Homotopy locally presentable enriched categories

J. Rosický

joint work with S. Lack

Bonn 2016

In what follows, $\ensuremath{\mathcal{V}}$ will be a combinatorial monoidal model category such that

(1) it is locally presentable as a closed category,

(2) it has all objects cofibrant.

The main example is **SSet** and another key example is **Cat** with the categorical model structure. We can also take any Cisinski model category.

Our aim is to introduce homotopy locally presentable $\mathcal V\text{-}categories$ and to relate them to combinatorial model $\mathcal V\text{-}categories.$

Let \mathcal{V} be locally presentable as a closed category. The *trivial* model structure has all morphisms as cofibrations and isomorphisms as weak equivalences. Our assumptions are satisfied and homotopy locally presentable \mathcal{V} -categories coincide with locally presentable \mathcal{V} -categories.

We have the functors $P : \mathcal{V} \to \text{Ho} \mathcal{V}$, $\text{Ho} \mathcal{V}(I, -) : \text{Ho} \mathcal{V} \to \text{Set}$ and their composition $U : \mathcal{V} \to \text{Set}$.

The homotopy category ho ${\cal K}$ of a ${\cal V}\text{-category}\;{\cal K}$ has the same objects as ${\cal K}$ and

$$\mathsf{ho}\,\mathcal{K}(A,B)=U(\mathcal{K}(A,B))$$

For a model \mathcal{V} -category \mathcal{M} , we now have the standard homotopy category Ho \mathcal{M} , and the homotopy category ho \mathcal{M} , and these need not agree. But if Int \mathcal{M} is the full subcategory of \mathcal{M} consisting of the fibrant and cofibrant objects, then ho(Int \mathcal{M}) is equivalent to Ho(\mathcal{M}).

Let \mathcal{K}_0 be the underlying category of \mathcal{K} . We have a functor $P_{\mathcal{K}}: \mathcal{K}_0 \to \text{ho }\mathcal{K}$ and a morphism $f: A \to B$ in \mathcal{K} is called a *homotopy equivalence* if its image in ho \mathcal{K} is invertible.

A \mathcal{V} -category \mathcal{K} is called *fibrant* if each hom-object $\mathcal{K}(A, B)$ is fibrant in \mathcal{V} .

Int \mathcal{M} is fibrant for each model \mathcal{V} -category \mathcal{M} .

In a fibrant \mathcal{K} , f is a homotopy equivalence if and only if all $\mathcal{K}(C, f)$ (or all $\mathcal{K}(f, C)$) are weak equivalences in \mathcal{V} .

For a trivial model category \mathcal{V} , homotopy equivalences in a \mathcal{V} -category \mathcal{K} coincide with isomorphisms and any \mathcal{K} is fibrant.

Let $f : A \to B$ be a morphism in a \mathcal{V} -category \mathcal{K} . Then an object K in \mathcal{K} is called *homotopy orthogonal* to f if $\mathcal{K}(f, K)$ is a weak equivalence.

For a trivial model category \mathcal{V} , we get the usual (enriched) orthogonality.

Let \mathcal{M} be a model \mathcal{V} -category and \mathcal{F} be a cofibration in Int \mathcal{M} . Then $K \in \operatorname{Int} \mathcal{M}$ is homotopy orthogonal to f iff it is injective to all f-horns, i.e., to pushout-products $i \Box f$ with generating cofibrations i. An object K is homotopy orthogonal to a class \mathcal{F} of morphisms if it is homotopy orthogonal to each $f \in \mathcal{F}$. The class of all objects homotopy orthogonal to \mathcal{F} is denoted by HOrt \mathcal{F} and is called a homotopy orthogonality class. If \mathcal{F} is a set, we speak about small homotopy orthogonality classes.

Any homotopy orthogonality class is *homotopy replete*, i.e., it is closed under homotopy equivalent objects.

Theorem 1. Let \mathcal{M} be a tractable left proper model \mathcal{V} -category. Assuming Vopěnka's principle, each homotopy orthogonality class in Int \mathcal{M} is a small homotopy orthogonality class.

For a trivial model category \mathcal{V} , any locally presentable \mathcal{V} -category \mathcal{M} with the trivial model structure is a tractable left proper model \mathcal{V} -category. Thus Theorem 1 generalizes the fact that, assuming VP, any orthogonality class in a locally presentable category is small. This is equivalent to VP.

Let \mathcal{L} be a full sub- \mathcal{V} -category of a fibrant \mathcal{V} -category \mathcal{K} . We say that \mathcal{L} is *homotopy reflective* in \mathcal{K} if, for each K in \mathcal{K} , there is a morphism $\eta_{\mathcal{K}} \colon \mathcal{K} \to \mathcal{K}^*$ with \mathcal{K}^* in \mathcal{L} such that each L in \mathcal{L} is homotopy orthogonal to $\eta_{\mathcal{K}}$.

Theorem 2. Let \mathcal{M} be a tractable left proper model \mathcal{V} -category. Then each small homotopy orthogonality class in Int \mathcal{M} is homotopy reflective.

For a trivial model category \mathcal{V} , homotopy reflective means reflective. Thus Theorem 2 generalizes the fact that small orthogonality classes in locally presentable categories are reflective. Let \mathcal{K} a fibrant \mathcal{V} -category, $S \colon \mathcal{D} \to \mathcal{K}$ a diagram, and $G \colon \mathcal{D}^{op} \to \mathcal{V}$ a cofibrant weight. Then a *homotopy colimit* of Sweighted by G is an object $G *_h S$ equipped with a natural transformation $\beta \colon \mathcal{K}(G *_h S, -) \to [\mathcal{D}^{op}, \mathcal{V}](G, \mathcal{K}(S, -))$ whose components are weak equivalences.

 β corresponds to a cocone δ : $G \rightarrow \mathcal{K}(S, G *_h S)$.

For an arbitrary weight, we can define the homotopy colimit by taking its cofibrant replacement.

For a trivial model category $\mathcal{V},$ every weight is cofibrant and we get usual weighted colimits.

If G is cofibrant and the weighted colimit G * S exists, then it is a homotopy colimit $G *_h S$.

Weighted homotopy colimits are determined up to homotopy equivalence.

Weighted homotopy limits $\{G, S\}_h$ are defined dually.

Ordinary colimits in a \mathcal{V} -category can be understood as weighted colimits $\Delta I * S$ where ΔI is constant at I and S is the extension of the starting diagram on the free \mathcal{V} -category.

Theorem 3. Let \mathcal{V} be λ -combinatorial, \mathcal{M} be a λ -combinatorial model \mathcal{V} -category, \mathcal{I} a λ -filtered category and $S : \mathcal{I} \to \operatorname{Int} \mathcal{M}$. Then the canonical comparison hocolim $S \to \operatorname{colim} S$ is a weak equivalence.

A \mathcal{V} -functor $F : \mathcal{K} \to \mathcal{L}$ between fibrant \mathcal{V} -categories *preserves* the homotopy weighted colimit $G *_h S$ when the composite

$$G \xrightarrow{\delta} \mathcal{K}(S, G *_h S) \xrightarrow{F} \mathcal{L}(FS, F(G *_h S)).$$

exhibits $F(G *_h S)$ as the homotopy colimit $G *_h FS$. Let \mathcal{K} be a fibrant \mathcal{V} -category. Then $\mathcal{K}(A, -) : \mathcal{K} \to \operatorname{Int} \mathcal{V}$ preserves weighted homotopy limits for each A in \mathcal{K} . **Theorem 4.** Let \mathcal{M} be a model \mathcal{V} -category. Then Int \mathcal{M} has weighted homotopy colimits and weighted homotopy limits.

In fact, if G is cofibrant then G * S is cofibrant and $G *_h S$ is its fibrant replacement. Dually, $\{G, S\}$ is fibrant and $\{G, S\}_h$ is its cofibrant replacement.

Proposition 1. Let \mathcal{K} be a fibrant \mathcal{V} -category. Then homotopy orthogonality classes in \mathcal{K} are closed under existing weighted homotopy limits.

Theorem 5. Let \mathcal{M} be a tractable left proper model \mathcal{V} -category. Then a full subcategory of Int \mathcal{M} is a small homotopy orthogonality class iff it is homotopy reflective and closed under homotopy λ -filtered colimits for some regular cardinal λ .

For a trivial model category $\ensuremath{\mathcal{V}}$, we get the usual characterization of small orthogonality classes.

An object A of a fibrant \mathcal{V} -category \mathcal{K} is called *homotopy* λ -*presentable* when $\mathcal{K}(A, -) : \mathcal{K} \to \operatorname{Int} \mathcal{V}$ preserves homotopy λ -filtered colimits.

A small full subcategory ${\cal A}$ of a fibrant ${\cal V}\text{-}category$ ${\cal K}$ is called homotopy dense if the induced functor

$$F: \mathcal{K} \xrightarrow{E} [\mathcal{A}^{\mathsf{op}}, \mathcal{V}] \xrightarrow{Q} [\mathcal{A}^{\mathsf{op}}, \mathcal{V}]$$

is locally a weak equivalence, i.e. $\mathcal{K}(\mathcal{K}, \mathcal{K}') \rightarrow [\mathcal{A}^{op}, \mathcal{V}](\mathcal{F}\mathcal{K}, \mathcal{F}\mathcal{K}')$ are weak equivalences in \mathcal{V} .

For a trivial model category \mathcal{V} , we get the usual dense subcategory. A fibrant \mathcal{V} -category having a homotopy dense subcategory is called *homotopy bounded*.

A fibrant \mathcal{V} -category is called *homotopy locally* λ -*presentable* if it has homotopy weighted colimits and a homotopy dense subcategory consisting of homotopy λ -presentable objects.

For a trivial model category $\mathcal V,$ we get locally $\lambda\text{-presentable}$ categories.

A fibrant \mathcal{V} -category is called *strongly homotopy locally* λ -presentable if it has homotopy weighted colimits and a small full subcategory \mathcal{A} consisting of homotopy λ -presentable objects such that every object of \mathcal{K} is a homotopy λ -filtered colimit of objects from \mathcal{A} .

Proposition 2. Every strongly homotopy locally λ -presentable \mathcal{V} -category is homotopy locally λ -presentable.

We do not know whether the both concepts coincide, which is true for a trivial model category \mathcal{V} .

Theorem 6. Int \mathcal{M} is strongly homotopy locally presentable for every combinatorial model \mathcal{V} -category \mathcal{M} . If \mathcal{M} is tractable then each small homotopy orthogonality class in Int \mathcal{M} is strongly homotopy locally presentable.

A weak equivalence $F : \mathcal{K} \to \mathcal{L}$ is a local weak equivalence which is homotopically surjective in the sense that each $L \in \mathcal{L}$ is homotopy equivalent to some FK.

A local weak equivalence $F : \mathcal{K} \to \mathcal{L}$ is called a *strong weak equivalence* if there is a local weak equivalence $G : \mathcal{L} \to \mathcal{K}$ such that *GFK* is homotopy equivalent to *K* and *FGL* is homotopy equivalent to *L* for each $K \in \mathcal{K}$ and $L \in \mathcal{L}$.

A strong weak equivalence is a weak equivalence. For trivial model structure, the both concepts coincide with equivalences of categories.

Proposition 3. If \mathcal{L} is homotopy locally λ -presentable and $F : \mathcal{K} \to \mathcal{L}$ is a weak equivalence then \mathcal{K} is homotopy locally λ -presentable.

Proposition 4. If \mathcal{K} is strongly homotopy locally λ -presentable and $\mathcal{K} \to \mathcal{L}$ is a strong weak equivalence then \mathcal{L} is strongly homotopy locally λ -presentable.

Theorem 7. Assuming Vopěnka's principle, the following conditions are equivalent to any fibrant V-category:

- (1) \mathcal{K} is homotopy cocomplete and homotopy bounded.
- (2) \mathcal{K} is homotopy locally presentable.
- (3) There is a weak equivalence $\mathcal{K} \to \operatorname{Int} \mathcal{M}$ for some combinatorial model \mathcal{V} -category.
- (4) There is a weak equivalence $\mathcal{K} \to \operatorname{Int} \mathcal{M}$ where \mathcal{M} is a left Bousfield localization of a \mathcal{V} -presheaf category w.r.t. a set of morphisms.

For a trivial model category \mathcal{V} , we do not need VP for the equivalence of (2), (3) and (4) but it is needed for the equivalence of (1) and (2).

Problem 1. Is VP needed for $(2) \Rightarrow (3)$?