
ACCESSIBLE CATEGORIES AND HOMOTOPY

THEORY

J. ROSICKÝ

Accessible categories have recently turned out to be useful in homo-
topy theory. This text is prepared as notes for a series of lectures at
the Summer School on Contemporary Categorical Methods in Algebra
and Topology which will be held in Haute Bodeux, June 3-10, 2007.

1. Combinatorial model categories

Model categories were introduced by Quillen [42] as the foundation
of homotopy theory. In order to make their definition less complex, we
will consider weak factorization systems at first.

Let K be a category and f : A → B, g : C → D morphisms such
that in each commutative square

A
u //

f

��

C

g

��
B v

// D

there is a diagonal d : B → C with df = u and gd = v. Then we say
that g has the right lifting property w.r.t. f and f has the left lifting
property w.r.t. g. For a class X of morphisms of K we put

X� = {g|g has the right lifting property w.r.t. each f ∈ X} and
�X = {f |f has the left lifting property w.r.t. each g ∈ X}.

Definition 1.1. A weak factorization system (L,R) in a category K
consists of two classes L and R of morphisms of K such that

(1) R = L�, L = �R and
(2) any morphism h of K has a factorization h = gf with f ∈ L

and g ∈ R.

Definition 1.2. A model category is a complete and cocomplete cate-
gory K together with three classes of morphisms F , C and W called
fibrations, cofibrations and weak equivalences such that
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(1) W has the 2-out-of-3 property, i.e., with any two of f , g, gf
belonging to W also the third morphism belongs to W, and W
is closed under retracts in the arrow category K→,

(2) (C,F ∩W) and (C ∩W,F) are weak factorization systems.

Morphisms from F ∩W are called trivial fibrations while morphisms
from C ∩ W trivial cofibrations. Each weak equivalence is a compo-
sition of a trivial cofibration followed by a trivial fibration. Hence
weak equivalences are determined by cofibrations and fibrations. Con-
versely, cofibrations and weak equivalences determine fibrations and,
analogously, fibrations and weak equivalences yield cofibrations. Weak
equivalences serve for defining the homotopy category Ho(K) of K as
the fraction category K[W−1]. (Co)fibrations make possible to prove
that the homotopy category is legitimate, i.e., that it does not has a
proper class of morphisms between two objects. Moreover, weak equiv-
alences are saturated in the sense that they coincide with morphisms
going to isomorphisms in the projection

P : K → Ho(K).

We will briefly explain this and we recommend [29] or [28] for a full
treatment.

A cylinder object C(K) of an object K is given by a (cofibration,
trivial fibration) factorization of the codiagonal

∇ : K + K
γK−−−−−→ C(K)

σK−−−−−→ K

We denote by
γ1K , γ2K : K → C(K)

the compositions of γK with the coproduct injections. Now, given two
morphisms f, g : K → L, we say that f and g are homotopic and write
f ∼ g if there is a morphism h : C(K) → L such that the following
diagram commutes

K + K
(f,g)

//

γK

$$HHHHHHHHHHHHH
L

C(K)

h

=={{{{{{{{{{{{

The homotopy relation ∼ is clearly reflexive, symmetric, compatible
with the composition and does not depend on the choice of a cylinder
object. But, it is not transitive in general and in order to form the
quotient

Q : K → K/ ∼
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we have to take its transitive hull. We have slightly modified the usual
definition of a cylinder object which uses a (cofibration, weak equiv-
alence) factorization in order to stress that the homotopy depends on
cofibrations only. In fact, we have the concept of homotopy for any
weak factorization system (see [36]).

The quotient category K/ ∼ is too big and it does not coincide with
the homotopy category Ho(K). But Ho(K) is equivalent to the full
subcategory of K/ ∼ consisting of objects which are both cofibrant
and fibrant. An object K is called cofibrant if the unique morphism
0 → K from an initial object is a cofibration and is called fibrant if
K → 1 is a fibration where 1 is a terminal object. We denote by Kc

the full subcategory of K consisting of cofibrant objects. Analogously,
Kf consists of fibrant objects and Kcf = Kc ∩Kf . Using this notation,
we get that Ho(K) is equivalent to Kcf/ ∼. This fundamental fact
immediately implies that the homotopy category is legitimate (and
that W is saturated). Moreover, on Kcf , weak equivalences coincide
with homotopy equivalences, i.e., with morphisms f : K → L having
g : L → K such that both fg and gf are homotopic to the identity.
Since the dual of a model category is a model category, we can define
a homotopy starting from fibrations instead of cofibrations. Then we
speak about a path object given by a (trivial cofibration, fibration)
factorization of the diagonal ∆ : K → K × K. The both homotopies
(also called left and right ones) coincide on Kcf .

Cofibrations are cofibrantly closed in the sense that they contain all
isomorphisms and are

(a) stable under pushout,
(b) closed under transfinite composition, and
(c) closed under retracts in comma categories K ↓ K.

The first condition says that if

B
g // D

A

f

OO

g
// C

f

OO

is a pushout and f a cofibration then f is a cofibration. The second
condition means that cofibrations are closed under composition and
if (fij : Ai → Aj)i≤j≤λ is a smooth chain (i.e., λ is a limit ordinal,
(fij : Ai → Aj)i<j is a colimit for any limit ordinal j ≤ λ) and fij are
cofibrations for each i ≤ j < λ then f0λ is a cofibration. In fact, all
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conditions are satisfied by each class �X . Hence trivial cofibrations are
cofibrantly closed as well. Given a class of morphisms X , cof(X ) will
denote its cofibrant closure, i.e., the smallest cofibrantly closed class
containing X . The main obstacle in showing that the classes C, F
and W provide a model category structure is to verify the existence of
the both weak factorizations of a morphism f . In homotopy theory,
the following fundamental fact is called a small object argument and
it follows from properties of injectivity classes in locally presentable
categories. The basic observation is that g : C → D belongs to X�

if and only iff it is injective, as an object of K ↓ D, to all morphisms
from X . Then a weak factorization h = gf of a morphism h : A → D
is given by a cof(X )-morphism in K ↓ D from h to an X -injective g.
One can explicitly find this result in [8] (see also [2]). We recommend
[4] as a reference for locally presentable and accessible categories.

Theorem 1.3. Let K be a locally presentable category and X a set of
morphisms. Then (cof(X ),X�) is a weak factorization system.

A cofibrantly closed class of morphisms X is called cofibrantly gene-
rated if it equals to cof(I) for a set I. A model category K is called
cofibrantly generated if both cofibrations and trivial cofibrations are
cofibrantly generated. Following J. H. Smith, K is called combinato-
rial if it is both locally presentable and cofibrantly generated. One of
consequences of 1.3 is that weak factorizations are functorial (cf. [2]).
It means that there is a functor F : K→ → K and natural transforma-
tions α : dom → F and β : F → cod such that f = αfβf is the weak
factorization of f . Here, dom : K→ → K assigns to each morphism its
domain and cod analogously describes codomains. Hence a combina-
torial model category has the both weak factorizations functorial. M.
Hovey has put functoriality into the definition of a model category in
[29]. We will call such a model category functorial. In a combinatorial
model category, these factorizations are not only functorial but acce-
ssible. Let us recall that a functor is accessible if it preserves λ-filtered
colimits for some regular cardinal λ. The following result is due to J.
H. Smith and its proof is sketched in [22]; [44] contains more details.

Theorem 1.4. Let K be a combinatorial model category. Then the
functors K→ → K giving the (cofibration, trivial fibration) and (trivial
cofibration, fibration) factorizations are accessible.

The cofibrant replacement functor Rc : K → K is given by the (cofi-
bration, trivial fibration) factorization

0 → Rc(K) → K
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of the unique morphism from 0 to K while fibrant replacement functor
Rf is given by the (trivial cofibration, fibration) factorization of K → 1.
As a consequence of 1.4 we get that, in a combinatorial model category,
the both functors are accessible. Hence their composition R = RfRc,
which is called the replacement functor, is accessible too. Analogously,
the cylinder functor C : K → K is accessible.

In the situation from 1.3, X� is closed under λ-filtered colimits
for some regular cardinal λ (greater then presentability ranks of do-
mains and codomains of morphims from X ). Hence, in a combinatorial
model category, both fibrations and trivial fibrations are closed under
λ-filtered colimits for some regular cardinal λ. Since (trivial cofibration,
fibration) factorizations are accessible, weak equivalences are closed un-
der λ-filtered colimits for some regular cardinal λ as well. This result
is due to J. H. Smith and can be found in [22], 7.3.

Definition 1.5. A combinatorial model category K will be called strong-
ly combinatorial if the class C of cofibrations is closed under λ-filtered
colimits in K→ for some regular cardinal λ.

Theorem 1.6. Let K be a strongly combinatorial model category. Then
Kc, Kf and Kcf are accessible categories.

Proof. Let K be a strongly combinatorial model category. Since fibrant
objects are precisely objects injective with respect to generating trivial
cofibrations, it follows from [4], 4.7 that Kf is accessible and accessibly
embedded; the latter means to be closed under λ-filtered colimits for
some regular cardinal λ. Since Kc is closed under λ-filtered colimits
in K for some regular cardinal λ, it remains to show that Kc is cone
reflective in K. Then it is accessible (see [4], 2.53) and thus Kcf is
accessible too (by [4], 2.37).

Cone reflectivity of Kc means that, given an object K, there is a set
A of morphisms K → A with A cofibrant such that each morphism
f : K → X with X cofibrant factorizes through some morphism from
A. Consider the (cofibration, trivial fibration) factorization

0
c

−→ RcX
t

−→ X
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where Rc is an accessible cofibrant replacement functor. Since X is
cofibrant, t is split by diagonal s in

X
id //

s

!!C
C

C
C

C
C

C
C

X

0

OO

c
// RcX

t

OO

There is a regular cardinal λ such that K is locally λ-presentable, K
is λ-presentable and Rc preserves λ-filtered colimits and λ-presentable
objects (see [4], 2.19). We express X as a λ-directed colimit

(ai : Ai → X)i∈I

of λ-presentable objects. We get a factorization sf = Rc(ai)g for some
i ∈ I. Hence f = tRc(ai)g and we can thus take for A the set of all
morphisms having a λ-presentable cofibrant codomain. �

A very useful tool for verifying that C and W provide a model cate-
gory structure is the following theorem of J. H. Smith; its proof can be
found in [8].

Theorem 1.7. Let K be a locally presentable category, I a set of mor-
phisms and W a class of morphisms containing I�, closed under re-
tracts in K→, satisfying the 2-out-of-3 property and such that cof(I)∩W
is cofibrantly closed. Moreover, assume that W satisfies the solution set
condition at I.

Then C = cof(I) and W make K a combinatorial model category.

The solution set condition at I means that for every f ∈ I there is
a subset X of W such that each morphism f → g in K→ with g ∈ W
factorizes through some f → h with h ∈ X . Assuming Vopěnka’s prin-
ciple, every class W satisfies the solution set condition at some set of
morphisms in a locally presentable category (it follows from [4], 6.6 and
1.57; see the proof of 2.2 in [46]). Recall that Vopěnka’s principle is a
set-theoretic hypothesis implying the existence of many large cardinals
(cf. [4]). It yields the following, somewhat surprising corollary.

Corollary 1.8. Let K be a locally presentable category, I a set of
morphisms and W a class of morphisms containing I�, closed under
retracts in K→, satisfying the 2-out-of-3 property and such that cof(I)∩
W is cofibrantly closed. Then, under Vopěnka’s principle, C = cof(I)
and W make K a combinatorial model category.
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Given a cofibrantly closed class C of morphisms, we can consider the
smallest class W satisfying the closure conditions from 1.7, i.e.,

(i) C� ⊆ W,
(ii) W is closed under retracts and satisfies the 2-out-of-3 property,
(iii) C ∩W is cofibrantly closed.

This construction is presented in [46] but it was known to J. H. Smith
and was independently considered in [18]. We can even modify this
construction by taking another class Z of morphisms and adding

(iv) Z ⊆ W.
Let us denote the resulting smallest class by Z.

Corollary 1.9. Let K be a combinatorial model category and Z a class
of morphisms of K. Assuming Vopěnka’s principle, C and Z ∪W make
K a combinatorial model category.

Of course, C denotes cofibrations and W weak equivalences in the
original model category structure. Recall that a left Quillen functor
F : K → L is a left adjoint functor between model categories preserving
cofibrations and trivial cofibrations. A left Bousfield localization of K
with respect to Z is a model category structure K\Z on K which has
the same cofibrations as K, weak equivalences containing both Z and
the weak equivalences of K and each left Quillen functor F : K → L
with FRc sending Z to weak equivalences in L is the left Quillen functor
K\Z → L. A model category is called left proper if every pushout of
a weak equivalence along a cofibrations is a weak equivalence. Left
Bousfield localizations with respect a set of morphisms always exist in
two main cases: when K is a left proper cellular model category (see
[28], 4.1.1) and when K is a left proper combinatorial model category
(J. H. Smith, unpublished). A consequence of the second fact is the
following result (see [46], 2.3 and 2.4).

Corollary 1.10. Let K be a left proper combinatorial model category
and Z a class of morphisms. Assuming Vopěnka’s principle, the left
Bousfield localization of K with respect to Z exists and has Z ∪W as
weak equivalences.

The most of important model categories are combinatorial.

Examples 1.11. (1) The model category SSet of simplicial sets is
combinatorial. Cofibrations are monomorphisms which are cofibrantly
generated in every Grothendieck topos (see [8]). Trivial cofibrations
are generated by horn inclusions (see [29], e.g.). The recently found
quasi-category model structure is combinatorial too – cofibrations are
unchanged and trivial cofibrations are generated by inclusions of inner
horns (see [32]).
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(2) Let SSetX
op

be the category of all functors X op → SSet where X
is a small category. The projective model category structure is given by
taking weak equivalences and fibrations pointwise, i.e., ϕ : F → G is a
weak equivalence (fibration) if ϕX is a weak equivalence (fibration) for
each object X of X . It makes SSetX

op

a combinatorial model category
because (trivial) cofibrations are generated by images of those from
SSet in left adjoints to evaluation functors

evX : SSetX
op

→ SSet,

with X ∈ X (see [28], 14.2.1). We denote by

Y : X → SetX
op

⊆ SSetX
op

the Yoneda embedding; here, Set is taken as the category of discrete
simplicial sets.

(3) Let us recall that a spectrum X is a sequence (Xn)∞n=0 of pointed
simplical sets equipped with morphisms σX

n : ΣXn → Xn+1 where
Σ is the suspension functor (see 2.2(3)). The strict model category
structure on the category Sp of spectra is induced by the projective
model category structure on SSetX∗ where X is the discrete category
with non-negative integers as objects. It means that weak equivalences
and fibrations are levelwise. The Bousfield-Friedlander model category
structure on Sp is obtained by a left Bousfield localization of the strict
structure with respect to a suitable set of morphisms. The both model
category structures are combinatorial (see [48], A.3).

(4) Let R be a unital ring and R-Mod the category of left R-modules.
Monomorphisms are cofibrantly generated (in fact, it it true in every
Grothendieck abelian category, see [8]) and we take them as cofibra-
tions. Trivial fibrations are then epimorphisms with an injective coker-
nel. We take homotopy equivalences as weak equivalences. It yields a
combinatorial model category structure on R-Mod provided that R is
a Frobenious ring, i.e., if injective R-modules coincide with projective
ones (see [29]).

(5) Let Ch(R) denote the category of chain complexes of left R-
modules. Monomorphisms are again cofibrantly generated and we take
them as cofibrations. We take weak equivalences as homology iso-
morphisms, i.e., as morphisms f of chain complexes such that Hnf
are isomorphisms for all n. It yields a combinatorial model category
structure on Ch(R) (see [29]). The resulting homotopy category is the
derived category of R.

(6) The category Top of topological spaces is not locally presentable.
J. H. Smith has proposed a combinatorial model category consisting
of ∆-generated topological spaces (cf. [23]). A topological space X is
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∆-generated if a subset Y ⊆ X is open if and only if f−1(Y ) is open
for each continuous map f : ∆n → X. A (surprisingly delicate) proof
that the category of ∆-generated spaces is locally presentable can be
found in [25].

(7) The model category of chain complexes of abelian groups with
cofibrations as dimensionwise split monomorphisms and weak equiva-
lences as homotopy equivalences is locally presentable but not combi-
natorial (see [41], [16]).

(8) Each weak factorization system (L,R) in a category K provide
a model category structure by taking L as cofibrations and K as weak
equivalences. Then (Full, T op) consisting of full functors and topo-
logical functors is a weak factorization system on the category Cat

of small categories which provides a non-combinatorial model cate-
gory structure. Let us add that M. Hovey asked for examples of non-
combinatorial model structures on locally presentable categories.

(9) In the category Pos of posets, take C consisting of split monomor-
phisms. It yields a weak factorization system (C, C�) cofibrantly gen-
erated by split monomorphisms between finite posets. The closure of
split monomorphisms under λ-filtered colimits in Pos→ precisely con-
sists of λ-pure monomorphisms. It is easy to see that, for each regular
cardinal λ, there is a λ-pure monomorphism which does not split. By
putting W = Pos, we get a combinatorial model category which is not
strongly combinatorial.

We finish this section with a very important result of D. Dugger [21]
whose consequence is that SSet is a universal model category with one
generator ∆0. An elementary proof can be found in [46].

Theorem 1.12. Let K be a functorial model category, X a small ca-
tegory and H : X → K a functor such that H(X ) ⊆ Kc. Then there is
a Quillen functor H∗ : SSetX

op

→ K such that H∗Y = H.

2. Brown representability

The aim of this section is to show that, given a combinatorial model
category K, then its homotopy category Ho(K) is ”weakly accessible”.
We will start with the following well known fact.

Proposition 2.1. Let K be a model category. Then Ho(K) has (co)pro-
ducts and weak (co)limits.

Proof. Since the dual of a model category is a model category, it suffices
to show that K has coproducts and weak colimits. Consider objects
Ki, i ∈ I in Ho(K). Without any loss of generality, we can assume that
they belong to Kcf . Then their coproduct K in K is cofibrant and its
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fibrant replacement RfK is a coproduct of Ki in Ho(K). It remains to
show that Ho(K) has weak pushouts. We will again use the fact that
Ho(K) is equivalent to Kcf/ ∼ and consider

B

A

f

OO

g
// D

in Kcf . Then a pushout

B1

g // E

A

f1

OO

g1

// D1

f

OO

in K where f = f2f1 and g = g2g1 are (cofibration, trivial fibration)
factorizations is called the homotopy pushout of the starting diagram
and yields a weak pushout in Ho(K). �

Remark 2.2. (1) Since weak colimits are not unique, we have to be
careful about their construction. In 2.1, we at first construct weak co-
equalizers from weak pushouts and then weak colimits from coproducts
and weak coequalizers. In the both cases, it mimics the usual construc-
tions of corresponding colimits. We will call the resulting weak colimits
standard. In a functorial model category, they are functorial.

Given a diagram D : D → K, we get a cone (δd : Dd → K) such that
(Pδd : PDd → PK) is a standard weak colimit of PD. If (δd : Dd →
K) is a colimit in K, we get a comparison morphism p : K → K.

(2) There is another construction of weak pushouts in Ho(K). Con-
sider

B

A

f

OO

g
// D
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in Kcf . Form the double mapping cylinder of f, g, i.e., the colimit

B
g // E

A

f

OO

γ1A // C(A)

t

<<zzzzzzzz

A

γ2A

OO

g
// D

f

OO

of the diagram

B

A

f

OO

γ1A // C(A)

A

γ2A

OO

g
// D

where C(A) is the cylinder object. Then

QB
Pg // PE

QA

Qf

OO

Qg
// QD

Pf

OO

is a weak pushout in Ho(K) (cf. [33]).
If K is left proper and functorial then the both constructions of

weak pushouts in Ho(K) coincide. In fact, it is true in SSet (cf. [44],
3.1(iv)), thus in SSetX

op

and we can use 1.12 to transport it to K. We
need homotopy invariance of homotopy pushouts and pushouts along
a cofibration in K (see [28], 13.3.3 and 13.3.4).

(3) Let K be a pointed model category. The double mapping cylinder

0 // Σ(A)

A

OO

// 0

OO

yields the suspension functor Σ : K → K.
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Given a small full subcategory A of a category L we get the functor

EL : L → SetA
op

such that EA(L) is the restriction of the hom-functor hom(−, L) on
Aop. For a regular cardinal λ, Lλ will denote the full subcategory
consisting of λ-presentable objects of L. If L is λ-accessible then ELλ

is full and faithful and makes L equivalent with the full subcategory

Indλ Lλ ⊆ SetL
op

λ

consisting of λ-filtered colimits of hom-functors. In fact, the cate-
gories Indλ A, A small, coincide with λ-accessible categories. Moreover,
Indλ A is a free completion of A under λ-filtered colimits (see [4]).

Now, we consider the case when L is the homotopy category Ho(K)
of a model category and A is its full subcategory consisting of λ-
presentable objects in K; we will denote it as Ho(Kλ). The restriction
of the canonical functor P : K → Ho(K) will be denoted by

Pλ : Kλ → Ho(Kλ).

We get the functor

EHo(Kλ) : Ho(K) → SetHo(Kλ)op

which will be shortly denoted by Eλ.

Proposition 2.3. Let K be a combinatorial model category. Then there
is a regular cardinal λ such that EλP ∼= Indλ(Pλ).

It means that K is locally λ-presentable, i.e., K = Indλ Kλ and the
composition EλP preserves λ-filtered colimits. Then its image is con-
tained in Indλ Ho(Kλ) and the codomain restriction of EλP coincides
with the Indλ-extension of Pλ. In particular, Eλ is the functor

Ho(K) → Indλ Ho(Kλ).

We say that Eλ is essentially surjective if (1) for each X in Indλ Ho(Kλ)
there is K in Ho(K) with EλK ∼= X and (2) every morphism f : X →
EλL allows a commutative triangle

X
f //

∼=

��

EλL

EλK

Eλ(g)

99ssssssssssssss

for some morphism g : K → L. The following theorem (see [44])
can be interpreted as saying that Ho(K) is weakly accessible for every
combinatorial model category K.
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Theorem 2.4. Let K be a combinatorial model category. Then there
is a regular cardinal λ such that

Eλ : Ho(K) → Indλ Ho(Kλ)

is essentially surjective.

Remark 2.5. (1) A more subtle question is to describe regular car-
dinals λ satisfying 2.4. For example, for Sp, it is true for λ = ω and
then for each ω1 ⊳ λ. While the second claim follows from the proof of
2.4, the first one is due to [1] and is called a Brown representability.
We will thus say that K is λ-Brown if it satisfies 2.4 for λ. SSet is
ω1-Brown (in fact, λ-Brown for each ω1⊳λ) but it is not known whether
is ω-Brown.

Since Indλ(Kλ) precisely consists of functors Kop
λ → Set preserving

weak λ-small limits, λ-Brown property says that any such functor on
Ho(Kλ) is representable. In case of Ch(R), our ω-Brown property is
called a Brown representability for homology (see [17]).

(2) Consider a λ-filtered diagram D : D → Ho(Kλ) and assume
that K is λ-Brown. Let (εd : EλDd → K) be a colimit of EλD in
Indλ Ho(Kλ). Since Eλ is full and essentially surjective on objects,

there are morphisms δ̃d : Dd → K̃ such that EλK̃ = K and Eλδ̃d = εd

for each d ∈ D. Since Eλ is faithful on Ho(Kλ), δ̃d form a cone and,
in fact, a weak colimit cone. We will call such weak λ-filtered colimits
minimal.

(3) Assume that Eλ reflects isomorphisms. Then a minimal weak λ-

filtered colimit δ̃d : Dd → K̃ has the property that each endomorphism

t : K̃ → K̃ satisfying tδ̃d = δ̃d for each d ∈ D is an isomorphism. The
consequence is that minimal weak λ-filtered colimits are unique up to
an isomorphism. In Sp, this assumption is satisfied for λ = ω and for
each ω1⊳λ. Recall that a pointed model category K is called stable if the
suspension functor Σ : K → K is an isomorphism in Ho(K) (see [29]).
Both Sp and Ch(R) are stable model categories. For a combinatorial
stable model category K, 2.4 can be strengthened by adding that Eλ

also reflects isomorphisms (see [44], 6.4).
(4) It is very rare that Eλ is also faithful because, in this case, a

combinatorial model category K would have Ho(K) accessible. For
instance, neither Ho(SSet) nor Ho(Sp) are concrete (see [26]) and thus
they cannot be accessible. An example of a combinatorial model ca-
tegory having Ho(K) accessible are truncated simplicial sets SSetn for
each natural number n (see [44]).

Corollary 2.6. Let K be a combinatorial stable model category. Then
every functor Ho(K)op → Set preserving weak limits is representable.
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The proof uses representability of functors Ho(Kλ) → Set preser-
ving weak λ-small limits with the fact that Eλ reflects isomorphisms.
In [17], this property of Ho(K) is called a Brown representability for
cohomology.

3. Homotopy accessibility

The second section was based on weak colimits in homotopy cate-
gories. Their disadvantage is that they are not uniquely determined and
thus they depend on a particular construction. This is true not only for
general colimits but also for colimits of strict diagrams in Ho(K), i.e.,
for those given by diagrams D : D → K. In this case, there is another
colimit concept called a homotopy colimit. Intuitively, it is given by
an initial homotopy coherent cone. Both for coproducts and pushouts,
homotopy colimits and standard weak colimits coincide. But it is not
true in general because a homotopy colimit need not be a weak colimit.
Unlike weak colimits, homotopy colimits yield a very reasonable and
important concept of ”homotopy accessibility” (see [38]). There are
various approaches to this concept, [38] uses quasi-categories of Joyal
(see [31], or [32]), [49] and [50] are based on Segal categories while
[43] uses model categories. We will follow [45], which uses simplicial
categories.

A simplicial category is a category enriched over SSet. We reco-
mmend [11] as a reference for enriched categories in general. Like any
enriched category, a simplicial category K has the underlying category
K0 whose hom-sets hom0(K, L) are sets of points (i.e., 0-simplices) of
the simplicial hom-set hom(K, L). It is induced by the functor

hom(∆0,−) : SSet → Set

which has a left adjoint

D : Set → SSet

sending a set X to the discrete simplicial set having X as the set of
points. What is specific for simplicial sets is that D has a left adjoint
as well. It is the functor

π0 : SSet → Set

sending a simplicial set A to its set π0A of connected components. This
makes possible to develop homotopy theory of simplicial categories –
the homotopy category Ho(K) of a simplicial category K has the same
objects as K and the hom-sets

homHo(K)(K, L) = π0 homK(K, L).
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A morphism f : K → L is now called a homotopy equivalence if it
induces an isomorphism in Ho(K). We will use the notation K ≃ L
for homotopy equivalent object while K ∼= L is kept for isomorphic
ones. In SSet, these homotopy equivalences coincide with the usual
ones. But Ho(SSet) is not the usual homotopy category of simplicial
sets because isomorphisms in the latter are weak equivalences and not
homotopy equivalences. The both homotopy categories coincide for the
full category S of SSet consisting of fibrant simplicial sets, i.e., of Kan
complexes. Since S is neither complete nor cocomplete, it cannot serve
as a base for enriched category theory. Instead, we will consider sim-
plicial categories K whose simplicial hom-sets hom(K, L) are fibrant;
we will call such simplicial categories fibrant. If K is a model category
then Kcf is a fibrant simplicial category.

Every simplicial functor F : K → L induces the functor

Ho(F ) : Ho(K) → Ho(L).

Definition 3.1. A simplicial functor F : K → L is called a weak
equivalence if

(1) the induced morphisms hom(K1, K2) → hom(F (K1), F (K2))
are weak equivalences for all objects K1 and K2 of K and

(2) each object L of Ho(L) is isomorphic in Ho(L) to Ho(F )(K) for
some object K of K.

These weak equivalences are often called DK-equivalences because
they were first described by Dwyer and Kan in [24]. They are a part
of a model category structure on the category SCat of small simplicial
categories and simplicial functors (see [10]). Fibrant objects in this
model category are our fibrant simplicial categories.

Ordinary limits (and colimits) are not homotopy invariant in simpli-
cial categories. It means that given a natural transformation

ϕ : D1 → D2

of diagrams D1, D2 : D → K such that δd is a homotopy equivalence for
each object d of D then the induced morphism lim D1 → lim D2 does
not need to be a homotopy equivalence. The ordinary limit of a dia-
gram D : D → K in a simplicial category K is the limit weighted by the
constant functor G : D → SSet at the point ∆0. In simplicial model
categories, there is a concept of a homotopy limit going back to Bous-
field and Kan [15] (see [28]) which can be expressed as a limit weighted
by B(D ↓ −) : D → SSet (see [14]). We will call these homotopy
limits simplicial. Dually, one has simplicial homotopy colimits.
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Definition 3.2. Let K be a simplicial category, D a small category and
D : D → K a functor. Then the simplicial homotopy limit holims D of
D is defined as the limit of D weighted by

B(D ↓ −) : D → SSet .

The simplicial homotopy colimit hocolims D of D is defined as the
colimit of D weighted by

B((− ↓ D)op) : Dop → SSet .

Even in simplicial model categories, simplicial homotopy (co)limits
are not fully homotopy invariant. Moreover, they only depend on the
simplicial structure and thus, taking a left Bousfield localization K/Z
of a simplicial model category K, the both model categories have the
same simplicial homotopy (co)limits. The following definition has been
recently proposed in [45].

Definition 3.3. Let K be a fibrant simplicial category, D a category
and consider a diagram D : D → K. We say that holimf D is a fibrant
homotopy limit of D if there are homotopy equivalences

δA : hom(A, holimf D) → holims hom(A, D)

which are simplicially natural in A.
Analogously, we define fibrant homotopy colimit hocolimf D of D by

the existence of homotopy equivalences

δA : hom(hocolimf D, A) → holims hom(D, A).

which are simplicially natural in A.

In particular, we have the formulas

hom(A, holimf D) ≃ holims hom(A, D)

and
hom(hocolimf D, A) ≃ holims hom(D, A).

It was shown in [45] that fibrant homotopy (co)limits are determined
uniquely up to a homotopy equivalence and that they are homotopy
invariant. Moreover, δ yields the morphism

δ̃ : B(D ↓ −) → hom(holimf D, D)

which can be understood as an analogy of the limit cone for a usual
limit. Dually, one gets

δ̃ : B(− ↓ D)op → hom(D, hocolimf D).

Then a simplicial functor F : K → L preserves the fibrant homotopy
limit of a diagram D : D → K if (F holimf D, F δ̃) is a fibrant homotopy
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limit of FD. Dually, we define the preservation of fibrant homotopy
colimits.

Assume that K is a simplicial model category and consider a diagram
D : D → Kcf . Then

holimf D ≃ Rc holims D

and
hocolimf D ≃ Rf hocolims D.

Let C be a small simplicial category and consider the simplicial cate-
gory SSetC

op

of simplicial functors Cop → SSet. We have the Yoneda
embedding

YC : C → SSetC
op

given by Y (C) = hom(−, C). The category SSetC
op

has all weighted
colimits and all weighted limits and the Yoneda embedding YC makes
it the free completion of C under weighted colimits. It also preserves
all existing weighted limits (cf. [34]). Like in 1.11(2), there is the
projective model category structure on SSetC

op

. We put

Pre(C) = (SSetC
op

)cf .

Since hom-functors hom(−, C) are always cofibrant, they belong to
Pre(C) provided that C is fibrant. Thus, for a small fibrant simplicial
category C, we have the Yoneda embedding

YC : C → Pre(C).

Since discrete simplicial sets are fibrant, every ordinary category is a
fibrant simplicial category. The following basic result was proved in
[45]. For an ordinary category C, it follows from Dugger’s proof of
1.12.

Theorem 3.4. Let C be a small fibrant simplicial category. Then every
object of Pre(C) is homotopy equivalent to a fibrant homotopy colimit
of hom-functors.

An object K of a fibrant simplicial category K is homotopy abso-
lutely presentable if its hom-functor hom(K,−) : K → S preserves
fibrant homotopy colimits. Since fibrant homotopy colimits in Pre(C)
are pointwise, hom-functors hom(−, C) are homotopy absolutely pre-
sentable in Pre(C).

Theorem 3.5. A fibrant simplicial category K is weakly equivalent to
Pre(C) for some small fibrant simplicial category C if and only if it
has fibrant homotopy colimits and has a set A of homotopy absolutely
presentable objects such that every object of K is a fibrant homotopy
colimit of objects from A.
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Proof. We consider the simplicial functor

E : K → Pre(A)

such that E(K) is the restriction of hom(−, K) on Aop. By [45], E
preserves fibrant homotopy colimits and satisfies condition (1) from
3.1. The second condition follows from 3.4. �

Remark 3.6. In the proof of 3.5, we could not use F : Pre(A) → K
such that FYA is the inclusion of A into K and F preserves fibrant ho-
motopy colimits because we do not know in our framework that fibrant
homotopy colimits are functorial. For instance, if K is a non-functorial
model category then there is no reason for having fibrant homotopy
colimits functorial. An important example of a non-functorial model
category is the projective model category M(C) of small simplicial
functors Cop → SSet, i.e., small weighted colimits of hom-functors, on
a large category C (see [19]). Given a fibrant simplicial category K,
YK embeds K into M(K)cf and our fibrant homotopy (co)limits are
homotopy equivalent to those calculated in M(K)cf .

As a consequence, we get the following model theoretic result.

Theorem 3.7. A simplicial model category K is Quillen equivalent to
the model category SSetC

op

for some small fibrant simplicial category C
if and only Kcf has a set A of homotopy absolutely presentable objects
such that every object of Kcf is a fibrant homotopy colimit of objects
from A.

Proposition 3.8. In S, filtered fibrant homotopy colimits are homo-
topy equivalent to filtered colimits.

Proof. Since S is closed under filtered colimits, it follows from the fact
that filtered simplicial homotopy colimits in SSet are weakly equivalent
to filtered colimits (see [15], XII., 3.5(ii)). �

Since filtered colimits in SSet commute with finite weighted limits
(see [12]), the consequence of 3.8 is that filtered fibrant homotopy co-
limits commute with finite fibrant homotopy limits in S. An object
K of a fibrant simplicial category K is homotopy λ-presentable (λ is
a regular cardinal) if its hom-functor hom(K,−) : K → S preserves
fibrant homotopy λ-filtered colimits.

Definition 3.9. A fibrant simplicial category K is called homotopy lo-
cally λ-presentable (λ is a regular cardinal) provided that it has fibrant
homotopy colimits and has a set A of homotopy λ-presentable objects
such that every object of K is a λ-filtered fibrant homotopy colimit of
objects from A.
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K is homotopy locally presentable if it is homotopy locally λ-presen-
table for some regular cardinal λ.

Recall that a category is λ-small if it has less than λ morphisms.

Definition 3.10. A homotopy λ-limit theory is defined as a small fi-
brant simplicial category T having all λ-small fibrant homotopy limits.

A homotopy T -model is a simplicial functor A : T → S belonging to
Pre(T op) and preserving λ-small fibrant homotopy limits.

We will denote by HMod(T ) the full subcategory of Pre(T op) con-
sisting of all homotopy T -models.

Theorem 3.11. Let λ be a regular cardinal. A fibrant simplicial ca-
tegory K is homotopy locally λ-presentable if and only if it is weakly
equivalent to HMod(T ) for some homotopy λ-limit theory T .

Let us mention that, given a λ-limit theory T , HMod(T ) is weakly
equivalent to the closure HIndλ(T

op) of hom-functors under λ-filtered
fibrant homotopy colimits in Pre(T op). We also get morphisms

mD : hocolimf hom(D,−) → hom(holimf D,−)

in Pre(T op) for each λ-small diagram D → T . The left Bousfield
localization of SSetT with respect to the set Z of all morphisms mD

is called the model category for homotopy T -models.

Corollary 3.12. A simplicial model category K is Quillen equivalent to
the model category for homotopy T -models for some homotopy λ-limit
theory T if and only if Kcf is homotopy locally λ-presentable.

Corollary 3.13. Let K be a simplicial combinatorial model category.
Then Kcf is homotopy locally presentable.

Proof. We know that Kcf has fibrant homotopy colimits. By 1.6, there
is a regular cardinal λ such that Kcf is λ-accessible and closed under
λ-filtered colimits in K. Let A be a representative set of λ-presentable
objects in Kcf . By 3.8, λ-filtered fibrant homotopy colimits are ho-
motopy equivalent to λ-filtered colimits in Kcf . Hence A makes Kcf

homotopy locally λ-presentable. �

It follows from 3.12 and 3.13 that every simplicial combinatorial
model category is Quillen equivalent to a left Bousfield localization
SSetC

op

/Z for some small category C and a set Z. Dugger [22] proved
this for every combinatorial model category.

In [45], there are also considered homotopy varieties which are given
by simplicial algebraic theories. They form a special case of homotopy
locally finitely presentable categories and there are proved characteri-
zations of the kind of 3.11 and 3.12 for them. The situation is more
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delicate here because the emerging homotopy sifted colimits do not
coincide with sifted ones. One has to replace reflexive coequalizers by
homotopy colimits of simplicial objects. It makes possible to extend [5]
and [3] to the homotopy context. It remains to develop the theory of
homotopy exact categories which has been started in [37], [39], [49], [50]
and [43]. On the other hand, one can consider theories specified by both
homotopy limits and homotopy colimits and relate them to homotopy
accessible categories. These categories are considered in [38].
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