0%V
- _ D - SV 2 _ V —
8t+(r )585+ > S 552 " 0
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Barles - Soner model for investor's utility maximization

o If transaction costs are taken into account perfect replication
of the contingent claim is no longer possible

@ assuming that investor's preferences are characterized by an
exponential utility function Barles and Soner (1998) derived a
nonlinear Black-Scholes equation

Volatility o = a(@%V, S, t) is given by

2
o2 = 452 (1 +w(a2e (T 8252 V))

where W(x) ~ (3/2)%x% for x close to the origin. 62,k > 0 are

constants.
oV OV P(RV.S.t) L,V
E—I_(r_D)SE—F 5 5852—I’V—0
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Risk adjusted pricing methodology

@ transaction costs are described following the Hoggard,
Whalley and Wilmott approach (Leland’s model)

@ the risk from the unprotected volatile portfolio is described by
the variance of the synthetised portfolio.

4

© Transaction costs as well as the volatile portfolio risk depend
on the time-lag between two consecutive transactions.

© Minimizing their sum yields the optimal length of the hedge
interval - time-lag

© It leads to a fully nonlinear parabolic PDE:

RAPM model originally proposed by Kratka (1998) and
further analyzed by Sevcovic and Jandacka (2005).
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Transaction costs under § - hedging

Transaction costs are described following the Hoggard, Whalley
and Wilmott approach (1994)

@ adopt § = g—g hedging
@ construct a portfolio [1 = V — §S donsisting of one option
and ¢ underlying assets

@ compare risk part of the portfolio to secure bonds
dl =dV +46dS — CSk
r(V —46S)dt = rMdt = d

where
@ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask — Spid)/S
@ k is the number of assets sold or bought during one time lag.

2
k ~ |Ad| = |AdsV| ~ |8§V||d5|7 E(|dW|) = \/;\/a
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Modeling transaction costs

. >’V oV
6°S% (1 — Lesgn (02V)) 8—52+r585 rV =0

8V 1
8t

where Le = \/g&\/CA—t is the so-called Leland number depending on

@ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask — Sbid)/S

@ At - the lag between two consecutive portfolio adjustments
(re-hedging)

For a plain vanilla option (either Call or Put) the sign of 92V is
constant and therefore the above model is just the Black-Scholes
equation with lowered volatility.
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Risk adjusted pricing methodology model

@ a portfolio N consists of options and assets MN=V+46S

@ is the portfolio I is highly volatile an investor usually asks for
a price compensation.

Volatility of a fluctuating portfolio can be measured by the
variance of relative increments of the replicating portfolio

4
introduce the measure ryp of the portfolio volatility risk as follows:
Al
e — RIS
At
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@ Using Itd's formula the variance of All can be computed as
follows:

Var(AM) = E [(AN — E(AN))?]

2
—F <(as V +6)6SoVAtL + %a2s2r (¢? — 1) At>

where ¢ ~ N(0,1) and I = 02 V.
@ assuming the §-hedging of portfolio adjustments, i.e. we
choose § = —9s V. For the risk premium ryp we have

1
rvp = 5/L'\>&452r2At.
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Balance equation for [1 =V +4S

e dlN=dV +4ddS
o dIl = rMdt + (I’TC + I’\/p)Sdt

Using Ité's formula applied to V = V/(S, t) and eliminating
stochastic term by taking § = —0sV hedge we obtain

~2
0;V + %528§V +rSosV —rV = (rTc + rvp)s

where
_ qrigs 1 . .
® ITC = T h T is the transaction costs measure
o ryp = %R6452F2At is the volatile portfolio risk measure
and I = 92V.
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Minimizing the total risk in the RAPM model

Total risk rr¢c + ryp

frc+rvp

f1c

At

At

Tran. costs risk rr¢  Volatile portfolio risk ryp  Total risk
rrc +rve
Both ry¢ and ryp depend on the time lag At

4

Minimizing the total risk with respect to the time lag At yields

1
_ 3 /C2R\? oy s
min (rrc +rve) = 3 <7> 6°|SOs V|3
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Nonlinear PDE equation for RAPM

BV + %5252 (1 1(SORV)2) BV + 105V — 1V = 0

C2R\ 3
27T>

S$>0,t € (0, T) where
u=3<

fully nonlinear parabolic equation

@ If u =0 (i.e. either R =0 or C = 0) the equation reduces to
the classical Black-Scholes equation

@ minus sign in front of p > 0 corresponds to Bid option price
Vipid (price for selling option).
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Bid Ask spreads

1
OV + 55752 (1 + (S92 V)1/3) O3V +rS0sV —rV =0

A comparison of Bid ( — sign ) and Ask (4 sign) option prices
computed by means of the RAPM model. The middle dotted line
is the option price computed from the Black-Scholes equation.

\

Lectures by D. Seviovi¢, Comenius University, Bratislava, Slovak Analytical and numerical methods for pricing financial derivative



RAPM and explanation of volatility smile

Volatility smile phenomenon is non-constant, convex behavior

(near expiration price E) of the implied volatility computed from
classical Black-Scholes equation.
The skew structure

45 5o 55

Implied volatility [%]
40

35

3000 4000 5000 6000 7000
Strike price [DM]

Volatility smile for DAX index

By RAPM model we can explain the volatility smile analytically.
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RAPM and explanation of volatility smile

The Risk adjusted Black-Scholes equation can be viewed as an
equation with a variable volatility coefficient

2
t
0V + @52a§v+ rSosV —rV =0
where 02(S, t) depends on a solution V = V/(S, t) as follows:
02(S, t) = 82 (1 — u(SARV(S, t))1/3) .

Dependence of o(S, t) on S is depicted in the left for t close to T.
The mapping (S, t) — o(S, t) is shown in the right.

5(S, )
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Numerical scheme for quasilinear equation

@ denote S(H) = "72(1 — MH%)H

® reverse time 7 =T — t (time to maturity)

@ use logarithmic scale x = In(S/E) (xeR+S>0)
@ introduce new variable H(x,7) = S92 V/(S, t)

Then the RAPM equation can be transformed into quasilinear
equation

O-H = 02B(H) + 0«B(H) + roxH 7€ (0,T),x€R

@ Boundary conditions: H(—o0,7) = H(oo,7) =0

0_2
@ Initial condition: H(x,0) = P?\I;(T—il) dp = %

0 < 7" << 1 is the switching time.

where
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Numerical scheme for quasilinear equation

O-H = 02B8(H) + 0,B8(H) + roxH 7€ (0, T),x€R
H! ~ H(ih, jk) y k =

AH_ +bH +dH, =d, H, =0 H =0,

—n

fori=—n+1,..,n—1 and j =1,...,m, where H’ = H(x;,0)

a{-' - h25( 1)"‘5" b{:l—(a{+c{),
. . k - -
o= el = HT L (B~ BH))
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Calibration of RAPM model

Intra-day behavior of Microsoft stocks (April 4, 2003) and shortly
expiring Call options with expiry date April 19, 2003. Computed
implied volatilities crapp and risk premium coefficients R.
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Calibration of RAPM model

One week behavior of Microsoft stocks (March 20 - 27, 2003) and
Call options with expiration date April 19, 2003. Computed
implied volatilities crapps and risk premiums R.
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Jumping volatility nonlinear model

Avellaneda, Levy and Paras proposed a model is to describe option
pricing in incomplete markets where the volatility o of the
underlying stock process is uncertain but bounded from bellow and
above by given constants o1 < o3.

@ Avellaneda, Levy and Paras nonlinear extension of the
Black—Scholes equation

A% oV o?(02V) L0V

ot

—rV=0

@ where the volatility depends on the sign of [ = 92V

~2D . 2
2/ 22 N 01, If85V<0,
(S asv)_{ag, if 02V > 0.
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Jumping volatility nonlinear model

Similarly as in previously studied nonlinear Black—Scholes models,
we can introduce the new variable H(x,7) = S02V/, where
x=In(S/E) and 7 = T — t. We obtain

OH 928 9B
o o2 Tox T a

where 8 = B(H(x, 7)) is given by

%HifH<O,
sy =1
ZH ifH>0.

We have to impose the boundary conditions corresponding to the
limits S — 0 (x — —o0) and S — oo (x — +00) for
H(x,7) = SO2V

H(—o0,7) = H(co,7) =0, 7€ (0, 7).
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Results of numerical approximation of the jumping volatility model
for the case of the bullish spread.

@ bullish spread strategy = buying one Call option with exercise
price E = E; and selling one Call option with E; > E;

VS, T)=(S—E)" —(S—-B)T.

@ in terms of the transformed variable H we have As for the
initial condition we have

H(x,0) = d(x — x0) — d(x — x1), x € R,
where xg = 0,x; = In(E2/E1).

-1 -0.5 0 0.5 1 -2 -1 0 1 2
X X

Plots of the initial approximation of the function H(x,0) (left) and the solution profile
H(x, T) at 7 = T (right).
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Jumping volatility nonlinear model

Transforming back to the original variable V(S,t) we obtain from
S02V = H(x,7) where x = In(S/E) and 7 = T — t that

V(S,t) = /OO (S — Ee*) H(x, T — t)dx,

—00

where E = E.

o kB N w A~ O

* /?\
A B a0
o 7| S

10 20 30 40 50 60

A comparison of the Call option price V/(S,0) (left) and its delta (right)
computed from the jumping volatility model (solid line) by the linear
Black—Scholes. Option prices obtained from the linear Black—Scholes
equation are depicted by dashed curved (for volatility o1) and fine-dashed
curve (for volatility o7).
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Interest rate derivatives derivatives

Lecture 9

@ A stochastic differential equation for modeling the short
interest rate process

@ Vasiitek and Cox-Ingersoll-Ross models for the short rate
process

@ Interest rate derivatives — zero coupons bonds

@ Pricing interest rate derivatives by means of a solution to the
parabolic partial differential equation
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Interest rate derivatives derivatives

Modeling the short rate (overnight) stochastic process

G rokovémiera

0 2 4 6 8 10 12
mesiac

Daily behavior of the overnight interest rate of BRIBOR in 2007.

@ modeling the short rate r = r(t) by a solution to a one factor
stochastic differential equation

dr = p(t, r)dt + o(t, r)dw.

o u(t, r)dt represents a trend or drift of the process
o o(t, r) represents a stochastic fluctuation part of the process
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Interest rate derivatives derivatives

Modeling the short rate (overnight) stochastic process

@ Among short rate models the dominant position have the
mean-reversion processes in which p(t,r) = k(6 — r). The
solution (if o = 0) is therefore attracted to the stable

equilibrium 6 as t — oo.

@ A short overview of one factor interest rate models

Model Stochastic equation for r
Vagitek dr = k(6 — r)dt + ocdw
Cox—Ingersoll-Ross | dr = k(6 — r)dt + o+/rdw
Dothan dr = ordw
Brennan-Schwarz | dr = k(6 — r)dt + ordw
Cox—Ross dr = Brdt + or’dw

Lectures by D. Sev&ovié, Comenius University, Bratislava, Slovak

Analytical and numerical methods for pricing financial derivative



Interest rate derivatives derivatives

Modeling the short rate (overnight) stochastic process

Old¥ich Alfons Vasitek, graduated from FJFI and Charles University in Prague
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Interest rate derivatives derivatives

Bond — a derivative of the underlying short rate process

@ Term structure models describe a functional dependence
between the time to maturity of a discount bond and its
present price

@ Yield of bonds, as a function of maturity, forms the so-called
term structure of interest rates

@ If we denote by P = P(t, T) the price of a bond paying no
coupons at time t with maturity at T then the term structure
of yields R(t, T) is given by

_log P(t, T)

PL6,T) = RETUT, e (e T) = P
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Interest rate derivatives derivatives

The yield curves R(t, T)

AUS

BRA
6.9 145
6.8 14
gej 2 135
é 13
6.6
125
6.5
12
0 2 4 6 8 10 12 14 0 2 4 6 8
maturita maturita
JPN UK
25 5
2 4.9
g g 4.8
E\ 15 E\
4.7
1
4.6
0 5 10 15 20 25 30 0 5 10 15 20 25 30
maturita maturita

The term structure (the yield curve) R(t, T) of governmental bonds in % p.a. from
t =27.5.2008 as a function of the yield R with respect to the time to maturity T — t.

Australia, Brazil, Japan United Kingdom.
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Interest rate derivatives derivatives

The time dependence yields and short (overnight) rates
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PRIBOR: Short-rate (overnight) and 1 year interest rates
PRIBOR = PRague Interbank Offering Rate

@ The goal is to find a functional dependence of the yield R and

the underlying short rate r
°
P=P(r,t, T)=P(r, T —t)
where
In P(t, T)
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE
@ Suppose that the underlying short rate process follows the
SDE:
dr = fi(t, r)dt + &(t, r)dw.

@ for the Vasgitek model: dr = k(6 — r)dt + cdw
s for the Cox—Ingersoll-Ross model: dr = k(6 — r)dt 4+ o+/rdw
@ Suppose that the price of a zero coupon bond P is a smooth
function P = P(r,t, T) of the short rate r, actual time t and
the maturity time T (¢t < T).
@ by Itd's lemma we have

P 9P  520°P oP
dP = <8t+ 8+28 )d—i—aEdW
u(t.r) o8(t:r)

where pg(r, t) and og(r, t) stand for the drift and volatility of
the bond price
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE
@ Construct a portfolio from two bonds with two different
maturities 77 and T

@ |t consits of one bond with maturity T3 and A — bonds with
maturity T

@ Its value is therefore m = P(r, t, T1) + AP(r,t, T2)

@ the change of the portfolio d7 is equal to:

dr = dP(r,t, T1) + AdP(r,t, T)
= (up(r,t, T1) + Apupg(r,t, T2)) dt
+(op(r,t, T1) + Aop(r,t, T2)) dw.
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

@ similarly as in the case of options our goal is to eliminate the
volatile (fluctuating) part of the portfolio of bonds (tenor)
@ it can be accomplished by taking

ot r, Ty)
op(t,r, T2)
@ then the differential of the risk-neutral portfolio of bonds
(tenor)
og(t,r, T1)

dm = (,UB(t» r, Tl) — O'B(t p T2)M3(t7 r, T2)> dt.

@ to avoid the possibility of arbitrage the yield of the portfolio
should be equal to the risk-less short interest rate r, i.e.
dm = rmdt. Therefore

op(t,r, T1)

t.r.Tr) = .
JB(th)uB(m 2) = rm

:U‘B(t7 r, Tl) -
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

@ inserting the value of the portfolio 7 we obtain

UB(t7 r, Tl)

— 7 -7 t.r. T
s TZ)MB( .1, T2)

MB(ta r, Tl) -
JB(t> r, Tl)
JB(t> r, T2)

=r (P(t, r,Ty) — P(t,r, T2)> .

@ Since maturities T; and T, were arbitrary we may conclude
that there is a common value A such that

ryt, T)—rP(r,t, T)
JB(rv L, T)

r,t) = e( forany T > t.

@ X may depend on r but not on the maturity T, i.e. A = \(r).
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

@ ReCall that
oP  _oP  §20°P
peltr) = G Mo T g
_OP
O'B(t,r) = O'E

where we supposed that the underlying short rate process
follows the SDE: dr = ji(t, r)dt + &(t, r)dw.
@ In summary, we can deduce the parabolic PDE for the zero
coupon bond price
=2 2
g—’: +(i(r £) — A(r, )5(r, t))g—’: 42 (2”’ t)g—r’; ~wp-o.
@ At the maturity t = T the price of the bond is prescribed and
it is independent of the short rate r, i.e.

P(r,T,T)=1 forany r>0.
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

o for the Vasitek model where dr = k(0 — r)dt + odw we take
A(r,t) = X and we obtain the PDE:

oP oP o2 0P
—E + (/ﬁ(e— I’) —)\J)E + 7@

o for the Cox—Ingersoll-Ross model where
dr = k(0 — r)dt + o+/rdw we take A(r,t) = A\\/r and we
obtain the PDE:
oP

oP
5 + (k(0 —r) — )\O‘F)E +

o 0°P

Erm—rPZO,

@ In both models 7 = T — t stands for the time remaining to
maturity of the bond
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Interest rate derivatives derivatives

An explicit solution for the Cox—Ingersoll-Ross model

@ construct a solution in the form P(r,7) = A(r)e B
@ inserting this ansatz into the CIR equation and comparing the
terms of the order 1 and r we obtain

A+ K0AB = 0,
B—l—(fi-i—)\a)B—i-?BZ—l = 0,
@ functions A, B satisfy initial conditions A(0) =1, B(0) =0
@ the explicit solution to the system of ODEs for A, B is:
2 (e 1)

N U o

2k6

B 2pe(0+¥)T/2 o2
A = <<¢+w)(e¢7 1) +2¢> ’

where ¢ = k + Ao, & = \/Y2 +202 = \/(k + \o)2 + 202.
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Interest rate derivatives derivatives

An explicit solution for the Vasi¢ek model

@ construct a solution in the form P(r,7) = A(T)E_B(T)r

@ one can construct an analogous system of ODEs for functions
A B
@ the explicit solution of the system of ODEs vyields:

1 _ e—HT
B(r) = —

o2

ma) = [Ha e o R - - ey

_ Ao 2
where Roo —0—?—m
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Interest rate derivatives derivatives

An explicit solution for the Vasi¢ek model

0.05 0.05
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R 0.04 R 0.04
0.035 0.035
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
T T

The term structure of interest rates R(r,t, T) on bonds computed by the Vasitek
model for two different values of the short rate r (r = 0.03 and r = 0.05) at given

time t < T.
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Callibration of short rate models

@ multiply the Vasicek short rate SDE: drs = k(6 — r)ds + odws
by the term e"*.

@ using Itd's lemma for f(s,t) = €"°r we obtain
d(e"°rs) = kbe™ds + oe™ dws.

@ integrating it from the time t to time t + At we obtain
t+At t+At
eHEFA) L ny — ety = HH/ e ds + a/ e dw;
t t
t+At
= (e“(”m) —e"™)f + a/ e"* dws.
t

@ hence

— — — t+At
Ferne =€ HAtI’t-i- (1 A RAt)H—I—O'e K(t+At) ft+ e’ dws.
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Callibration of short rate models

@ The conditional distribution ryya; conditioned to the state r;
at time t is a normal distribution

E(revnelre) = e "Atr 4 (1- e_“At)Q,

t+At
Var(reenelre) = o2e 2(tHAL) /oy (/ e"‘sdws>
t

t+At 2
— O_2e—2/£(t+At) E |:/ ende$:|
t
2

t+At o
0.2e—2/£(t+At) / (eHS)Z ds — _(1 N e—2nAt:
¢ 2K

using Itd's isometry
@ We obtain

2
I’t+At|rt ~ N <e_ffAtrt + (]_ _ e_“At) 9’ ;_ (1 _ e—2nAt)> ]
K
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Callibration of short rate models

@ let the statistical data for the short rate are given:

1o, rat, - - - Fvae evaluated at times: 0, At, ..., NAt.
o define
o2
I/? = ﬂ (1 — e_ZI{At) , &t = I't—9 (1 — e_I{At>—e_ﬁAtrt_At.

@ c+/vy € N(0,1) are IID residuals
@ the likelihood function L = L(x,,?) of the random vector ¢
is a product of normal distributions, i.e.

1 _ et
L="VA \f(ee; k,0,0°), f(et;k,0,0°) = ——=e i
\2mv?
@ the logarithm of likelihood function L can be written as
N
1 2 G
InL = _52'””1‘ + 5.
t=1 t
@ maximizing this function we obtain the estimates of &, 6, o2.
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Black—Scholes model for pricing financial derivatives

Appendix
@ Stochastic differential calculus

@ Density distribution function and the Fokker—Planck equation

@ Multidimensional extension of Ito's lemma
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[to's lemma and Fokker—Planck equation

@ Suppose that a process {x(t),t > 0} follows a SDE (It0's
process)
dx = p(x, t)dt + o(x, t)dW,
where 1 a drift function and o is a volatility of the process.
@ Denote by

G = G(x,t) = P(x(t) < x | x(0) =xp)

the conditional probability distribution function of the process
{x(t), t > 0} starting almost surely from the initial condition
X0-

@ Then the cumulative distribution function G can be computed
from its density function g = 9G/0x where g(x, t) is a
solution to the Fokker—Planck equation:

g 19

T (0%8) — - (ug), &(x.0) = i(x — ).
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[to's lemma and Fokker—Planck equation

Here 6(x — xp) is the Dirac function with support at xp. It means:

[0 if x # xo, o° B
I(x —x0) = {—I—oo i x = xo and /_ooé(x—xo)dx— 1.

In our case we have, at the origin t = 0,

0 if x < xp,

G(X,o)z/_ 5(£—Xo)d§:{1 if x> X,

so the process {x(t),t > 0} at t = 0 is almost surely equal to xp.
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[to's lemma and Fokker—Planck equation

Intuitive proof of the Fokker-Planck equation:

@ Let V = V(x,t) be any smooth function with a compact
support, i.e. V € CF°(R x (0, T))

@ By Itd's lemma we have

oV o292V oV oV
dv = (E + EW +,u§> dt—l—O’adW.

@ Let E; be the mean value operator with respect to the random
variable having the density function g(., t), i.e.

E(V(., 1)) = /R V(x, t) g(x, £) dx
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[to's lemma and Fokker—Planck equation

Then

oV o292V ov
dE(V(.,t)) = E(dV(.,t)) = E; (E T “5) at.

because random variables o(., t)%(., t) and dW(t) are
independent and E(dW/(t)) = 0. Therefore

E; <a(., t)g—Z(., t)dW(t)) =0
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[to's lemma and Fokker—Planck equation

@ Since V € C§° we have V(x,0) = V(x, T) =0 and
V(x,t) =0 for |x| > R, where R > 0 is sufficiently large.
@ By integration by parts we obtain

"d oV o20*V oV
0 = / d_Et( ( t))dt—/o Et(ﬁ""?ﬁ"‘ﬂa)dt
282\/ aV
- / /<8t QWJFP‘g) g(x,t)dxdt
= og 10 , 0
- / / bot) <__+§ﬁ(" g)—a—x(ug)> dx dt.

@ Since V € C§°(R x (0, T)) is an arbitrary function we obtain
the Fokker—Planck equation for the density g = g(x, t):

9g 10 9 -
_§+§ﬁ(a g)—a(lug)—o, x€e€R,t>0,

g(x,0) =d(x —x), xeR.
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[to's lemma and Fokker—Planck equation

@ Example: dx = dW and x(0) =0 as.
It means x(t) is a Wiener process

@ The Fokker—Planck (diffusion) equation reads as follows:

@ lts solution (normalized to be a probabilistic density)

1 x2

is indeed a density function of the normal random variable
W(t) ~ N(O,t)
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[to's lemma and Fokker—Planck equation

@ Example:  dr = k(0 — r)dt + odW and and r(0) = rp.
This is the so-called Ornstein-Uhlenbeck mean reversion
process used arising the modeling of the the rate interest rate
stochastic process {r(t),t > 0}.
@ The Fokker—Planck equation reads as follows:
of  020*f 0
9t~ 2072 g0

@ lIts solution (normalized to be a probabilistic density function)

1 _(r=7)

e
\/ 2152

is the density function for the normal random variable
r(t) ~ N(F.,5?) satisfying the above SDE. Here

2
t 2_ O

Fe=0(1—e ") +re ", &;= ﬂ(l — e ),

f(r,t)=
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[to's lemma and Fokker—Planck equation

@ Simulation of the process r(t) satisfying dr = k(6 — r)dt + cdW and
r(0) = rg = 0.08. Here 6 = 0.04.

0.08
0.07
£ 006
g 0.05
$0.04
> 0.03
0.02

@ Time steps of the evolution of the density function f(r, t) for various times t.

The process r(t) started from ry = 0.02. The limiting value 6 = 0.04.

Shift of the density function f(r, t)
is due to the drift in the F-P equation

@
=]

frekvencia
IS
o

of o20%f 0
ot~ 20 o W00

N
=]

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
r
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Multidimensional 1td’s lemma

@ Multidimensional stochastic processes

dx; = u,'()_f, t)dt + Z O';k()?, t)de ,
k=1

where w = (wy, wa, ..., w,,) 7 is a vector of Wiener processes
having mutually independent increments

E(dw; dw;) =0 for i #j, E((dw;)?) = dt.
@ It can be rewritten in a vector form
dX = fi(X, t)dt + K(X, t)dw,
where X = (x1, X2, ...,x,) " and K is an n x n matrix
K(X,t) = (0j(X, t))ij=1,...n-
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Multidimensional 1td’s lemma

@ Expanding a smooth function
f=1Ff(Xt)=f(xi,x2, ..., xn, t) : R" X [0, T] = R into the
second order Taylor series yields:

dfz?dt%—v f.dX

L1 f 2f
+5 <(dx)Tv2fd +2g— V fdX dt + g—(dt) > + ho.t.

® The term (dX)TVifdx =7, ; %dx; dx; can be
expanded using the relation between processes x; and x;

dx; dXJ = Z O';kO'j/de dw; + O((dt)3/2) + O((dt)2)
k=1

~ (zn: ook )dt + O((dt)¥?) + O((dt)?) as dt — 0.
k=1
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Multidimensional 1td's lemma

@ The multidimensional 1td’s lemma gives the SDE for the
composite function f = f(X, t) in the form:

fo1
df = <6—+—K:v§fK> dt + Vxf dx
ot ' 2

where
n a2f n
K:Vif K=
Vi Z Ox;0x;
ij=1 k=1

Oik0jk
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Multidimensional 1t6's lemma and Fokker-Planck equation

@ By following the same procedure of as in the scalar case we
obtain, for the joint density distribution function

g(x1, %2, . Xn, 1),
g(x1,x2, .oy Xn, t) = P(x1(t) = x1, x2(t) = x2, ..., Xp(t) = Xp, t)

conditioned to the initial condition state
x1(0) = x9,%2(0) = X9, ..., x,(0) = x? that:

og
8—+d|v ZZ Ik'lka aX

7_/lkl

g(%,0) = 6(x - 2°),

Fokker—Planck equation in the multidimensional case
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Multidimensional 1t6's lemma and Fokker-Planck equation

@ Example: The multidimensional Fokker—Planck equation for a
system of uncorrelated SDE's

dx; = ,ul(f(', t)dt + 1dwy
/12()_(', t)dt + godws

dX2
dx, = pn(X,t)dt+ cpdw,

with mutually independent increments of Wiener processes
E(dw; dw;) =0 for i #j, E((dw;)?) = dt.
@ The Fokker—Planck equations reads as follows:

og .. 1~ 0%,
28 L div(jig) = = E = (5°
This is a scalar parabolic reaction—diffusion equation for g
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@ The lecture slides are available for download from

www.iam.fmph.uniba.sk/institute/sevcovic/slides-hitotsubashi/



