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Abstrakt

V práci se zabýváme výsledky o koherenci v teorii 2-kategorií. V obecném pojetí
jsou to podmínky, za kterých jsou pseudoalgebry pro danou 2-monádu ekvivalentní
striktním algebrám. Například každá monoidální kategorie je monoidálně ekviva-
lentní striktní monoidální kategorii.

Kromě těchto výsledků o koherenci pseudoalgeber se v práci zaměřujeme i na větu
o koherenci pro laxní algebry, která byla prvně dokázána Stevem Lackem, a uvádíme
její alternativní důkaz. Tato věta zobecňuje výsledky o adjunkci mezi kategorií a její
Kleisliho kategorií pro danou monádu a také tvrzení, že existuje kanonická adjunkce
mezi laxním funktorem a striktním 2-funktorem.

Abstract

The thesis is devoted to coherence results in 2-category theory. In the general
setting, these assert conditions under which are pseudoalgebras for a 2-monad equiv-
alent to strict ones. For example every monoidal category is monoidally equivalent
to a strict monoidal category.

In this thesis we give exposition on such results. We moreover focus on coherence
theorem for lax algebras that has first been proven by Steve Lack and we give a more
conceptual proof of this theorem. This result generalizes results about free-forgetful
adjunction of a category and its Kleisli category for a monad, as well as the fact that
there is a canonical adjunction between a lax functor and a strict one.









Poděkování

Děkuji svým rodičům za podporu během celého mého studia. Děkuji svému
vedoucímu za návrh tématu a za všechny rady, připomínky a návrhy.

Prohlášení

Prohlašuji, že jsem svoji diplomovou práci vypracoval samostatně pod vedením
vedoucího práce s využitím informačních zdrojů, které jsou v práci citovány.

Brno 17. srpna 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miloslav Štěpán





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1. Introduction to 2-category theory . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Language of 2-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Yoneda, limits and colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Internal structures in a 2-category . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 2. 2-monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Monads and their algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Examples of 2-monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 2-categories of algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3. Codescent objects and coherence . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Codescent objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Lax coherence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Examples of lax coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

– xiii –





Introduction

Coherence theorems appear in several places in category theory, the most famous
example being the coherence for monoidal categories that says that every diagram
for a monoidal category built using the defining associativity/unit isomorphisms
commutes.

The modern approach to coherence is to move from category theory to 2-category
theory (where in addition to objects and morphisms we also have ”morphisms be-
tween morphisms” or the 2-cells) and exhibit categorical structures as algebras for
a 2-monad. Although the definition of a 2-monad T is almost the same as that
for ordinary monads, the higher dimension allows us to not just consider ordinary
(strict) T -algebras but now we also have lax T -algebras (pseudo-T -algebras) where
the algebra laws do not hold strictly but only ”up to a 2-cell” (”up to an invertible
2-cell”).

With this weaker notion, we can exhibit non-strict categorical structures (such
monoidal categories, symmetric monoidal categories, pseudofunctors, bicategories) as
pseudo-algebras for a 2-monad, with the strict structures (strict monoidal category,
strict symmetric monoidal category, 2-functor, 2-category) being strict algebras for
the 2-monad. Coherence theorem then says that under certain conditions, every
pseudo-algebra for a 2-monad is equivalent to a strict one.

A canonical way to turn a pseudo-algebra to a strict one is to provide a left
2-adjoint to the inclusion 2-functor of strict algebras into pseudo-algebras:

T-Algs

(−)′

` Ps-T-Alg

It turns out that this 2-adjoint exists if the category of strict algebras admits a
certain kind of 2-categorical colimit called a codescent object. Next, a canonical way
to obtain an equivalence A ' A′ between every pseudoalgebra A and its strictification
A′ is to show that the unit of this 2-adjunction is an equivalence. This happens if
the forgetful 2-functor from the 2-category of strict algebras to the base 2-category
preserves said codescent objects.

The thesis is structured as follows. The first chapter serves as an elementary intro-
duction to 2-category theory. In the second chapter we provide the definitions of a
2-monad and its various notions of algebras and we also prove some of their proper-
ties. In the third chapter, in sections 3.1 and 3.2, we give an exposition on codescent
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objects and their uses in the theory of coherence in 2-category theory. In the sec-
tion 3.3 we prove a lax analogue of the coherence result and develop the underlying
theory a bit further. In the final section 3.4 we apply the results we obtained in the
previous section to the cases of identity 2-monad and lax functor 2-monad.

Proposition 2.1, Theorem 2.2 and Theorem 3.2 are folklore. Theorem 3.14, Theorem
3.2, and the proof of Theorem 3.16 appear to be new.



Chapter 1

Introduction to 2-category theory

In this chapter we provide the very basics necessary to understand the next two
chapters, as well as provide examples of 2-categorical structures one may come across.
Main references used for this chapter are [10], [14],[18]. The third listed provides an
overview of almost all 2-categorical concepts.

1.1 Language of 2-categories

Definition 1. A (strict) 2-category K consists of the following data:

• a class of objects (0-cells) ob K, denoted A,B, . . .

• a class of morphisms (1-cells) K(A,B) for each two objects A,B ∈ K, denoted
f : A→ B, g, h . . .

• a class of 2-cells, i.e. morphisms between 1-cells, denoted α : f ⇒ g, β, γ . . .

such that:

• objects and morphisms form a category K0 with identities 1A : A→ A

• for each A,B ∈ obK the class K(A,B) is a category, objects being 1-cells
f : A → B, morphisms 2-cells α : f ⇒ f ′. The composition of 2-cells in this
category will be referred to as vertical composition and denoted α · β (some
authors may use αβ). Identity 2-cells will be denoted as 1f .

BA

f

h

⇓
⇓
α

β
A B

f

h

⇓β · α=

• There is also a category whose objects are objects of K and a morphism C → D
is a 2-cell α : f ⇒ g (f, g being 1-cells C → D). Composition of morphisms
in this category will be referred to as horizontal composition and denoted βα
(some authors use β ∗α). Identity C → C in this category then must be equal
to 11:C→C defined in the previous step.

– 1 –



2 Chapter 1. Introduction to 2-category theory

• Given a diagram:

BA
⇓
⇓
α

β
C

⇓γ

⇓ δ

The order in which we compose doesn’t matter, i.e. the middle-four interchange
law holds:

(δ · γ)(β · α) = (δβ) · (γα)

Definition 2. Given a 2-category K, there are 2-categories Kop - where we re-
verse the direction of all 1-cells, and Kco where all 2-cells are reversed. Thus
K(A,B) = Kop(B,A) and Kco(A,B) = K(A,B)op. Reversing 1-cells and 2-cells,
we get Kcoop = Kopco.

The notation K0 is used to denote the underlying 1-category, which has the same
objects and 1-cells as K, but we ignore the 2-cells.

Remark 1 (Pasting diagrams). By whiskering of a 2-cell α : h1 ⇒ h2 : B → C with
1-cells f : A → B, g : C → D, denoted gαf , is meant a horizontal composition
(1g)α(1f ). A horizontal composition of general 2-cells can be then defined using
whiskering.

Given any directed planar graph with a source and a sink (”all paths start in
the source and end in the sink”), we may label its vertices, edges and interior faces
with objects, 1-cells and 2-cells of a 2-category K (all 2-cells have to go in the same
direction), this is roughly what a pasting diagram is.
For example consider a diagram like this:

• • •

• • •

•

⇓ α

⇓ β
⇓ γ

⇓ δ

Using whiskering, it is simple to find out what the composition of these 2-cells should
be. Like in this picture, there are usually more choices for the order in which to
compose the 2-cells. What is important though is the fact that no matter the choice
of the order, the final composition always ends up being the same. This is referred
to as a pasting theorem. Its formulation and proof has not been made precise until
the 90’s in the short paper [28], which uses induction and basic graph theory.

The category of all small categories, denoted Cat, is symmetric monoidal cartesian
closed, the hom object [C,D] is the functor category. A strict 2-category (with
small hom categories) is then precisely a Cat-category, and many 2-categorical con-
cepts such as 2-functors, 2-natural transformations, 2-adjoints, 2-categorical Yoneda
lemma, 2-monadicity theorem can be obtained from enriched category theory by
setting V = Cat.
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Example 1. A fundamental example is the 2-category Cat with small categories,
functors and natural transformations being objects, 1-cells and 2-cells respectively.
As a symmetric monoidal closed category, there is a canonical structure of a Cat-
category (or 2-category) on Cat. The vertical composition of two natural transfor-
mations α : F ⇒ G, β : G ⇒ H is just composition of their components, while the
component of horizontal transformation of

C D E

F1 F2

G1 G2

⇓γ ⇓ δ

is a transformation δγ : F2F1 ⇒ G2G1 whose component at c ∈ C is defined as either
leg of this commutative square:

F2F1c G2F1c

F2G1c G2G1c

δF1c

F2γc G2γc

δG1c

It comes from the internal composition morphism M : [B, C]× [A,B]→ [A, C].

Generally speaking, Cat has the same relationship to 2-category theory as Set has
to ordinary category theory. Representable 2-functors will be Cat valued, the 2-
categorical Yoneda lemma provides an isomorphism of categories (and not just sets),
Cat is 2-categorically complete just as Set is complete, and so on . . .

Example 2. There is a 2-category of small categories, functors and natural iso-
morphisms, denoted Catg.

Example 3. Any category is trivially a 2-category whose only 2-cells are identities
on each morphism (we say that it’s locally discrete).

Example 4. Given a general monoidal category V , there is a 2-category V-Cat
of small V-categories, V-functors and V-natural transformations. Special case is of
course V = Cat, in which we obtain the 2-category 2-Cat of locally small 2-categories,
2-functors, 2-natural transformations.

Example 5. A class of categories with finite products, product preserving functors
and natural transformations form a 2-category. Same goes for any other (classes) of
limits or colimits.

Example 6. Given a category E with pullbacks, we have a notion of a category
internal to E as well as the notions of internal functors and internal natural trans-
formations. These form a 2-category Cat(E). For the definitions and properties of
internal categories see [3][Section 2.5] for example.
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An internal category to Cat is precisely a double category (see [10] for the notion),
an internal category to Set is a small category. An internal category to Vect is what’s
called a Baez–Crans 2-vector space.

Example 7. A monoidal category V = (V0,⊗, I, a, l, r) consists of a category V0
together with an object I ∈ V0 and natural isomorphisms

aXY Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

l : (I ⊗−)⇒ 1V0
r : (−⊗ I)⇒ 1V0

subject to two coherence axioms, see [15]. If all of the a, l, r are identities, we call
the structure a strict monoidal category. A lax monoidal functor (V ,⊗) → (V ′,⊗′)
between monoidal categories is a functor F : V0 → V ′0 together with a morphism
F 0 : I → FI and a natural transformation

FA,B : FA⊗ FB → F (A⊗B)

that is subject to two further coherence axioms. If F 0 is an isomorphism and F
is a natural isomorphism, we call such functor just a monoidal functor. If they’re
identities (so that we have F (A ⊗ B) = FA ⊗ FB and FI = I), it’s called a strict
monoidal functor. The same story goes with transformation of lax monoidal functors
(a monoidal natural transformation). It is a natural transformation α between un-
derlying functors that further satisfies certain compatibility conditions with F and
F 0
1.
All of these form objects, morphisms and 2-cells for various 2-categories. In

particular we have 2-categories MonCat (of monoidal categories, monoidal func-
tors, monoidal natural transformations) and StrMonCat (of strict monoidal cate-
gories, strict monoidal functors and monoidal natural transformations). Coherence
results then tell us that every monoidal category is monoidally equivalent to a strict
monoidal category. We will see this in the third chapter.

Example 8. A multicategory M consists of a class of objects (denoted X, Y, Z . . . ),
class of morphisms (denoted f : (X1, . . . , Xn) → Y ), each of which has a domain
consisting of a finite sequence of objects in M . There is identity morphisms for
each object and a composition operation that is subject to associativity and
unit axioms. A morphism of multicategories maps objects to objects and arrows to
arrows, preserving units and compositions. There is also a notion of a transformation
of morphisms, which is like a natural transformation but it is ”multilinear” in a sense.
These form a 2-category Multicat. See [6] for the notions.

Example 9. The collection Top of topological spaces, continuous functions and
homotopies of continuous maps does not form a 2-category because composition of
homotopies as 2-cells is not associative. It is however associative up to homotopy
equivalence of homotopies, so if we instead consider 2-cells as equivalence classes of
this equivalence, we get a 2-category. Note that all 2-cells are then invertible.

1We will see what all these conditions are in greater generality in the next chapter.
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A 2-category K is locally preordered if between each two morphisms f, g : A → B
there is at most one 2-cell, which is denoted as f v g (this means that each hom
category is preordered). Horizontal composition of 2-cells gives us that if f v g and
f ′ v g′, then ff ′ v gg′ (if those 1-cells are composable). If Ord denotes the category
of preorders, K is equally an Ord enriched category.

Example 10. There is a locally preordered2 2-category Rel whose objects are sets,
a morphism f : X → Y is a relation from X to Y (i.e. a subset R ⊆ X × Y ). A
2-cell R v R′ between relations from X to Y exists if and only if R ⊆ R′.

Definition 3. Let K, L be 2-categories. A 2-functor F : K → L is given by:

• a functor F0 : K0 → L0 on the underlying categories

• a family of functors for each pair of objects A,B :

FA,B : K(A,B)→ K(FA, FB) (1.1)

(f : A→ B) 7→ (Ff : F0A→ F0B) (1.2)

such that the conditions F (1f ) = 1Ff and F (αβ) = FαFβ are satisfied for all
morphisms and suitable 2-cells.

Example 11. A 2-functor F : K → L between locally preordered 2-categories is
an ordinary functor that also respects the partial order on each hom category, i.e.
f v g implies Ff v Fg.

Example 12. Given a locally small 2-category K, there is a pair of representable
2-functors K(A,−) : K → Cat, K(−, A) : Kop → Cat. A good (and easy) exercise is
to think about how they’re defined.

Definition 4. Let F,G : C → D be 2-functors and let α : F → G be a natural
transformation of the underlying 1-functors. We say that it’s 2-natural if for any
2-cell δ : f ⇒ g the following meta-diagram commutes; i.e. αBFδ = GδαA:

GBGA

FBFA

αBαA

⇓

⇓

Fδ

Gδ

Ff

Gf

Fg

Gg

Just as the class of functors [C,D] (for ordinary categories C,D) has the structure of
a category, the class of 2-functors between 2-categories K,L will have a structure of
a 2-category. We need a notion of a morphism between 2-natural transformations,
and this is precisely what a modification is.

2Its hom-categories are actually posets so we may call it being locally posetal.
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Definition 5. Given 2-natural transformations α, β between 2-functors F,G between
2-categories K,L, a modification between them, denoted ρ : α→ β,

K L⇓ ⇓α β
ρ

F

G

is a collection of 2-cells ρA : αA ⇒ βA (in L) for each object A in K, such that the
following meta-diagram commutes for all f : A→ B, i.e. GfρA = ρBFf :

GBFB

GAFA

GfFf

⇓

⇓

ρA

ρB

αA

αB

βA

βB

Example 13. If K,L are locally preordered, every two pasting diagrams with the
same domain and codomain are the same, so the 2-natural transformation α is just
an ordinary natural transformation. An existence of a modification

ρ : α→ β : F ⇒ G : K → L

reduces down to the assertion that for all objects A in K, we have

αA v βA.

We can do horizontal and vertical compositions of modifications, we can also whisker
them with natural transformations from both sides (as well as whiskering them with
2-functors) in an obvious way. The next definition thus makes sense.

Definition 6. Given two 2-categories K,L, denote by [K,L] the 2-category of 2-
functors, 2-natural transformations and modifications.

Remark 2. 2-Cat is again cartesian closed symmetric monoidal category and thus
has a canonical structure of a 2-Cat-category, or a (strict) 3-category.

Example 14. The 2-category [1,K] for a 2-category K is isomorphic to K.

Definition 7. Given a pair of 2-functors between 2-categories F : K → L,
G : L → K, we say that F is left 2-adjoint to G, denoted F a G, if there is an
isomorphism

L(FA,B) ∼= K(A,GB)

that is 2-natural in A,B.
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Remark 3. The 2-adjunction can be expressed in many equivalent ways, analogous to
the 1-dimensional case. See the beginning of [5] for the general, V-enriched setting.
For example the adjunction F a U between 2-functors may be specified by two
2-natural transformations ε : FU ⇒ 1, η : 1⇒ UF satisfying the triangle identities.

A 2-adjunction can be weakened to the notion of a pseudoadjunction if we only
require that ε, η are pseudonatural and moreover satisfy the triangle laws only up
to certain invertible modifications. See [22, Definition 1.1]. By Yoneda lemma for
bicategories, this can be equally expressed as an equivalence of hom categories:

L(FA,B) ' K(A,GB),

that is pseudonatural in each A,B.

Example 15. There is a trivial 2-adjunction:

2-Cat Cat

(−)0

F∗

`

(1.3)

in which A0 for a 2-category A is its underlying category, and F∗C regards a category
C as a 2-category that only has identity 2-cells3.

Definition 8. We say that 2-categories K,L are 2-equivalent if we have 2-functors
F : K → L and G : L → K and 2-natural isomorphisms η : 1 ∼= GF , ε : FG ∼= 14.

Utilizing the existence of 2-cells in a 2-category, many notions can be weakened.
Take the definition of a 2-functor for example. We could assume that F (fg) is not
equal to Ff ·Fg, but rather there is an isomorphism or just a 2-cell FfFg ⇒ F (fg)
as well as a 2-cell 1FA ⇒ F (1A) that satisfy certain coherence axioms. We would
obtain the notions of a pseudofunctor or a lax functor (see [1][Chapter 4]). One
natural example of a pseudofunctor is:

Example 16. Fix a class Φ of small diagrams. Given a small category A, its free
completion under Φ-shaped colimits, denoted ΦA, can be realized as the closure under
Φ-colimits of its image in the Yoneda embedding A ↪−→ [Aop, Set]. This provides us
with a pseudofunctor:

Φ : Cat→ Φ-Cat

given by left Kan extensions. The 2-category on the right hand side consists of small
Φ-cocomplete categories, Φ-colimit preserving functors and natural transformations.
It can be shown that this pseudofunctor is pseudoadjoint to the inclusion 2-functor
Φ-Cat ↪−→ Cat.
3If we have a monoidal category V with good properties (in particular if it has coproducts), this

example is easily generalized to a 2-adjunction between V-Cat and Cat, see [15, 2.5].
4Any 2-equivalence can be promoted to 2-adjoint 2-equivalence in an obvious way.
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Weakening the notion of a 2-natural transformation, we get:

Definition 9. Given two 2-functors F,G : C → D, a lax natural transformation
α : F ⇒ G consists of:

• a 1-cell αA : FA→ GA for each object A,

• a 2-cell αf for each f : A→ B:

FA GA

FB GB

αA

Ff Gf

αB

⇓αf

satisfying:

• (Unity): α1A = 1αA

• (Composition): for any pair of composable morphisms f, g, we have:

FA GA

FB GB

αA

Ff Gf

αB

⇓αf

FC GC

Fg

αC

Gg⇓αg

=

FA GA

FC GC

αA

F (gf) G(gf)

αC

⇓αgf

• (Naturality): Collection α := (αf )f forms a 1-natural transformation between
1-functors D(αA, 1)◦GAB ⇒ D(1, αB)◦FAB : C(A,B)→ D(FA,GB), meaning
that the following commutes5:

FA GA

FB GB

=

FA GA

FB GB

αA

Ff Gf

αB

αA

Fg Gg

αB

Fg Gf⇓⇓ ⇓ ⇓
Fδ

αf αg
Gδ

(1.4)
5Note that if α is a 2-natural transformation, i.e. αf ’s are identities, then the equation 1.4 is

exactly the 2-naturality condition.
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We say that the lax transformation is pseudonatural if αf is invertible for all mor-
phisms f . Reversing the direction of all 2-cells, we get an oplax natural transfor-
mation. There is an obvious way of (vertical) composition of those weak natural
transformations. We thus have:

Definition 10. Denote Lax[K,L] the 2-category of 2-functors, lax natural transfor-
mations and modifications. Denote Psd[K,L] the 2-category of 2-functors, pseudo-
natural transformations and modifications.

An appropriate weak version of 2-adjunction and 2-equivalence are following:

Definition 11. We say that a pseudofunctor F : K → L is a biequivalence if each
hom functor FA,B : K(A,B) → L(FA, FB) is an equivalence of categories and
moreover F is ”biessentially surjective” on objects, meaning that for any C ∈ L
there exists K ∈ K such that FK ' C.

Example 17. (Gabriel-Ulmer duality) Denote by

• Lex the 2-category of small finitely complete categories, finite limit preserving
functors and natural transformations, and

• LFP the 2-category of locally finitely presentable categories, finitary right
adjoint functors and natural transformations

Gabriel-Ulmer duality then states that there is a biequivalence:

Lexop LFP

Lex(−, Set)

'

We can weaken the notion of a 2-category itself as well. A bicategory has again ob-
jects, 1-cells and 2-cells. The 2-cells again have vertical and horizontal composition,
but the composition of 1-cells is associative and unital only up to an isomorphism,
i.e. there are isomorphism 2-cells:

ahgf : (hg)f ∼= h(gf)

rf : f · 1A ∼= f

lf : 1B · f ∼= f

that are natural in f : A → B and are further required to satisfy certain coherence
axioms (see [1]). Where 2-category theory has isomorphisms, bicategory theory will
have equivalences. For example bicategorical Yoneda lemma gives a pseudonatural
equivalence of categories and bicategorical limit is defined only up to a pseudonatural
equivalence. A morphism of bicategories (also referred to as a homomorphism) is
a variant of either a pseudofunctor or a lax functor, similarly with lax and oplax
natural transformations. We can define a biadjunction as well as a biequivalence
between pseudofunctors in a similar way as above.
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Example 18. Given a category E with pullbacks, there is a bicategory Spn(E) whose
objects are objects from E . A morphism X → Y is a span X ← Z → Y . A 2-cell
between spans X ← Z → Y and X ← Z ′ → Y is a morphism Z → Z ′ commuting
with the legs of the span:

Z

X Y

Z ′

Vertical and horizontal composition can be easily defined using pullbacks.

Example 19. Given a monoidal category (V ,⊗, a, l, r, I), define its suspension
∑
V

as a bicategory with a single object. A 1-cell x is an object of V , a composition
of 1-cells x, y being x ⊗ y. A 2-cell x ⇒ y is a morphism x → y in V . A vertical
composition of 2-cells is ordinary composition of morphisms in V . A horizontal
composition of 2-cells x → y and x′ → y′ is the tensor product of those morphisms
x⊗ x′ → y ⊗ y′ in V .

Remark 4. Small bicategories, their homomorphisms and (op)lax natural transfor-
mations do not form a 2-category due to several obstructions. They do however
form a 2-category once we use icons as 2-cells. The notion was introduced in the
paper [19] and has since served as a useful tool to study bicategories using 2-category
theory.

This 2-cell between homomorphisms F,G : A → B of bicategories is defined only
when FA = GA for all objects A ∈ A, and is defined to be collection of natural
transformations FA,B ⇒ GA,B : A(A,B) → B(FA, FB) for each tuple of objects in
A that satisfies two further axioms. The resulting 2-category, denoted Bicat2 in the
paper, has a number of interesting properties. For example:

• There is a full embedding MonCat ↪−→ Bicat2,

• Bicat2 is biequivalent to Cat2 - the 2-category of (small) 2-categories, pseudo-
functors and icons,

• It is the 2-category of algebras for some 2-monad T on the 2-category of Cat-
graphs.

See [19]: Theorem 4.1, Theorem 4.4, Section 6.2.

1.2 Yoneda, limits and colimits

Given a 2-category K and an object A, we have a pair of representable 2-functors
K(A,−),K(−, A) that are now valued in the 2-category Cat.

Theorem 1.1 (Yoneda lemma for 2-categories). Let K be a 2-category. Let A ∈ K be
an object and F : K → Cat a 2-functor. Then there is an isomorphism of categories:

[K,Cat ](K(A,−), F ) ∼= F (A) (1.5)
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Sketch of a proof. 2-natural transformation α : K(A,−) ⇒ F will be again sent to
an object αA(1A) ∈ F (A). Considering a modification ρ : α → β, its component at
A ∈ K is a natural transformation ρA between functors αA and βA : K(A,A)→ F (A).
This modification will ρ will then be sent to its component at 1A;

(ρA)1A : αA(1A)→ βA(1A)

On the other hand, any object x ∈ FA induces a 2-natural transformation β, whose
component at B is defined as:

βB(f) = Ff(x)

βB(δ : f ⇒ g) = (Fδ)x

Remark 5. The isomorphism in the Yoneda lemma can further be proven to be 2-
natural in objects A and 2-functors F , similar to the 1-categorical situation described
in [29][Theorem 2.2.4, Remark 2.2.7.]. This fact (as well as the Yoneda lemma) is
really true in enriched category theory (see [15, 2.4]).

Remark 6. We have two 2-functors y : A 7→ K(A,−), y : A 7→ K(−, A) that are
called Yoneda embeddings. They can be proven to be fully faithful, i.e. inducing
isomorphism on hom categories.

Definition 12. Let K be a 2-category and F : P → K,W : P → Cat be 2-functors.
The limit of F weighted by W is an object {F,W} ∈ K together with an isomorphism
of categories for each B:

ΦB : K(B, {F,W}) ∼= [P ,Cat](W,K(B,F−))

that is furthermore 2-natural in B ∈ K. In other words, it induces a 2-natural
isomorphism in [Kop,Cat]:

Φ : K(−, {F,W}) ∼= [P ,Cat](W,K(−, F?)) (1.6)

Remark 7. By the Yoneda lemma, this 2-natural transformation Φ is fully determined
by a certain 2-natural transformation η : W ⇒ K({F,W}, F−) (which we call a limit
cone). The fact that each ΦB is bijection on objects and fully faithful means that
η satisfies one-dimensional and two-dimensional universal properties respectively:

• (One-dimensional universal property): Given any 2-natural transformation
γ : W ⇒ K(B,F−), there is a unique 1-cell θ : B → {F,W} such that
K(θ, F−) · η = γ.

• (Two-dimensional universal property): Given any modification

ρ : K(θ, F−) · η → K(θ′, F−) · η,

there is a unique 2-cell θ such that6

K(θ, F−)η = ρ.

6Note that K(θ, F−) is a modification that is being whiskered by η.
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Remark 8. Given a product (or any other limit) A×B of A,B in a 1-category C, in
order to show that two maps f, g : C → A×B are equal, according to the universal
property of products it is enough to show that their post composition with product
projections pif, pig are equal.

The same thing works for 2-categorical limits but in addition we can do this for
2-cells as well. For example in order to show that 2-cells

γ, δ : θ ⇒ θ′ : A→ {W,F}

are equal, it is enough to show that their whiskers with η are equal:

K(γ, F−)η = K(δ, F−)η

Remark 9. One-dimensional universal property guarantees that the object {F,W}
is unique up to an isomorphism, again by the Yoneda lemma.

Remark 10. When W : P → Cat is constant functor at 1, we call the limit {W,F}
conical. It is denoted as limF . In ordinary category theory, the notion of weighted
limit can be reduced to that of ordinary (conical) limit (see [15, 3.4]). This is not
possible in 2-category theory (or in general in V-category theory), see [15][Section
3.9]. In the 2-category theory at least, conical limits are not expressive enough for
most purposes.

Remark 11. If the 2-category K has all limits for a particular weight W , this may
equally be seen as a 2-adjunction:

[P ,Cat] Kop

K(∼, F−)

{−,W}

`

w ith unit of the 2-adjunction being again η and {−,W} being a 2-functor defined
in an obvious way.

Definition 13. A colimit of F : Pop → K weighted by W : P → Cat, denoted F ∗W ,
is a limit of F op in Kop weighted by W . Namely, there is a 2-natural isomorphism:

K(F ∗W,−) ∼= [P ,Cat](W,K(F?,−)) (1.7)

Remark 12. If P , F , W are simple enough, one can usually simplify the definition of
a given (co)limit and state it in more elementary terms. We now introduce several
examples of 2-categorical (co)limits and will mention their simplified form only.

Definition 14. A coinserter of a pair of parallel morphisms is a colimit of a 2-functor
F weighted by W , both given as:
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A B

f

g

1 2

• •

1

0
7→

7→

W

F

A colimit cone is a universal 2-cell:

B

A C

B

f h

g h

⇓h

Meaning that:

• (One-dim. UP) Given any other cocone δ : sf ⇒ sg : B → D, there is a
unique 1-cell θ : C → D such that θh = s, θh = δ.

B

A C

B

f h

g h

⇓h

B

A D

B

f s

g s

D
∃!θ

=⇓ δ

• (Two-dim. UP) Given a 2-cell ρ : θh⇒ θ′h satisfying:

A

B

C

D

C

B

f

h θ

g h

θh

⇓

⇓

=

A

B

C

D

C

B

f h

θ
g

h θ

h

⇓

⇓h

ρ h

ρ

Then there is a unique 2-cell θ : θ → θ′ such that θh = ρ.

Definition 15. A coequifier of two 2-cells α, β is a colimit of functor F weighted by
W , both given by:
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A B⇓ ⇓α β

f

g

• •

7→

7→

W

F

⇓ ⇓

1 2⇓!

It is a universal arrow c such that cα = cβ. See [3, After Example 2.6]

Definition 16. A lax limit of an arrow f : B → D is a limit of a functor F weighted
by W , both defined as:

• •

7→ 1 2 = {0→ 1}

B D

0

f
7→

W

F

It is a universal a 2-cell:

{F,W}

B D

u

f

v⇒λ

Meaning that:

• (One-dim. UP): Given any 2-cell δu′f ⇒ v′, there is a unique 1-cell
θ : X → {F,W} such that uθ = u′, vθ = v′ and λθ = δ.

{F,W}

B D

u

f

v⇒λ

X

B D

u′

f

v′

X

∃!θ

⇒δ =

• (Two-dim. UP): Given a tuple of 2-cells (ρ1 : uθ ⇒ uθ′, ρ2 : vθ ⇒ vθ′)
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satisfying7:

{F,W}

B D

u

f

v⇒λ

X

θ′

{F,W}

B D

u

f

v

X

θ

⇒ ⇒
uθ vθ′

=

ρ1 ρ2

λ⇒

(1.8)

There is a unique 2-cell θ : θ ⇒ θ′ such that:

uθ = ρ1

vθ = ρ2

Remark 13. Pseudo limits and lax limits (denoted {F,W}p, {F,W}l) in [14]) are
defined as in 1.7, except [P ,Cat] is replaced by Psd[P ,Cat] and Lax[P ,Cat] respec-
tively. Note that in these cases η will be pseudo-natural transformation or just lax
natural. It is true that if a 2-category admits products, inserters, equifiers, then it
admits all lax and pseudo limits ([14][Proposition 5.2]).

Also note that these definitions can be further generalized. We can define lax
natural transformations between lax functors as well and we can thus obtain a lax
limit of a lax functor.

Remark 14. Any lax or pseudo limit of a (lax) functor F can be reduced to an
ordinary 2-limit of a (strict) 2-functor F ′ for a certain F ′. See Theorem 3.6.

Remark 15. We can also generalize the notion in a different way. A bilimit of F
weighted by W , denoted {F,W}b, is defined the same as limit, except the isomor-
phism 1.7 in [Kop,Cat] is replaced by an equivalence in Psd[Kop,Cat]:

Φ : K(−, {F,W}b) ' Psd[P ,Cat](W,K(−, F?)).

This means that Φ is a pseudonatural transformation for which there is pseudonat-
ural transformation Ψ : Psd[P ,Cat](W,K(−, F?)) → K(−, {F,W}b) and invertible
modifications ρ1 : ΦΨ → 1, ρ2 : ΨΦ → 1. This is a special case of a limit in
bicategories.

Definition 17. A 2-category is complete when it admits all limits for any weight
W : P → Cat where P is small. 2-category K is cocomplete if Kop is complete.

Considering the 2-category Cat, plugging in A = 1 into the limit equation sug-
gests that the objects of a limit category {F,W} might be natural transformations
W ⇒ F . And really:

Theorem 1.2. Cat is complete. Any limit weighted by W : P → Cat, where P is
small can be calculated as {F,W} = [P ,Cat](W,F ).
7This diagram says that this tuple is modification of cones λθ → λθ′.
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Sketch of a proof. We need to find a 2-natural transformation with components (for
P ∈ P) being functors:

WP → Cat([P ,Cat](W,F ), FP ).

It can be shown that
(x ∈ Wa) 7→ (α 7→ αa(x))

is 2-natural and satisfies both universal properties.

Thus, analogous to the one-dimensional case ([29, Theorem 3.4.2]), we obtain for
a 2-category K an isomorphism that expresses the representable nature of 2-
categorical limits:

K(A, {W,F}) ∼= {W,K(A,F−)} (1.9)

Definition 18. We say that a 2-functor H : K → L preserves limits weighted by
W : P → Cat if, given a limit {F,W} of F : P → K with a limit cone η, the induced
cone:

Hη := H{F,W},F− · η : W ⇒ L(H{F,W}, HF−)

exhibits H{F,W} as the limit for the 2-functor HF : P → L weighted by W .

Example 20. From the isomorphism 1.9 it follows that representable 2-functors
K(A,−) preserve limits.

Remark 16. It is easy to think of what the notion of a (strict) creation of a limit
should be. It’s also true that 2-categorical limits and colimits in the 2-category [K,L]
are calculated pointwise (i.e. each evaluation 2-functor eva : [K,L] → L creates
limits), giving us in particular that L complete implies that [K,L] is complete. We
also have that left 2-adjoints preserve colimits and its dual as well.

1.3 Internal structures in a 2-category

2-categories have rich enough structure to allow us to define a lot of 1-categorical
things in them. For example we can develop the theory of internal monads as well
as internal categories. Let us work in an ambient 2-category K in this section.

Definition 19. We say that a 1-cell f : B → A is a left adjoint to a 1-cell g : A→ B
in K, written f a g, if there are two 2-cells ε : fg ⇒ 1A, η : 1⇒ gf (counit and unit
of the adjunction) satisfying the two triangle identities :

gε · ηg = 1f (1.10)

εf · fη = 1g (1.11)

The objects A,B are said to be equivalent, denoted A ' B, if ε, η are invertible.
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Remark 17. Any internal adjunction (ε, η) : f a u : A → B in a 2-category K gives
rise to an adjunction in Cat once we apply a 2-functor K(C,−) to it (as 2-functors
preserve 1-cell and 2-cell compositions). This results in an adjunction

K(C, f) a K(C, u) : K(C,A)→ K(C,B)

which provides us with a representable definition of an internal adjunction via the
isomorphism of hom sets of hom categories

K(C,A)(fy, y′) ∼= K(C,B)(y, uy′)

given by α 7→ uα · ηy.

Remark 18. Analogous to ordinary category theory, adjunctions may be composed
and an adjoint is unique up to an invertible 2-cell.

We say that a morphism f : A → B in a 2-category is fully faithful if K(X, f) is a
fully faithful functor for all X. In ordinary category theory it is a well known fact
that if the unit of the adjunction is an isomorphism, the left adjoint is fully faithful.
From the above remark we thus deduce:

Lemma 1.3. Let K be a 2-category and let (ε, η) : f a g be an internal adjunction.
If η is an invertible 2-cell, f is fully faithful.

The following fact will also be useful:

Lemma 1.4. Let K be a locally small 2-category and let α : K(A,−)⇒ K(A′,−) be
a left 2-adjoint to β : K(A′,−) ⇒ K(A,−) in [K,Cat] (i.e. there are modifications
ρ : 1K(A,−) → βα, Ψ : αβ → 1K(A′,−) satisfying triangle identities). Then this
2-adjunction is determined by a unique internal adjunction of A,A′ in K.

Proof. This follows directly from Yoneda lemma, the adjoint 1-cells are given by

A A′

q := αA(1A)

e := βA′(1A′)

`

and unit and counit 2-cells are given by (ρA)1A : 1⇒ qe and (ΨA′)1A′ : eq ⇒ 1.

Remark 19. The Lemma demonstrates that there really is an another dimension
in the 2-categorical Yoneda lemma. By the same arguments, an equivalence of 2-
functors K(A′,−) ' K(A,−) is given by an equivalence A′ ' A in K.

Lemma 1.5. Assume we have two adjunctions u ` f : B → A, u′ ` f ′ : B′ → A′

with units η, η′ and counits ε, ε′. Given 1-cells a : A → A′, b : B → B′, there’s a
bijection between 2-cells

µ : f ′b⇒ af

and 2-cells
λ : bu⇒ u′a

given by:
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B B′

A A′

b

f f ′

a

⇓ 7→

B B′

A A′A

B′
b 1B′

u f f ′ u′

1A a

⇓
⇓

⇓
µ

ε
µ

η′

With the inverse given by whiskering with η from the left side and with ε′ from the
right side.

Definition 20. The 2-cells above λ, µ are said to be mates under the adjunction.

Definition 21. An (internal) monad in a 2-category K, denoted (B, t) or (B, t, µ, η),
consists of a 1-cell t : B → B together with two 2-cells µ : t·t⇒ t, η : 1⇒ t satisfying:

µ · µt = µ · tµ (1.12)

µ · ηt = µ · tη = 1t (1.13)

Remark 20. As in ordinary category theory, any adjunction (ε, η) : f a u : A → B
induces a monad on B, namely (uf : B → B, uεf, η).

Example 21. Monad in Cat is just an ordinary monad. Monad in 2-Cat is a (strict)
2-monad; we will study them in the next chapter in greater detail.

Example 22. A monad in the bicategory Spn(E) of spans (see Example 18) is an
internal category in E . In particular for E = Set we obtain small ategories as internal
monads.

Example 23. Consider a free monoid (1-)monad T on Set. There is a bicategory
SpnT (Set) of spans in Set of the form TX ← Z → Y . A monad in this bicategory is
precisely a multicategory.

Example 24. Given a monoidal category V , a monad in the bicategory
∑
V (see

Example 19) is precisely a monoid in V .

Example 25. A monad in the 2-category OpMon of monoidal categories, op-
monoidal functors and opmonoidal transformation is what is called an opmonoidal
monad or a Hopf monad in [25]. They have a number of pretty properties, one that
is easily seen is that if S is a Hopf monad on a monoidal category (V ,⊗), the tensor
product ⊗ lifts up to the category S-Alg of S-algebras for this monad.

Remark 21. Given any 2-category K, the hom category K(B,B) has the structure of
a strict monoidal category where the functor ⊗ : K(B,B)×K(B,B)→ K(B,B) is a
horizontal composition of 2-cells and the unit object I is the identity on B. Monoid
in K is then just a monad in this monoidal category, generalizing the well known
joke about monads in Cat.
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Definition 22. Let K be a 2-category and (B, t, µ, η) a monad. Given A ∈ K, define
the category of t-algebras Alg(t, A) as follows: The objects are t-algebras, i.e. tuples
(s : A→ B, ν : ts⇒ s) satisfying:

ν · ηs = 1s, (1.14)

ν · µs = ν · tν, (1.15)

and morphisms (s, ν)→ (s′, ν ′) is a 2-cell σ : s⇒ s′ satisfying:

ν ′ · tσ = σ · ν
Theorem 1.6. Given a monad t : B → B, there is an adjunction

K(A,B) Alg(t, B)

U

F

`

(1.16)

where U is the forgetful functor (s : B → A, ν) 7→ s and F sends a 1-cell r to the
free t-algebra on r, i.e. Fr = (tr, µr).

Remark 22. All of this is a generalization of the classical notion of a category of
T -algebras for a monad T : C → C. We obtain the classical notion if K = Cat and
B = 1.

Another approach is to study the collection of all monads in a 2-category K, this
was done in the paper [31]. Let’s sketch some of the ideas from that paper that will
be relevant later.

Definition 23. Given monads (s : A → A, µ, η), (t : B → B, µt, ηt), a monad
functor (f, f) : s→ t consists of 1-cell f : A→ B and a 2-cell f : tf ⇒ fs satisfying:

B B

A B B

A A

b

f 1 t

t
1 f f

s

=

B B

A A B

A A

t

f f t
s

1 s f

s

⇓

⇓

⇓

⇓
⇓

µt

f

Tf

f

µ

(1.17)

and8:
B

A B B

A A

f 1

t
1 f f

s

=

B

A B

A A

f

1 f

s

⇓

⇓ ⇓

η

f η

1

1

1

(1.18)
8You will see why those diagrams are shaped in this particular way in the next chapter.
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Definition 24. A monad functor transformation ρ : (f, f)⇒ (g, g) between monad
functors is a 2-cell in K satisfying:

A B A B

A B A B

f

s t s t

g

⇓ ρ

⇓g

⇓f

⇓ρ

f

g
f

g

=

(1.19)

It is not hard to verify that monads, monad functors and monad functor transfor-
mations form a 2-category. Morphism composition is given by composing the 1-cell
components and placing 2-cell components next to each other. Horizontal and ver-
tical composition of 2-cells is inherited from K.

Definition 25. Denote mnd(K) the 2-category of monads, monad functors and
monad functor transformations in K.

The next theorem follows straight from the definitions:

Theorem 1.7. There is a 2-adjunction:

K mnd(K)

UndK

IncK

`

(1.20)

where UndK is the forgetful 2-functor:

UndK : (σ : (u, ψ)⇒ (u′, ψ′)) 7→ (σ : u⇒ u′ : A→ B)

and IncK sending an object to identity monad on that object:

IncK : (δ : f ⇒ g : A→ B) 7→ (δ : (f, 1)⇒ (g, 1) : (A, 1)→ (B, 1))

Definition 26. Let K be a 2-category. We say that it admits the construction of
algebras when the inclusion 2-functor IncK has a right 2-adjoint. In other words, for
any objects B ∈ K there is an object Bt and an isomorphism (2-natural in A):

K(A,Bt) ∼= mnd(K)((A, 1), (B, t)).

We call Bt the Eilenberg-Moore (EM) object. We also say K admits Kleisli objects
if Kop admits the construction of algebras and we refer to the EM-object in Kop as a
Kleisli object in K and denote it Bt.
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Remark 23. A lax functor 1→ K is precisely a monad in K. It can be verified that
the lax limit of this lax functor is then exactly the EM-object of this monad. As a
lax limit, it can equally be seen as a limit of (strict) 2-functor, and this 2-functor is
explicitly described in [18, 8.4].

EM-objects and Kleisli objects are particularly pretty in the case of Cat and Catop

(see [31][Theorem 7 and 13]):

Theorem 1.8. Cat admits the construction of algebras. Given a monad T : C → C
on a category C, CT equals to the Eilenberg-moore category of T-algebras.

Theorem 1.9. Catop admits the construction of algebras. Given a monad T in Catop

(which is the same as monad on Cat), the category CT is equal to the Kleisli category.

Remark 24. Because K(A,−) is a 2-functor, any monad t in K induces a monad
K(A, t) in Cat for any object A ∈ K. If 2-category K admits the construction of
algebras, we moreover have a following 2-natural isomorphism:

K(Y,X t) ∼= K(Y,X)K(Y,t)

It’s easy to see directly, but it can also be derived from the fact that EM-object is a
certain limit and representable 2-functors preserve limits.

Remark 25. It is known that if a 2-category admits inserters and equifiers, it admits
construction of algebras. We will obtain this result in the last section of the third
chapter.

Remark 26. It can further be proven that an internal adjunction f a u : D → B
is (internally) monadic (meaning in particular there is an internal equivalence of D
and Buf ) if and only if K(C, f) a K(C, u) is monadic for all C. See [31, Corollary
8.1].





Chapter 2

2-monads

Our notion of a 2-monad will be strict, so the axioms are analogous to those of
1-category theory. In the higher dimension however, we do not have just one kind
of algebra for a 2-monad, but multiple ones. There are the strict algebras with the
usual algebra axioms, but we now also have a weaker notions of a pseudoalgebra and
a lax algebra, where the axioms only hold up to an invertible 2-cell or just a 2-cell.

Throughout the section, basic familiarity with monads in ordinary category the-
ory (at least in the scope of [29][Chapter 5]) is welcome.

2.1 Monads and their algebras

Definition 27. Let T be an endo-2-functor on a 2-category K and let m : T 2 ⇒ T ,
i : 1⇒ T be 2-natural transformations. We say that the triple (T, µ, η) is a 2-monad
(also called a doctrine in older papers) if the following diagrams commute1:

TA T 2A TA

TA

iTA TiA

1
mA 1

T 2A TA

TA A

mTA

TmA mA

mA (2.1)

Just as for ordinary monads, m is called the multiplication and i the unit of the
2-monad T .

Definition 28. A lax T−algebra is a tuple (A, a, α, α0), where A is an object of K,
a : TA→ A is a morphism, α : aTa⇒ aµA, α0 : 1⇒ a · iA are 2-cells such that:

1If we ignore size issues, this is precisely the definition of an internal monad in the 2-category
2-Cat

– 23 –
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T 2AT 3A

T 2A TA

TA A

T 2A = T 2A

T 3A T 2A

TA
TA

ATA

T 2a

TmA

mTA

mA

mA

Ta

a

a

Ta

mTA

Ta

mA

T 2a

Ta

a
amA

a

⇓

⇓Tα

α

⇓

⇓α

α

(2.2)

TA

T 2A TA

TA A

TiA

Ta

mA a

a

1

1

⇓

⇓α

Tα0

=

TA A

T 2A TA

TA A

a

iTA iA

Ta

mA a

a

1 1
= 1a

⇐

⇓α

α0

(2.3)

Definition 29. We say that a lax algebra is normal when α0 equals the identity
2-cell. When α, α0 are isomorphisms, we say the T-algebra is a pseudo T-algebra.
When α, α0 are identity 2-cells, we have the notion of a strict T-algebra and we
denote it just (A, a). Reversing the direction of α, α0, we get a notion of a colax
T-algebra, but we won’t use them in this thesis.

Remark 27. Note that when (A, a) is a strict T -algebra, equations 2.2 and 2.3 boil
down to the assertion that amA = aTa and aiA = 1A. These are the same as
associativity and unit laws for algebras for an ordinary monad ([29, Definition 5.2.4]).
Thus 2.2 is some sort of higher-dimensional associativity law and 2.3 is some sort of
higher-dimensional unit law.

Definition 30. A lax morphism (f, f) : (A, a, α, α0)→ (B, b, β, β0) of lax T-algebras
consists of morphism f : A→ B and a 2-cell f : b · Tf ⇒ f · a satisfying:

T 2B TB

T 2A TB B

TA A

Tb

T 2f mB b

b
mA Tf f

a

=

T 2B TB

T 2A TA B

TA A

Tb

T 2f Tf b
Ta

mA a f

a

⇓

⇓

⇓

⇓
⇓

β

f

Tf

f

α

(2.4)
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B

A TB B

TA A

f iB

b
iA Tf f

a

=

B

A B

TA A

f

iA f

a

⇓

⇓ ⇓

β0

f α0

1

1

1

(2.5)

Definition 31. A colax morphism (f, f) : (A, a, α, α0) → (B, b, β, β0) of lax T-
algebras consists of morphism f : A→ B and a 2-cell f : f · a⇒ b · Tf

T 2B TB

T 2A TB B

TA A

mB

T 2f Tb b
b

Ta Tf f

a

=

T 2B TB

T 2A TA B

TA A

mB

T 2f Tf b

mA

Ta a f

a

⇓

⇓
⇓

⇓

β

f

f

α

⇓Tf

(2.6)

A A

A TA B A B

B TB B TB

a f f

iA
f Tf b f b

iB iB

⇓α0

⇓f

⇓β0

1 1

1=

(2.7)

If f is invertible, we call such a morphism a pseudo-morphism. If f is the identity,
we call the morphism strict.

Composition of lax morphisms (f, f) : A → B, (g, g) : B → C is a morphism
(gf, gf · gTf); we just paste the 2-cells together:

TA TB TC

A B C

Tf Tg

a b c

f g

⇓ ⇓f g

The same goes for colax morphisms. We also have an obvious (co)lax identity mor-
phism (1A, 1a) for each algebra.
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Remark 28 (Justification of the colax definition). If f is invertible, (f, f) is a lax
morphism if and only if (f, f

−1
) is colax.

Another relationship between lax and colax morphisms follows from the property of
mates under adjunction and was first observed in [8]. It is referred to as a doctrinal
adjunction:

Lemma 2.1. Let (A, a), (B, b) be strict T-algebras in a 2-category K and let
(ε, η) : u ` f : B → A be an adjunction in K. Then:

TA TB

A B

⇓ u

is a lax T-algebra morphism if and only if

TB TA

TB A

B A

Tf

1 Tu

b

a

1u

f

⇑ Tη

⇑ u

⇑ ε

is a colax T-algebra morphism.

Proof. [8][Lemma 1.1]

Definition 32. A transformation ρ : (f, f) ⇒ (g, g) between lax morphisms of lax
algebras (A, a, α, α0)→ (B, b, β, β0) is a 2-cell ρ : f ⇒ g in K satisfying:

TA TB TA TB

A B A B

Tf

a b a b

g

⇓Tρ

⇓g

⇓f

⇓ρ

Tf

Tg
f

g

=

(2.8)

Definition 33. A transformation ρ : (f, f) ⇒ (g, g) between colax morphisms of
lax algebras (A, a, α, α0)→ (B, b, β, β0) is a 2-cell ρ : f ⇒ g in K satisfying:
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TA TB TA TB

A B A B

Tg

a b a b

f

⇑Tρ

⇑f

⇑g

⇑ρ

Tg

Tf
g

f

=

(2.9)

We can again compose those 2-cells horizontally, vertically and whisker them from
both sides with algebra morphisms. All is done the same way as in K (although we
can not compose lax and colax 2-cells, nor can we whisker lax 2-cell with a colax
morphism and so on).

We have just mentioned several kinds of algebras, algebra morphisms and algebra
morphism transformations. There will serve as 0,1,2-cells for a bunch of 2-categories
we wil now define as well:

Definition 34. Let K be a 2-category. Define the following 2-categories:

2-category objects morphisms 2-cells
T-Algs

strict algebras

strict morphisms

morphism transforma-
tions

T-Alg pseudo morphisms

T-Algl lax morphisms

Ps-T-Alg pseudo algebras pseudo morphisms

Lax-T-Alg
lax algebras

lax morphisms

Lax-T-Algc colax morphisms colax morphism trans-
formationsT-Algc strict algebras

Remark 29. Lax-T-Algc is not to be confused with Lax-T-Algco, the dual category to
Lax-T-Alg. What is however true is that given a 2-monad T on K, there is a 2-monad
T co on Kco and (Lax-T-Alg)co = CoLax-T co-Alg2. T-Algc = T co-Alg however.

Remark 30. If we have a 2-monad T on a 2-category K, a natural question to ask
is whether there exists a 2-monad T ′ with the property that T ′-Algs = Ps-T-Alg.
Under nice conditions (T being finitary and K locally finitely presentable) the answer
is yes. See [18, 7.4].

2.2 Examples of 2-monads

There’s plenty of examples of 2-monads that arise in practice. Just as ordinary
monads are a useful tool to describe algebraic structures, 2-monads are good at

2The 2-category of colax algebras, colax morphisms and colax morphism transformation. But
we shall not burden ourselves with them in this thesis.
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describing categorical structures. Main reference for this section is [2, Section 6]
which contains a large number of examples.

Example 26 (Identity 2-monad). Let K be a 2-category. The simplest example is
the identity 2-functor 1K : K → K that becomes a 2-monad if we take multiplication
and unit 2-transformations to be identities.

The category T-Algs is then just K. What’s more interesting is the 2-category
Lax-T-Alg, which is precisely the 2-category mnd(K) of monads, monad functor,
monad functor transformations that we introduced earlier.

Also, as is easily verified, Lax-T-Algc is equal to 2-category mnd(Kop)op, which is
the 2-category of monads, monad opfunctors and monad opfunctor transformations
(the notion introduced in [31]).

Example 27 (Terminal object 2-monad). Consider a 2-functor (−)+ : Cat → Cat
that freely adds a terminal object to a category C; i.e. ob C+ = ob C

∐
{∗} and

C+(a, ∗) consists of a unique morphism for each object a. The multiplication functor
mC : C++ → C+ squeezes both added terminal objects into one and is identity on C.
The unit iC is an inclusion of a category C into C+.

Then a strict T-algebra (A, a) is a category with chosen terminal object t and a
strict T-algebra morphism is a functor that strictly preserves those terminal objects.
Pseudo-morphisms in this case are functors that preserve the limit (terminal object)
in the usual sense. It is also easily seen that any functor F : (A, t1) → (B, t2)
between such categories is a lax morphism, for there is always a canonical morphism
F (t1)→ t2.

Example 28 (Monoidal 2-monad). Consider the 2-functor T : Cat→ Cat given by:

TA =
∐
n≥0

An

This is a 2-monad with the multiplication being concatenation of lists of objects and
unit being the inclusion of x 7→ (x) as a singleton list.

Consider strict T -algebra (A, a). Thanks to Remark 27, the situation is essentially
the same as for free monoid monad on Set. Associativity and unit laws tell us
that the algebra multiplication a :

∐
n≥0An → A is induced by a binary associative

operation (functor) ⊗ : A × A → A and a nullary operation, an object I ∈ A that
acts as an identity with respect to ⊗. We thus obtain that T-Algs = StrMonCat, the
2-category of strict monoidal categories, strict monoidal functors and strict monoidal
transformations.

For a lax-T -algebra (A, a, α, α0) the situation is more complicated. We are given
a small category A and an n-ary operation ⊗n : An → A for each n ∈ N. Moreover,
for every list of lists ((a11, . . . , a

k1
1 ), . . . , (a1n, . . . , a

kn
n )) and an element x ∈ A we have

natural morphisms:

⊗n(⊗k1(a11, . . . , a
k1
1 ), . . . ,⊗kn(a1n, . . . , a

kn
n ))→ ⊗k1+···+kn(a11, . . . , a

k1
1 , . . . , a

1
n, . . . , a

kn
n )

x→ ⊗1(x) (2.10)
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that satisfy the lax algebra identities. This is what’s called a lax monoidal cat-
egory. If A is a pseudoalgebra, the above morphisms are isomorphisms and we call
the structure an unbiased monoidal category.

Note that these ”new” notions of a monoidal category contain ordinary monoidal
categories. Given a monoidal category (V ,⊗, I, a, l, r) we can simply define the
n-ary tensor product ⊗n by iterating the binary tensor product ⊗ and build maps
2.10 using monoidal category isomorphisms a, l, r. Coherence for monoidal categories
then guarantees that they will satisfy the axioms for an unbiased monoidal category.
See Corollary 3.9 and Remark 40.

Lax and colax morphisms of T -algebras are what’s referred to as a lax and oplax
monoidal functors, they are an ”unbiased” version of what we’ve seen in Example 7.
Similarly with algebra 2-cells.

It is worth it to mention a natural example of an oplax monoidal functor. Consider
the forgetful functor U : (Ab,⊗) → (Set,×) between the monoidal categories of
abelian groups and sets. It is in a no way is it true that for two abelian groups A,B,
the underlying set of their tensor product A⊗B is isomorphic to the product A×B.
There is however a canonical map A×B → A⊗B as well as a canonical map 1→ Z.
And these turn U into an oplax morphism.

Remark 31. There is a significant difference between the last two examples in that
there can be many different monoidal structures on a category A, but there is es-
sentially unique structure of a ”category with a terminal object” on a category A3.
2-monads whose algebras have essentially unique structure are called property-like
(as for example having terminal object is a property, rather than structure) and have
been studied in detail in [9].

Example 29 (Lax functor 2-monad). Let J be a small 2-category. Then the re-
striction resJ of a 2-functor X : J → Cat to objects has a left 2-adjoint given by the
left Kan extension.

[J ,Cat] [obJ ,Cat]

lanJ

resJ

`

(2.11)

In this case, the 2-functor lanJX is given by4

lanJX(b) =
∑
j∈J

(J (j, b)×Xj)

The composition T = resJ · lanJ is then a 2-monad on [obJ ,K]. To see this, we
must find the multiplication m : T 2 ⇒ T and the unit i : 1⇒ T , whose components

3Meaning that given two ”categories with terminal object” (A, t), (A, t′) with the same under-
lying category, there is a unique pseudomorphism (1A, f) : (A, t) → (A, t′) that is obviously an
isomorphism.
4Try to think where 1-cells and 2-cells of J are being sent.
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at each functor X are 2-natural transformations. Define the component of mX at
b ∈ J :

(mX)b : T 2X(b) =
∑
j′

J (j′, b)× (
∑
j

J(j, j′)×Xj)→
∑
j

J(j, b)×Xj

As a composition (f : j′ → b, (g : j → j′, o)) 7→ (fg, o). For the unit, define the
component of iX at b ∈ J :

(iX)b : Xb→
∑
j

J(j, b)×Xj

As an inclusion o 7→ (1b, o) ∈ J(b, b)×Xj (that further sends a morphism o→ o′ to
(11b , o→ o′)). Monad axioms (2.1) then boil down to left composition with identity,
right composition with identity, and associativity - and are satisfied.

Assume now we’re given a strict T-algebra (X, x), that is, a small category Xb
for each b ∈ J and a collection of functors xb : TX(b)→ X(b) for each b ∈ J . The
unit algebra axiom 2.3 means that the functor:

xb :
∑
j

J (j, b)×Xj → Xb

Satisfies xb(1b,−) = 1Xb. The algebra multiplication axiom 2.2 reveals that xb(f ′f,−
−) = xb(f

′, xj′(f,−)) for all f ′ : j′ → b, f : j → j′. But this means exactly that X
extends to a 2-functor J → Cat given by

X(f : k → l) = xl(f,−) : Xk → Xl.

Given a strict morphism h : (X, x) → (Y, y), the condition 2.4 amounts to the
commutativity of the square (for each b):

TXb TY b

Xb Y b

(Th)b

xb yb

hb

This means that for any object of the top left category (f : j → b, o ∈ Xj) we have:

hb(xb(f, o)) = yb(f, hj(o))

This is precisely the requirement that the collection of functors hb : Xb → Y b is
natural5. Continuing the approach, we find that the 2-cells in T-Algs are precisely
modifications. All in all, T-Algs = [J ,Cat].

Let’s find out what a lax morphism (h, h) : (X, x)→ (Y, y) is. It consists of a set
of functors hb : Xb → Y b for each object b as well as a modification h : yTh → hx,

5Similarly with 2-naturality, you don’t send 1-cell f around but a 2-cell ∆.



Chapter 2. 2-monads 31

which just boils down to a set of natural transformations hb : ybThb ⇒ hbxb for each
b. Let’s define for each f : j → b the natural transformation gf := hb,(f,−) : Y f ·
·hj ⇒ hb ·Xf . At each component b, the axiom 2.4 becomes this equality of natural
transformations:

hbmX,b = hb(Tx)b · yb(Thb)

Evaluating this at a component (f1, f2, o) ∈ T 2X, we obtain and denoting gf :=

= hb,(f,−) : Y f · hj ⇒ hb ·Xf for each f : j → b, we arrive at:

hb,(f1f2,o) = hb,(f1,xj(f2,o)) · yb(f1, hb,(f2,o))
gf1f2 = gf1Xf2 · Y f1gf2

Similarly, axiom 2.5 gives us that g1k = 1hk . But this is precisely a lax natural
transformation! Thus T-Algl = Lax[J ,Cat] as well as T-Alg = Psd[J ,Cat]. It is
also possible6 to further verify that Hom[J ,Cat] = Ps-T-Alg i.e. that pseudoalgebras
are pseudofunctors, and that lax algebras are lax functors.

We will return to this example at the end of the thesis. Also, this example can
be further generalized by replacing Cat with any cocomplete 2-category K, see [2,
6.6].

Remark 32. There is also non-elementary demonstration of the fact that strict al-
gebras for this 2-monad are precisely 2-functors. Because 2-categorical colim its
are computed pointwise, the 2-functor resJ strictly creates all colimits. resJ is
thus (strictly) 2-monadic and we have a 2-isomorphism T-Algs ∼= [J ,Cat] so these
2-categories could be identified for most purposes.

Example 30 (2-category 2-monad). A Cat-graph A consists of a set of objects
A0 together with a category A(A,B) for each A,B ∈ A0. A Cat-graph morphism
A → B between Cat-graphs consists of a function F0 : A0 → B0 as well as a
functor FA,B : A(A,B) → B(F0A,F0B) for each A,B ∈ A0. We define a 2-cell
α : F ⇒ G : A → B between morphisms for which F0 = G0 as a collection of natural
transformations αA,B for each A,B ∈ A0:

A(A,B)

GA,B

FA,B

⇓αA,B B(F0A,F0B)

These form a 2-category G(Cat) of Cat-graphs. Every 2-categoryK has an underlying
Cat-graph UK, and to every Cat-graph A we can assign a free 2-category FA
generated by this graph. We obtain 2-functors U, F that form a 2-adjunction7

6Although it is more headache inducing.
72-Cat2 is the 2-category of small 2-categories, 2-functors and icons.
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G(Cat) 2-Cat2

U

F

`

(2.12)

It can be shown that this adjunction is 2-monadic, meaning that for the induced
2-monad T = UF we have a (strict) 2-equivalence T-Algs ' 2-Cat2 and can thus
identify 2-categories as strict algebras for this 2-monad. Pseudoalgebras for this
2-monad are what’s referred in [30, Page 2030] as an unbiased bicategory. Ordinary
bicategories again give rise to unbiased ones.

Example 31. Consider the category ∆ of finite ordinals and order preserving maps.
Defining [n] ⊕ [m] := [n + m], it is easily verified that (∆,⊕, [0]) has the structure
of a strict monoidal category. Moreover, it’s the free strict monoidal category
containing a monoid. Thus, to give a monad H : C → C on a category C is to give
a monoidal functor:

∆→ [C, C]

which is equivalent to giving an action:

⊕ : ∆× C → C

That is, a functor such that for all objects C we have:

[n]⊕ ([m]⊕ C) = [n+m]⊕ C,
[0]⊕ C = C.

We obtain a finitary 2-functor ∆ × − : Cat → Cat which has the structure of a
2-monad (multiplication and identity given by those in M). Its strict algebras are
precisely monads on small categories, and a lax morphism between them is a monad
functor.

The above 2-monad is an example of a construction called a club. With this notion
introduced in [11] more structures can be exhibited as the algebras for a 2-monad
such as categories that admit coproducts or monoidal functors between monoidal
categories. To recognize yet wider array of structures as algebras, a more general
type of a 2-monad has been studied:

Definition 35. A 2-monad (T,m, i) is said to be finitary if the 2-functor T is finitary,
i.e. preserves filtered colimits8.

8Here by filtered colimit is meant a conical colimit of a 2-functor F : P → K whose domain is a
filtered category regarded as a 2-category.
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For finitary 2-monads T on Cat it was shown in [12] that a T -algebra A is precisely
a category A with c-ary operations, i.e. functors Ac → A with c being a locally
finitely presentable category), together with:

1. equations between them
2. natural transformations between their various iterations
3. equations between iterations of those natural transformations

Example 32. There is a finitary 2-monad on Cat whose algebras are categories that
admit a class of colimits of given shape. This is briefly described in the introduction
to [13]. The idea is, if we want our algebras for a 2-monad to have limits of shape
M , we choose c := M . The functor computing the limit, L : [M,A] → A is the
right adjoint to the diagonal ∆ : A → [M,A], and as such can be described as an
M -operation, two natural transformations (unit and the counit of the adjunction)
and an equation between iterations of those (the triangle identities).

Example 33 (Bicategory 2-monad). Because a bicategory can be specified as a
Cat-graph together with several operations of various arity (and equations between
them. . . ), we may construct a finitary 2-monad on Cat-graphs such that its algebras
are bicategories, see [21, Section 4] for the explicit construction.

The last two examples come from different areas alltogether - order theory and
topology. These have been studied in the paper [4].

Example 34. Consider the locally posetal 2-category Rel from Example 10. For
the identity 2-monad T = 1Rel it can be shown that Lax-T-Alg is the 2-category of
preordered sets and monotone maps.

Example 35. Recall the ultrafilter monad on Set. It admits an extension to a
2-monad T on Rel, for which lax algebras are topological spaces.

Some categorical structures have been proven to not be the algebras for any 2-monad
T on Cat. For example symmetric monoidal closed categories and cartesian closed
categories. Both of these can be described as algebras for an ordinary monad on
Cat0 (the underlying category of Cat). See [2, 6.4] and [18, 5.8].

2.3 2-categories of algebras

The 2-category T-Algs of strict T -algebras for a 2-monad T behaves very much like
the Eilenberg-Moore category of algebras CT ′ for an ordinary monad T ′. Thus we
have the following theorems that are straightforward generalizations of results from
1-category theory (in fact they hold in any V-category, see [5]).

Theorem 2.2. There is a 2-adjunction

K T-Algs

UT

F T

`

(2.13)
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where UT is the forgetful 2-functor and F T sends an object A to the strict T-algebra
(TA,mA).

Proof. This is analogous to the 1-dimensional case [29, Lemma 5.2.8]. The isomor-
phism of categories

K(A,B) ∼= T-Algs((TA,mA), (B, b)) (2.14)

is given by:

(θ : f ⇒ f ′ : A→ B) 7→ (bTθ : bTf ⇒ bTf ′ : (TA,mA)→ (B, b)) (2.15)

with the inverse being given by pre-composition with a 1-cell iA.

Remark 33. This can be extended to a biadjunction9 between the forgetful functor
U ′ : T-Alg→ K and F composed with the inclusion T-Algs ↪−→ T-Alg. The same goes
for Ps-T-Alg, see [3, Remark 6.6]. For Lax-T-Alg, we only obtain a ”lax adjunction”.

Definition 36. We call F T (A) = (TA,mA) the free T-algebra on A.

Theorem 2.3. Let K be a 2-category and T a 2-monad on it. Then the forgetful
2-functor U : T-Algs → K strictly creates

• limits that K has

• colimits that T and its square preserve.

Sketch of a proof. This is again analogous to the 1-dimensional case [29, Theorem
5.6.5.]. Let’s sketch the first part of the proof. Assume we’re given a 2-functor
G : P → T-Algs and a weight W : P → Cat such that the limit A := {UG,W}
exists in K. Denote the limit cone as η.

For short, we denote the T-algebra GP (for P ∈ P) as (GP,Gp). The fact that G
is a 2-functor means that the collection of algebra multiplications Gpi : TGPi → GPi
form components of a 2-natural transformation Gp(−) : TUG ⇒ UG : P → K.
Consider the cone

W ⇒ K(A,UG−)⇒ K(TA, TUG−)⇒ K(TA,UG−)

Given by K(TA,Gp(−)) · TA,UG− · η. There is a unique map a : TA → A that
commutes with those cones. Using universal properties, it can be shown that this a
makes (A, a) into a strict T-algebra. Fixing P ∈ P , x ∈ WP , the following diagram

TA TGP

A GP

TηP (x)

a Gp

ηP (x)

9Unit and counit of a biadjunction are pseudonatural rather than natural.



Chapter 2. 2-monads 35

commutes, i.e. ηP (x) : (A, a) → (GP,Gp) is an algebra morphism. This means
that η lifts to a cone η̂ : W ⇒ T-Algs((A, a), G−). It can be shown that it has the
required universal property in T-Algs.

Corollary 2.1. Let K be complete 2-category. Then T-Algs is complete.

Cocompleteness is again more complicated than completeness (now) in the 2-category
of algebras. We have the following analogue of [29, Theorem 5.6.12]:

Theorem 2.4. Let K be complete and cocomplete 2-category and let assume T has
a rank (preserves α-filtered colimits for some regular cardinal α). Then T-Algs is
cocomplete.

Proof. [2, Theorem 3.8]

It can be further proven that the free-forgetful adjunction between K and T-Algs is
terminal amongst those 2-adjunctions F a U : D → C that generate the 2-monad
T . Unique such arrow that commutes with both left and right adjoints is called a
canonical comparison arrow. We say that the 2-functor U is monadic if the canonical
comparison arrow is an equivalence of 2-categories. A version of Beck’s monadicity
theorem, a criterion which says when exactly is U monadic, can be proven for 2-
categories. See [5, Theorem II.2.1]. Also, the 2-category T-Algs is precisely an
EM-object CT that was mentioned in section 3 of the first chapter.

A big part of the paper [2] was showing that the 2-category T-Alg admits all
kinds of 2-categorical limits. To summarize:

Theorem 2.5. Let K be a 2-category and T : K → K a 2-monad. Then the for-
getful 2-functor U : T-Alg → K creates products, inserters, equifiers, therefore also
inverters, cotensor products, lax and pseudo limits.

Our interest is the lax case. Moving onto the 2-category T-Algl, we find that it
admits a lot less limits than its pseudo-cousin (see [2, Remark 2.9] for an example).
Limits in T-Algl and T-Algc have been studied in the paper [17]10. The results in
this paper can be easily generalized to results about Lax-T-Alg and Lax-T-Algc , as
we demonstrate with the following propositions. Their proofs are not important for
the rest of the thesis so the reader may find them in the Appendix.

Proposition 2.1. The inclusion J : T-Algs ↪−→ Lax-T-Algc preserves all existing
limits.

Proof. Link to the Appendix: (3.4).

Note that in the good cases that we will encounter in the next chapter, this inclusion
J has a left adjoint and thus preservation of limits is automatic.

Proposition 2.2. Given a 2-monad T on a 2-category K, the forgetful 2-functor
Lax-T-Algc → K creates lax limits of arrows.
10You may also see [18, 8.5] for the summary.
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Proof. Link to the Appendix: (3.4).

Theorem 2.6. The forgetful 2-functor U : Lax-T-Algc → K creates lax limits. In
particular it creates EM-objects.

Proof. [17, Proposition 4.5, Theorem 4.8].

With the doctrinal adjunction (Lemma 2.1), we’ve seen a relationship between ad-
joints and lax and colax morphisms. As is known (or see Remark 20), an adjunction
generates a monad. What’s more, an adjunction gives rise to a lax algebra provided
that domain of the right adjoint is a lax algebra in the first place:

Theorem 2.7. Let (B, b) be a strict T-algebra and assume we have an adjunction
(η, ε) : f a u : B → A. Then we can equip A with the structure of a lax T-algebra
(A, a, α, α0), where a = ubTf and α, α0 are given by:

T 2A T 2B TB TA

TA TB B A

B

TB

T 2f Tb Tu

mA mB

Tf

b

u

Tf b u

1

1

⇓Tε

A
B

TA
TB B A

1

1

f

iA
iB

Tf
b u

⇓η

Proof. See [20, Theorem 8.3], which is the dual version of this theorem.

Definition 37. We may refer to the above as a transport of structure along an
adjunction11 or say that the adjunction f a u generates the T-algebra (A, a, α, α0).

11This is a categorification of transporting structure of an algebra (in the sense of universal
algebra) along a bijection.



Chapter 3

Codescent objects and coherence

3.1 Codescent objects

Descent objects (and more importantly, codescent objects) appear in several places
in two-dimensional (i.e. categorified) universal algebra. They make an appearance
in descent theory as well, see also recent works of Fernando Lucatelli Nunes. They
behave similarly to how coequalizers do in ordinary category theory. We leave their
most significant use (coherence results) for the next chapter.

Definition 38. Consider the following truncated cosimplicial graph:

X3 X2 X1

p

q

r

d
e

c

and let:

• ∆s be the 2-category generated by the above 1-cells that are subject to the
cosimplicial identities de = 1, 1 = ce, dp = dq, cr = cq, cp = dr, and whose
only 2-cells are the identities.

• ∆l be the 2-category whose morphisms are freely generated by morphisms
p, q, r, d, e, c and whose 2-cells are freely generated by the names
δ : de⇒ 1, γ : 1.⇒ ce, κ : dp⇒ dq, λ : cr ⇒ cq, ρ : cp⇒ dr,

• ∆p be the 2-category whose morphisms are freely generated by morphisms
p, q, r, d, e, c and whose 2-cells are generated by the above 2-cells with the ad-
dditional property that between any pair of parallel morphisms there is a unique
2-cell.

Let K be a 2-category.

• A strict coherence data is a 2-functor ∆s → K,

• A lax coherence data is a 2-functor ∆l → K,

• A coherence data is a 2-functor ∆p → K.

– 37 –
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By (strict, lax) coherence data in K we mean the image of the corresponding 2-
functor. We also abuse the notation and denote p, q, . . . and δ, γ, . . . the images of
these 2-functors in K.

Remark 34. The 2-category ∆s can be realized as a full subcategory of ∆op, where
∆ is a simplicial category of finite ordinals [n] = {0, . . . , n − 1} with the usual face
and degeneracy maps. For the free 2-categories, the basic reference is [33]. For the
construction of ∆p, see [3, Remark 6.24].

Definition 39. Given a coherence data in K, a coherence cocone is a pair
(x : X1 → X, ξ : xd⇒ xc) of a morphism and an invertible 2-cell that satisfies:

X1

X2 X

X1

X2

X3 X1

X2

X1

X2 X

X3

X2

X1

d x

c x

p d x

r c

q c

d x

p d x

q c

=

⇓ ξ

⇓ ρ ⇓ ξ

⇓ λ

⇓ κ ⇓ ξ

(3.1)

and

X1 X2

X1

X

X1

X1

X2

X1 X

X2

e

d x

xc

e d

x

ce

= 1⇓
⇓

⇓
ξ

δ

γ

(3.2)

Definition 40. Given lax coherence data as in Definition 38, a lax codescent object
(x : X1 → X, ξ : xd ⇒ xc) is the universal coherence cocone. Namely, one-
dimensional and two-dimensional properties are satisfied.

1. (One-dimensional universal property) Given any coherence cocone
(y : X1 → Y, y : yd⇒ yc), there is a unique morphism θ : x→ y satisfying:

θx = y

θξ = y

2. (Two-dimensional universal property): Given any morphism of coherence co-
cones ρ : (θ1x, θ1ξ)→ (θ2x, θ2ξ), that is, a 2-cell ρ : θ1x⇒ θ2x satisfying:
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X1

X

X1

X2

X1

X

X1

X2

d y2

y2c

d y1

y1c

=⇓ ⇓

⇓

⇓

y2

ρ

y1

ρ

y1

y2

then there is a unique 2-cell ρ′ : θ1 ⇒ θ2 such that ρ′x = ρ.

We may abuse the notation and call x : X1 → X or just X a lax codescent object.

Definition 41. Given a 2-category K, a codescent object in Kop is called a descent
object in K.

Definition 42. Let (A, a, α, α0) be a lax T-algebra. By its resolution, denoted
Res(A, a, α, α0), is meant the following diagram in K:

T 3A T 2A TA

mTA

TmA

T 2A

mA

TiA
Ta

together with 2-cells Tα : TaT 2a ⇒ TaTmA and Tα0 : 1 ⇒ TaT iA (other 2-cells
being identities).

Remark 35. This diagram is clearly a lax coherence data in K. It lifts in an obvious
way to T-Algs, so we will use its location interchangeably. Note that if α is invertible,
(a, α−1) is a coherence cocone.

Let’s now discuss three neat instances of (co)descent objects in Cat.
Given a small category C ∈ Cat, we may regard C0, C1, C2 (the set of objects, mor-
phisms and composable pairs of morphisms) as discrete categories. We have then
two projection functors p1, p2, composition functor comp : (f, g) 7→ gf , domain and
codomain functors d, c and identity morphism functor i : A 7→ 1A. These satisfy
the usual category axioms. It is readily verified that they then form into a strict
coherence data:

C2 C1 C0
p1

comp
p2

d

i
c

And the following holds:

Theorem 3.1. A small category C is a codescent object of its associated coherence
data in Cat.
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Proof. The codescent object (ι : C0 ↪−→ C, ξ : ιd ⇒ ιc) consists of an inclusion of
objects and a natural transformation, whose component at a morphism f : A → B
is the morphism f , i.e. ξf = f . Given any coherence cocone (y : C0 → Y, δ : yd⇒ yc),
the equation 3.1 forces for all f : A→ B, g : B → C:

δg · δf = δgf : yA→ yC

While 3.2 forces δ1A = 1yA. This tells us that the cocone is basically a functor C → Y ,
and universal property forces the unique functor C → Y to be equal to (y, δ).

Note that in this easy example, the 1-cell functor of the codescent object,
ι : C0 → C, is bijective on object. This is true for any codescent object morphism
in Cat (as well as for coinserters, coequifiers, coinverters, see [3, Corollary 2.44]).
What’s more, codescent objects provide us a way to factorize any functor F : A → C
between small categories as bijective on objects followed by a fully faithful functor
(BO-FF factorisation), see [3, 2.6].

A version of the following Theorem for the 2-category T-Algl in place of Lax-T-Alg
is the first documented appearance of (then unnamed) descent object. It has been
observed by Ross Street in 1975 at the end of the paper [33].

Theorem 3.2. Assume we’re given a lax T-algebra (A, a, α, α0) and a strict T-
algebra (B, b) for a 2-monad (T,m, i) in a 2-category K. Then the category
Lax-T-Alg((A, a, α, α0), (B, b)) is the descent object of the following op-coherence
data1:

K(T 2A,B) K(TA,B) K(A,B)

K(1, b) · TTA,TB
K(mA, 1)

K(Ta, 1)

K(1, b) · TA,B
K(iA, 1)

K(a, 1)

with δ = 1, γ = K(α0, B), κ = 1, λ = K(α,B), ρ = 1.

Proof. Given a descent cone (Y : Y → K(A,B), δ : K(1, b)TA,BY ⇒ K(a, 1)Y )
the conditions 3.1, 3.2 amount exactly to (Y A, δD) being a lax T-algebra morphism
(A, a, α, α0) → (B, b) for each D ∈ obY ! The descent object consists of a forgetful
functor U : Lax-T-Alg((A, a, α, α0), (B, b))→ K(A,B) and a natural transformation

ξ : K(1, b)TABU ⇒ K(a, 1)U : Lax-T-Alg((A, a, α, α0), (B, b))→ K(TA,B)

Whose component at a lax morphism (f, f) is the 2-cell f : bTf ⇒ fa.
If there was a functor K : Y → Lax-T-Alg((A, a, α, α0), (B, b)),

K : D 7→ (gD, gD) such that:

Y = UK

δ = ξK

We clearly must have Y D = gD, δD = gD. But we know that this is a lax algebra
morphism from before.

1Coherence data in Kop.
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Given a 2-category K, an object B and coherence data S in K, there is a category
Coh(K, S, B) whose objects are coherence cocones (x : TA → B, x : xd ⇒ xc).
Decription of this category is analogous to that of ”colax codescent objects” that
will be introduced in Section 3.3, so we omit it at this point.

Theorem 3.3. Let (A, a, α, α0) be a pseudo T-algebra in a 2-category K. The canon-
ical mapping κ : (θ : A→ B) 7→ (θa, θα−1) induces an equivalence of categories:

K(A,B) ' Coh(K,Res(A, a, α, α0), B)

Sketch of a proof. Using simple pasting diagrams it can be shown that κ is fully
faithful and essentially surjective. The proof is in [22, Lemma 2.3].

Remark 36. Codescent object can be defined using coinserters and coequifiers [16,
Proposition 2.1], and so are themselves a colimit. We can thus find a weight
W : J → Cat and a 2-functor F : J → K so that the category Coh(K, S, B) is
isomorphic to [J,Cat](W,K(B,F−)).

It can also be shown that the category [J,Cat](W,K(B,F−)) is equivalent to
Psd[W,K(B,F−)]2 and moreover that this equivalence is 2-natural in B. This im-
plies that A is a bicolimit of F weighted by W . We obtain:

Corollary 3.1. Given a pseudo T-algebra (A, a, α, α0) in a 2-category K, the un-
derlying object A of the algebra is the bicolimit of its resolution.

Let’s introduce an important certain important subclass of codescent objects - those
that are reflexive.

Definition 43. We say the lax coherence data in a 2-category K is reflexive if there
are morphisms i, j : X2 → X3:

X3 X2 X1

p

q

r

i

j

d
e

c

together with 2-cells 1 ⇒ pi, 1 ⇒ qi, 1 ⇒ qj, 1 ⇒ rj and ri ⇒ ec, pj ⇒ ed and
ie ⇒ je. A lax codescent object of lax reflexive coherence data is just a codescent
object of the underlying lax coherence data.

Example 36. Given a lax T-algebra (A, a, α, α0), its resolution is reflexive coherence
data both in K and T-Algs. We have:

2This is assumed implicitly in [22]
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T 3A T 2A TA

mTA

TmA

T 2a

T iTA

T 2iA

mA

TiA
Ta

(3.3)

with a 2-cell 1⇒ rj = T 2(aiA) being T 2α0 and other 2-cells being identities.

Remark 37. If (A, a, α, α0) is a pseudoalgebra, its resolution is not just a lax coherence
data but a coherence data, meaning in particular that all pasting diagrams built using
1-cells mTA, TmA, T

2a,mA, T iA, Ta and 2-cells Tα, Tα0 with the same domain and
codomain morphisms are equal. This isn’t immediately clear but becomes obvious
if one understand an explanation of where the resolution for a pseudo algebra really
comes from, see [3, Remark 6.29].

For the lax algebras, nothing of sorts is true. Consider the identity 2-monad on
Cat and its lax algebra (t, µ, η) (a monad). In a no way is it true that tη = ηt unless
the monad is idempotent.

Theorem 3.4. Codescent objects of reflexive coherence data commute with finite
products in Cat.

Proof. Two possible proofs were first sketched in [16, Proposition 4.3], for a full proof
see [3, Proposition 8.41].

There is a note-worthy interaction between codescent objects and a certain stronger
version of finitary 2-monads on Cat. Algebras for these 2-monads can be described
as small categories together with n-ary operations, equations and natural transfor-
mations between the iterations of these operations, and equations between iterations
of these transformations. Compare with the talk after Definition 35.

Definition 44. A 2-functor T : Cat → Cat is said to be strongly finitary if it is
the left Kan extension of itself restricted to Setf - the skeletal category of finite sets
regarded as a locally discrete 2-category. A 2-monad is said to be strongly finitary if
its endo-2-functor part is so.

In the coend notation, T satisfies (n being the unique set with n elements):

T =

∫ n∈Setf
(−)n × Tn

Corollary 3.2. Any strongly-finitary 2-monad T : Cat → Cat preserves codescent
objects of reflexive coherence data.

Proof. From 3.4 it follows that the product 2-functor
∏n : Catn → Cat preserves

codescent objects of reflexive coherence data for n ≥ 2. The diagonal 2-functor
∆ : Cat→ Catn, A 7→ An, preserves colimits as it is a left adjoint so it preserves all
colimits. Thus (−)n =

∏n ∆ preserves codescent objects of reflexive coherence data.
Since (−)× Tn preserves colimits in Cat and T is defined using colimits, we obtain
that it preserves codescent objects of relexive coherence data.
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Theorem 3.5. Cat is the free completion of Setf under filtered colimits and codes-
cent objects of strict reflexive coherence data.

Proof. [3, Theorem 8.31].

The following characterization of strongly-finitary 2-monads is possible:

Corollary 3.3. Let T be a 2-functor on Cat. The following are equivalent:

• T is strongly finitary,

• T preserves filtered colimits and codescent objects of strict reflexive coherence
data.

Codescent objects are like a 2-dimensional analogue of coequalizers in ordinary cat-
egory theory, consider that:

• Corollary 3.1 is an analogue of the fact that every algebra for a 1-monad can
be expressed as canonical coequalizer of free algebras on its underlying object
(see [29][Example 5.4.7]),

• Theorem 3.4 is an analogue of the fact that reflexive coequalizers commute
with finite products in Set,

• Moreover, in the paper [22], codescent objects have been successfully used to
prove a version of Beck’s monadicity theorem for pseudomonads. It can be
shown that a pseudoadjunction F a U : D → C generates a pseudomonad T =
= UF . We can also define a canonical comparison 2-functor D → Ps-T-Alg. It
can be then shown that this 2-functor is a biequivalence if and only if U reflects
adjoint equivalences, and moreover D admits certain (U -absolute) codescent
objects and U preserves them.

3.2 Coherence

In our setting, a coherence result or a coherence theorem is a theorem that describes
under which conditions on a 2-monad T on a 2-category is every pseudo-T -algebra
equivalent to a strict T -algebra. Proving coherence results is useful because it allows
us to study non-strict structures in terms of the strict ones. We also don’t lose any
generality if we choose to work with strict algebras instead of pseudoalgebras once
we have coherence results in our hands.

What people usually mean by coherence (and what came first) is that in any
monoidal category (or closed/symmetric monoidal category, or a bicategory), any
diagram built using the defining associativity/unit isomorphisms commutes. These
notions are related, see Remark 40.

A universal way to obtain a strict algebra (A′, a′) from a pseudoalgebra (or a lax
algebra) (A, a, α, α0) is by finding a left adjoint to the inclusion T-Algs ↪−→ Ps-T-Alg
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(or T-Algs ↪−→ Lax-T-Alg). This A′ then may be called a pseudo (or lax ) morphism
classifier because every pseudo (or lax) morphism from of A to a strict algebra factors
uniquely through a strict morphism:

(A, a, α, α0) (A′, a′)

(B, b)

(f, f)
∃!(g, 1)

Given a general 2-monad T on a 2-category K, the existence of left adjoints to inclu-
sions T-Algs ↪−→ T-Alg and T-Algs ↪−→ T-Algl has first been proven in [2, Theorem
3.13] under the assumption that K is complete and cocomplete and T has a rank (i.e.
preserves κ-filtered colimits). In fact, much less is necessary, we only need T-Algs
to admit codescent objects to obtain either of these adjoints, as well as adjoints to
T-Algs ↪−→ Ps-T-Alg and T-Algs ↪−→ Lax-T-Alg.

Let’s demonstrate how can such result be useful. Recall the functor 2-monad from
Example 29. Clearly, T-Algs = [J ,Cat] admits all colimits and in particular codes-
cent objects. We obtain a left adjoint:

[J ,Cat]

(−)′

` Lax[J ,Cat]

And now:

Theorem 3.6. Given 2-category K, any weighted lax limit of a 2-functor F can be
expressed as (an ordinary) limit for some 2-functor F ′. The same is true for pseudo
limits.

Proof. Consider the weight W : J → Cat and a 2-functor F : J → K. Because of
the 2-adjunction have 2-natural isomorphisms:

K(−, {W,F}) ∼= Lax[J ,Cat](F,K(−, G?)) ∼= [J ,Cat](F ′,K(−, G?)),

expressing a lax limit of F as a strict limit of F ′.

Let’s now be more specific. By a coherence result we mean a theorem of the following
form:

Theorem-Schema 3.1. Let K be a 2-category and T a 2-monad. The inclusion

T-Algs ↪−→ Ps-T-Alg

admits a left adjoint (denoted (−)′), and the component of the unit of the adjunction
at each object (A, a, α, α0) ∈ Ps-T-Alg is an equivalence in Ps-T-Alg.
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The following coherence result has been proven by Lack in 2002 in his significant
paper [16]. In Section 3.3 we will prove its analogue for the lax case with all the
details, so its proof is omited here.

Theorem 3.7. Let K be a 2-category and a 2-monad T on K such that T-Algs
admits codescent objects of resolutions of pseudo-algebras and U preserves them.
Then Theorem schema holds.

Proof. The proof can be found in [16, Theorem 3.2]. Note that what you obtain in
the proof is an equivalence in K, but according to (well known and easy to prove)
[22, Proposition 3.4] the equivalence lifts up to Ps-T-Alg.

The following has been observed by John Bourke. It in particular shows that it is
enough to only assume that U : T-Algs → K only preserves codescent objects as a
bicolimit, i.e. ”up to an equivalence”. It assumes familiarity with Lack’s proof so we
only sketch this.

Proposition 3.1. Let K be a 2-category and T a 2-monad. The Theorem Schema
holds if and only if T-Algs admits codescent objects of resolutions of algebras and the
forgetful 2-functor U : T-Algs → K preserves them as a bicolimit.

Sketch of a proof. By Lack’s construction, the inclusion T-Algs ↪−→ Ps-T-Alg admits
a left adjoint (−)′ if and only if T-Algs admits codescent objects of resolutions
of algebras, and this left adjoint applied to pseudo algebra (A, a, α, α0) calculates
codescent object of its resolution Res(A, a, α, α0).

” ⇒ ”: As the left adjoint (−)′ : Ps-T-Alg → K applied to a pseudo alge-
bra (A, a, α, α0) calculates the codescent object (A′, a′) ∈ T-Algs of the resolution
Res(A, a, α, α0), T-Algs clearly admits these codescent objects. Denote by
η(A,a,α,α0) : (A, a, α, α0) → (A′, a′) the unit of the adjunction in Ps-T-Alg. By the
assumption, it is an equivalence. By Corollary 3.1, A is a bicolimit of its resolution
in K. Since it is equivalent to A′ and bicolimits are defined up to an equivalence,
the result follows.

” ⇐ ”: Let (x : (TA,mA) → (A′, a′), ξ) be a codescent object of resolution of
pseudoalgebra (A, a, α, α0) in T-Algs (this is equally a colimit cocone by Remark 36).
Because U preserves codescent objects as a bicolimit, the cocone (x : TA → A′, ξ)
exhibits A′ as a bicolimit in K. Because A is also a bicolimit of the same diagram
(and bicolimits are unique up to an equivalence), we obtain that A is equivalent to
A′. Furthermore, using the unit iA′ of the algebra (A′, a′) (which is a section of a′), it
can be shown that the equivalence morphism is precisely the unit of the adjunction
of U and (−)′ (the adjoint (−)′ exists because T-Algs admits the codescent objects
of resolutions of algebras, again by Lack’s construction).

Remark 38. We can obtain Theorem 3.8 as a corollary of a more general result
on biadjoint triangles (the generalisation of adjoint triangles in ordinary category
theory), see [26, 8.2. Corollary]. The proof of the general biadjoint triangle theorem
also makes use of codescent objects.
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Another general coherence theorem says the following: If T is a 2-functor on Cat
that preserves bijections on objects, then every pseudoalgebra is equivalent to a strict
one. In [16] Lack has shown that it is an instance of the Theorem schema3.

Theorem 3.8. Let X be a set and let T be a 2-monad on CatX that preserves
bijections on objects (meaning that each component of the image of X-indexed family
of bijection on objects functors is bijection on objects). Then every pseudoalgebra is
equivalent to a strict one.

Sketch of a proof. Note that g is essentially surjective on objects as well: from
the definition of invertible 2-cells α0, α0g we have isomorphisms x ∼= ghiA(x) and
ghiA(g(x)) ∼= g(x). Thus g is an equivalence in Cat.

Assume that (A, a, α, α0) is a pseudoalgebra. Factor the functor a : TA → A as
a = gh, where g is fully faithful and h is bijection on objects. It can be shown that
α admits a unique factorization

T 2A TB TA

TA B A

=

T 2A TB TA

TA B A

Th Tg

mA a

h g

Th Tg

mA b a

h g

⇓α ⇓ g

such that (B, b) is a strict algebra and (g, g) : (A, a, α, α0) → (B, b) is a pseudo-
morphism of algebras. As equivalences in K lift to Ps-T-Alg, the result follows.

Proof. [27, 3.4 Theorem]

Corollary 3.4. Let X be a set and T be a 2-monad on CatX that preserves bijections
on objects. Then Theorem schema holds.

Proof. [16, Theorem 4.10].

Examples of coherence results

Let’s begin with (unbiased) monoidal categories.

Theorem 3.9. The inclusion of the 2-category of strict monoidal categories into the
2-category of (unbiased) monoidal categories

StrictMonCat ↪−→ MonCat

has a left adjoint Q, and unit of this adjunction is an equivalence in MonCat. This
means that for any monoidal category A there exists a strict monoidal category QA
and a monoidal equivalence of categories A ' QA.

3He stated this result in more general form, Cat is replaced by general 2-category that admits
an enhanced factorisation system and T preserves the first class of morphisms for this system.
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First proof. Cat is complete and cocomplete and the monoidal 2-monad T =
∐

(−)n

clearly preserves filtered colimits and thus has a rank. By Theorem 2.4, StrictMonCat
is cocomplete, in particular admits codescent objects. Next, T is defined using
products and colimits and codescent objects of reflexive coherence data commute
with products (Theorem 3.4), so T preserves codescent objects. But because T = UF
and F is cocontinous, U preserves codescent objects too. The rest follows from
Theorem 3.7.

Second proof. T preserves bijections on objects so we may apply Theorem 3.4.

Remark 39. Yet another way to prove this would be to explicitly describe the stric-
tification. Given a monoidal category (V ,⊗, I, a, l, r), define the objects of the strict
monoidal category (V ′,⊗′, I ′) as sequences of objects [X1, . . . , Xn] of V , the mor-
phisms [X1, . . . , Xn]→ [Y1, . . . , Ym] as the morphisms

((X1 ⊗X2)⊗ · · · ⊗Xn−1)⊗Xn → ((Y1 ⊗ Y2)⊗ · · · ⊗ Ym−1)⊗ Ym

in V . On object, define ⊗′ as concatenation of lists, the empty list I ′ = [ ] being the
unit. On morphisms, ⊗′ is defined using an induction. The unit monoidal functor
V → V ′ then sends an object X to the singleton list [X]. This example is described
in detail in [7, XI.5]. The version for unbiased monoidal categories is in [24, Theorem
3.1.6].

Remark 40. By coherence in a monoidal category (V ,⊗, a, l, r, I) we may also mean
the fact that any diagram built of isomorphisms l, r,, their inverses, compositions and
tensor products, commutes. It can be shown that this follows from the fact that V
is monoidally equivalent to a strict monoidal category V ′. In V ′, clearly any diagram
built with a′, l′, r′ commutes (because they’re identities) and monoidal equivalence
transports this identity. See for example [23, 2.4] (it is stated for bicategories but
the idea is the same).

Consider now the 2-monad T = resJ · lanJ on a 2-category [ob J ,Cat] introduced
in Example 29. The 2-functor resJ also has a right 2-adjoint given by right Kan
extensions. It thus preserves all colimits and so does T . We obtain4:

Theorem 3.10. Let J be small and K complete. Denote Hom(J ,K) for the 2-
category of pseudofunctors, pseudonatural transformations and modifications. Then
the inclusion of 2-functors into pseudofunctors:

[J ,K] ↪−→ Hom(J ,K)

admits a left adjoint whose unit is an equivalence of pseudofunctors. This means
that every pseudofunctor is biequivalent to a strict 2-functor.

Remark 41. For a general 2-monad T on a 2-category K, not every pseudoalgebra
is equivalent to a strict one, see [16, Example 3.1] for a simple counter-example.

4Again, we can also prove this by showing that T preserves bijections on objects.
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Even under ”nice” conditions (K being locally finitely presentable5 and T finitary),
a counter-example to the Theorem Schema has been found in the year 2011 in the
paper [30]. Recall the Example 30. In [30] this example is generalized to obtain
a finitary 2-monad TCat on a locally finitely presentable 2-category of Cat-enriched
Cat-graphs, whose strict algebras are strict 3-categories and pseudo algebras are
certain weak 3-categories. The result then ultimately follows from the fact that a
Gray-category (certain weak version of a 3-category) is not in general triequivalent
to a strict 3-category.

Going one dimension lower, every bicategory is biequivalent to a (strict) 2-category.
Let’s sketch two ways one can prove this. The first proof is elementary, the second
one uses Theorem 3.4. They can be found in [23, 2.3 Theorem], [27, 4.3].

Theorem 3.11. Every small bicategory is biequivalent to a 2-category.

Sketch of a first proof. It can be shown that the Yoneda embedding
y : C → Hom(Cop,Cat) is a homomorphism that is locally an equivalence and that
y(C) is a 2-category. Restricting to y′ : C → y(C) gives us a homomorphism that is
surjective on objects and locally an equivalence, so it is a biequivalence.

Sketch of a second proof. Let X be a set. Consider the following modification of
Example 30: Denote 2-CatX to be the 2-category of small 2-categories with object
set X, morphisms 2-functors that are identity on objects and 2-cells being icons.
2-category of Cat-graphs with object set X is then isomorphic to CatX×X and there
is a 2-adjunction

CatX×X 2-CatX

U

F

`

(3.4)

between the forgetful 2-functor and the ”free 2-category on a Cat-graph” 2-functor.
This adjunction is 2-monadic and T = UF clearly preserves bijections on objects.
The result follows from Theorem 3.4.

Note that in the second proof we’ve actually proven that every (small) bicategory is
biequivalent to a 2-category with the same object-set.

Remark 42. By Corollary 3.2, any strongly finitary 2-monad on Cat preserves code-
scent objects or reflexive coherence data. As coherence data of pseudoalgebras are
always reflexive and Cat is cocomplete, Theorem Schema holds for this class of
2-monads. It also holds for clubs, see [27, 4.1].

Let’s briefly mention the coherence result for multicategories. In the paper [6], it has
been proven that there’s a 2-adjunction:

5See [18, 5.3] for the definition.



Chapter 3. Codescent objects and coherence 49

Multicat MonCat

F

U

`

that induces a 2-monad T = UF on 2-category Multicat of multicategories. A mul-
ticategory M is said to be representable if for every tuple x = (x1, . . . , xn) there’s an
object ⊗x and an arrow πx : (x1, . . . , xn)→ ⊗x that induces a natural isomorphism:

M((x1, . . . , xn), y) ∼= M((⊗x), y)

It was shown that a multicategory is representable if and only if the unit
ηM : M → UFM of the adjunction admits a left adjoint. Moreover,
Ps-T-Alg ∼= RepMulticat. Strict T -algebras are what’s called a strict representable
multicategory. Coherence result for multicategories, although not an instance of
theorem-schema, reads as:

Theorem 3.12. The inclusion StrictReprMulticat ↪−→ RepMulticat admits a left bi-
adjoint whose unit is a pseudo-natural equivalence.

Proof. [6, 10.8 Theorem].

3.3 Lax coherence result

Given a pseudoalgebra (A, a, α, α0), the pair (a : TA → A,α−1 : amA ⇒ aTa)
is a coherence cocone for the resolution Res(A, a, α, α0). This convenient fact is
necessary to formulate and prove Theorem 3.3 and was also used in Lack’s proof of
Theorem 3.7. If we wish to prove analogues of these theorems for lax algebras, α is
not invertible and we have to introduce a new notion (as well as use colax morphisms
instead of lax ones). This is a motivation for what we call a colax codescent object.
The main goal of this section is to prove the analogues of these two theorems.

We call the coherence theorem in the lax setting a lax coherence result. It is a
statement of the form:

Theorem-Schema 3.2. Let K be a 2-category and T a 2-monad. The inclusion

T-Algs ↪−→ Lax-T-Algc

admits a left adjoint (denoted (−)′), and the component of the unit of the adjunction
at each object (A, a, α, α0) ∈ Lax-T-Algc has an internal right adjoint in K.

Definition 45. Consider the following graph:

X3 X2 X1

p

q

r

d
e

c
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together with identities cp = dr ,de = 1, dp = dq and 2-cells γ : 1⇒ ce, λ : cr ⇒ cq.
Let ∆c be the free 2-category whose morphisms are generated by this graph subject
to these relations, and whose 2-cells are freely generated by γ, λ.

A colax coherence data for a 2-categoryK is a 2-functor ∆c → K. Colax coherence
data in K is the image of ∆c in K.

We again use the same letters p, q, . . . , γ, λ for their image under this 2-functor
in K.

Definition 46. Let X be an object of K and S colax coherence data. The (colax)
coherence category Coh(K, S,X) is a category with objects being tuples
(x : X1 → X, ξ : xc⇒ xd) satisfying:

X3 X2

X1X2

XX1

d x

r

q

c

c

x

⇓

⇓

λ

ξ = X2

X3 X2

X1

X1

XX1

p

c

d

r
c

x

x

d
x

⇓

⇓ ξ

ξ

X2

p

d
(3.5)

and also:

X1X2

XX1

X1

= 1x

e
1

c

d x

x

⇓γ

⇓ ξ

1

(3.6)

A morphism ρ : (x, ξ)→ (x′, ξ′) in this category is a 2-cell ρ : x⇒ x′ in K such that
the following holds:

X1

X

X1

X2

X1

X

X1

X2

d
x

xc

d x′

x′
c

x′

x

=⇑ ⇑

⇑

⇑

ξ

ρ

ξ′

ρ

(3.7)
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Remark 43. The construction above is 2-functorial. You can verify that given a
locally small 2-category K, there is a 2-functor

Coh(K, S,−) : K → Cat

defined in an obvious way.

Example 37. Given a lax T-algebra (A, a, α, α0), its resolution Res(A, a, α, α0) (Def-
inition 42) defines colax coherence data (the directions of 2-cells γ, λ is the same
as for lax coherence data). If (x : TA → X, ξ : xTa ⇒ xmA) is an element of
Coh(K,Res(A, a, α, α0), B), the equations 3.5, 3.6 become:

ξTmA · xTα = ξmTA · ξT 2a, (3.8)

ξT iA · xTα0 = 1x, (3.9)

and a morphism ρ : (x, ξ)→ (x′, ξ′) satisfies:

ρmA · ξ = ξ′ · ρTa. (3.10)

Definition 47. We call the elements of Coh(K, S,X) the (colax) coherence cocones.
Such an object (x : X1 → X, ξ : xc ⇒ xd) is called colax codescent object if the
following universal properties are satisfied:

1. (One-dimensional universal property): For any (y : X1 → Y, y : yc⇒ yd) there
is a unique morphism z : X → Y such that:

zx = y,

zξ = σ.

2. (Two-dimensional universal property): Given a morphism of cocones
ρ : (zx, zξ) → (z′x, z′ξ) in Coh(S, Y ), there is a unique 2-cell z : z ⇒ z′ in K
such that

zx = ρ.

Remark 44. Given some coherence data S in a 2-category K, having a codescent
object (e : X1 → E, e : ec ⇒ ed) amounts exactly to there being a 2-natural
isomorphism:

K(E,−) ∼= Coh(K, S,−) (3.11)

whose component at B is given by (θ : E → B) 7→ (θe, θe).

Analogous to lax codescent objects, colax codescent objects can be calculated using
colimits and thus it itself must be a colimit. Coh(K, S, B) can be then viewed as a
”category of cocones” for some 2-functor F and weight W .

Theorem 3.13. Let K be a 2-category admitting coinserters and coequifiers. Then
it admits colax codescent objects.

Sketch of a proof. Assume we’re given coherence data as in the beginning of this
chapter. First take the coinserter of d, c:
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X1

X2 C

X1

c x

d x

⇓ ξ

Then take coequifier w1 : C → W1 of the LHS and RHS 2-cells of 3.5 (we want
these to be equal), and then take coequifier w2 : W1 → W2 of the LHS and RHS of
3.6 post-composed with w1. Then (w2w1x,w2w1ξ) has the universal properties of a
colax codescent object.

Remark 45. Again analogous to [16][Proposition 2.2], we may find an explicit de-
scription for the weight and a 2-functor whose colimit the colax codescent object is.
This is an instance of a general procedure of finding a 2-functor F and a weight W ,
see [18][6.9].

In the lax case, it would be too much to hope for the equivalence (as in Theorem 3.3)
between K(A,B) and the Coh category especially because the unit of the equivalence
is α0, which doesn’t have to be invertible in the lax case. We do however have:

Theorem 3.14. Let (A, a, α, α0) be a lax T-algebra. There is an adjunction:

K(A,B) Coh(K,Res(A, a, α, α0),B)

(iA)∗

κ

`

Where the functors are defined on objects as κ : (θ : A→ B) 7→ (θa : TA→ B, θα),
i∗A : (x : TA→ X, ξ) 7→ x · iA and are defined on morphisms in an obvious way.

Proof. We need to find two natural transformations

η : 1⇒ (iA)∗κ

ε : κ(iA)∗ ⇒ 1

satisfying the triangle identities:

εκ · κη = 1κ (3.12)

(iA)∗ε · η(iA)∗ = 1(iA)∗ (3.13)

For a morphism θ : A→ B, put ηθ := θα0. Then η is clearly a natural transformation
thanks to the middle-four interchange law. Next, note that for a cocone (y, y) =
= (y : TA → Y, y : yTa ⇒ ymA), we have κ(iA)∗(y, y) = (yiAa, yiAα). Define the
component of ε at (y, y) as:

ε(y,y) := yiTA : (yiAa, yiAα)→ (y, y).
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In order for this to be a morphism in Coh(Res(A, a, α, α0)), B), we’d need the fol-
lowing to hold (3.10):

yiTAmA · yiAα = y · yiTATa
It holds because:

yiTAmA · yiAα = yTmAiT 2A · yiAα
= yTmAiT 2A · yTαiT 2A

= (yTmA · yTα)iT 2A

3.8
= (ymTA · yT 2a)iT 2A

= ymTAiT 2A · yT 2aiT 2A

= y · yiTATa

Next, ε is natural - the naturality in morphisms ρ : (y, y)→ (z, z):

(yiAa, yiAα) (y, y)

(ziAa, ziAα) (z, z)

yiTA

ρiAa ρ

ziTA

holds thanks to the morphism axiom of ρ:

ρ · yiTA = ρmAiTA · yiTA
= (ρmA · y)iTA
3.10
= (z · ρTa)iTA

= ziTA · ρTaiTA
= ziTA · ρiAa

Next, the LHS of 3.12 is:

ε(θa,θα) · θα0a = θαiTA · θα0a
2.3
= 1

The LHS of 3.13 is:

ε(y,y)iA · yiAα0 = yiTAiA · yiAα0 = yT iAiA · yTα0iA = (yT iA · yTα0)iA
3.9
= 1

It is not difficult to verify that the functors

(iA)∗ : Coh(K,Res(A, a, α, α0), B)→ K(A,B) for each B

form the components of a 2-natural transformation (similarly with κ):

(iA)∗ : Coh(K,Res(A, a, α, α0),−)⇒ K(A,−),

and that the unit and counit η, ε of the adjunction lift to form modifications. We
obtain:



54 Chapter 3. Codescent objects and coherence

Corollary 3.5. There is an adjunction in [K,Cat]:

K(A,−) Coh(K,Res(A, a, α, α0),−)

(iA)∗

κ

`

Let’s now focus on the lax coherence result. First we show that the inclusion 2-functor
T-Algs ↪−→ Lax-T-Algc has a left adjoint provided T-Algs admits colax codescent
objects of resolutions of lax algebras. This approach is analogous to that of [16] for
pseudoalgebras and the proof essentially boils down to writing down all the definitons.

Let A = (A, a, α, α0) be a lax T-algebra and (B, b) a strict T-algebra. Consider
a pair (f : A→ B, f : fa⇒ bTf) : A→ (B, b) of a 1-cell and 2-cell in K.
Denote by:

g := bTf : (TA,mA)→ (B, b),

g := bTf : bTfTa = gTa⇒ bTbT 2f = bmBT
2f = bTfmA = gmA

the images of f, f under the isomorphism bT (−) from 2.14. With this isomorphism,
it is easy to see that (f, f) is a colax algebra morphism (i.e. 2.6 and 2.7 hold in K):

bTf · fTa = fmA · fα (3.14)

fiA · fα0 = 1f :A→B (3.15)

if and only if the following identities hold in T-Algs
6:

gmTA · gT 2a = gTmA · gTα, (3.16)

gT iA · gTα0 = 1g. (3.17)

Notice that these are precisely the identities we require in the definition of the co-
herence cocone, the 3.8 and 3.9.

Similarly, given two colax morphisms (f1, f1), (f2, f2) between (A, a, α, α0) and
(B, b) together with a 2-cell φ : f1 ⇒ f2, we can see that φ it is a colax morphism
transformation (2.9 is satisfied) if and only if the 2-cell φ′ := bTφ : g1 ⇒ g2 satisfies
cocone morphism condition 3.10.

It can be further proven that this correspondence between coherence cocones and
colax morphisms is functorial and 2-natural in (B, b), thus estabilishing the following
isomorphism of categories:

Lax-T-Algc((A, a, α, α0), (B, b)) ∼= Coh(T-Algs, Res(A, a, α, α0), (B, b)) (3.18)

6Note that this equation make sense in T-Algs, take the term gT iA for example. g is a 2-cell
in T-Algs and TiA is a morphism in T-Algs and whiskering operation in T-Algs is the same as in
2-category K.
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Assume now that T-Algs admits a colax codescent object (e : (TA,mA)→ (A′, a′), e).
By remark 3.11, this means that we have 2-natural isomorphism:

T-Algs((A
′, a′), (B, b)) ∼= Coh(T-Algs, Res(A, a, α, α0), (B, b)). (3.19)

Composing these two isomorphisms we arrive at:

Theorem 3.15. If T is a 2-monad, then T-Algs admits colax codescent objects of
resolutions of lax algebras if and only if the inclusion T-Algs ↪−→ Lax-T-Algc admits
a left adjoint.

Remark 46. The component of the unit of this adjunction at a lax algebra (A, a, α, α0)
is the colax morphism:

(eiA, eiTA) : (A, a, α, α0)→ (A′, a′),

where (e : (TA,mA) → (A′, a′), e) is the colax codescent object of the resolution
Res(A, a, α, α0) in T-Algs.

Definition 48. Given a lax T-algebra (A, a, α, α0), we call the image of the left
adjoint (A′, a′) a strictification of the lax T-algebraA. It is the codescent object of the
resolution Res(A, a, α, α0) in T-Algs. We may also call it a colax morphism classifier
because every colax morphism admits a factorisation through a strict morphism:

(A, a, α, α0) (A′, a′)

(B, b)

(eiA, eiTA)

(f, f)
∃!(g, 1)

We now aim to prove the lax coherence result: we wish to show that each component
of the unit of the adjunction T-Algs ↪−→ Lax-T-Algc has a right adjoint in K:

A A′

q

eiA

`

(3.20)

In other words, we have to find a 1-cell q and two 2-cells ηA : 1⇒ qeiA, εA : eiAq ⇒ 1
satisfying triangle identities. Turns out this is rather easy when we have Theorem
1.4 at our disposal:

Theorem 3.16. Assume what we did in Theorem 3.15. If moreover U : T-Algs → K
preserves colax codescent objects, the components of the unit of the adjunction have
(internal) right adjoints in K.
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Proof. Assume (A′, a′) is a colax codescent object in T-Algs. If U preserves it, A′ is
colax codescent object in K and there is 2-natural isomorphism:

Coh(K,Res(A, a, α, α0),−) ∼= K(A′,−) (3.21)

Composing with the adjunction from Remark 3.5, we obtain an adjunction:

K(A,−) K(A′,−)

`

(3.22)

By Lemma 1.4, this adjunction is given by an internal adjunction q ` eiA in K.

Explicitly, q is the unique morphism such that:

qe = a

qe = α

The unit of the adjunction is α0 : 1⇒ aiA = qeiA. Next, note that the counit of the
adjunction from Remark 3.5 evaluated at the cocone (e, e) is:

ε(e,e) = eiTA : (eiAa, eiAα)→ (e, e)

Consider the isomorphic image (under 3.21) of ε(e,e). We obtain a component of the
counit of the adjunction 3.22 evaluated at 1A′ . It is the unique 2-cell ε such that:

εe = eiTA.

and this is the counit of the adjunction (q ` eiA).

Remark 47. Note that Theorem 3.16 can be proven without the knowledge of The-
orem 3.5 if we use the same approach to the one in [16, Theorem 3.2]. With this
approach, Lack sketched a proof of (the dual of) Theorem 3.16 in [20, Theorem 8.6].

Remark 48. Using Theorem 3.13, we may modify the assumption of U preserving
colax codescent objects to U preserving coequifiers and coinserters.

Remark 49. Note that the adjunction q ` eiA lives in K and can’t be lifted up to
Lax-T-Algc (as opposed to the case of pseudo-T-algebras). We can however equip q
with the structure of a lax morphism. See Lemma 2.1.

Let’s mention two variations of Theorem 3.15 (these can be done for the classical
coherence results as well). Denote NLax-T-Algco the 2-category of normal lax al-
gebras, colax algebra morphisms and colax morphism transformations. Both of the
inclusions:

T-Algc ↪−→ Lax-T-Algc and NLax-T-Algco ↪−→ Lax-T-Algc

are fully faithful. Assume what we did in Theorem 3.15. It is now immediate to ver-
ify that the adjunction from this Theorem restricts to an adjunction between T-Algs
and T-Algc (or NLax-T-Algco) and we also get an internal adjunction (ε, α0) : eiA a q
between algebra A and its strictification. Moreover, in both of these cases α0 is in-
vertible, so by Lemma 1.3 we obtain that eiA is a fully faithful arrow. To summarize:
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Corollary 3.6. If T is a 2-monad for which T-Algs admits colax codescent objects,
then the inclusions T-Algs ↪−→ T-Algc, T-Algs ↪−→ NLax-T-Algco admit a left adjoint.
If moreover U : T-Algs → K preserves colax codescent objects, each component of
the unit of the adjunctions admits (an internal) right adjoint and is (internally) fully
faihtful.

It can be verified that the adjunction (ε, α0) : q ` eiA : A→ A′ generates an internal
monad (aiA, αiTAiA, α0) in K. Furthermore, the adjunction generates the whole
algebra (A, a, α, α0) in the sense of Definition 37. To see this, note that we’d need
to have:

A A′ TA′ T 2A TA
TiATea′q

=a (3.23)

as well as:

T 2A T 2A′ TA′ TA

TA TA′ A′ A

A′

TA′

T 2(eiA) Ta′ Tq

mA mA′

T (eiA)

a′

q

T (eiA) a′ q

1

1

⇓Tε

=α

Note that since e is a strict morphism of algebras (TA,mA) → (A′, a′), we have
a′Te = emA, from which (along with the fact that qe = a) 3.23 follows. Also:

qa′TεTa′T 2eT 2iA = qa′TεT (emA)T 2iA

= qa′TεTe

= qa′T (εe)

= qa′T (eiTA)

= qa′TeT iTA
(∗)
= qemTATiTA

= α

Where (∗) is due to the fact that e is a 2-cell in T-Algs.

More is true. The 2-cell of the morphism (eiA, eiTA) is equal to the 2-cell εa′T (eiA).
This is what we refer to as a bounding condition. The adjunction q ` eiA is then
initial amongst those adjunctions with bounding condition that generate the algebra
A. This is an analogue to the fact that the adjunction generating the Kleisli category
CT for a monad T on a category C is initial amongst the adjunctions generating the
monad T . We will see this in the next section.
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Proposition 3.2. Let (ε, α0) : q ` eiA : A → A′ be the adjunction from Theorem
3.16 (hence assume everything we did then). Let (D, d) be a strict T-algebra and
(l, l) : (A, a, α, α0)→ (D, d) a colax morphism that is also a left adjoint
(ε′, α0) : r ` l : A→ D in K. Assume that it generates the algebra A in the sense of
Definition 37:

a = rdT l (3.24)

α = rdTε′TdT 2l (3.25)

Then there is a unique strict T-algebra map θ : (A′, a′)→ (D, d) satisfying:

(l, l) = θ(eiA, eiTA) (3.26)

If moreover the counit ε′ of the adjunction satisfies the bounding condition

l = ε′dT l, (B)

the map θ commutes with right adjoints as well.

Proof. From the existence of the left adjoint to T-Algs ↪−→ Lax-T-Algc we immedi-
ately see that there is a unique strict morphism θ : (A′, a′)→ (D, d) commuting with
colax algebra maps (3.26).
Look at this picture.

(A, a, α, α0) (A′, a′)

(D, d)

(eiA,eiTA)

(l, l)

∃!(θ, 1)

q

ra

a

Assume now that the adjunction satisfies the bounding condition. We want to show
that it commutes with dotted arrows as well. According to the universal property of
(e, e), it is enough to show that:

rθe = a

rθe = α

Thanks to 3.24, 3.25, these equations will follow if we in particular show that:

θe = dT l (3.27)

θe = dTε′TdT 2l (3.28)

Since both θe and dT l are strict morphisms (TA,mA)→ (D, d), knowing the isomor-
phism 2.14, it is enough to show that these morphisms are equal after pre-composing
with iA. For 3.27 we get:

θeiA = l = diDl = dT liA
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Similarly for 3.28: Both θe and dTε′TdT 2l are 2-cells in T-Algs. Again, by isomor-
phism 2.14 (with (T 2A,mTA) in place of (TA,mA)), it is enough to prove that they
are equal after precomposing them with iTA. We get:

θeiTA
3.26
= l

B
= ε′dT l

= diDε
′dT l

= dTε′iDdT l

= dTε′TdiTDT l

= dTε′TdT 2liTA

and the proof is complete.

3.4 Examples of lax coherence

In this section we give the exposition on two instances of a lax coherence that have
been proven in the past, namely identity 2-monad and lax functor 2-monad. We
show how Theorem 3.16 is a generalization of these results. We also compare other
known results from Section 1.3 and from [32] with what we’ve proven in the previous
section.

Identity 2-monad

Consider the identity 2-monad 1Kop (Example 26) on a base 2-category Kop that
admits colax codescent objects. 1K then clearly preserves them. It’s true that
T-Algs = Kop and Lax-T-Algc = mnd(K)op. The existence of a left adjoint to
the inclusion Kop ↪−→ mnd(K)op:

Kop mnd(K)op`

(3.29)

is equivalent to the existence of a right adjoint to the inclusion K ↪−→ mnd(K):

K mnd(K)

`

(3.30)

By Definition 26, this adjunction, if it exists, computes Kleisli objects in Kop (EM-
objects in K). We thus obtain that the category (A′, 1A) (the strictification of the
lax 1-algebra (A, t, µ, η) and the Kleisli object At for a monad (A, t, µ, η) (regarded
as a monad in (Kop)op = K) are the same thing. We also have:

• A 2-category K admits the construction of algebras if it admits colax descent
objects.
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• A 2-category K admits Kleisli objects if it admits colax codescent objects.

Next, given a 2-category Kop that admits codescent objects and an internal monad
(t : A → A, µ, η), we find that the category Coh(Kop,Res(t, µ, η), B) is precisely
the category Alg(t, B) (Definition 22) for Kop. Theorem 3.14 can be thus seen as a
generalization of Theorem 1.6. We also gain some intuition on what the coherence
category Coh(K,Res(A, a, α, α0), B) for a general 2-monad T is. It’s some kind of a
”category of algebras for a lax T-algebra”!

Assume now that K = Cat. We’ve mentioned that in the paper [31], At was observed
to be the Kleisli category of a monad. Recall this fact about the Kleisli category:

Lemma 3.17. For a monad (t, µ, η) acting on a category A, there is a canonical
adjunction:

A At

ut

ft

`

(3.31)

that furthermore generates this monad.

Proof. See [29, Lemma 5.2.11] for the proof and definitions of ft, ut.

In [31] (just above Theorem 13) the author also identifies the unit of the adjunction
3.29 to be this functor ft : A→ At. As adjoints are unique up to an isomorphism, we
lose nothing if we identify our q with ut and denote ft := eiA = e. Our lax coherence
Theorem 3.16 for the case of identity 2-monad is then essentially just the assertion
that:

Proposition 3.3. For a monad (t, µ, η) acting on a category A, the free functor
ft : A→ At (defined in [29, Lemma 5.2.11]) admits a right adjoint.

It is a well known fact that the Kleisli category At is initial amongst the adjunctions
that generate the monad t:

Proposition 3.4. The adjunction ft a ut (defined in [29, Lemma 5.2.11]) generates
the monad t. Moreover, if an adjunction (ε′, η′) : f ′ a u′ : B → A generates the
monad t, there is a unique functor θ : At → B that commutes with left and right
adjoints:

A At

B

ft

f ′

∃!θ

ut

u′a

a
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i.e. θft = f ′, ut = uθ.

Proof. [29, Proposition 5.2.12].

Let’s study the relationship between this fact and Theorem 3.2. Assume again that
we’re given a category A and a monad (t, µ, η) on A and that (ε, η) : ft a ut : At → A
is the adjunction from Lemma 3.17. Assume that there is another adjunction
(ε′, η′) : f ′ a u′ : B → A that generates the monad t. Recall that this means
that:

t = u′f ′

µ = u′ε′f ′

η = η′

From the point of view of the identity 2-monad 1Cat, the category A is a lax 1Cat-
algebra (A, t, µ, η) and B is a strict 1Cat-algebra (B, 1B). We would like to equip f ′

with a 2-cell f : f ′ ⇒ f ′t such that (f ′, f) is a colax morphism of algebras:

(f ′, f) : (A, a, µ, η)→ (B, 1B)

The colax morphism equations 2.6, 2.7 dictate us that such f would have to satisfy:

f · f ′µ = f · ft
f · f ′η = 1

As η = η′, this suggests that we might put f := ε′f ′ so that the second equation
follows from the triangle identity. The first equation becomes:

ε′f ′ · f ′u′ε′f ′ = ε′f ′ · ε′f ′u′f ′

which is true because of the middle four interchange law (you can also draw this).
Moreover, the defining equation f := ε′f is precisely the bounding condition

of Proposition 3.2. We conclude that the Proposition 3.2 is a stronger version of
Proposition 3.4: the adjunction ft a ut is not just the initial object in the category
of adjunctions generating the monad t, but in a larger category.

Lax functor 2-monad

Considering the lax functor 2-monad (Example 29), we’ve previously noted that
T-Algs = [J ,Cat] is cocomplete and that this 2-monad preserves all colimits (in
particular codescent objects). The lax coherence result for lax functors reads as
follows:

Theorem 3.18. Let J be a small 2-category. Denote LaxHom[J ,Cat]c the 2-
category of lax functors, oplax natural transformations and modifications. The in-
clusion [J ,Cat] ↪−→ LaxHom[J ,Cat]c has a left 2-adjoint. Each component of the
unit of this adjunction has a right adjoint in [obJ ,Cat].
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Oplax natural transformations have been called right lax natural transformations
in the paper [32]. In this paper, the author gives an explicit description of the
strictification F ′ of a lax functor F : J → Cat (without the use of codescent objects).
Moreover:

• [32, Theorem 3] describes the existence of the left adjoint to the inclusion
[J ,Cat] ↪−→ LaxHom[J ,Cat]c,

• [32, Theorem 2] describes a canonical adjunction between a lax functor F and
its strictification. Note that their described adjunction is already ”lifted” to
form a lax/colax adjunction, as described by Lemma 2.1,

• [32, Corrolary of Theorem 3] shows that the canonical adjunction generating a
lax functor is initial amongst the adjunctions generating it. It can be verified
that Theorem 3.2 is a stronger result.

This example also reduces to the previous one if we put J = 1.



Concluding remarks

There are several things that could be done in the future. As Theorem 3.16 is a
generalization of the theorems about the Kleisli object Ct for a monad t, it could
be examined which of the results from the formal theory of monads [31] have their
analogues for non-identity 2-monad (such an analogue is Proposition 3.2).

The assumption in the coherence theorem 3.7 that U preserves codescent objects
as colimits can be (by 3.1) weakened to the assumption that it preserves them only
as a bicolimit. It’s quite possible that the assumptions in lax coherence theorem 3.16
can be further weakened.

The lax coherence result could be applied to many more examples once it is
proven that colax codescent objects commute with products, result analogous to [16,
Proposition 4.3]. In particular we would obtain a canonical monoidal adjunction
between a lax monoidal category and its strictification.
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Sketch of the proof of Proposition 2.1. Let F : P → T-Algs be a 2-functor and
W : P → Cat a weight. Assume (L, l) is the limit of F weighted by W in
T-Algs, that is exhibited by the limit cone η : W ⇒ T-Algs((L, l), F−). Denote as
U : T-Algs → K forgetful 2-functors and by Uη the induced cones of UF and K. We
want to show that Jη is a limit cone, i.e. prove one-dimensional and two-dimensional
universal properties.

Assume γ : W ⇒ Lax-T-Algc((B, b), JF−) is a cone. Because U is a right
adjoints, it preserves limits. Thus L is a limit of UF weighted by W and Uη is a
limit cone. Applying U to γ we obtain a cone in K. By the one-dimensional universal
property of Uη there is a unique morphism θ : B → L in K such that:

K(η, UF−) · Uη = Uγ.

For the components at P ∈ P and x ∈ WP this reads as

UηP (x) · θ = UγP (x). (3.32)

We would like to find a 2-cell θ : θb ⇒ lT θ such that (θ, θ) : (B, b) → (L, l) is a
colax morphism of algebras. By the two-dimensional universal property of Uη, it is
enough to find a modification

ρ : K(θb, UF−) · Uη → K(lθ, UF−) · Uη : W ⇒ K(B,UF−) : P → Cat.

A component at P ∈ P is a natural transformation:

ρP : UηP θb⇒ UηP lT θ : WP → K(B,UFP ) ∈ Cat,

component of which at x ∈ WP is a 2-cell in K:

ρP,x : UγP (x)θb⇒ UηP (x)lT θ

or equivalently a 2-cell (because γP (x) is a strict algebra morphism and 3.32):

ρP,x : γP (x)b⇒ pTηP (x)Tθ = pT (γP (x))

Denoting the strict algebra FP as (FP, p), note that γP (x) : (B, b) → (FP, p) is a
colax morphism of algebras; denote its 2-cell component as γP (x). For x ∈ WP , put:

ρP,x := γP (x)
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It is easy to verify that ρP is a natural transformation - the naturality condition
is precisely morphism transformation condition of γP (r) for r : x→ y ∈ P .

The modification condition for ρ says that for any Q : P → P ′ ∈ P we must
have:

K(B,UF (Q))ρP = ρP ′WQ

it can be verified that this is satisfied because γ is natural. Thus ρ is a modification.
By the two-dimensional universal property, there is a unique 2-cell θ : θb⇒ lT θ such
that:

K(θ, UF−)η = ρ.

We ommit the verification that (θ, θ) is a unique colax morphism of lax algebras
that commutes ”with the legs” of the cone. We also ommit the verification of the
two-dimensional universal property.

Proof of Theorem 2.2. Assume we’re given a colax morphism between lax algebras
in Lax-T-Algc:

(A, a, α, α0) (B, b, β, β0)
(f, f)

Apply the forgetful 2-functor and form lax limit of an arrow in K:

L

A B

u

f

v⇒λ

We need to do the following:

1. Show that there is a unique lax algebra structure (L, l, l, l0) on L,

2. prove that u, v have a unique lift to algebra morphisms and that λ lifts to an
algebra 2-cell,

3. prove one dimensional universal property,

4. prove two-dimensional universal property.

Let’s start:

1. Consider the 2-cell on the left hand side.

TL

TA TB

A B

=

TL

L

A B

Tu Tv

Tf

a b

f

∃!l

u v

f

⇑

⇑
⇑

Tλ

f

λ
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By a universal property there is a unique l : TL→ L such that:

ul = aTu (3.33)

vl = bTv (3.34)

λl = bTλ · fTu (3.35)

Next, it can be shown that the tuple of 2-cells (αT 2u, βT 2v) satisfies the con-
dition 1.8, and so by 2-dimensional universal property there exists a unique
2-cell l : lT l⇒ lmL such that:

ul = αT 2u (3.36)

vl = βT 2v (3.37)

It can also be shown that the tuple of 2-cells (α0u, β0v) satisfies 1.8, and thus
there is a unique l0 : 1⇒ liL such that:

ul0 = α0u

vl0 = β0v

In order for (L, l, l, l0) to be a lax algebra, we need to show (2.2, 2.3):

lTmL · lT l = lmTL · lT 2l (3.38)

lT iL · lT l0 = 1 (3.39)

liTL · l0l = 1 (3.40)

Proof of this claim. Let’s do 3.38, others are done in the same way. By two-
dimensional universal property, it is enough to show that LHS and RHS are
equal after composing them with u and also with v. Let’s show it with u:

u(lTmL · lT l) = αT 2uTmL · aTuT l
= αTmAT

3u · aTαT 3u

= αTmAT
3u · aTαT 3u

2.2
= (αmTA · αT 2a)T 3u

= αmTAT
3u · αT 2aT 3u

= αT 2umTL · αT 2uT 2l

= u(lmTL · lT 2l)

2. The defining equations for l and l0 ensure that u, v are algebra morphisms (and
are strict morphisms). The defining equation for l is precisely the requirement
that λ is an algebra 2-cell (fu, fTu)⇒ (v, 1) : L→ B.

3. Assume we’re now given this 2-cell in Lax-T-Algc:
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(K, k, k, k0)

(A, a, α, α0) (B, b, β, β0)

(w,w)

(f, f)

(w′, w′)
⇒δ

Applying forgetful 2-functor again, we get that there’s a unique 1-cell
θ : K → L such that:

λθ = δ (3.41)

uθ = w (3.42)

vθ = w′ (3.43)

We want to find θ so that (θ, θ) is a colax morphism (K, k, k, k0)→ (L, l, l, l0)
satisfying:

(u, 1) · (θ, θ) = (w,w) (3.44)

(v, 1) · (θ, θ) = (w′, w′) (3.45)

λ(θ, θ) = δ (3.46)

Note that the tuple (w,w′) is a modification λθk → λlTθ and satisfies the
condition 1.8.

Proof of this claim.

λlTθ · fw3.35
= (bTλ · fTu)Tθ · fw
= bTλTθ · fTuTθ · fw
3.41
= bTδ · fTuTθ · fw
3.42
= bTδ · fTw · fw
(*)
= w′ · δk
= w′ · λθk

where (∗) is due to the fact that δ is a 2-cell in Lax-T-Algc.

There thus exists a unique 2-cell θ : θk ⇒ lT θ : TK → L such that:

uθ = w (3.47)

vθ = w′ (3.48)

We wish to show that (θ, θ) is a colax morphism, i.e.:

θmL · θk = lT 2θ · lT θ · θTk
θiK · θk0 = l0
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According to two-dimensional universal property, it is enough to show that
these are equal after whiskering with u and v. Moreover, from the construction
it follows that (θ, θ) satisfies 3.44, 3.45. Because in Lax-T-Algc the result of
whiskering λ and (θ, θ) is λθ, from 3.41 we know that it equals δ. So 3.46 is
satisfied as well.

4. Assume that for two colax morphisms

(θ, θ), (θ′, θ
′
) : (X, x, x, x0)→ (L, l, l, l0)

We’re given a modification

ρ : λ(θ, θ)→ λ(θ′, θ
′
)

That is, algebra 2-cells

ρ1 : (uθ, uθ)⇒ (uθ′, uθ
′
),

ρ2 : (vθ, vθ)⇒ (vθ′, vθ
′
),

satisfying this pasting diagram equation in Lax-T-Algc:

λ(θ′, θ
′
) · (f, f)ρ1 = ρ2 · λ(θ, θ)

As we said earlier, whiskering and composing algebra 2-cells is done the same
as in K, so ρ1, ρ2 are 2-cells in K satisfying:

λθ′ · fρ1 = ρ2 · λθ

And so ρ is also a modification in K. By the two-dimensional universal property
in K, there is a unique 2-cell ρ′ : θ → θ′. Such that:

uρ′ = ρ1

vρ′ = ρ2

We wish to show that this is a 2-cell in Lax-T-Algc:

ρ′ : (θ, θ)⇒ (θ′, θ
′
) : (X, x, x, x0)→ (L, l, l, l0)

In other words, it satisfies:

lTρ′ · θ = θ
′ · ρ′x

Again, it is enough to show that this equality holds after whiskering with u
and v. Let’s show it for u:

u(lTρ′ · θ) = ulTρ′ · uθ
= aTuTρ′ · uθ
= aTρ1 · uθ
= uθ

′ · ρ1x
= u(θ

′ · ρ′x)

And the proof is complete.
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