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Abstract. We characterize semi-abelian monadic categories and their local-

izations. These results are then used to obtain a characterization of pointed

protomodular quasimonadic categories, and in particular of protomodular qua-
sivarieties.

Introduction

The notion of semi-abelian category can be considered as intermediate between
the notion of Barr-exact category and the one of abelian category. Semi-abelian
categories were introduced by Janelidze, Marki and Tholen [12] in a closed connec-
tion with the more general protomodular categories due to Bourn [4]. A finitely
complete category with a zero object is protomodular if and only if it satisfies the
split short five lemma. Semi-abelian categories are defined as exact protomodular
categories with finite coproducts and a zero object. These categories are suitable
to develop several basic aspects of homological algebra of groups and rings [6], as
well as an abstract theory of commutators and of ideals [5]. Among the examples of
semi-abelian categories there are the categories of groups, rings, commutative rings,
Lie algebras, Boolean algebras, crossed modules and compact Hausdorff groups.

Every variety of universal algebras is an exact category, and abelian varieties are
precisely those whose theories contain abelian group operations 0, − and + in such
a way that these operations are homomorphisms. When the theory of a variety
V only contains group operations 0, − and +, then V is semi-abelian. Bourn and
Janelidze recently characterized semi-abelian varieties [7] as those whose theories
contain a unique constant 0, binary operations α0, α1, ..., αn−1 for n ≥ 1 and a
(n + 1)-ary operation β satisfying the equations αi(x, x) = 0 for i = 0, 1, ..., n − 1
and β(α0(x, y), α1(x, y), ..., αn−1(x, y), y) = x. The case n = 1 shows that the
above-mentioned existence of a group operation suffices to guarantee that V is
semi-abelian, by setting α0(x, y) = x− y and β(x, y) = x + y. Varieties of algebras
satisfying these axioms have been also studied by Ursini [19], who called them
classically ideal determined.

In the present paper we show that the characterization of semi-abelian varieties
can be extended to infinitary and many sorted ones. As a consequence we prove
that C∗-algebras form a semi-abelian category, and we provide explicit operations
witnessing this fact. Every variety of infinitary many-sorted algebras is exact and
locally presentable. Having a general exact locally presentable category C, we can
consider a varietal hull V of C with respect to a chosen regular generator G of C.
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Following [21] the category C is a localization of V and, thus, C is semi-abelian
whenever V is semi-abelian. Using our characterization of semi-abelian infinitary
many-sorted varieties we get a characterization of their localizations. In particular,
any exact locally presentable category C containing a regular generator G which is
a cogroup in C is semi-abelian.

In the last section we characterize protomodular quasimonadic categories, and
then protomodular quasivarieties and their localizations.

1. Semi-abelian monadic categories

Let us recall that a functor U : V → Sets is monadic if it has a left adjoint F and
the comparison functor from V to the category of algebras Alg(T ) of the induced
monad T = UF is an equivalence. A category V is monadic over sets if there exists
a monadic functor U : V → Sets. We shall often use the term “monadic category”
to indicate a monadic category over sets. Monadic categories are precisely those
given by a class of single-sorted infinitary operations and a class of equations such
that free algebras exist [14]. Free algebras always exist if V is determined by a set
of operations and a set of equations. In any case, the elements of UF (n) (where n
is a cardinal and F (n) is a free algebra over n) correspond to n-ary terms.

The first result we are going to prove is a straightforward generalization of the
characterization of semi-abelian varieties given in [7]. We shall follow the presen-
tation given in [3].

Let us recall that in any finitely complete pointed category the split short five
lemma means the following statement: given a diagram (1)

A′

f

��

k′
// B′

g

��

p′
// C ′

h

��

s′
oo

A
k

// B
p

// C
soo

where all squares are commutative, p◦s = 1C , p′◦s′ = 1C′ , k = ker(p), k′ = ker(p′)
and f and h are isomorphisms, then g is an isomorphism.

Since a monadic category over sets is always exact and cocomplete, it is semi-
abelian exactly when it is pointed and it satifies the split short five lemma.

1.1. Theorem. Let U : V → Set be a monadic functor. Then V is semi-abelian
if and only if the corresponding theory has a unique constant 0, binary terms αi

i ∈ n, where n ≥ 1 is a cardinal, and a (n + 1)-ary term β satisfying the equations

αi(x, x) = 0 for i ∈ n

and
β(α0(x, y), α1(x, y), ..., αi(x, y), ..., y) = x

Proof. Let F (x, y) and F (y) be the free algebras on {x, y} and {y} respectively,
and let p : F (x, y) → F (y) be the homomorphism determined by p(x) = p(y) = y.
Then p is split by the inclusion s : F (y) → F (x, y). Let k : K → F (x, y) be a kernel
of p and A a subalgebra of F (x, y) generated by UK ∪UF (y). Since the codomain
restriction of k is a kernel of the domain restriction p′ : A → F (y) of p, A = F (x, y)
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by the split short five lemma. Hence there are elements ki ∈ K, with i ∈ n, (where
n ≥ 1 is a cardinal) and a (n + 1)-ary term β such that x = β(k0, k1, ..., ki, ..., y).
Since ki ∈ K, there are binary terms αi(x, y) such that αi(x, y) = ki for i ∈ n.
Moreover, one obviously has that αi(x, x) = 0.

Conversely, assume that the terms satisfying the conditions in the theorem exist.
Let us then consider the diagram (1), and we are going to prove that the arrow g
is an isomorphism.

First consider a and b in B′ such that g(a) = g(b). Then

(h ◦ p′)(αi(a, b)) = (p ◦ g)(αi(a, b)) = p(αi(g(a), g(b))) = p(0) = 0

and then αi(a, b) is in A′ for i ∈ n. Since (k ◦ f)(αi(a, b)) = 0, it follows that
αi(a, b) = 0 for i ∈ n, which implies that a = b because

b = β(α0(b, b), α1(b, b), ..., b) = β(0, 0, ..., b) = β(α0(a, b), α1(a, b), ..., b) = a.

Consequently, g is injective.
In order to check that g is surjective, let us consider any b ∈ B. We define

a = (s′ ◦ h−1 ◦ p)(b). We have

p(αi(b, g(a)) = αi(p(b), (p ◦ g)(a)) = αi(p(b), p(b)) = 0.

Hence αi(b, g(a)) is in A for i ∈ n and then

b = β(α0(b, g(a)), α1(b, g(a)), ..., g(a)) = β(g(a0), g(a1), ..., g(a)) = g(β(a0, a1..., a))

where f(ai) = αi(b, g(a)) for i ∈ n. Thus g is surjective. �

1.2. Remark. a) The same argument applies to varieties of S-sorted algebras, i.e.
to monadic categories U : V → SetS . One just needs terms αi for i ∈ n and β in
each sort s ∈ S.
b) A similar argument allows one to characterize protomodular monadic categories:
one simply has to replace the single constant 0 by constants ei for i ∈ n, with the
properties αi(x, x) = ei and one keeps the axiom

β(α0(x, y), α1(x, y), ..., αi(x, y), ..., y) = x.

The following well-known simple lemma [6] immediately follows from the defini-
tions:

1.3. Lemma. Let H : C → L be a conservative pullback preserving functor, where
C and L are pointed categories with pullbacks and L satisfies the split short five
lemma. Then C satisfies the split short five lemma.

1.4. Example. Let C be the category of non-unital C∗-algebras, where arrows are
continuous homomorphisms of involutive algebras. The forgetful functor from C to
the category of involutive algebras preserves finite limits and reflects isomorphisms
(see 1.3.3 and 1.3.7 in [9]). Following Lemma 1.3, C satisfies the split short five
lemma. Since C is monadic via the unit ball functor U : C → Set (see [15], [20]) it
is exact and thus semi-abelian. We are now going to give explicitely the operations
witnessing this fact.

Following [18], in the theory of non-unital C∗-algebras we have the operations

α0(x, y) =
1
2
x− 1

2
y
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and

β(x, y) = 2 2(
1
2
x +

1
4
y)

where
2 = 2(1∨ | z |)−1z

and
| z |= (z∗ · z)

1
2 .

Then

α0(x, x) =
1
2
x− 1

2
x = 0

and

β(α0(x, y), y) = β(
1
2
x− 1

2
y, y) = 2 2(

1
4
x− 1

4
y +

1
4
y) = 2 2(

1
4
x) = 2(

1
2
x) = x.

1.5. Remark. The fact that commutative C∗-algebras form an exact Maltsev
category was first observed in [8].

1.6. Example. The category CompGrp of compact groups is monadic via the
usual forgetful functor U : CompGrp → Set. This immediately follows from the
existence of free compact groups [11]. Since a group operation is present, CompGrp
is semi-abelian.

2. Localizations of semi-abelian varieties

Let C be a cocomplete category with a regular generator G and consider the
functor U : C(G,−) : C → Set. There is a left adjoint F to U sending a set n to the
n-th copower n·G of G. Let T = UF be the induced monad and let H : C → Alg(T )
be the comparison functor. Since G is a regular generator, H is a full embedding.
Theorem 1.1 tells us when Alg(T ) is semi-abelian. In terms of a generator G, the
conditions in Theorem 1.1 can be expressed as follows:

(1) there is exactly one arrow 0: G → 0 (where 0 is the initial object in C).
(2) there exist arrows αi : G → 2 · G, i ∈ n (where n ≥ 1 is a cardinal) such

that the square

G
αi //

��

2 ·G

∇
��

0 // G

commutes (∇ is the codiagonal).
(3) there is an arrow β : G → n ·G such that the diagram

G
β //

i1 ""DD
DD

DD
DD

n ·G

(α0,α1,...,αi,...){{vvv
vv

vv
vv

2 ·G

commutes (i1 is the first injection into the coproduct).
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We shall call a semi-abelian generator any regular generator G satisfying these
three conditions. Of course, a free T -algebra F (1) on 1 in a semi-abelian monadic
category is a regular projective semi-abelian generator.

Now, let us recall that a full reflective subcategory C of a category L is a local-
ization if the reflector L : L → C preserves finite limits.

2.1. Proposition. A pointed category C is a localization of a semi-abelian monadic
category over Set if and only if C is a cocomplete exact category with a semi-abelian
generator.

Proof. Due to the main result in [21] one already knows that localizations of
monadic categories over Set are precisely cocomplete exact categories with a regular
generator. More precisely, having such a category C then the comparison functor
H : C → Alg(T ) is a localization. This immediately yields the sufficiency, since the
left adjoint L of H obviously preserves coproducts and the zero object, and then
L(F (1)) is a semi-abelian generator in C.

For the necessity, it suffices to observe that the functor H preserves the copowers
of the semi-abelian generator G in C. Consequently, H(G) is a regular projective
semi-abelian generator, and Alg(T ) is semi-abelian by Theorem 1.1. �

2.2. Remark. There is an evident many-sorted version characterizing localizations
of monadic categories over many-sorted sets as cocomplete exact categories having
a semi-abelian generator in each sort.

2.3. Proposition. A pointed category C having copowers, pullbacks and a semi-
abelian generator satisfies the split short five lemma.

Proof. Under our assumption there is still a left adjoint F to U = C(G,−) and
the comparison functor H : C → Alg(T ) is a full embedding. Since U preserves
pullbacks, the forgetful functor V : Alg(T ) → Set creates them and V ◦H = U , the
functor H preserves pullbacks. Since Alg(T ) satisfies the split short five lemma, we
conclude by Lemma 1.3 that C satisfies it as well. �

2.4. Remark. In order to give an example of a protomodular locally finitely
presentable category C with a zero object which does not have a semi-abelian gen-
erator, we will present it as an essentially algebraic theory Γ (see [1]). Let Γ contain
a unique constant 0, binary total operations α0, γ and a binary partial operation
β(z, t) whose domain of definition Def(β) is given by the equation γ(z, t) = 0. Let Γ
contain the equations α0(x, x) = 0, γ(α0(x, y), y) = 0 and β(α0(x, y), y) = x. Then
the argument used in Theorem 1.1 is still valid and Alg(T ) then satisfies the split
short five lemma. On the other hand, β is not everywhere defined, which means
that there is no reason for Alg(T ) to have a semi-abelian generator.

3. Protomodular quasivarieties

A category is quasimonadic over Set if it is a full regular epireflective subcategory
of a monadic category over Set (i.e. a full reflective subcategory with the property
that the unit of the adjunction is a regular epimorphism). Quasimonadic categories
over Set are precisely cocomplete regular categories C with a regular projective
regular generator [10]. Again one uses H : C → Alg(T ) to present C as a full regular
epireflective subcategory of a monadic category.
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3.1. Theorem. A pointed category C is a protomodular quasimonadic category
over Set if and only if it is cocomplete, regular and has a regular projective semi-
abelian generator.

Proof. Every cocomplete regular category C with a regular projective semi-abelian
generator is a full regular epireflective subcategory of a semi-abelian monadic cat-
egory Alg(T ) by Theorem 1.1. Hence it is pointed, quasimonadic and also satisfies
the split short five lemma by Lemma 1.3.

Conversely, let C be a regular epireflective subcategory of a semi-abelian monadic
category Alg(T ), and let F (1) be a free T -algebra on 1. Then the reflection of F (1)
to C is a regular projective semi-abelian generator of C. Moreover, C is clearly
cocomplete, regular and pointed. �

In order to give a characterization of protomodular pointed quasivarieties, let us
recall that an object G is abstractly finite if for any small set n there exists the n-th
copower S ·G of G and, moreover, any arrow G → S ·G factors through S′ ·G for
some finite subset S′ of S [13]. Any finitely presentable object is abstractly finite.
Then from Corollary 4.4, Corollary 4.6 in [17] and Theorem 3.1 above the following
results easily follow:

3.2. Corollary. A pointed category C is a regular epireflective subcategory of a
protomodular finitary variety of universal algebras if and only if it is cocomplete,
regular and has a regular projective abstractly finite semi-abelian generator.

3.3. Corollary. A pointed category C is a protomodular quasivariety if and only if
it is cocomplete, regular and has a finitely presentable regular projective semi-abelian
generator.

3.4. Example. The category Abtf of torsion-free abelian groups is an example of
a pointed protomodular quasivariety. Indeed, Abtf is reflective in the category Ab
of abelian groups, and it is closed in it under subobjects.

We conclude with the following

3.5. Theorem. A pointed category C is a localization of a protomodular quasi-
monadic category if and only if C is a cocomplete regular category with a semi-
abelian generator.

Proof. Necessity is clear. Let then C be a cocomplete regular category with a semi-
abelian generator. Following the proof of Theorem 1.1 in [16], the category C is a
localization of its regular epireflective hull in Alg(T ). Then C is a localization of a
protomodular quasimonadic category over Set. �

All the results in this section have obvious many-sorted versions.
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[18] J. Pelletier and J.Rosický, On the equational theory of C∗-algebras, Alg. Universalis 30, 1993,

275-284.

[19] A. Ursini, On subtractive varieties, Alg. Universalis 31, 1994, 204-222.
[20] D. Van Osdol, C∗-algebras and cohomology, Proc. Conf. Categorical Topology, Toledo 1983,

Heldermann Verlag, 1984, 582-587.

[21] E.M. Vitale, Localizations of algebraic categories, J. Pure Appl. Algebra 108, 1996, 315-320.
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