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1 Introduction

My focus in my Ph.D. has been on 2-category theory. My primary interests are lax structu-
res and double categories. This includes turning lax algebras for a 2-monad into strict
ones and computing lax morphism classifiers, the correspondence between factorization
systems and double categories, lax aspects of KZ-monads with an eye towards applications
in two-dimensional monad theory, the replacement of structure by property a la Claudio
Hermida. I am also very open-minded about doing research on new topics in the future and
broadening my horizons.

This section will serve as a brief introduction to these concepts, while in Section [2] I will
outline my proven results and the work that’s in progress.

1.1 Strictification of structures

A famous coherence theorem for monoidal categories is the statement that “every monoidal
category is monoidally equivalent to a strict one”. A modern approach to problems of
coherence uses two-dimensional monad theory [I] - the statement becomes that under
certain conditions, “every pseudo-T-algebra is equivalent to a strict T-algebra.”

One precise formulation that has been proven in [2] uses the machinery of codescent
objects - a certain weighted 2-categorical colimit that’s a higher analogue of coequalizers.

Definition 1.1. Given a 2-category K and a simplicial object X : A”? — K in K, the
codescent object of X is a colimit of X weighted by a 2-functor ¢ : A — Cat that regards
every ordinal as a category.

By the iso-codescent object we mean the same colimit but the weight is given by com-
posing ¢ with the reflection and then inclusion of Cat into the 2-category of grupoids.

Definition 1.2. Given a 2-monad T on a 2-category K and a strict T-algebra A = (A4, a),
by its resolution Res(A) we mean the simplicial object in T-Alg, associated to the algebra,
i.e. Res(A); := TA™L.

Similarly one can define the resolution for a colax T-algebra, except this time we only get
a “lax” simplicial object in T-Alg,.

Theorem 1.3 (|2]). Let 7" be a 2-monad on a 2-category K and assume that the 2-category
of strict algebras and strict morphisms T-Alg, admits codescent objects. Then the inclusion
2-functors of strict algebras into pseudo-algebras and strict algebras into strict algebras and



pseudo morphisms have left 2-adjoints that send a T-algebra to the iso-codescent object of
its resolution:
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If T preserves reflexive codescent objects, the unit of the above adjunction is an equivalence
in Ps-T-Alg, making every pseudo-T-algebra A = (A, a,~, ) equivalent to a strict T-algebra
A= (A d).

There is also a less known lax version of the theorem that has been proven in [3]:

Theorem 1.4. Let T be a 2-monad on a 2-category K and assume that the 2-category of
strict algebras and strict morphisms T-Alg, admits codescent objects. Then the inclusion
2-functors of strict algebras into colax algebras and strict algebras into strict algebras and
lax morphisms have left 2-adjoints that send a T-algebra to the codescent object of its
resolution:
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If T preserves reflexive codescent objects, the unit of the above adjunction is (an internal)
right adjoint in CoLax-T-Alg;, making every colax-T-algebra A = (A, a,~,t) related to the
T-algebra A’ = (A’,d’) by an adjunction.

1.2 Internal algebra classifiers

Definition 1.5. Let A := (A, a) be a strict T-algebra. By an internal T-algebra in A we
mean a lax T-algebra morphism # v~ A from the terminal T-algebra .

The value of the left adjoint in Theorem at the terminal algebra = is the T-algebra ()’
that is called an internal algebra classifier, meaning that internal algebras in a T-algebra
A correspond to strict T-algebra morphisms out of ()" — A. Thus (*)" can be seen as a
universal T-algebra containing an internal T-algebra.

For instance, given the free strict monoidal category 2-monad 7" on Cat, the internal al-
gebra classifier is given by the category A of (possibly empty) ordinals and order-preserving
maps.

The questions of giving explicit description to various internal algebra classifiers has been
studied by Mark Weber in [4]. By Theorem , these are given by certain codescent objects
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so the question becomes how to compute codescent objects of “nice” simplicial objects. Mark
Weber defines a crossed double category X as a double category for which the domain
functor d; : X7 — X is a split opfibration (with additional axioms), and gave an explicit
description of the codescent object of X (regarded as a simplicial object) in terms of
pullbacks in Set. This is what he calls a category of corners Cnr(X) associated to X.

The 2-monads that Weber has been studying (that include the free monoidal category
and free symmetric strict monoidal category 2-monads) have the property that the reso-
lution Res(x) of a terminal T-algebra has the structure of a crossed double category, and
thus his formula for the category of corners applies here.

1.3 Two-dimensional monad theory

In the milestone paper [I] the authors gave a systematic study of 2-monads. This paper
gave a proof of the coherence theorem for strict algebras and pseudo morphisms (under
different assumptions than those in Theorem [1.3)), introduced the notions of flexible and
semifiexible algebras and gave their characterizations, studied limits and colimits in T-Alg
as well as various biadjunctions related to this 2-category. I highlight the following result
and one of its corollaries:

Theorem 1.6. Any 2-adjunction pictured below-left gives rise to a biadjunction pictured
below right:
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Corollary 1.7. Assume that T-Alg, is cocomplete. Then T-Alg is bicocomplete.

1.4 Coherence via universality

In the 70’s, Grothendieck estabilished what Claudio Hermida calls “coherence via univer-
sality” - the process of replacing pseudo-structure by a property-like structure. In Grothen-
dieck’s case, it was replacing pseudofunctors by functors with the property of being an
opfibration. Another instance of this was given by Hermida in [5] where monoidal categories
were described as multicategories with the property of being representable.

In a follow up paper [6] Hermida gave a general framework for this process, namely:
given a 2-monad T on a 2-category K with good properties, there is a lax-idempotent
2-monad 7', and a morphism of monad inducing a biequivalence:

Ps-T-Alg ~ Ps-T' -Alg.



One disadvantage of the approach in the paper is that it is fairly technical and involves
bicategories and two-sided internal fibrations. A more conceptual approach to this problem
has been promised to be done by the authors in the paper [7] but this has not been fullfilled
since.

2 Current research

2.1 Lax coherence theorem

My focus has been on better understanding Theorem - this began in my Master’s thesis
where I gave an alternative proof to this theorem. In my Ph.D. I had two goals regarding
it:

e Find an explicit description for the strictification 2-functors (=)' : Lax-T-Alg. —

T-Alg, and (—)" : T-Alg, — T-Alg,,
e find a class of 2-monads that satisfy the assumptions of the theorem,

For various concrete examples, the answer to the first point has been given - for instance in
[8] for lax functors (this specializes to the computation of the Kleisli category of a monad),
in [9] for double categories and colax double functors, for 2-categories and lax functors in
folklore, as mentioned in [10].

In my work I have extended the work of Mark Weber (described in Section [1.2) to
compute not just strictifications of the terminal T-algebra *, but a general colax T-algebra
A. This is done as follows.

Starting with a cartesian 2-monad 7" on Cat, I defined the concept of a codomain-lax
category - a double category-like structure for which the horizontal composition f o g of
horizontal morphisms f, g won’t necessarily have the same codomain as f. I show that for
this class of diagrams, the codescent object can be given using a generalized category of
corners construction Cnr(X) that uses generators and relations.

In the special case where T is a 2-monad of form Cat(7”) for a cartesian monad 7" on
Set, Cnr(X) can be described only using pullbacks, which implies that it’s automatically
preserved by T. We obtain:

Theorem 2.1. Let 7' be a 2-monad on Cat that is of form Cat(7”) for a cartesian monad
T on Set. Then Theorem [[.4] holds for 7.

In fact, I prove this more generally where instead of Cat I have the 2-category Cat(&)
of categories internal to category £ that is sufficiently cocomplete. All of the examples
mentioned above can be seen to follow from this Theorem.



2.2 Factorization systems and double categories

In 2021 I started studying the relationship between orthogonal factorization systems and
double categories, both fundamental concepts in category theory.

I showed that for every orthogonal factorization system (€, M) on a category C there is
an associated double category D¢ a4 whose objects are the objects of C, vertical morphisms
are those of £, horizontal morphisms are those of M, and squares are commutative squares.

This double category has certain desirable properties, the most important of which is
the fact that every top-right corner can be filled to a bicartesian square - a bidirectional
analogue of cartesian squares used in the definition of crossed double categories of Mark
Weber. I call these factorization double categories.

On the other hand, given a factorization double category, there is an associated category
Cnr(X) (that’s again given by an analogue to Weber’s category of corners) and two classes
of morphisms (€y, Mx) that form an orthogonal factorization system on Cnr(X).

These two processes are mutually equivalence-inverse, providing us with the equivalence
of the category OFS of categories equipped with orthogonal factorization system and
functors preserving both classes, and a full subcategory FactDbl of the category of small
double categories spanned by factorization double categories.

Moreover, a similar equivalence holds between strict factorization systems and what I
call codomain-discrete double categories - those for which the codomain functor dy : X; —
Xy is a discrete opfibration. There’s two applications of these concepts I had in mind:

e The equivalence OFS ~ FactDbl gives conceptual reasons for why categories like
Par(C) (of objects and partial maps in C) or Cof(€) (of categories and cofunctors
internal to £) admit orthogonal factorization systems - both can be described as the
category of corners for a naturally occuring factorization double category).

e Because the resolution Res(A) of a T-algebra A for a 2-monad on Cat of form Cat(7")
is codomain-discrete, together with the results from Subsection this explains why
lax morphism classifiers for these 2-monads always come equipped with a strict fac-
torization system.

These results have been put into a preprint [I1] that has been sent to a specialized journal.

2.3 Lax aspects of KZ pseudomonads

The next area of my study concerns laz-idempotent pseudomonads and certain aspects that
have not been studied before - characterizations of pseudoalgebras for the pseudomonad
in terms of coreflectors (morphisms in a 2-category that have a left adjoint with invertible
unit), weak completeness of the Kleisli 2-category and the rise of various lax adjunctions
between Kleisli 2-categories for such pseudomonads.



To properly motivate the following, let’s start with examples from two-dimensional mo-
nad theory. Note that as with any 2-adjunction, the one in Theorem [I.4] between T-Alg, and
T-Alg, generates a 2-comonad @); that’s called a laxz morphism classifier 2-comonad. Simi-
larly we get a pseudo-morphism classifier 2-comonad (), generated by the 2-adjunction in
Theorem [1.3] The first step for me was recognizing that the results mentioned in Subsection
[1.2] hold more generally if we replace @, : T-Alg, — T-Alg, by a general pseudo-idempotent
2-comonad ) on a 2-category K. The study of T-Alg then becomes the study of the Kleisli
2-category for the 2-comonad @ (in case @) = (), this gives T-Alg). To study lax analogue of
these results, I move from pseudo-idempotent 2-comonads to lax-idempotent 2-comonads,
and to make exposition clearer and cover yet more examples this becomes the study of
lax-idempotent pseudomonads.

Throughout this section, let (D, m, i) be a lax-idempotent pseudomonad on a 2-category
KC and denote by J : L — Kp the inclusion pseudofunctor to its Kleisli 2-category. Call a
morphism f: A — B a J-coreflector if Jf is a coreflector in the Kleisli 2-category.

Theorem 2.2. The following are equivalent for an object A € K:

e A admits the structure of a pseudo-D-algebra,

o IC(—,A): K — Cat sends J-coreflectors in I to coreflectors in Cat,

For instance, when applied to a small presheaf pseudomonad P on the 2-category CAT of
locally small categories, the statement becomes a folklore characterization of cocomplete-
ness:

Corollary 2.3. The following are equivalent for a locally small category C:

e C is cocomplete,

e left Kan extensions along small (also called admissible) fully faithful functors exist in

C.

When the dual of this theorem is applied to the pseudomorphism classifier 2-comonad @),
we obtain one characterization theorem for semiflexible T-algebras that has been given in
[12], Theorem 20].

The generalization of Theorem from 2-comonad @), to a general lax-idempotent pseu-
domonad is given as:

Theorem 2.4. Any biadjunction pictured below-left gives rise to a lax adjunction pictured
below right:
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One of the corollaries to this theorem is the fact that there is a canonical lax adjunction
between the Kleisli 2-category and the 2-category of pseudo-D-algebras. The following
corollary concerns my notion of coreflector-limits. These are a certain kind of enriched weak
limits in the sense of [13, Section 4| (with V = Cat, £ being the class of coreflectors). Note
that the word weak is understood here in the sense that the canonical comparison 1-cell to
the limit from any other cone must exist, but is not required to be unique. In addition to the
weak 1-dimensional universal property, these also satisfy a certain 2-categorical property.

Corollary 2.5. Assume that K is complete. Then Kp is coreflector-complete.

In the case of a small presheaf pseudomonad, this result says that the bicategory Prof of
locally small categories and small profunctorsﬂ is complete in this sense.

In the case of a pseudo morphism classifier 2-comonad (), the dual of this corollary
recovers Corollary [1.7]

In case of a lax morphism classifier 2-comonad @); this gives a result on weak cocomple-
teness of the 2-category T-Alg; of strict algebras and lax morphisms. A particular example
includes the 2-category of monoidal categories and lax monoidal functors and variations
thereof. A result of this kind is interesting because colimits in these 2-categories have not
been studied in the literature before (as opposed to limits, see [14], [15]).

2.4 Coherence via universality

My approach to what’s been outlined in Section is given as follows. Assume we’re given
a 2-monad T that is either finitary or preserves reflexive codescent objects, on a 2-category
KC that is sufficiently cocomplete. Consider the lax morphism classifier 2-comonad ); on
T-Alg,. It has an associated 2-monad 7., on the 2-category ;-Coalg, of (Q);-coalgebras
which is the sought replacement of T' by a lax-idempotent 2-monad.

It can be shown that in case the 2-monad T is of form Cat(7”), the corresponding
Q;-coalgebras are equivalent to T'-multicategories. The equivalence of pseudo-T-algebras
and pseudo-T"-algebras is then the equivalence of monoidal categories and representable
multicategories as studied by Hermida [5].
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