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Conformal Riemannian and projective structures

Conformal structures

Conformal Riemannian manifolds (M, [g ]) can be viewed as finite
type G-structures with the structure group CSO(p, q)
p + q = n = dimM, and the Cartan approach yields the
prolongation Rn ⊕ (cso(p, q)⊕ R)⊕ Rn∗ = g− ⊕ g0 ⊕ g1. The
Levi-Civita connections from [g ] extend to the Weyl connections
parametrized by one-forms on M.

Projective structures

A projective structure on M is a class of all connections [γ] sharing
their geodesics. The projective structures are second order
G -structure since g0 = gl(n,R) in this case. Again, as well known,
given one linear connection γ, the class [γ] is parametrized by
one-forms on M.
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Cartan connection

Definition

Cartan geometries of type G/P are deformations of the
homogeneous space G → G/P with the Maurer–Cartan form
ω ∈ Ω1(G ; g):
absolute parallelism ω ∈ Ω1(G, g) on a principal fiber bundle
G → M with structure group P, enjoying suitable invariance
properties with respect to the principal action of P:

ω(ζX )(u) = X for all X ∈ p, u ∈ G (the connection
reproduces the fundamental vertical fields)

(rb)∗ω = Ad(g−1) ◦ ω (the connection form is equivariant
with respect to the principal action)

ω|TuG : TuG → g is a linear isomorphism for all u ∈ G (the
absolute parallelism condition).
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Curvature

Definition

The structure equations K = dω + 1
2 [ω, ω] define the curvature K

of the Cartan connection ω.

ω defines constant vector fields ω−1(X ), X ∈ g.

Trg ·ω−1(X )(u) = ω−1(Adg−1 ·X )(u·g).

Curvature function

κ(u)(X ,Y ) = K (ω−1(X )(u), ω−1(Y )(u))

= [X ,Y ]− ω(u)([ω−1(X ), ω−1(Y )]).

Curvature is a horizontal 2–form.
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Parabolic geometries

Definition

Parabolic geometries are Cartan connections with the choice of
parabolic P in semisimple real G .
Morphisms of the parabolic geometries are principal fiber bundle
morphisms ϕ : G → G′ with ϕ∗(ω′) = ω.

Fixed grading g = g−k ⊕ . . . g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk on Lie
algebra g, p = g0⊕ g1⊕ · · · ⊕ gk , g0 is the reductive part in p,

also write P+ = exp p+ and G− = exp g− for the
corresponding nilpotent subgroups.

Unique decomposition g = g0· exp Υ1· . . . · exp Υk , g ∈ P,
g0 ∈ G0, and Υi ∈ gi .

Grading element is the unique E ∈ g0 with adE|gi = i· idgi for
all i = −k , . . . , k .
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Weyl structures

Definition

Weyl structure on a parabolic geometry (G, ω) is a G0 equivariant
section s̄ : G0 = G/P+ → G, i.e., reduction of the parabolic
structure group P to its reductive part G0.

θs = s̄∗ω− = θ−k + · · ·+ θ−1 : TG0 → g−k ⊕ · · · ⊕ g−1

γs = s̄∗ω0 : TG0 → g0

Ps = s̄∗ω+ = P1 + · · ·+ Pk : TG0 → p+ = g1 ⊕ · · · ⊕ gk .

On the underlying manifold M we obtain the filtration on TM, and:

θ is a soldering form for M (identifying also TM ' grTM)

γ is a linear connection form on M, θ + γ is the affine Weyl
connection

P is a one–form on M valued in T ∗M (measuring the
difference between ω and θ + γ on the image s̄(G0)).
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Natural bundles and tractor bundles

Natural bundles

P–representation λ on a vector space V provides the homogeneous
vector bundle G ×P V and, more generally, the associated vector
bundles

VM = G ×P V

with standard fiber V over all manifolds with a parabolic geometry
of the type G/P. These are the natural bundles V.

Tractor bundles

G -modules V define the tractor bundles VM, and ω provides
induced linear connections on them.

The adjoint representation G provides the adjoint tractor bundles
A, the standard representation of a matrix group on Rn provides
the standard tractors T . The curvature function is identified with
AM-valued 2-form on M.
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The bundle of Weyl structures

Reductions of G to the structure group G0 are equivalent to
sections s of the bundle A = G/G0 = G ×P P/G0, and this is an
affine bundle modelled over 1-forms. All P-modules can be viewed
as G0-modules, thus Γ(VM) ⊂ Γ(VA).

A = G/G0

π

))
V G

66

p0

((

σ̃oo M = G/P

snn

G0 = G/P+

55s̄oo

σ̃◦s̄

dd

Now, ω = (ω− + ω+) + ω0 is an affine connection on A! (noticed
in the recent paper by Čap and Mettler). Moreover, TA = L− + L+

and there is P, the projection to L+ = ker π∗ along L−, the torsion
T + Y and curvature W . We write s∗P = Ps .
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The bundle of Weyl structures

Operators Φ : Γ(VA)→WA in terms of the linear connection ω on
A can be restricted to section from Γ(VM) and expressed in terms
of the Weyl connections:

W

G0

��

Gp0

oo
Φ̃σ̃

;;

σ̃
//

��

V

M Aπ
oo

Φσ

$$

σ ..

WAoo

VA

hh
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The expansion

Restricting to section σ in Γ(VM) ⊂ Γ(VA), clearly the derivative
in the vertical direction will be the algebraic action, while the
difference between ∇sσ and ∇ωσ comes from the algebraic action
of Ps via the P+-action on V. We introduce the Rho-corrected
derivative ∇Ps

= ∇s + Ps . Actually, ∇Ps

is the pullback of ∇ω
restricted to TM ' L− ⊂ TA.

Theorem (1)

For each operator Φ : Γ(VM)→ Γ(WA) given in term of the affine
connection ω on A, there is a universal formula for the operator Φs

expressed in terms of the Weyl connection θs + γs , the curvature
of ω and Ps .

Example: V irreducible (p+ acts trivially, the covariant derivative
written by means of the constant vector fields on G):
(∇ω)2σ̃(X ,Y ) = (∇s)2σ̃(X ,Y ) +∇s

[Y ,Ps
X ]g−

σ̃ − [Y ,PsX ]p·σ̃.
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Transformations

Mimic the approach from projective or conformal geometries and
view the invariants as those in terms ∇s not depending on choice.

Thus we want to now, how our basic objects change if we change
the Weyl structure ŝ = s· exp Υ, Υ : G → p+ is a 1-form.

Change of Weyl connections and gradings

If ŝ = s· exp Υ, and σ = σ1 + · · ·+ σ` is a section of a natural
bundle (corresponding the representation λ), then:

σ̂` =
∑

‖i‖+j=`

(−1)i

i! λ(Υk)ik ◦ . . . ◦ λ(Υ1)i1 ◦ σj

∇̂Pŝ

ξ σ = ∇Ps

ξ σ+
∑

‖i‖+j≥0

(−1)i

i!

(
ad(Υk)ik ◦ . . .◦ad(Υ1)i1(ξj)

)
•σ

Here i is a multiindex (i1, . . . , ik) with ij ≥ 0. We put i ! = i1! · · · ik !
and ‖i‖ = i1 + 2i2 + · · ·+ kik , while (−1)i = (−1)i1+···+ik
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Tranformations – continued

Change of Rho–tensors

P̂i (ξ) =
∑
‖j‖+`=i

(−1)j

j! ad(Υk)jk ◦ · · · ◦ ad(Υ1)j1(ξ`) +∑k
m=1

∑
‖j‖+m=i

j1=···=jm−1=0

(−1)j

j!(jm+1) ad(Υk)jk ◦ · · · ◦ ad(Υm)jm(∇ξΥm) +∑
‖j‖+`=i

(−1)j

j! ad(Υk)jk ◦ · · · ◦ ad(Υ1)j1(P`(ξ)).

Example: |1|-graded g = g−1 ⊕ g0 ⊕ g1, irreducible V:

∇̂ξσ = ∇ξσ − [Υ, ξ] • σ

P̂(ξ) = P(ξ) +∇ξΥ +
1

2
ad(Υ)2(ξ)

Iterating the differentiation, we face derivatives of Υ. Thus, adding
”correction terms” based on P looks promising. This was the
original motivation for introducing the Schouten’s tensor (trace
adjusted Ricci) in the conformal geometry nearly 100 years back.
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The normalization ...

In geometric analysis, we rather look for data defining the
geometric structures straight at the manifolds (e.g., filtration).

In the case of |1|-graded geometries, the parabolic cases represent
a subclass of classical G -structures. In most parabolic geometries,
the complete information is given just by the filtration of TM.
The freedom in defining the geometries is given by H1(g−, g).
Curvature function κ is valued in cochains of H2(g−, g), and there
is the Hodge theory providing the codifferential ∂∗.
The natural normalization condition is ∂∗κ = 0.
For |1|-graded cases, the Weyl connections are all connections with
the given holonomy and the prescribed torsion T , shared by all of
them (e.g., zero in conformal Riemannian or projective), and
choosing one of them, i.e. the Weyl structure s, ω is given by

Ps = −�−1∂∗Rs ,

where Rs is the curvature of the Weyl connection.
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Cartan connections as analogies to affine geometry on
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Bundle of Weyl structures, Weyl connections, and
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The normalization
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The derivatives (works for all Cartan connections!)

Invariant derivative

Similarly to covariant derivatives, we define the invariant derivative
∇ω : C∞(G,V)→ C∞(G, g∗− ⊗ V), ∇s(u)(X ) = ω−1(X )(u)·s.
This operation does not transform sections of VM into sections of
VM, in general!

Fundamental derivative

The extension of the invariant derivative to arguments X ∈ g,
Dω : C∞(G,V)→ C∞(G, g∗⊗V), ∇s(u)(X ) = ω−1(X )(u)·s ∈ V
is and invariant differential operator A∗ ⊗ VM → VM called the
fundamental derivative.

Dω
ξ+ζs = ∇s

ξs + Ps(ξ) • s − ζ • s, where ξ a vector in TM, ζ a
vertical vector on G. (here again – parabolic geometries)

on all tractor bundles, the fundamental derivative is related to
the invariant linear connection ∇Vξ s = Dω

ξ s + ξ • s.
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Invariant jet operator – still for all Cartan connections

Both invariant and fundamental derivatives allow iteration!

Write J1V for the standard fiber J1(G ×P V)o . Then
J1VM = G ×P J1V and J1V = V⊕ (g∗− ⊗ V).

1st order invariant jets

C∞(G,V) 3 s 7→ (s,∇ωs) ∈ C∞(G,V⊕ (g∗− ⊗ V)) defines the
natural 1st order prolongation operator VM → J1VM.

higher orders

C∞(G,V)P 3 s 7→ j̄kωs = (s,∇ωs, . . . , (∇ω)ks) ∈
C∞(G,V⊕ · · · ⊕ (⊗kg∗− ⊗ V))P is the invariant rth order
prolongation operator valued in semi–holonomic jets J̄kVM.

Note: Symmetrization provides similar formulae for holonomic jets
jkωs, but these are not equivariant!
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Note: Symmetrization provides similar formulae for holonomic jets
jkωs, but these are not equivariant!
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Invariant jet operator – still for all Cartan connections

Both invariant and fundamental derivatives allow iteration!

Write J1V for the standard fiber J1(G ×P V)o . Then
J1VM = G ×P J1V and J1V = V⊕ (g∗− ⊗ V).

1st order invariant jets

C∞(G,V) 3 s 7→ (s,∇ωs) ∈ C∞(G,V⊕ (g∗− ⊗ V)) defines the
natural 1st order prolongation operator VM → J1VM.

higher orders

C∞(G,V)P 3 s 7→ j̄kωs = (s,∇ωs, . . . , (∇ω)ks) ∈
C∞(G,V⊕ · · · ⊕ (⊗kg∗− ⊗ V))P is the invariant rth order
prolongation operator valued in semi–holonomic jets J̄kVM.

Note: Symmetrization provides similar formulae for holonomic jets
jkωs, but these are not equivariant!



Bibliography Parabolic Geometries and Weyl connections Nearly invariant calculus

Invariant jet operator – still for all Cartan connections

Both invariant and fundamental derivatives allow iteration!

Write J1V for the standard fiber J1(G ×P V)o . Then
J1VM = G ×P J1V and J1V = V⊕ (g∗− ⊗ V).

1st order invariant jets

C∞(G,V) 3 s 7→ (s,∇ωs) ∈ C∞(G,V⊕ (g∗− ⊗ V)) defines the
natural 1st order prolongation operator VM → J1VM.

higher orders

C∞(G,V)P 3 s 7→ j̄kωs = (s,∇ωs, . . . , (∇ω)ks) ∈
C∞(G,V⊕ · · · ⊕ (⊗kg∗− ⊗ V))P is the invariant rth order
prolongation operator valued in semi–holonomic jets J̄kVM.

Note: Symmetrization provides similar formulae for holonomic jets
jkωs, but these are not equivariant!



Bibliography Parabolic Geometries and Weyl connections Nearly invariant calculus

Bianchi and Ricci identities

In terms of the invariant differnetial, the Bianchi identity reads∑
cycl

∇ωZκ(X ,Y ) =
∑
cycl

(
[κ(X ,Y ),Z ]+κ([X ,Y ],Z )−κ(κ(X ,Y ),Z )

)

while the Ricci identity reads

∇ωX∇ωY s −∇ωY∇ωX s = ∇ω[X ,Y ] −∇
ω
κ−(X ,Y )s + κ≥0(X ,Y ) • s

Note: also available in terms of the fundamental derivative.
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Back to parabolic geometries

The invariant derivative ∇ω is just the covariant derivative of ω on
A, restricted to L−. Thus, ∇ω : Γ(VM)→ Γ(VA).

Choosing a Weyl structure s, the curvatures T s + Rs of the Cartan
connection (θs + γs) on G0 and κ of ω on s̄(G0) compare as

T s + Rs + Y s + ∂Ps = s∗κ

where Y = d∇
s
Ps + Ps([·, ·]) + [Ps ,Ps ] is the Cotton York tensor,

and ∂Ps the Lie algebra cohomology differential.
Looking at differential operators – affine invariants of the
connecitons, i.e., Φ is G0–equivariant:

G
j̄kωσ, j̄

k
ωκ // J̄kV⊕ J̄kK Φ //W

G0

s̄

OO

j̄kγσ, j̄
k
γ(T+R), j̄kγPs

// J̄kV⊕ J̄kK̃
Ψ

LL
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Main observations and theorems

G
j̄kωσ, j̄

k
ωκ // J̄kV⊕ J̄kK Φ //W

G0

s̄

OO

j̄kγσ, j̄
k
γ(T+R), j̄kγPs

// J̄kV⊕ J̄kK̃
Ψ

LL

Our Theorem (1) on the expansion can be reformulated as:

Theorem (2)

Each affine differential invariant Φ̃ : Γ(VA)→ Γ(WA) on A,
restricted to L−, i.e., given by a G0-equivariant map Φ, can be
expressed in a universal way by means of a G0-equivariant map Ψ,
i.e. in terms of affine invariants of ∇s and Ps .
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Main observations and theorems

And finally, the main theorem:

Theorem

Every differential invariant of the Weyl connections and Rho
tensors, constructed from the affine invariants of ω on A as in
Theorem (2) transforms algebraically in Υ.
All affine invariants of Weyl connections and Rho tensors
transforming algebraically in Υ are obtained this way.

The first implication might be surprising in view of the complicated
transformation rules of the basic objects.
The proof of the second implication relies on (locally existing)
special Weyl structures called normal - they mimic the concept of
exponential coordinates in affine geometry. They enjoy the
property that all symmetrized covariant derivatives of Ps vanish at
the center of the coordinates.
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Thanks for attention and patience!
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