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Lectures at Masaryk University, 2011
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The content of these lectures is based on the textbooks:

1 D. Ševčovič, B. Stehĺıková, K. Mikula:
Analytical and numerical methods for pricing financial

derivatives.

Nova Science Publishers, Inc., Hauppauge, 2011. ISBN: 978-1-61728-780-0

2 D. Ševčovič, B. Stehĺıková, K. Mikula:
Analytické a numerické metódy oceňovania finančných

derivátov,
Nakladatelstvo STU, Bratislava 2009, ISBN 978-80-227-3014-3

3 P. Wilmott, J. Dewynne, J., S.D. Howison:
Option Pricing: Mathematical Models and Computation,
UK: Oxford Financial Press, 1995.

4 Hull, J. C.:
Options, Futures and Other Derivative Securities.
Prentice Hall, 1989.

The lecture slides are available for download from
www.iam.fmph.uniba.sk/institute/sevcovic/derivaty
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Black–Scholes model for pricing financial derivatives

Lecture 1

Stochastic character of assets (stocks, indices)

Financial derivatives as tool for protecting volatile portfolios

Examples of market data for Call and Put options
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Stochastic character of stock prices

Daily behavior of stock prices of General Motors and IBM in 2001.
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Stochastic character of stock prices

Daily behavior of stock prices of Microsoft and IBM in 2007 – 2008.

Volume of transactions is displayed in the bottom.
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Stochastic character of indices

Daily behavior of Dow–Jones index

Precrisis period in the year 2000

Precrisis period 2007–2008.
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Financial derivatives as a tool for protecting volatile
portfolios

Forward
is an agreement between a writer (issuer) and a holder
representing the right and at the same time obligation to
purchase assets at the specified time of maturity of a forward
at predetermined price E

Pricing forwards is relatively simple as soon as we know the
forward interest rate r measuring the rate of the decrease of the
value of money

Vf = E exp(−rT )

where E is the contracted expiration value of a forward at the
expiration time T . Here Vf denotes the present value of a forward
at the time when contract is signed
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Financial derivatives as a tool for protecting volatile
portfolios

Option (Call option)
is an agreement between a writer (issuer) and a holder
representing the right BUT NOT the obligation to purchase
assets at the prescribed exercise price E at the specified time
of maturity T in the future

Pricing options is more involved as their price depends on:

Vc = function of E ,T , r , ..., ???

where E is the contracted expiration value of an options at the
expiration time T , Vc is the present value of a Call option at the
time when the contract is signed.
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Call options
Symbol Last Change Bid Ask Volume Open Int Strike Price

MQFLE.X 15.20 0.00 15.10 15.20 42 34 5.00
MQFLB.X 10.15 0.00 10.10 10.20 74 2541 10.00
MQFLM.X 7.20 0.00 7.15 7.25 95 187 13.00
MQFLN.X 6.15 0.00 6.15 6.25 55 211 14.00
MQFLC.X 5.06 0.11 5.20 5.30 11 1348 15.00
MQFLO.X 4.35 0.00 4.25 4.35 263 368 16.00
MQFLQ.X 3.40 0.00 3.30 3.40 122 4157 17.00
MQFLS.X 1.83 0.05 1.89 1.92 36 7567 19.00
MQFLU.X 1.28 0.02 1.27 1.29 56 8886 20.00
MQFLU.X 0.78 0.09 0.75 0.78 105 72937 21.00
MSQLN.X 0.40 0.04 0.41 0.43 350 16913 22.00
MSQLQ.X 0.21 0.01 0.20 0.22 125 20801 23.00
MSQLD.X 0.09 0.02 0.09 0.11 92 12207 24.00
MSQLE.X 0.04 0.02 0.04 0.05 165 14193 25.00
MSQLR.X 0.02 0.00 0.02 0.03 161 9359 26.00
MSQLS.X 0.02 0.00 N/A 0.03 224 3643 27.00
MSQLT.X 0.02 0.00 N/A 0.02 59 2938 28.00
MSQLF.X 0.01 0.00 N/A 0.02 10 1330 30.00

Prices of Call options with different exercise (strike) prices E for
Microsoft stocks from 26. 11. 2008. with expiration 8.12.2008.
The spot price S = 20.12
The Call option price VC ≈ 1.28 > S − E = 20.12− 20 = 0.12
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Intraday behavior (Feb. 7, 2011) of MSFT (Microsoft Inc.) stock.
Source: Chicago Board Options Exchange: www.cboe.com

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



Call and Put option prices from Feb. 7, 2011, on MSFT (Microsoft Inc.)

stock with expiration July 2011 for various exercise (strike) prices E .
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Stochastic character of options
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Figure: Top: Stock prices of IBM from 22. 5. 2002. Bottom: Bid and
Ask prices of Call option for IBM stocks (left) and their arithmetic
average value (right).
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Financial derivatives as a tool for protecting volatile
portfolios

A natural question arises:
Although the time evolution of the asset price St as well as its
derivative (option) Vt is stochastic (volatile, unpredictable)
CAN WE FIND A FUNCTIONAL DEPENDENCE

Vt = V (St , t)

relating the actual stock price St at time t and the price of its
derivative (like e.g. a Call option) Vt?
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Financial derivatives as a tool for protecting volatile
portfolios

This was a long standing problem in financial mathematics
until 1972. The answer is YES due to the pioneering work of
M.Scholes, F.Black and R.Merton.

M. Scholes and R. Merton were awarded the Price of the
Swedish Bank for Economy in the memory of A. Nobel in
1997 (Nobel price for Economy).
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Financial derivatives as a tool for protecting volatile
portfolios

The Black–Scholes formula

V = V (S , t;T ,E , r , σ)

where S = St is the spot (actual) price of an underlying asset,
V = Vt is a the spot price of the option (Call or put) at time
0 ≤ t ≤ T . Here T is the time of maturity, E is the exercise
price, r > 0 is the interest rate of a secure bond, σ > 0 is the
volatility of underlying stochastic process of the asset price St .
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Black–Scholes model for pricing financial derivatives

Lecture 2

Stochastic differential calculus

Wiener process, Brownian and geometric Brownian motion

Itō’s lemma, Itō’s integral
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Stochastic differential calculus, Itō’s lemma

Stochastic process is a t - parametric system of random
variables {X (t), t ∈ I}, where I is an interval or a discrete set
of indices

Stochastic process {X (t), t ∈ I} is a Markov process with the
property: given a value X (s), the subsequent values X (t) for

t > s may depend on X (s) but not on preceding values X (u)
for u < s. More precisely,

If t ≥ s, then for conditional probabilities we have:

P(X (t) < x |X (s)) = P(X (t) < x |X (s),X (u))

for any u ≤ s.
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Stochastic differential calculus, Itō’s lemma

a stochastic process {X (t), t ≥ 0} is called the Brownian
motion if

i) all increments X (t +∆)− X (t) are normally distributed with
the mean value µ∆ and dispersion (or variance) σ2∆,

ii) for any division of times t0 = 0 < t1 < t2 < t3 < ... < tn the
increments X (t1)− X (t0),X (t2)− X (t1), ...,X (tn)− X (tn−1)
are independent random variables

iii) X (0) = 0 and sample pathes are continuous almost surely

Brownian motion {W (t), t ≥ 0} with the mean µ = 0 and
dispersion σ2 = 1 is called Wiener process

Figure: Norbert Wiener (1884-1964) and Robert Brown (1773-1858).
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Stochastic differential calculus, Itō’s lemma

Additive (or semigroup) property of the Brownian motion
(BM) {X (t), t ≥ 0} – Mean value

let 0 = t0 < t1 < ... < tn = t be any division of the interval [0, t].
Then

X (t)− X (0) =
n∑

i=1

X (ti)− X (ti−1).

Therefore the mean value E and variance Var of the left and right
hand side have to be equal. By definition of the BM we have

E(X (t)− X (0)) = µ(t − 0) = µt .

On the other side we have (due to the linearity of the mean value
operator):
E
(
∑n

i=1 X (ti )− X (ti−1)
)

=
∑n

i=1 E(X (ti )− X (ti−1)) =
∑n

i=1 µ(ti − ti−1) = µt

In order to verify the equality we had to require that
increments X (ti )− X (ti−1) have the mean value
E(X (ti)− X (ti−1)) = µ(ti − ti−1)
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Stochastic differential calculus, Itō’s lemma

Additive (or semigroup) property of the Brownian motion
{X (t), t ≥ 0} – Variance

For dispersions of the random variables X (t)− X (0) and
∑n

i=1(X (ti )− X (ti−1)) we have, by definition,

Var(X (t)− X (0)) = σ2(t − 0) = σ2t .

ReCall that for two random independent variables A,B it holds:
Var(A + B) = Var(A) + Var(B). Hence, assuming independence
of increments X (ti)− X (ti−1) for different i = 1, 2, ..., n we have

Var
(
∑n

i=1 X (ti )− X (ti−1)
)

=
∑n

i=1 Var(X (ti )− X (ti−1)) =
∑n

i=1 σ
2(ti − ti−1) = σ2t .

In order to verify the equality we had to require that
increments X (ti )− X (ti−1) have the dispersion (variance)
V (X (ti)− X (ti−1)) = σ2(ti − ti−1)
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Stochastic differential calculus, Itō’s lemma

In summary:

The Brownian motion {X (t), t ≥ 0} has the following
stochastic distribution:

X (t) ∼ N(µt, σ2t)

where N(mean, variance) stands for a normal random variable
with given mean and variance

The Wiener process {W (t), t ≥ 0} (here µ = 0, σ2 = 1) has
the following stochastic distribution:

W (t) ∼ N(0, t).

Moreover, dW (t) := W (t + dt)−W (t) ∼ N(0, dt), i.e.

dW (t) := W (t + dt)−W (t) = Φ
√
dt

where Φ ∼ N(0, 1).
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Stochastic differential calculus, Itō’s lemma
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Figure: Two randomly generated samples of a Wiener process.
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Figure: Five random realizations of a Wiener process.
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Stochastic differential calculus, Itō’s lemma

Since W (t) ∼ N(0, t) we have Var(W (t)) = t.
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Figure: Time dependence of the variance Var(W (t)) for 1000 random
realizations of a Wiener process {W (t), t ≥ 0}.
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Stochastic differential calculus, Itō’s lemma

Relation between Brownian and Wiener process:

For a Brownian motion {X (t), t ≥ 0} with parameters µ and
σ we have, by definition,
dX (t) = X (t + dt)− X (t) ∼ N(µdt, σ2dt) Therefore, if we
construct the process

W (t) =
X (t)− µt

σ

we have

dW (t) = W (t + dt)−W (t) =
dX (t)− µdt

σ
∼ N(0, dt),

i.e. {W (t), t ≥ 0} is a Wiener process

Since X (t) = µt + σW (t) we may therefore write a
Stochastic differential equation

dX (t) = µdt + σdW (t) ,
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Stochastic differential calculus, Itō’s lemma

Geometric Brownian motion

If {X (t), t ≥ 0} is a Brownian motion with parameters µ and σ we
define a new stochastic process {Y (t), t ≥ 0} by taking

Y (t) = y0 exp(X (t))

where y0 is a given constant. The process {Y (t), t ≥ 0} is called
the Geometric Brownian motion.

Statistical properties of the Geometric Brownian motion

For simplicity, let us take y0 = 1. Then

W (t) =
lnY (t)− µt

σ

is a Wiener process with W (t) ∼ N(0, t), i.e. we know its
distribution function.
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Stochastic differential calculus, Itō’s lemma

Statistical properties of the Geometric Brownian motion:

For the distribution function G (y , t) = P(Y (t) < y) it holds:
G (y , t) = 0 for y ≤ 0 (since Y (t) is a positive random variable)
and for y > 0

G (y , t) = P(Y (t) < y) = P

(

W (t) <
−µt + ln y

σ

)

=
1√
2πt

∫ −µt+ln y
σ

−∞
e−ξ

2/2tdξ.
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Stochastic differential calculus, Itō’s lemma

Statistical properties of the Geometric Brownian motion:

Since E(Y (t)) =
∫∞
−∞ yg(y , t) dy and

E(Y (t)2) =
∫∞
−∞ y2g(y , t) dy , where g(y , t) = ∂

∂yG (y , t), we can
calculate

E(Y (t)) =

∫ ∞

−∞
yg(y , t) dy =

∫ ∞

0
yg(y , t) dy

=
1√
2πt

∫ ∞

0
ye

− (−µt+ln y)2

2σ2t
1

σy
dy

(ξ = (−µt + ln y)/(σ
√
t))

=
eµt√
2π

∫ ∞

−∞
e−

ξ2

2
+σ

√
tξ dξ =

eµt+
σ2

2
t

√
2π

∫ ∞

−∞
e−

(ξ−σ
√

t)2

2 dξ

= eµt+
σ2

2
t .
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Stochastic differential calculus, Itō’s lemma

Naive (and also wrong) formal calculation

Since Y (t) = exp(X (t)) where dX (t) = µdt + σdW (t) we have

dY (t) = (exp(X (t)))′dX (t) = exp(X (t))dX (t)

and therefore

dY (t) = µY (t)dt + σY (t)dW (t).

Hence by taking the mean value operator operator E(.) (it is a
linear operator) we obtain

dE(Y (t)) = E(dY (t)) = µE(Y (t))dt+σE(Y (t)dW (t)) = µE(Y (t))dt

as the random variables Y (t) and dW (t) are independent and
E(dW (t)) = 0. Solving the differential equation
d
dt
E(Y (t)) = µE(Y (t)) yields

E(Y (t)) = exp(µt)

BUT according to our previous calculus E(Y (t)) = exp(µt + σ2

2 t).
Where is the mistake?
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Stochastic differential calculus, Itō’s lemma

The correct answer is based on the famous Itō’s lemma

We cannot omit stochastic character of the process
{X (t), t ≥ 0} when taking the differential of the
COMPOSITE function exp(X (t)) !!!

Itō lemma
Let f (x , t) be a C 2 smooth function of x , t variables. Suppose that
the process {x(t), t ≥ 0} satisfies SDE:

dx = µ(x , t)dt + σ(x , t)dW ,

Then the first differential of the process f = f (x(t), t) is given by

df =
∂f

∂x
dx +

(
∂f

∂t
+

1

2
σ2(x , t)

∂2f

∂x2

)

dt ,
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Stochastic differential calculus, Itō’s lemma

Figure: Kiyoshi Itō (1915–2008).

According to Wikipedia Itō’s lemma is the most famous
lemma in the world (citation 2009).
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Stochastic differential calculus, Itō’s lemma

Meaning of the stochastic differential equation

dx = µ(x , t)dt + σ(x , t)dW ,

in the sense of Itō.

Take a time discretization 0 < t1 < t2 < ... < tn. The above
SDE is meant in the sense of a limit in probability when the
norm ν = maxi |ti+1 − ti | of explicit in time discretization:

x(ti+1)−x(ti) = µ(x(ti ), ti )(ti+1−ti)+σ(x(ti ), ti )(W (ti+1)−W (ti))

tends to zero (ν → 0).

Random variables x(ti ) and W (ti+1)−W (ti) are independent
so does σ(x(ti ), ti ) and W (ti+1)−W (ti ). Hence

E(σ(x(ti ), ti )(W (ti+1)−W (ti ))) = 0

because E(W (ti+1)−W (ti )) = 0.
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Stochastic differential calculus, Itō’s lemma

Intuitive (and not so rigorous) proof of Itō’s lemma is based on
Taylor series expansion of f = f (x , t) of th 2nd order

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

(
∂2f

∂x2
(dx)2 + 2

∂2f

∂x∂t
dx dt +

∂2f

∂t2
(dt)2

)

+h.o.t.

ReCall that dw = Φ
√
dt, where Φ ≈ N(0, 1),

(dx)2 = σ2(dw)2+2µσdw dt+µ2(dt)2 ≈ σ2dt+O((dt)3/2)+O((dt)2)

because E(Φ2) = 1 (dispersion of Φ is 1).
Analogously, the term dx dt = O((dt)3/2) + O((dt)2) as dt → 0.
Thus the differential df in the lowest order terms dt and dx can be
expressed:

df =
∂f

∂x
dx +

(
∂f

∂t
+

1

2
σ2(x , t)

∂2f

∂x2

)

dt .
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Stochastic differential calculus, Itō’s lemma

Example: Geometric Brownian motion

Y (t) = exp(X (t)) where dX (t) = µdt + σdW (t).
Here f (x , t) ≡ ex and Y (t) = f (X (t), t). Therefore

dY (t) = df =
∂f

∂x
dx +

(
∂f

∂t
+

1

2
σ2
∂2f

∂x2

)

dt .

= eX (t)dX (t)+
1

2
σ2eX (t)dt = (µ+

1

2
σ2)Y (t)dt+σY (t)dW (t)

As a consequence, we have for the mean value E(Y (t))

dE(Y (t)) = (µ+
1

2
σ2)E(Y (t))dt

and so E(Y (t)) = eµt+
1
2
σ2t provided that Y (0) = 1.
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Stochastic differential calculus, Itō’s lemma

Example: Dispersion of the Geometric Brownian motion

Y (t) = exp(X (t)) where dX (t) = µdt + σdW (t).

Compute E(Y (t)2). Solution: set f (x , t) ≡ (ex )2 = e2x .Then

dY (t)2 = df =
∂f

∂x
dx +

(
∂f

∂t
+

1

2
σ2
∂2f

∂x2

)

dt .

= 2e2X (t)dX (t)+
1

2
σ24e2X (t)dt = 2(µ+σ2)Y (t)2dt+2σY (t)2dW (t)

As a consequence, for the mean value E(Y (t)2) we have

dE(Y (t)2) = 2(µ+ σ2)E(Y (t)2)dt

and so E(Y (t)2) = e2µt+2σ2t . Hence

Var(Y (t)) = E(Y (t)2)− (E(Y (t))2 = e2µt+2σ2t(1− e−σ
2t).
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Black–Scholes model for pricing financial derivatives

Lecture 3

Pricing European type of options - the Black–Scholes model

Explicit solutions for European Call and Put options

Put – Call parity

Complex option strategies – straddles, butterfly
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Black–Scholes model for pricing financial derivatives

Derivation of the Black–Scholes partial differential equation

the case of Call (or Put) option

Call option is an agreement (contract) between the writer
(issuer) and the holder of an option. It represents the right
BUT NOT the obligation to purchase assets at the prescribed
exercise price E at the specified time of maturity t = T in the
future.

The question is: What is the price of such an option (option
premium) at the time t = 0 of contracting. In other words,
how much money should the holder of the option pay the
writer for such a derivative security
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Black–Scholes model for pricing financial derivatives

Denote

S - the underlying asset price

V - the price of a financial derivative (a Call option)

T - expiration time (time of maturity) of the option contract
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Stock prices of IBM (2002/5/2) Bid and Ask prices of a Call option

Idea

Construct the price V as a function of S and time t ∈ [0,T ],
i.e. V = V (S , t)
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Black–Scholes model for pricing financial derivatives

Assumption:

the underlying asset price follows geometric Brownian motion

dS = µSdt + σSdw .

Simulations of a geometric Brownian motion with µ > 0 (left) and µ < 0 (right)
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Black–Scholes model for pricing financial derivatives

A financial portfolio consisting of stocks (underlying assets),
options and bonds

The aim is to dynamically (in time) rebalance the portfolio by
buying/selling stocks/options/bonds in order to reduce
volatile fluctuations and to preserve its value
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Black–Scholes model for pricing financial derivatives

Assumption:

Fundamental economic balances:

conservation of the total value of the portfolio

S QS + V QV + B = 0

requirement of self-financing the portfolio

S dQS + V dQV + δB = 0

QS is # of underlying assets with a unit price S in the
portfolio
QV is # of financial derivatives (options) with a unit price V

B the cash money in the portfolio (e.g. bonds, T-bills, etc.)

dQS is the change in the number of assets
dQV is the change in the number of options
δB is the change in the cash due to buying/selling assets and options
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Black–Scholes model for pricing financial derivatives

Assumption:

Secure bonds are appreciated by the fixed interest rate r > 0

B(t) = B(0)ert → dB = rB dt

The change of the total value of bonds in the portfolio is
therefore

dB = rB dt + δB

because we sell bonds (δB < 0) or buy bonds (δB > 0) when
hedging (re-balancing) the portfolio in the time period
[t, t + dt].
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Black–Scholes model for pricing financial derivatives

Differentiating the fundamental balance law:
S QS + V QV + B = 0 in the time period [t, t + dt] we obtain

0 = d (SQS + VQV + B) = d (SQS + VQV ) +

rB dt+δB
︷ ︸︸ ︷

dB

0 =

=0
︷ ︸︸ ︷

SdQS + VdQV + δB +QSdS + QV dV + rB dt

0 = QSdS + QVdV

rB
︷ ︸︸ ︷

− r(SQS + VQV ) dt.

Dividing the last equation by QV we obtain

dV − rV dt −∆(dS − rS dt) = 0 , where ∆ = −QS

QV

.
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Black–Scholes model for pricing financial derivatives

ReCall that we have assumed the stock price S to follow the
geometric Brownian motion

dS = µSdt + σSdw .

By Itō’s lemma we obtain for a smooth function V = V (S , t)

dV =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)

dt +
∂V

∂S
dS .

Inserting the differential dV into the equation
dV − rV dt −∆(dS − rS dt) = 0 we obtain

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
− rV +∆rS

)

dt +

(
∂V

∂S
−∆

)

dS = 0
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Black–Scholes model for pricing financial derivatives

Assumption:

Holding a strategy in buying/selling stocks and options with
the goal to eliminate possible volatile fluctuations. The only
volatile (unpredictable) term in the equation

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
− rV +∆rS

)

dt +

(
∂V

∂S
−∆

)

dS = 0

is
(
∂V
∂S −∆

)
dS due to the stochastic differential dS

Setting ∆ = ∂V
∂S (Delta hedging) we obtain, after dividing the

equation by dt, the following PDE:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0
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Black–Scholes model for pricing financial derivatives

The parabolic partial differential equation for the option price
V = V (S , t) defined for S > 0, t ∈ [0,T ]

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

is referred to as the Black–Scholes equation.

M. S. Scholes a R. C. Merton were awarded by the Price of the Swedish Bank for

Economy in the memory of A. Nobel in 1997, Fisher Black died in 1995
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Black–Scholes model for pricing financial derivatives

Terminal conditions for the Black–Scholes equation:

At the time t = T of maturity (expiration) the price of a Call
option is easy to determine.

If the actual (spot) price S of the underlying asset at t = T is
bigger then the exercise price E then it is worse to exercise the
option, and the holder should price this option by the
difference V (S ,T ) = S − E

If the actual (spot) price S of underlying asset at t = T is less
then the exercise price E then the Call option has no value, i.e.
V (S ,T ) = 0
In both cases V (S ,T ) = max(S − E , 0).
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Black–Scholes model for pricing financial derivatives

Mathematical formulation of the problem of pricing a Call option:

Find a solution V (S , t) of the Black–Scholes parabolic partial
differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

defined for S > 0, t ∈ [0,T ], and satisfying the terminal
condition

V (S ,T ) = max(S − E , 0)

at the time of maturity t = T .

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



Black–Scholes model for pricing financial derivatives

Solution of the Black–Scholes equation.

Using transformations x = ln(S/E ) and τ = T − t transform
the BS equation into the Cauchy problem

∂u

∂τ
− σ2

2

∂2u

∂x2
= 0,

u(x , 0) = u0(x),

for −∞ < x <∞ , τ ∈ [0,T ].

Solve this parabolic equation by means of the Green’s function

Transform back the solution and express V (S , t) in the
original variables S and t
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Black–Scholes model for pricing financial derivatives

Solution of the Black–Scholes equation

Transformation x = ln(S/E ) and τ = T − t and introduction
of an auxiliary function Z (x , τ) lead to

Z (x , τ) = V (Eex ,T − τ)

Then

∂Z

∂x
= S

∂V

∂S
,

∂2Z

∂x2
= S2∂

2V

∂S2
+ S

∂V

∂S
= S2∂

2V

∂S2
+
∂Z

∂x
.

The parabolic equation for Z reads as follows:

∂Z

∂τ
− 1

2
σ2
∂2Z

∂x2
+

(
σ2

2
− r

)
∂Z

∂x
+ rZ = 0,

Z (x , 0) = max(Eex − E , 0), −∞ < x <∞, τ ∈ [0,T ].
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Black–Scholes model for pricing financial derivatives

Solution of the Black–Scholes equation

Using a new function u(x , τ)

u(x , τ) = eαx+βτZ (x , τ)

where α, β ∈ R are some constants leads to

∂u

∂τ
− σ2

2

∂2u

∂x2
+ A

∂u

∂x
+ Bu = 0 ,

u(x , 0) = Eeαx max(ex − 1, 0),

Constants

A = ασ2 +
σ2

2
− r , and B = (1 + α)r − β − α2σ2 + ασ2

2
.

can be eliminated (i.e. A = 0,B = 0) by setting

α =
r

σ2
− 1

2
, β =

r

2
+
σ2

8
+

r2

2σ2
.
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Black–Scholes model for pricing financial derivatives

Solution of the Black–Scholes equation

A solution u(x , τ) to the Cauchy problem ∂u
∂τ − σ2

2
∂2u
∂x2

= 0 is
given by Green’s formula

u(x , τ) =
1√

2σ2πτ

∫ ∞

−∞
e
− (x−s)2

2σ2τ u(s, 0) ds .

Computing this integral and transforming back to the original
variables S , t and V (S , t), enables us to conclude

V (S , t) = SN(d1)− Ee−r(T−t)N(d2) ,

where N(x) = 1√
2π

∫ x

−∞ e−
ξ2

2 dξ is a distribution function of

the normal distribution and

d1 =
ln S

E
+ (r + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t
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Black–Scholes model for pricing financial derivatives

Solution of the Black–Scholes equation
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Graph of a solution V (S, 0) for a Call option together with the terminal condition

V (S,T ) (left). Graphs of solutions V (S, t) for different times T − t to maturity

(right).

Example:
Present (spot) price of the IBM stock is S = 58.5 USD
Historical volatility of the stock price was estimated to σ = 29% p.a., i.e.
σ = 0.29.
Interest rate for secure bonds r = 4% p.a., i.e. r = 0.04
Call option for the exercise price E = 60 USD and exercise time T = 0.3-years
Computed Call option price by Black–Scholes formula is:
V=V(58.5, 0) = 3.35 USD.
Real market price was V = 3.4 USD
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Black–Scholes model for pricing financial derivatives

Put option

Put option is an agreement (contract) between the writer
(issuer) and the holder of an option. It represents the right
BUT NOT the obligation to SELL the underlying asset at the
prescribed exercise price E at the specified time of maturity
t = T in the future.

If the actual (spot) price S of the underlying asset at t = T is
less then the exercise price E then it is worse to exercise the
option, and the holder prices this option as the difference
V (S ,T ) = E − S .

If the actual (spot) price S of underlying asset at t = T is
higher then the exercise price E then it has no value for the
holder, i.e. V (S ,T ) = 0.

In both cases we have V (S ,T ) = max(E − S , 0).
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Black–Scholes model for pricing financial derivatives

Put option

explicit solution to the Black-Scholes equation with the
terminal condition V (S ,T ) = max(E − S , 0)

Vep(S , t) = Ee−r(T−t)N(−d2)− SN(−d1)

where N(.), d1, d2 are defined as in the case of a Call option.
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Graph of a solution V (S, 0) for a Put option and the terminal condition V (S,T )

(left). Graphs of solutions V (S, t) for different times T − t to maturity (right)
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Black–Scholes model for pricing financial derivatives

Put-Call parity

Construct a portfolio of one long Call option and one short
Put option: Vf (S ,T ) = Vec(S ,T ) − Vep(S ,T )

Vf (S ,T ) = max(S − E , 0) −max(E − S , 0) = S − E .

The solution to the Black–Scholes equation with the terminal
condition Vf (S ,T ) = S − E can be found easily

Vf (S , t) = S − Ee−r(T−t)

According to the linearity of the Black–Scholes equation we
obtain:

Vec(S , t)− Vep(S , t) = S − Ee−r(T−t)

known as the Put–Call parity: Call - Put = Asset - Forward
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Selected option strategies

Bullish spread
Buy one Call option on the exercise price E1 and sell one Call
option on E2 where E1 < E2. Therefore the Pay–off diagram:
V (S ,T ) = max(S − E1, 0) − max(S − E2, 0)
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The strategy has a limited profit and limited loss (pay-off
diagram is bounded).
It protects the holder for increase of the asset price in a short
position (like a single Call option).
Linearity of the Black–Scholes equation implies:

V (S , t) = V c(S , t;E1)− V c(S , t;E2), for all 0 ≤ t ≤ T
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Butterfly
Buy two Call options - one with low exercise price E1 and one
with high E4

Sell two Call options with E2 = E3, where E1 < E2 = E3 < E4

and E1 + E4 = E2 + E3 = 2E2.

V (S ,T ) = max(S−E1, 0)−max(S−E2, 0)−max(S−E3, 0) +max(S−E4, 0)
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The strategy has a limited profit and limited loss (pay-off
diagram is bounded).

It is profitable when the price of the asset is close to E2 = E3.

Linearity of the Black–Scholes equation implies for 0 ≤ t ≤ T :
V (S , t) = V c (S , t;E1)− V c(S , t;E2)− V c(S , t;E3) + V c (S , t;E4)
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Strangle is a combination of purchasing one Call on E2, and
one Put option on strike price E1 < E2

V (S ,T ) = (S − E2)
+ + (E1 − S)+ .

Condor is a strategy similar to butterfly, but the difference is
that the strike prices of sold Call options need not be equal,
E2 6= E3, i.e., E1 < E2 < E3 < E4.
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Left: Strangle option strategy for E1 = 50;E2 = 70 and prices
S 7→ V (S , t)

Right: Condor option strategy with E1 = 50,E2 = 60,E3 = 65,E4 = 70
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Black–Scholes equation for divedend paying assets

the underlying asset is paying nontrivial continuous dividends
with an annualized dividend yield D ≥ 0
holder of the underlying asset receives a dividend yield DSdt

over any time interval with a length dt

paying dividends leads to the asset price decrease

dS = (µ − D)S dt + σSdw .

on the other hand, it is added as an extra income to the
money volume of secure bonds

dB = rB dt + δB + DSQS dt

the portfolio balance equation then becomes

QV dV + QSdS + rB dt + DSQS dt = 0

since B = −QVV − QSS we obtain, after dividing by QV ,

dV −rV dt−∆(dS−(r−D)S dt) = 0 where ∆ = −QS/QV .
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repeating steps of derivation of the B-S equation, using Itō’s
lemma for dV we conclude with the equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − D)S

∂V

∂S
− rV = 0

similarly as in the case D = 0 we obtain

V (S , t) = Se−D(T−t)N(d1)− Ee−r(T−t)N(d2) ,

d1 =
ln S

E
+ (r − D + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

Put option can be calculated from Put-Call parity:
V c(S , t)− V p(S , t) = Se−D(T−t) − Ee−r(T−t)
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Solutions V (S, t), 0 ≤ t < T , for a European Call option (left) and Put option (right).
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Finite difference method for solving the Black–Scholes
equation

Lecture 4

Transformation of the Black–Scholes equation to the heat
equation

Finite difference approximation

Explicit numerical scheme and the method of binomial trees

Stable implicit numerical scheme using a linear algebra solver
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Numerical solution to the Black–Scholes equation

using the transformation V (S , t) = Ee−αx−βτu(x , τ), where
τ = T − t, x = ln(S/E ), leads to the heat equation

∂u

∂τ
− σ2

2

∂2u

∂x2
= 0

for any x ∈ R, 0 < τ < T .

g(x , τ) =

{
eαx+βτ max(ex − 1, 0), for a Call option,
eαx+βτ max(1− ex , 0), for a Put option.

represents the transformed pay-off diagram of a Call (Put)
option

It satisfies the initial condition

u(x , 0) = g(x , 0), for any x ∈ R.

Here: α = r−D
σ2 − 1

2
, β = r+D

2
+ σ2

8
+

(r−D)2

2σ2
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Finite difference approximation of a solution u(x , τ)

spatial and time discretization yields the finite difference mesh

xi = ih, i = ...,−2,−1, 0, 1, 2, ..., τj = jk , j = 0, 1, ...,m.

h = L/n, k = T/m.

approximation of the solution u at (xi , τj) will be denoted by

u
j
i ≈ u(xi , τj ), and also g

j
i ≈ g(xi , τj)

using boundary conditions
Call option: V (0, t) = 0 and V (S , t)/S → e−D(T−t) for S → ∞
Put option: V (0, t) = Ee−r(T−t) and V (S , t) → 0 as S → ∞
⇒ the boundary condition at x = ±L, L ≫ 1,

u
j
−N = φj :=

{
0, for a European Call option,

e−αNh+(β−r)jk , for a European Put option,

u
j
N = ψj :=

{
e(α+1)Nh+(β−D)jk , for a European Call option,
0, for a European Put option.
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time derivative forward (explicit) and backward (implicit)
finite difference approximation

∂u

∂τ
(xi , τj) ≈

u
j+1
i − u

j
i

k
︸ ︷︷ ︸

forward

∂u

∂τ
(xi , τj) ≈

u
j
i − u

j−1
i

k
︸ ︷︷ ︸

backward

central finite difference approximation of the spatial derivative

∂2u

∂x2
(xi , τj) ≈

u
j
i+1 − 2uji + u

j
i−1

h2

Explicit and implicit finite difference approximation of the
heat equation

u
j+1
i − u

j
i

k
=
σ2

2

u
j
i+1 − 2uji + u

j
i−1

h2
︸ ︷︷ ︸

explicit scheme

,
u
j
i − u

j−1
i

k
=
σ2

2

u
j
i+1 − 2uji + u

j
i−1

h2
︸ ︷︷ ︸

implicit scheme
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Explicit scheme and binomial tree

explicit scheme can be rewritten as:

u
j+1
i = γuji−1 + (1− 2γ)uji + γuji+1, where γ =

σ2k

2h2
,

in matrix form uj+1 = Auj + bj for j = 0, 1, . . . ,m − 1 where
A is a tridiagonal matrix given by

A =











1− 2γ γ 0 · · · 0

γ 1− 2γ γ
...

0 · · · 0
... γ 1− 2γ γ
0 · · · 0 γ 1− 2γ











, bj =












γφj

0
...

0
γψj












.

Under the so-called Courant–Fridrichs–Lewy (CFL) stability condition:

0 < γ ≤ 1

2
, i.e.

σ2k

h2
≤ 1,

the explicit numerical discretization scheme is stable.
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Explicit scheme and numerical oscillations

transforming back to the original variables
S = Eex , t = T − τ,V (S , t) = Ee−αx−βτu(x , τ) we obtain
the option price V
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A solution S 7→ V (S , t) for the price of a European Call option

obtained by means of the binomial tree method with γ = 1/2 (left)

and comparison with the exact solution (dots). The oscillating

solution S 7→ V (S , t) which does not converge to the exact solution

for the parameter value γ = 0.56 > 1/2, where γ > 1/2, does not

fulfill the CFL condition.
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Explicit numerical scheme and binomial tree

if we choose the ratio between the spatial and time
discretization steps such that h = σ

√
k then γ = 1/2

u
j+1
i =

1

2
u
j
i−1 +

1

2
u
j
i+1.

the solution u
j+1
i at the time τj+1 is the arithmetic average

between values uji−1 and u
j
i+1

A binomial tree as an illustration of the algorithm for solving a

parabolic equation by an explicit method with 2γ = σ2k/h2 = 1.
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Explicit numerical scheme and binomial tree

The binomial pricing model can be also derived from the explicit
numerical scheme.

V
j
i ≈ V (Si ,T − τj), where Si = Eexi = Ee ih.

since V (S , t) = Ee−αx−βτu(x , t), we obtain
V

j
i = Ee−αih−βjkuji .

in terms of the original variable V
j
i , the explicit numerical

scheme can be expressed as follows:

V
j+1
i = e−rk

(

q−V
j
i−1 + q+V

j
i+1

)

, where q± =
1

2
e±αh−(β−r)k .

for k → 0 and h = σ
√
k → 0 we have

q+
.
=

1 + αh

2
, q−

.
=

1− αh

2
, q− + q+ = 1.

and these constants are refereed to as risk-neutral
probabilities.
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Explicit numerical scheme and binomial tree

underlying stock price at tj+1 has a price S . Here
t0 = T , . . . , tm = 0
at the time tj > tj+1 it attains a higher value S+ > S with a
probability p ∈ (0, 1), and S− < S with probability
1− p ∈ (0, 1)
let V+ and V− be the option prices corresponding to the
upward and downward movement of underlying prices
the option price V at time tj+1 can be calculated as

V = e−rk (q+V+ + q−V−) , where q+ =
Serk − S−
S+ − S−

, q− = 1−q+

A binomial tree illustrating calculation of the option price by binomial tree
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Implicit finite difference numerical scheme

implicit scheme can be rewritten as:

−γuji−1 + (1 + 2γ)uji − γuji+1 = u
j−1
i , where γ =

σ2k

2h2
,

in matrix form Auj = uj−1 + bj−1 for j = 1, 2, . . . ,m where A

is a tridiagonal matrix given by

A =











1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ ...
0 · · · 0
... −γ 1 + 2γ −γ
0 · · · 0 −γ 1 + 2γ











, bj =












γφj+1

0
...

0
γψj+1












.

The implicit numerical discretization scheme is unconditionally
stable for any

γ > 0
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Implicit finite difference numerical scheme

transforming back to the original variables
S = Eex , t = T − τ,V (S , t) = Ee−αx−βτu(x , τ) we obtain
the option price V
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V
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S
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15

20

V

A solution S 7→ V (S , t) for pricing a European Call option obtained by

means of the implicit finite difference method with γ = 1/2 (left) and

comparison with the exact analytic solution (dots). The numerical

scheme is also stable for a large value of the parameter γ = 20 > 1/2 not

satisfying the CFL condition (right).
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How we solve linear algebra problem

Successive Over Relaxation method for solving Au = b

Decompose the matrix A as as sum of subdiagonal, diagonal and overdiagonal
matrix A = L+ D+ U where

Lij = Aij for j < i , otherwise Lij = 0,

Dij = Aij for j = i , otherwise Dij = 0,

Uij = Aij for j > i , otherwise Uij = 0.

We suppose that D is invertible. Let ω > 0 be a relaxation parameter. A
solution of Au = b is equivalent to

Du = Du + ω(b − Au).

or, equivalently,
(D+ ωL)u = (1 − ω)Du + ω(c − Uu).

Therefore u is a solution of

u = Tωu + cω , where Tω = (D+ ωL)−1 ((1 − ω)D− ωU)

a cω = ω(D+ ωL)−1b.

Define a recurrent sequence of approximate solution

u0 = 0, up+1 = Tωu
p + cω for p = 1, 2, ...
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the SOR algorithm reduces to successive calculation, for
p = 0, ..., pmax of

u
p+1
i =

ω

Aii



bi −
∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j



+ (1− ω)upi

for i = 1, ...,N

where ω ∈ (1, 2) is a relaxation parameter

if ‖Tω‖ < 1 then the mapping R
n ∋ u 7→ Tωu + cω ∈ R

n is
contractive and the fixed point argument implies that up

converges to u for p → ∞ and Au = b.

0.8 1 1.2 1.4 1.6 1.8 2 2.2
Ω

0.6

0.8

1

1.2

ÈT
Ω
È

Graph of the spectral norm of the iteration operator ‖Tω‖ as a function of the

relaxation parameter ω.
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Black–Scholes model and sensitivity analysis

Lecture 5

Historical and implied volatilities

Computation of the implied volatility

Sensitivity with respect to model parameters

Delta and Gamma of an option. Other Greeks factors.
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Black–Scholes model and sensitivity analysis

Historical volatility
How to estimate the historical volatility σ of the asset (a
diffusion coefficient in the BS equation)

dS = µSdt + σSdw

For the process of the underlying asset returns X (t) = lnS(t)
we have, by Itō’s lemma

dX = (µ− σ2/2)dt + σdw .

In the discrete form (for equidistant division
0 = t0 < t1 < ... < tn = T , ti+1 − ti = τ) we have

X (ti+1)− X (ti) = (µ− 1

2
σ2)τ + σ(w(ti+1)− w(ti )).

as σ(w(ti+1)− w(ti)) = σΦ
√
τ , where Φ ∼ N(0, 1) we can

use the estimator for the dispersion of the normally distributed
random variable σ

√
τΦ ∼ N(0, σ2τ)
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Black–Scholes model and sensitivity analysis

The historical volatility σ = σhist of the underlying asset price

σ2hist =
1

τ

1

n− 1

n−1∑

i=0

(

ln(S(ti+1)/S(ti ))− γ
)2

where γ is the mean value of returns
X (ti ) = ln(S(ti+1)/S(ti ))

γ =
1

n

n−1∑

i=0

ln(S(ti+1)/S(ti )).
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S

IBM stock price evolution from 21.5.2002 with τ = 1 minute. The computed

historical volatility σhist = 0.2306 on the yearly basis, i.e. σhist = 23% p.a.
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Black–Scholes model and sensitivity analysis

0 50 100 150 200 250 300 350
t

6.6

6.8
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V

IBM Call option price from 21.5.2002 (red).

Computed V ec(Sreal (t), t; σhist) with σhist = 0.2306 (blue)

In typical real market situations the historical volatility σhist
produces lower option prices

σhist is lower than the value that is needed for exact matching
of market option prices
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Black–Scholes model and sensitivity analysis

Implied volatility
The implied volatility is a solution of the following inverse
problem: Find a diffusion coefficient of the Black-Scholes
equation such that the computed option price is identical with
the real market price.

Denote the price of an option (Call or Put) as V = V (S , t;σ)
where σ - the volatility is considered as a parameter.

Implied volatility σimpl at the time t is a solution of the
implicit equation

Vreal(t) = V (Sreal(t), t;σimpl ).

where Vreal(t) is the market option price, Sreal (t) is the
market underlying asset price at the time t.

Solution σ exists and is unique due to monotonicity of the
function σ 7→ V (S , t;σ) (it is an increasing function).
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Black–Scholes model and sensitivity analysis
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IBM stock price evolution from 21.5.2002 (left), the Call option for E = 80 and

T = 43/365 (right)

⇓
The computed implied volatility σimpl (t)
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The average value of the implied volatility is: σ̄impl = 0.3733
p.a.
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Black–Scholes model and sensitivity analysis

Comparison of market Call option data match for Historical
and Implied volatilities
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IBM Call option price from 21.5.2002 (red).
Computed Vt = V ec(Sreal (t), t; σhist) with σhist = 0.2306 (left).
Computed Vt = V ec(Sreal (t), t; σimpl ) with σimpl = 0.3733 (right).
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Black–Scholes model and sensitivity analysis

Sensitivity of the option price with respect to model parameters -
Greeks

Sensitivity with respect to the asset price: Delta - ∆,

∆ =
∂V

∂S

It measures the rate of change of the option price V w.r. to
the change in the asset price S

It is used in the so-called Delta hedging because the
risk-neutral portfolio is balanced according to the law:

QS

QV

= −∂V
∂S

= −∆

where QV , QS is the number of options and stocks in the
portfolio
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Black–Scholes model and sensitivity analysis

Delta for European Call and Put options:

∆ec =
∂V ec

∂S
= N(d1), ∆ep =

∂V ep

∂S
= −N(−d1).
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∆ec ∆ep

Parameters: E = 80, r = 0.04,T = 43/365

Notice that ∆ec ∈ (0, 1) and ∆ep ∈ (−1, 0)

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



Black–Scholes model and sensitivity analysis

Computation of Delta for market data time series

Determine the implied volatility σimpl(t) from market data
time series of the option price Vreal(t) and the underlying
asset price Sreal(t). We solve

Vreal(t) = V ec(Sreal(t), t;σimpl (t)).

Produce the graph of ∆ec(t) = ∂V ec

∂S (Sreal (t), t;σimpl (t))
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Observe that the decrease of Delta means that keeping one
Call option we have to decrease the number QS of owed
stocks in the portfolio.
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Black–Scholes model and sensitivity analysis

Sensitivity of Delta with respect to the asset price: Gamma - Γ

Γ =
∂∆

∂S
=
∂2V

∂S2
.

It measures the rate of change of the Delta of the option price
V w.r. to the change in the asset price S

Γec = Γep =
∂∆ec

∂S
= N ′(d1)

∂d1
∂S

=
exp(−1

2d
2
1 )

σ
√

2π(T − t)S
> 0

It is used for generating signals for the owner of the option to
rebalance his portfolio because change in the Delta factor
means that the change in the ratio QS/QV should be done.

High Gamma ⇒ rebalance portfolio according to Delta
hedging strategy
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Black–Scholes model and sensitivity analysis

Computation of Gamma for market data time series
Determine the implied volatility σimpl (t) from market data time series of the
option price Vreal (t) and the underlying asset price Sreal (t). We solve

Vreal (t) = V ec(Sreal (t), t;σimpl (t)).

Produce the graph of Γec (t) = ∂2V ec

∂S2 (Sreal (t), t; σimpl (t))
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IBM stock price from 21.5.2002 (left), Call option for E = 80 and T = 43/365 (right)
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Black–Scholes model and sensitivity analysis

Other Greeks - Sensitivity of the option price to model parameters

Rho
Sensitivity with respect to the interest rate r , P = ∂V

∂r

Theta
Sensitivity with respect to time t, Θ = ∂V

∂t

Vega
Sensitivity with respect to volatility σ, Υ = ∂V

∂σ

Greek version of the Black–Scholes equation.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

⇓

Θ+
σ2

2
S2Γ + rS∆− rV = 0
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Exotic derivatives

Lecture 6

Path dependent options, concepts and applications

Barrier options, formulation in terms of a solution to a partial
differential equation on a time dependent domain

Asian options, formulation in terms of a solution to a partial
differential equation in a higher dimension

Numerical methods for solving barrier and Asian options
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Exotic derivatives - Path dependent options

Path dependent options

A path-dependent option = the option contract depends on
the whole time evolution of the underlying asset in the time
interval [0,T ]

Classical European options are not path dependent options,
the contract depends only on the terminal pay-off V (S ,T ) at
the expiry T

The path dependent options - Examples
Barrier options - the contract depends on whether the asset
price jumped over/under prescribed barrier
Asian options - the contract depends on the average of the
asset price over the time interval [0,T ]
Many other like e.g. look-back options, Russian options, Israeli
options, etc.

Path dependent options are hard to price as the contract
depends on the whole evolution of the asset price St in the
future time interval [0,T ]
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Exotic derivatives - Barrier options

Example of an barrier options: Down–and–out Call option.
This is a usual Call option with the terminal pay-off
V (S ,T ) = max(S − E , 0) except of the fact that the option
may expire before the maturity T at the time t < T in the
case when the underlying asset price St reaches the prescribed
barrier B(t) from above.
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opcia expirovala

The option will expire at the maturity T (left) It will expire prematurely at t < T (right)

If the option expires prematurely at t < T the writer pays the
holder the prescribed rabat R(t).
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Exotic derivatives - Barrier options

A typical exponential barrier function is: B(t) = bEe−α(T−t)

with 0 < b < 1

A typical exponential rabat function is:
R(t) = E

(
1− e−β(T−t)

)

Mathematical formulation - the PDE on a time dependent
domain

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

for t ∈ [0,T ) and B(t) < S <∞

V (B(t), t) = R(t), t ∈ [0,T )

at the left barrier boundary S = B(t)

V (S ,T ) = max(S − E , 0), S > 0,

at t = T (Barrier Call option).
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Exotic derivatives - Barrier options

The fixed domain transformation

V (S , t) = W (x , t), where x = ln (S/B(t)) , x ∈ (0,∞),

transforms the problem from the time dependent domain
B(t) < S <∞ to the fixed domain x ∈ (0,∞).
For an exponential barrier function B(t) = bEe−α(T−t) we
have Ḃ(t) = αB(t).
After performing necessary substitutions we obtain the PDE
for the transformed function W (x , t)

∂W

∂t
+
σ2

2

∂2W

∂x2
+

(

r − σ2

2
− α

)
∂W

∂x
− rW = 0.

The terminal condition for the Call option case:

W (x ,T ) = E max(bex − 1, 0).

The left side boundary condition

W (0, t) = R(t).
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Exotic derivatives - Barrier options

A numerical solution - a simple code in the software Mathematica

b = 0.7; alfa = 0.1; beta = 0.05; X = 40; sigma = 0.4; r = 0.04; d = 0; T = 1;

xmax = 2;

Bariera[t_] := X b Exp[-alfa (T - t)]; Rabat[t_] := X (1 - Exp[-beta(T - t)]);

PayOff[x_] := X*If[b Exp[x] - 1 > 0, b Exp[x] - 1, 0];

riesenie = NDSolve[{

D[w[x, tau], tau] == (sigma^2/2)D[w[x, tau], x, x]

+ (r - d - sigma^2/2 - alfa )* D[w[x, tau], x]

- r *w[x, tau] ,

w[x, 0] == PayOff[x],

w[0, tau] == Rabat[T - tau],

w[xmax, tau] == PayOff[xmax]},

w, {tau, 0, T}, {x, 0, xmax}

];

w[x_, tau_] := Evaluate[w[x, tau] /. riesenie[[1]] ];

Plot3D[w[x, tau], {x, 0, xmax}, {tau, 0, T}];

V[S_, tau_] :=

If[S > Bariera[T - tau],

w[ Log[S/Bariera[T - tau]], tau],

Rabat[T - tau]

];

Plot[ {V(S,0.2 T],V(S,0.4 T], V(S,0.6 T], V(S,0.8 T], V(S,T]}, {S,20,50}];
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Exotic derivatives - Barrier options

A numerical solution - an example of a solution to the
Down-and-out barrier Call option
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Graph of the solution of the barrier Call option for different times t ∈ [0,T ]
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Exotic derivatives - Asian options

An example of an Asian option:
This is a Call option with terminal pay-off
V (S ,T ) = max(S − E , 0) except of the fact that the exercise
price E is not prescribed but it is given as the arithmetic (or
geometric) average of the underlying asset prices St within
the time interval [0,T ], i.e. the terminal pay-off diagram is:

V (S ,T ) = max(S − AT , 0)

arithmetic average geometric average

At =
1

t

∫ t

0
Sτdτ, lnAt =

1

t

∫ t

0
lnSτdτ.

In the discrete form

Atn =
1

n

n∑

i=1

Sti , lnAtn =
1

n

n∑

i=1

lnSti ,

where t1 < t2 < ... < tn, and ti+1 − ti = 1/n.
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Exotic derivatives - Asian options
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Simulated price of the underlying asset and the corresponding arithmetic

average.
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Exotic derivatives - Asian options

Assume the asset price follows SDE: dS = µSdt + σSdw

The average A is the arithmetic average, i.e. At =
1
t

∫ t

0 Sτdτ
Then

dA

dt
= − 1

t2

∫ t

0
Sτdτ +

1

t
St =

St − At

t

an hence, in the differential form, dA = S−A
t

dt.

In general we may assume

dA = A f

(
S

A
, t

)

dt, f (x , t) =
x − 1

t
, f (x , t) =

ln x

t

general form arithmetic average geometric average

Construct the option price as a function

V = V (S ,A, t)

It depends on a new variable: A - the average of the asset
price
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Exotic derivatives - Asian options

Itō’s lemma (extension to the function V = V (S ,A, t))

dV =
∂V

∂S
dS +

∂V

∂A
dA+

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2

)

dt

=
∂V

∂S
dS +

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+
∂V

∂A
Af

(
S

A
, t

))

dt.

⇓ notice that dA = Af (S/A, t)dt ⇓

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
+ Af

(
S

A
, t

)
∂V

∂A
− rV = 0

This is a two dimensional parabolic equation for pricing Asian
type of average strike options
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Exotic derivatives - Asian options

The pay-off diagram V (S ,A,T ) = max(S − A, 0) can be
rewritten as V (S ,A,T ) = Amax(S/A− 1, 0)

Use the change of variables ⇓

V (S ,A, t) = AW (x , t), where x =
S

A
, x ∈ (0,∞)

The parabolic PDE for the transformed function W (x , t) read
as follows:

∂W

∂t
+
σ2

2
x2
∂2W

∂x2
+ rx

∂W

∂x
+ f (x , t)

(

W − x
∂W

∂x

)

− rW = 0

The terminal condition W (x ,T ) = max(x − 1, 0) for an Asian
Call option

Although the solution can be found in a series expansion w.r.
to Bessel functions it is more convenient to solve it
numerically
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Exotic derivatives - Asian options

A numerical solution - a simple code in the software Mathematica

sigma=0.4; r=0.04; d=0; T=1; t=0.9; xmax=8;

PayOff[x_] := If[x - 1 > 0, x - 1, 0];

riesenie = NDSolve[{

D[w[x, tau],tau] == (sigma^2/2) x^2 D[w[x, tau], x,x]

+ (r - d)*x * D[w[x, tau], x]

+ ((x - 1)/(T - tau))*(w[x, tau] - x*D[w[x, tau], x])

- r*w[x, tau],

w[x, 0] == PayOff[x],

w[0, tau] == 0,

w[xmax, tau] == PayOff[xmax]},

w, {tau, 0, t}, {x, 0, xmax}

];

w[x_, tau_] := Evaluate[w[x, tau] /. riesenie[[1]] ];

V[tau_, S_, A_] := A w[S/A, tau];

Plot3D[ V[t, S, A], {S, 10, 120}, {A, 50, 80}];
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Exotic derivatives - Asian options
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3D and countourplot graphs of the solution W (x , t) of the transformed function

W (x , τ) for parameters σ = 0.4, r = 0.04,D = 0,T = 1.

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



Exotic derivatives - Asian options
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3D and countourplot graphs of the Asian average strike Call option

V (S,A, t) = AW (S/A, t) for the time t = 0.1 and T = 1 (i.e. T − t = 0.9)
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American type of options

Lecture 7

American options

Early exercise boundary

Formulation in the form of a variational inequality

Projected successive over relaxation method (PSOR)
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American type of options

American options are most traded types of options
(more than 95% of option contracts are of the American type)
The difference between European and American options
consists in the possibility of early exercising the option
contract within the whole time interval [0,T ], T is the
maturity.
the case of Call (or Put) option:
American Call (Put) option is an agreement (contract)
between the writer and the holder of an option. It represents
the right BUT NOT the obligation to purchase (sell) the
underlying asset at the prescribed exercise price E at
ANYTIME in the forecoming interval [0,T ] with the specified
time of maturity t = T .
The question is: What is the price of such an option (the
option premium) at the time t = 0 of contracting. In other
words, how much should the holder of the option pay the
writer for such a security.
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American type of options

American options gives the holder more flexibility in exercising

An American option therefore has higher value compared to
the European option

⇓

V ac(S , t) ≥ V ec(S , t), V ap(S , t) ≥ V ep(S , t)

An American option at time t < T must always have higher
value than the one in expiry, i.e.

⇓

V ac(S , t) ≥ V ac(S ,T ) = max(S − E , 0),

V ap(S , t) ≥ V ap(S ,T ) = max(E − S , 0)

ec, ep indicates the European type of an option
ac, ap indicates the American type of an option
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American type of options
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Solutions V (S, t), 0 ≤ t < T , for a European Call option (left) and Put option (right).

The solutions V ec(S , t),V ep(S , t) always intersect their payoff
diagrams V (S ,T ) ⇒ these are not the graphs of
V ac(S , t),V ap(S , t)

In the left figure we plotted the price V ec(S, t) of a Call option on the asset
paying dividends with a continuous dividend yield rate D > 0.

The Black-Scholes equation for pricing the option is:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − D)S

∂V

∂S
− rV = 0 ,

V (S,T ) = max(S − E , 0), S > 0, t ∈ [0,T ] .
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American type of options
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Comparison of solutions V ec(S, t) and V ac (S, t) of European and American Call

options at some time 0 ≤ t < T .

The problem is to find both the solution V ac(S , t) as well as
the position of the free boundary Sf (t) (the early exercise
boundary).

If S < Sf (t), then V ac(S , t) > max(S − E , 0) and we keep
the Call option

If S ≥ Sf (t), then V ac(S , t) = max(S − E , 0) and we exercise
the Call option
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American type of options

1 the function V (S , t) is a solution to the Black–Scholes PDE

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − D)S

∂V

∂S
− rV = 0

on a time dependent domain 0 < t < T and 0 < S < Sf (t).

2 The terminal pay–off diagram for the Call option

V (S ,T ) = max(S − E , 0).

3 Boundary conditions for a solution V (S , t) (case of an
American Call option)

V (0, t) = 0, V (Sf (t), t) = Sf (t)− E ,
∂V

∂S
(Sf (t), t) = 1,

at the boundary points S = 0 a S = Sf (t) for 0 < t < T
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American type of options

Smooth pasting principle

boundary condition V (Sf (t), t) = Sf (t)− E

represents the continuity of the function V ac(S , t) across the
free boundary Sf (t)

boundary condition ∂V
∂S (Sf (t), t) = 1

represents the C 1 continuity of the function V ac(S , t) across
the free boundary Sf (t)

The C1 continuity of a solution (smooth pasting principle) can be deduced from the
optimization principle according to which the price of an American option is given by

V ac (S, t) = max
η

V (S, t; η),

where the maximum is taken over the set of all positive smooth functions

η : [0,T ] → R
+ and V (S, t; η) is the solution to the Black–Scholes equation on a time

dependent domain 0 < t < T , 0 < S < η(t), and satisfying the terminal pay-off

diagram and Dirichlet boundary conditions V (0, t; η) = 0,V (η(t), t; η) = η(t) − E .
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American type of options
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Behavior of the free boundary Sf (t) (early exercise boundary) for the American Call

(left) and Put (right) option.

For the American Put option we must change:
the time dependent domain to 0 < t < T and S > Sf (t);

the terminal pay-off diagram for the Put option V (S,T ) = max(E − S, 0)

boundary conditions

V (+∞, t) = 0, V (Sf (t), t) = E − Sf (t),
∂V

∂S
(Sf (t), t) = −1,
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American type of options

Some recent and so so recent results on the early exercise behavior

According to the paper by Dewynne et al. (1993) and
Ševčovič (2001) the early exercise behavior of an American
Call option close to the expiry T is given by

Sf (t) ≈ K
(

1 + 0.638σ
√
T − t

)

, K = E max(r/D, 1)

According to the paper by Stamicar, Chadam, Ševčovič
(1999) the early exercise behavior of an American Put option
close to the expiry T is given by

Sf (t) = Ee−(r−σ2

2
)(T−t)eσ

√
2(T−t)η(t) as t → T ,

where η(t) ≈ −
√

− ln
[
2r
σ

√

2π(T − t)er(T−t)
]

Recently Zhu in papers from 2006, 2007 constructed an
explicit approximation solution to the whole early exercise
boundary problem obtained by the inverse Laplace
transformation.

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



American type of options

Valuation of American options by a variational inequality

for an American Call option one can show that on the whole
domain 0 < S <∞ and 0 ≤ t < T the following inequality
holds:

L[V ] ≡ ∂V

∂t
+
σ2

2
S2 ∂

2V

∂S2
+ (r − D)S

∂V

∂S
− rV ≤ 0.

Comparison with the terminal payoff diagram

V (S , t) ≥ V (S ,T ) = max(S − E , 0).

A variational inequality for American Call option

If V (S , t) > max(S − E , 0) ⇒ L[V ](S , t) = 0
If V (S , t) = max(S − E , 0) ⇒ L[V ](S , t) < 0
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American type of options

An analogy with the obstacle problem from the linear elasticity
theory.
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Left: a solution ũ of the unconstrained problem −ũ′′(x) = b(x), ũ(0) = ũ(1) = 0, and
the obstacle (dashed line) g(x).
Right: a solution u to the obstacle problem:

−u′′(x) ≥ b(x), u(x) ≥ g(x), u(0) = u(1) = 0,

and such that

if u(x) > g(x) ⇒ −u′′(x) = b(x)

if u(x) = g(x) ⇒ −u′′(x) < b(x)
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American type of options

Idea of the Project Successive Over Relaxation method

using the transformation V (S , t) = Ee−αx−βτu(x , τ), where
τ = T − t, x = ln(S/E ), leads to the variational inequality

(
∂u

∂τ
− σ2

2

∂2u

∂x2

)

(u(x , τ)− g(x , τ)) = 0,

∂u

∂τ
− σ2

2

∂2u

∂x2
≥ 0, u(x , τ)− g(x , τ) ≥ 0

for any x ∈ R, 0 < τ < T .

g(x , τ) = eαx+βτ max(ex − 1, 0) – the transformed pay-off
diagram,

It satisfies the initial condition

u(x , 0) = g(x , 0), for any x ∈ R.

Here: α = r−D
σ2 − 1

2
, β = r+D

2
+ σ2

8
+

(r−D)2

2σ2
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American type of options

Implicit finite difference approximation and transformation to the
linear complementarity problem

spatial and time discretization yields the finite difference mesh

xi = ih, i = ...,−2,−1, 0, 1, 2, ..., τj = jk , j = 0, 1, ...,m.

h = L/n, k = T/m.

approximation of the solution u at (xi , τj) will be denoted by

u
j
i ≈ u(xi , τj ), and also g

j
i ≈ g(xi , τj)

transformation of the boundary condition at x = ±L, L ≫ 1,

u
j
−N = φj := g(x−N , τj), u

j
N = ψj := g(xN , τj).

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



American type of options

The linear complementarity problem for a solution of the
discretized variational inequality can be rewritten as follows:

Auj+1 ≥ uj + bj , uj+1 ≥ g j+1 for each j = 0, 1, ...,m − 1,

(Auj+1 − uj − bj)i (u
j+1 − g j+1)i = 0 for each i ,

where u0 = g0. The matrix A is a tridiagonal matrix arising from
the implicit in time discretization of the parabolic equation
∂τu = σ2

2 ∂
2
xu, i.e.

A =








1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ
...

0 · · · 0
... −γ 1 + 2γ −γ
0 · · · 0 −γ 1 + 2γ







, bj =









γφj+1

0
...

0
γψj+1









,

where γ = σ2k/(2h2).
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American type of options

In each time level the goal is to solve linear complementarity

Au ≥ b, u ≥ g ,

(Au − b)i (ui − gi ) = 0 for each i .

We define a recurrent sequence of approximative solution as

u0 = 0, up+1 = max (Tωu
p + cω, g) for p = 1, 2, ...,

where the maximum is taken component-wise
here Tω is the linear iteration operator arising from the
classical SOR method for the linear problem Au = b. Here
cω = ω(D+ ωL)−1b

in terms of vector components, the Projected SOR algorithm
reduces to

u
p+1
i = max

[
ω

Aii



bi −
∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j



+(1−ω)upi , gi
]

where ω ∈ (1, 2) is a relaxation parameter, typically ω ≈ 1.8
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American type of options

A numerical solution to the problem of valuing American Call and
Put options by the Projected Successive Over Relaxation method
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A solution S 7→ V (S , t) of an American Call (left) and Put option
(right) obtained by solving the variational inequality by means of
the Projected SOR (PSOR) algorithm.
Dotted curves corresponds to European type of options
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American type of options
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Two 3D views on the graph of the solution (S , t) 7→ V (S , t) for the
price of the American Call option. Five selected time profiles and
comparison with the terminal pay-off function. One can see the
effect of the smooth pasting of the solution to the pay-off function.
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Nonlinear extensions of the Black-Scholes theory

Lecture 8

Modeling transaction costs

Modeling investor’s risk preferences

Jumping volatility model

Risk adjusted pricing methodology model

Numerical approximation scheme
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Nonlinear options pricing models

Nonlinear derivative pricing models

Classical Black-Scholes theory does not take into account

Transaction costs (buying or selling assets, bid-ask spreads)

Risk from unprotected (non hedged) portfolio

Other effects

feedback effects on the asset price in the presence of a
dominant investor

utility function effect of investor’s preferences

Question: how to incorporate both transaction costs and risk
arising from a volatile portfolio into the Black-Scholes equation
framework?
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Transaction costs – Leland model

Leland model for pricing Call and Put options under the
presence of transaction costs

Hoggard, Whaley and Wilmott model - generalization to other
options

Volatility σ = σ(∂2SV ) is given by

σ2 = σ̂2(1− Le sgn(∂2SV ))

where σ̂ > 0 is a constant historical volatility and
Le =

√

2/πC/(σ̂
√
∆t) is the Leland number where ∆t is time lag

between consecutive transactions

∂V

∂t
+ (r − D)S

∂V

∂S
+
σ2(∂2SV ,S , t)

2
S2∂

2V

∂S2
− rV = 0
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Transaction costs – Leland model

Transaction costs are described following the Hoggard, Whalley
and Wilmott approach (1994) (also referred to as Leland’s model
(1985) )

dΠ = dV + δdS − CSk

where

C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid )/S

k is the number of assets sold or bought during one time lag.
Notice that

k ≈ |∆δ| = |∆∂SV | ≈ |∂2SV ||dS |, E (|dW |) =
√

2

π

√
dt
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Transaction costs – Leland equation

∂V

∂t
+

1

2
σ2S2

(
1− Le sgn(∂2SV )

) ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

where Le =
√

2
π

C

σ
√
∆t

is the so-called Leland number depending on

C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid )/S

∆t - the lag between two consecutive portfolio adjustments
(re-hedging)

For a plain vanilla option (either Call or Put) the sign of ∂2SV is
constant and therefore the above model is just the Black-Scholes
equation with lowered volatility.
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Frey - Stremme model for a large trader

Frey and Stremme (1997) introduced directly the asset price
dynamics in the case when the large trader chooses a given
stock-trading strategy.

Volatility σ = σ(∂2SV ,S) is given by

σ2 = σ̂2
(
1− ̺S∂2SV

)−2

where σ̂2, ̺ > 0 are constants.

∂V

∂t
+ (r − D)S

∂V

∂S
+
σ2(∂2SV ,S , t)

2
S2∂

2V

∂S2
− rV = 0
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Barles - Soner model for investor’s utility maximization

If transaction costs are taken into account perfect replication
of the contingent claim is no longer possible

assuming that investor’s preferences are characterized by an
exponential utility function Barles and Soner (1998) derived a
nonlinear Black-Scholes equation

Volatility σ = σ(∂2SV ,S , t) is given by

σ2 = σ̂2
(

1 + Ψ(a2er(T−t)S2∂2SV )
)2

where Ψ(x) ≈ (3/2)
2
3 x

1
3 for x close to the origin. σ̂2, κ > 0 are

constants.

∂V

∂t
+ (r − D)S

∂V

∂S
+
σ2(∂2SV ,S , t)

2
S2∂

2V

∂S2
− rV = 0
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Risk adjusted pricing methodology

transaction costs are described following the Hoggard,
Whalley and Wilmott approach (Leland’s model)

the risk from the unprotected volatile portfolio is described by
the variance of the synthetised portfolio.

⇓

1 Transaction costs as well as the volatile portfolio risk depend
on the time-lag between two consecutive transactions.

2 Minimizing their sum yields the optimal length of the hedge
interval - time-lag

3 It leads to a fully nonlinear parabolic PDE:

RAPM model originally proposed by Kratka (1998) and
further analyzed by Sevcovic and Jandacka (2005).
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Transaction costs under δ - hedging

Transaction costs are described following the Hoggard, Whalley
and Wilmott approach (1994)

adopt δ = ∂V
∂S hedging

construct a portfolio Π = V − δS donsisting of one option
and δ underlying assets

compare risk part of the portfolio to secure bonds

dΠ = dV + δdS − CSk

r(V − δS)dt = rΠdt = dΠ

where

C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid )/S

k is the number of assets sold or bought during one time lag.

k ≈ |∆δ| = |∆∂SV | ≈ |∂2SV ||dS |, E (|dW |) =
√

2

π

√
dt
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Modeling transaction costs

∂V

∂t
+

1

2
σ̂2S2

(
1− Le sgn (∂2SV )

) ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

where Le =
√

2
π

C

σ̂
√
∆t

is the so-called Leland number depending on

C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid )/S

∆t - the lag between two consecutive portfolio adjustments
(re-hedging)

For a plain vanilla option (either Call or Put) the sign of ∂2SV is
constant and therefore the above model is just the Black-Scholes
equation with lowered volatility.
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Risk adjusted pricing methodology model

a portfolio Π consists of options and assets Π = V + δS

is the portfolio Π is highly volatile an investor usually asks for
a price compensation.

Volatility of a fluctuating portfolio can be measured by the
variance of relative increments of the replicating portfolio

⇓

introduce the measure rVP of the portfolio volatility risk as follows:

rVP = R
Var

(
∆Π
S

)

∆t
.

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



Using Itô’s formula the variance of ∆Π can be computed as
follows:

Var(∆Π) = E
[
(∆Π− E (∆Π))2

]

= E

[(

(∂SV + δ) σ̂Sφ
√
∆t +

1

2
σ̂2S2Γ

(
φ2 − 1

)
∆t

)2
]

.

where φ ≈ N(0, 1) and Γ = ∂2SV .

assuming the δ-hedging of portfolio adjustments, i.e. we
choose δ = −∂SV . For the risk premium rVP we have

rVP =
1

2
R σ̂4S2Γ2∆t .
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Balance equation for Π = V + δS

dΠ = dV + δdS

dΠ = rΠdt + (rTC + rVP)Sdt

Using Itô’s formula applied to V = V (S , t) and eliminating
stochastic term by taking δ = −∂SV hedge we obtain

∂tV +
σ̂2

2
S2∂2SV + rS∂SV − rV = (rTC + rVP)S

where

rTC = C |Γ|σ̂S√
2π

1√
∆t

is the transaction costs measure

rVP = 1
2R σ̂

4S2Γ2∆t is the volatile portfolio risk measure

and Γ = ∂2SV .
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Minimizing the total risk in the RAPM model

Total risk rTC + rVP

Dt

rTC+rVP

rTC

rVP

Dt

Tran. costs risk rTC Volatile portfolio risk rVP Total risk
rTC + rVP

Both rTC and rVP depend on the time lag ∆t

⇓
Minimizing the total risk with respect to the time lag ∆t yields

min
∆t

(rTC + rVP) =
3

2

(
C 2R

2π

) 1
3

σ̂2|S∂2SV | 43
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Nonlinear PDE equation for RAPM

∂tV +
1

2
σ̂2S2

(

1− µ(S∂2SV )1/3
)

∂2SV + rS∂SV − rV = 0

S > 0, t ∈ (0,T ) where
µ = 3

(
C 2R

2π

) 1
3

fully nonlinear parabolic equation

If µ = 0 (i.e. either R = 0 or C = 0) the equation reduces to
the classical Black-Scholes equation

minus sign in front of µ > 0 corresponds to Bid option price
Vbid (price for selling option).
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Bid Ask spreads

∂tV +
1

2
σ̂2S2

(

1± µ(S∂2SV )1/3
)

∂2SV + rS∂SV − rV = 0

A comparison of Bid ( − sign ) and Ask (+ sign) option prices
computed by means of the RAPM model. The middle dotted line
is the option price computed from the Black-Scholes equation.
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RAPM and explanation of volatility smile

Volatility smile phenomenon is non-constant, convex behavior
(near expiration price E ) of the implied volatility computed from
classical Black-Scholes equation.

Volatility smile for DAX index

By RAPM model we can explain the volatility smile analytically.
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RAPM and explanation of volatility smile

The Risk adjusted Black-Scholes equation can be viewed as an
equation with a variable volatility coefficient

∂tV +
σ2(S , t)

2
S2∂2SV + rS∂SV − rV = 0

where σ2(S , t) depends on a solution V = V (S , t) as follows:

σ2(S , t) = σ̂2
(

1− µ(S∂2SV (S , t))1/3
)

.

Dependence of σ(S , t) on S is depicted in the left for t close to T .
The mapping (S , t) 7→ σ(S , t) is shown in the right.

E
S

Σ

Σ
�
HS,ΤL

ES
T

0

t

Σ
�
HS,ΤL

XS
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Numerical scheme for quasilinear equation

denote β(H) = σ2

2 (1− µH
1
3 )H

reverse time τ = T − t (time to maturity)

use logarithmic scale x = ln(S/E ) (x ∈ R ↔ S > 0)

introduce new variable H(x , τ) = S∂2SV (S , t)

Then the RAPM equation can be transformed into quasilinear
equation

∂τH = ∂2xβ(H) + ∂xβ(H) + r∂xH τ ∈ (0,T ), x ∈ R

Boundary conditions: H(−∞, τ) = H(∞, τ) = 0

Initial condition: H(x , 0) = PDF (d1)

σ
√
τ∗

d1 =
x+(r+σ2

2
)τ

σ
√
τ∗

where

0 < τ∗ << 1 is the switching time.
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Numerical scheme for quasilinear equation

∂τH = ∂2xβ(H) + ∂xβ(H) + r∂xH τ ∈ (0,T ), x ∈ R

H
j
i ≈ H(ih, jk) ⇓ k =

T

m
, h =

L

n

a
j
iH

j
i−1 + b

j
iH

j
i + c

j
i H

j
i+1 = d

j
i , H

j
−n = 0, H j

n = 0 ,

for i = −n + 1, ..., n − 1, and j = 1, ...,m, where H0
i = H(xi , 0)

a
j
i = − k

h2
β′(H j−1

i−1 ) +
k

h
r , b

j
i = 1− (aji + c

j
i ) ,

c
j
i = − k

h2
β′(H j−1

i ) , d
j
i = H

j−1
i +

k

h

(

β(H j−1
i )− β(H j−1

i−1 )
)

.
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Calibration of RAPM model

Intra-day behavior of Microsoft stocks (April 4, 2003) and shortly
expiring Call options with expiry date April 19, 2003. Computed
implied volatilities σRAPM and risk premium coefficients R .
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Calibration of RAPM model

One week behavior of Microsoft stocks (March 20 - 27, 2003) and
Call options with expiration date April 19, 2003. Computed
implied volatilities σRAPM and risk premiums R .
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Jumping volatility nonlinear model

Avellaneda, Levy and Paras proposed a model is to describe option
pricing in incomplete markets where the volatility σ of the
underlying stock process is uncertain but bounded from bellow and
above by given constants σ1 < σ2.

Avellaneda, Levy and Paras nonlinear extension of the
Black–Scholes equation

∂V

∂t
+ (r − D)S

∂V

∂S
+
σ2(∂2SV )

2
S2 ∂

2V

∂S2
− rV = 0

where the volatility depends on the sign of Γ = ∂2SV

σ2(S2∂2SV ) =

{
σ̂21 , if ∂2SV < 0,
σ̂22 , if ∂2SV > 0.
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Jumping volatility nonlinear model

Similarly as in previously studied nonlinear Black–Scholes models,
we can introduce the new variable H(x , τ) = S∂2SV , where
x = ln(S/E ) and τ = T − t. We obtain

∂H

∂τ
=
∂2β

∂x2
+
∂β

∂x
+ r

∂H

∂x
,

where β = β(H(x , τ)) is given by

β(H) =







σ̂21
2 H if H < 0,

σ̂22
2 H if H > 0.

We have to impose the boundary conditions corresponding to the
limits S → 0 (x → −∞) and S → ∞ (x → +∞) for
H(x , τ) = S∂2SV ,

H(−∞, τ) = H(∞, τ) = 0 , τ ∈ (0,T ) .

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



Results of numerical approximation of the jumping volatility model
for the case of the bullish spread.

bullish spread strategy = buying one Call option with exercise
price E = E1 and selling one Call option with E2 > E1

V (S ,T ) = (S − E1)
+ − (S − E2)

+.

in terms of the transformed variable H we have As for the
initial condition we have

H(x , 0) = δ(x − x0)− δ(x − x1), x ∈ R,

where x0 = 0, x1 = ln(E2/E1).

-1 -0.5 0 0.5 1
x

-20

0

20

40

60

H

-2 -1 0 1 2
x

-0.6

-0.4

-0.2

0

0.2

0.4

H

Plots of the initial approximation of the function H(x , 0) (left) and the solution profile

H(x ,T ) at τ = T (right).
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Jumping volatility nonlinear model

Transforming back to the original variable V (S , t) we obtain from
S∂2SV = H(x , τ) where x = ln(S/E ) and τ = T − t that

V (S , t) =

∫ ∞

−∞
(S − Eex )+H(x ,T − t)dx ,

where E = E1.
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A comparison of the Call option price V (S , 0) (left) and its delta (right)

computed from the jumping volatility model (solid line) by the linear

Black–Scholes. Option prices obtained from the linear Black–Scholes

equation are depicted by dashed curved (for volatility σ1) and fine-dashed

curve (for volatility σ2).
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Interest rate derivatives derivatives

Lecture 9

A stochastic differential equation for modeling the short
interest rate process

Vaš́ııček and Cox-Ingersoll–Ross models for the short rate
process

Interest rate derivatives – zero coupons bonds

Pricing interest rate derivatives by means of a solution to the
parabolic partial differential equation
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Interest rate derivatives derivatives

Modeling the short rate (overnight) stochastic process
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Daily behavior of the overnight interest rate of BRIBOR in 2007.

modeling the short rate r = r(t) by a solution to a one factor
stochastic differential equation

dr = µ(t, r)dt + σ(t, r)dw .

µ(t, r)dt represents a trend or drift of the process
σ(t, r) represents a stochastic fluctuation part of the process
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Interest rate derivatives derivatives

Modeling the short rate (overnight) stochastic process

Among short rate models the dominant position have the
mean-reversion processes in which µ(t, r) = κ(θ − r). The
solution (if σ = 0) is therefore attracted to the stable
equilibrium θ as t → ∞.

A short overview of one factor interest rate models

Model Stochastic equation for r
Vaš́ıček dr = κ(θ − r)dt + σdw
Cox–Ingersoll–Ross dr = κ(θ − r)dt + σ

√
rdw

Dothan dr = σrdw
Brennan–Schwarz dr = κ(θ − r)dt + σrdw
Cox–Ross dr = βrdt + σrγdw
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Interest rate derivatives derivatives

Modeling the short rate (overnight) stochastic process

Olďrich Alfons Vaš́ıček, graduated from FJFI and Charles University in Prague

EUROLIBOR Short-rate (overnight) and 1 year interest rates PRIBOR
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Interest rate derivatives derivatives

Bond – a derivative of the underlying short rate process

Term structure models describe a functional dependence
between the time to maturity of a discount bond and its
present price

Yield of bonds, as a function of maturity, forms the so-called
term structure of interest rates

If we denote by P = P(t,T ) the price of a bond paying no
coupons at time t with maturity at T then the term structure
of yields R(t,T ) is given by

P(t,T ) = e−R(t,T )(T−t), i.e. R(t,T ) = − logP(t,T )

T − t
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Interest rate derivatives derivatives

The yield curves R(t,T )
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The term structure (the yield curve) R(t,T ) of governmental bonds in % p.a. from
t =27.5.2008 as a function of the yield R with respect to the time to maturity T − t.

Australia, Brazil, Japan United Kingdom.
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Interest rate derivatives derivatives

The time dependence yields and short (overnight) rates

PRIBOR: Short-rate (overnight) and 1 year interest rates

PRIBOR = PRague Interbank Offering Rate

The goal is to find a functional dependence of the yield R and
the underlying short rate r

P = P(r , t,T ) = P(r ,T − t)

where

R(t,T ) = − lnP(t,T )

T − t
.
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

Suppose that the underlying short rate process follows the
SDE:

dr = µ̃(t, r)dt + σ̃(t, r)dw .

for the Vaš́ıček model: dr = κ(θ − r)dt + σdw
for the Cox–Ingersoll–Ross model: dr = κ(θ − r)dt + σ

√
rdw

Suppose that the price of a zero coupon bond P is a smooth
function P = P(r , t,T ) of the short rate r , actual time t and
the maturity time T (t < T ).
by Itō’s lemma we have

dP =

(
∂P

∂t
+ µ̃

∂P

∂r
+
σ̃2

2

∂2P

∂r2

)

︸ ︷︷ ︸

µB (t,r)

dt + σ̃
∂P

∂r
︸ ︷︷ ︸

σB (t,r)

dw

where µB(r , t) and σB(r , t) stand for the drift and volatility of
the bond price

Lectures by D. Ševčovič, Comenius University, Bratislava, Slovak republicAnalytical and numerical methods for pricing financial derivatives



Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

Construct a portfolio from two bonds with two different
maturities T1 and T2

It consits of one bond with maturity T1 and ∆ – bonds with
maturity T2

Its value is therefore π = P(r , t,T1) + ∆P(r , t,T2)

the change of the portfolio dπ is equal to:

dπ = dP(r , t,T1) + ∆dP(r , t,T2)

= (µB(r , t,T1) + ∆µB(r , t,T2)) dt

+(σB(r , t,T1) + ∆σB(r , t,T2)) dw .
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

similarly as in the case of options our goal is to eliminate the
volatile (fluctuating) part of the portfolio of bonds (tenor)

it can be accomplished by taking

∆ = −σB(t, r ,T1)

σB(t, r ,T2)

then the differential of the risk-neutral portfolio of bonds
(tenor)

dπ =

(

µB(t, r ,T1)−
σB(t, r ,T1)

σB(t, r ,T2)
µB(t, r ,T2)

)

dt.

to avoid the possibility of arbitrage the yield of the portfolio
should be equal to the risk-less short interest rate r , i.e.
dπ = rπdt. Therefore

µB(t, r ,T1)−
σB(t, r ,T1)

σB(t, r ,T2)
µB(t, r ,T2) = rπ .
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

inserting the value of the portfolio π we obtain

µB(t, r ,T1)−
σB(t, r ,T1)

σB(t, r ,T2)
µB(t, r ,T2)

= r

(

P(t, r ,T1)−
σB(t, r ,T1)

σB(t, r ,T2)
P(t, r ,T2)

)

.

Since maturities T1 and T2 were arbitrary we may conclude
that there is a common value λ̃ such that

λ̃(r , t) =
µB(r , t,T )− rP(r , t,T )

σB(r , t,T )
for any T > t.

λ̃ may depend on r but not on the maturity T , i.e. λ̃ = λ̃(r).
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

ReCall that

µB(t, r) =
∂P

∂t
+ µ̃

∂P

∂r
+
σ̃2

2

∂2P

∂r2

σB(t, r) = σ̃
∂P

∂r

where we supposed that the underlying short rate process
follows the SDE: dr = µ̃(t, r)dt + σ̃(t, r)dw .

In summary, we can deduce the parabolic PDE for the zero
coupon bond price

∂P

∂t
+ (µ̃(r , t)− λ̃(r , t)σ̃(r , t))

∂P

∂r
+
σ̃2(r , t)

2

∂2P

∂r2
− rP = 0.

At the maturity t = T the price of the bond is prescribed and
it is independent of the short rate r , i.e.

P(r ,T ,T ) = 1 for any r > 0.
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Interest rate derivatives derivatives

Modeling the bond price by a solution to a PDE

for the Vaš́ıček model where dr = κ(θ − r)dt + σdw we take
λ̃(r , t) ≡ λ and we obtain the PDE:

−∂P
∂τ

+ (κ(θ − r)− λσ)
∂P

∂r
+
σ2

2

∂P

∂r2
− rP = 0

for the Cox–Ingersoll–Ross model where
dr = κ(θ − r)dt + σ

√
rdw we take λ̃(r , t) = λ

√
r and we

obtain the PDE:

−∂P
∂τ

+ (κ(θ − r)− λσr)
∂P

∂r
+
σ2

2
r
∂2P

∂r2
− rP = 0,

In both models τ = T − t stands for the time remaining to
maturity of the bond
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Interest rate derivatives derivatives

An explicit solution for the Cox–Ingersoll–Ross model

construct a solution in the form P(r , τ) = A(τ)e−B(τ)r

inserting this ansatz into the CIR equation and comparing the
terms of the order 1 and r we obtain

Ȧ+ κθAB = 0,

Ḃ + (κ+ λσ)B +
σ2

2
B2 − 1 = 0,

functions A, B satisfy initial conditions A(0) = 1, B(0) = 0
the explicit solution to the system of ODEs for A,B is:

B(τ) =
2
(
eφτ − 1

)

(ψ + φ) (eφτ − 1) + 2φ
,

A(τ) =

(

2φe(φ+ψ)τ/2

(φ+ ψ)(eφτ − 1) + 2φ

) 2κθ
σ2

,

where ψ = κ+ λσ, φ =
√

ψ2 + 2σ2 =
√

(κ+ λσ)2 + 2σ2.
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Interest rate derivatives derivatives

An explicit solution for the Vaš́ıček model

construct a solution in the form P(r , τ) = A(τ)e−B(τ)r

one can construct an analogous system of ODEs for functions
A,B

the explicit solution of the system of ODEs yields:

B(τ) =
1− e−κτ

κ
,

lnA(τ) =

[
1

κ
(1− e−κτ )− τ

]

R∞ − σ2

4κ3
(1− e−κτ )2,

where R∞ = θ − λσ
κ − σ2

2κ2
.
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Interest rate derivatives derivatives

An explicit solution for the Vaš́ıček model
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The term structure of interest rates R(r , t,T ) on bonds computed by the Vaš́ıček

model for two different values of the short rate r (r = 0.03 and r = 0.05) at given

time t < T .
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Callibration of short rate models

multiply the Vasicek short rate SDE: drs = κ(θ − r)ds + σdws

by the term eκs .

using Itō’s lemma for f (s, t) = eκs r we obtain

d (eκsrs) = κθeκsds + σeκsdws .

integrating it from the time t to time t +∆t we obtain

eκ(t+∆t)rt+∆t − eκtrt = κθ

∫ t+∆t

t

eκsds + σ

∫ t+∆t

t

eκsdws

= (eκ(t+∆t) − eκt)θ + σ

∫ t+∆t

t

eκsdws .

hence
rt+∆t = e−κ∆trt + (1− e−κ∆t)θ + σe−κ(t+∆t)

∫ t+∆t

t
eκsdws .
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Callibration of short rate models

The conditional distribution rt+∆t conditioned to the state rt
at time t is a normal distribution

E (rt+∆t |rt) = e−κ∆trt + (1− e−κ∆t)θ,

Var(rt+∆t |rt) = σ2e−2κ(t+∆t)Var

(∫ t+∆t

t

eκsdws

)

= σ2e−2κ(t+∆t)E

([∫ t+∆t

t

eκsdws

]2
)

= σ2e−2κ(t+∆t)

∫ t+∆t

t

(eκs)2 ds =
σ2

2κ
(1− e−2κ∆t)

using Itō’s isometry

We obtain

rt+∆t |rt ∼ N

(

e−κ∆trt +
(

1− e−κ∆t
)

θ,
σ2

2κ

(

1− e−2κ∆t
))

.
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Callibration of short rate models

let the statistical data for the short rate are given:
r0, r∆t , . . . , rN∆t evaluated at times: 0,∆t, . . . ,N∆t.

define

ν2t =
σ2

2κ

(

1− e−2κ∆t
)

, εt = rt−θ
(

1− e−κ∆t
)

−e−κ∆trt−∆t .

εt/νt ∈ N(0, 1) are IID residuals

the likelihood function L = L(κ, θ, σ2) of the random vector ε
is a product of normal distributions, i.e.

L = ΠN∆
t=1∆f (εt ;κ, θ, σ

2), f (εt ;κ, θ, σ
2) =

1
√

2πν2t
e
− ε2t

2ν2t

the logarithm of likelihood function L can be written as

lnL = −1

2

N∑

t=1

ln ν2t +
ε2t
ν2t
.

maximizing this function we obtain the estimates of κ, θ, σ2.
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Black–Scholes model for pricing financial derivatives

Appendix

Stochastic differential calculus

Density distribution function and the Fokker–Planck equation

Multidimensional extension of Itō’s lemma
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Itō’s lemma and Fokker–Planck equation

Suppose that a process {x(t), t ≥ 0} follows a SDE (It0̄’s
process)

dx = µ(x , t)dt + σ(x , t)dW ,

where µ a drift function and σ is a volatility of the process.

Denote by

G = G (x , t) = P(x(t) < x | x(0) = x0)

the conditional probability distribution function of the process
{x(t), t ≥ 0} starting almost surely from the initial condition
x0.

Then the cumulative distribution function G can be computed
from its density function g = ∂G/∂x where g(x , t) is a
solution to the Fokker–Planck equation:

∂g

∂t
=

1

2

∂2

∂x2
(
σ2g

)
− ∂

∂x
(µg) , g(x , 0) = δ(x − x0).
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Itō’s lemma and Fokker–Planck equation

Here δ(x − x0) is the Dirac function with support at x0. It means:

δ(x − x0) =

{
0 if x 6= x0,

+∞ if x = x0
and

∫ ∞

−∞
δ(x − x0)dx = 1.

In our case we have, at the origin t = 0,

G (x , 0) =

∫ x

−∞
δ(ξ − x0)dξ =

{
0 if x < x0,
1 if x ≥ x0,

so the process {x(t), t ≥ 0} at t = 0 is almost surely equal to x0.
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Itō’s lemma and Fokker–Planck equation

Intuitive proof of the Fokker-Planck equation:

Let V = V (x , t) be any smooth function with a compact
support, i.e. V ∈ C∞

0 (R× (0,T ))

By Itō’s lemma we have

dV =

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt + σ
∂V

∂x
dW .

Let Et be the mean value operator with respect to the random
variable having the density function g(., t), i.e.

Et(V (., t)) =

∫

R

V (x , t) g(x , t) dx
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Itō’s lemma and Fokker–Planck equation

Then

dEt(V (., t)) = Et(dV (., t)) = Et

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt.

because random variables σ(., t)∂V∂x (., t) and dW (t) are
independent and E(dW (t)) = 0. Therefore

Et

(

σ(., t)
∂V

∂x
(., t)dW (t)

)

= 0
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Itō’s lemma and Fokker–Planck equation

Since V ∈ C∞
0 we have V (x , 0) = V (x ,T ) = 0 and

V (x , t) = 0 for |x | > R , where R > 0 is sufficiently large.

By integration by parts we obtain

0 =

∫ T

0

d

dt
Et(V (., t))dt =

∫ T

0
Et

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt

=

∫ T

0

∫

R

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

g(x , t) dx dt

=

∫ T

0

∫

R

V (x , t)

(

−∂g
∂t

+
1

2

∂2

∂x2
(
σ2g

)
− ∂

∂x
(µg)

)

dx dt.

Since V ∈ C∞
0 (R × (0,T )) is an arbitrary function we obtain

the Fokker–Planck equation for the density g = g(x , t):

−∂g
∂t

+
1

2

∂2

∂x2
(
σ2g

)
− ∂

∂x
(µg) = 0, x ∈ R, t > 0,

g(x , 0) = δ(x − x0), x ∈ R.
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Itō’s lemma and Fokker–Planck equation

Example: dx = dW and x(0) = 0 a.s.
It means x(t) is a Wiener process

The Fokker–Planck (diffusion) equation reads as follows:

∂g

∂t
− 1

2

∂2g

∂x2
= 0, x ∈ R, t > 0,

Its solution (normalized to be a probabilistic density)

g(x , t) =
1√
2πt

e−
x2

2t

is indeed a density function of the normal random variable
W (t) ∼ N(0, t)
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Itō’s lemma and Fokker–Planck equation

Example: dr = κ(θ − r)dt + σdW and and r(0) = r0.
This is the so-called Ornstein-Uhlenbeck mean reversion
process used arising the modeling of the the rate interest rate
stochastic process {r(t), t ≥ 0}.
The Fokker–Planck equation reads as follows:

∂f

∂t
=
σ2

2

∂2f

∂r2
− ∂

∂r
(κ(θ − r)f )

Its solution (normalized to be a probabilistic density function)

f (r , t) =
1

√

2πσ̄2t
e
− (r−r̄t )

2

2σ̄2
t

is the density function for the normal random variable
r(t) ∼ N(r̄t , σ̄

2
t ) satisfying the above SDE. Here

r̄t = θ(1− e−κt) + r0e
−κt , σ̄2t =

σ2

2κ
(1− e−2κt).
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Itō’s lemma and Fokker–Planck equation

Simulation of the process r(t) satisfying dr = κ(θ − r)dt + σdW and

r(0) = r0 = 0.08. Here θ = 0.04.

Time steps of the evolution of the density function f (r , t) for various times t.

The process r(t) started from r0 = 0.02. The limiting value θ = 0.04.
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r
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20
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Θr0

Shift of the density function f (r , t)
is due to the drift in the F-P equation

∂f

∂t
=
σ2

2

∂2f

∂r2
− ∂

∂r
(κ(θ − r)f )
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Multidimensional Itō’s lemma

Multidimensional stochastic processes

dxi = µi (~x , t)dt +

n∑

k=1

σik(~x , t)dwk ,

where ~w = (w1,w2, ...,wn)
T is a vector of Wiener processes

having mutually independent increments

E(dwi dwj) = 0 for i 6= j , E((dwi )
2) = dt .

It can be rewritten in a vector form

d~x = ~µ(~x , t)dt + K (~x , t)d ~w ,

where ~x = (x1, x2, ..., xn)
T and K is an n × n matrix

K (~x , t) = (σij(~x , t))i ,j=1,...,n.
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Multidimensional Itō’s lemma

Expanding a smooth function
f = f (~x , t) = f (x1, x2, ..., xn, t) : R

n × [0,T ] → R into the
second order Taylor series yields:

df =
∂f

∂t
dt +∇x f .d~x

+
1

2

(

(d~x)T∇2
x f d~x + 2

∂f

∂t
.∇x fd~x dt +

∂2f

∂t2
(dt)2

)

+ h.o.t.

The term (d~x)T∇2
x f d~x =

∑n
i ,j=1

∂2f
∂xi∂xj

dxi dxj can be

expanded using the relation between processes xi and xj

dxi dxj =
n∑

k,l=1

σikσjldwk dwl + O((dt)3/2) + O((dt)2)

≈ (

n∑

k=1

σikσjk)dt + O((dt)3/2) +O((dt)2) as dt → 0.
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Multidimensional Itō’s lemma

The multidimensional Itō’s lemma gives the SDE for the
composite function f = f (~x , t) in the form:

df =

(
∂f

∂t
+

1

2
K : ∇2

x f K

)

dt +∇x f d~x

where

K : ∇2
x f K =

n∑

i ,j=1

∂2f

∂xi∂xj

n∑

k=1

σikσjk
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Multidimensional Itō’s lemma and Fokker-Planck equation

By following the same procedure of as in the scalar case we
obtain, for the joint density distribution function
g(x1, x2, ..., xn, t),

g(x1, x2, ..., xn, t) = P(x1(t) = x1, x2(t) = x2, ..., xn(t) = xn, t)

conditioned to the initial condition state
x1(0) = x01 , x2(0) = x02 , ..., xn(0) = x0n that:

∂g

∂t
+ div(~µg) =

1

2

n∑

i ,j=1

n∑

k=1

σikσjk
∂2g

∂xi∂xj

g(~x , 0) = δ(~x − ~x0),

Fokker–Planck equation in the multidimensional case
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Multidimensional Itō’s lemma and Fokker-Planck equation

Example: The multidimensional Fokker–Planck equation for a
system of uncorrelated SDE’s

dx1 = µ1(~x , t)dt + σ̄1dw1

dx2 = µ2(~x , t)dt + σ̄2dw2

...
...

...

dxn = µn(~x , t)dt + σ̄ndwn

with mutually independent increments of Wiener processes

E(dwi dwj) = 0 for i 6= j , E((dwi )
2) = dt .

The Fokker–Planck equations reads as follows:

∂g

∂t
+ div(~µg) =

1

2

n∑

i=1

∂2

∂x2i

(
σ̄2i g

)

This is a scalar parabolic reaction–diffusion equation for g
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