Algebraic Characterization of the Finite Power Property

Michal Kunc Masaryk University Brno

Outline

Decidability of the finite power property for regular languages.

Classical solutions.

Appropriate syntactic semigroup.

Generalization to rational languages in monoids defined by

confluent regular systems of deletions.

finite alphabet $A = \{a, b, \ldots\}$

 $A^*\ldots$ the monoid of finite words over A with concatenation

Regular languages:

 $L \subseteq A^*$ definable by a finite automaton Equivalently, recognizable by a finite semigroup \mathfrak{S} : homomorphism $\sigma \colon A^* \to \mathfrak{S}$

 $\sigma(u) = \sigma(v) \implies (u \in L \iff v \in L)$

Operations on languages:

concatenation $KL = \{ uv \mid u \in K, v \in L \}$ iteration $L^+ = \bigcup_{n=1}^{\infty} L^n$ (subsemigroup of A^* generated by L) $L^* = L^+ \cup \{ \varepsilon \}, \quad \varepsilon \dots$ empty word

Finite power property (FPP):

 $L^+ = L \cup L^2 \cup \cdots \cup L^n$ for some positive integer n

Brzozowski 1966:

Does a given regular L have the FPP?

Solved independently by Hashiguchi 1979 and Simon 1978.

Classical Solutions

Simon:

automata with weights in the semiring $(\mathbb{N} \cup \{0, \infty\}, \min, +)$ Example:

 $L = a\{a^2\}^* \text{ has the FPP:} \quad L^+ = \{a\}^+ = L \cup L^2$ automaton for L: $\rightarrow \bullet \xrightarrow{a} a$ $a \bigwedge a$ $a \land a$ $a \land$

Hashiguchi: direct combinatorial argument on automata based on the pigeon hole principle Let us uncover the algebraic background of Hashiguchi's argument.

First steps: Kirsten 2002

Some Basics on Structure of Finite Semigroups

 \mathfrak{S} finite semigroup

Quasi-order $\leq_{\mathcal{J}_{\mathfrak{S}}}$ on \mathfrak{S} : $s \leq_{\mathcal{J}_{\mathfrak{S}}} t \iff \exists x, y \in \mathfrak{S} \cup \{1\} \colon s = x \cdot t \cdot y$

Green relation $\mathcal{J}_{\mathfrak{S}}$: equivalence relation associated with $\leq_{\mathcal{J}_{\mathfrak{S}}} s \mathcal{J}_{\mathfrak{S}} t \iff$ generate the same ideal of \mathfrak{S} $\leq_{\mathcal{J}_{\mathfrak{S}}} determines a partial order of <math>\mathcal{J}$ -classes $s \in \mathfrak{S}$ idempotent: $s \cdot s = s$

 \mathcal{J} -class J regular: contains an idempotent J regular $\iff \exists s, t \in J \colon s \cdot t \in J$

Example of a Syntactic Monoid

$$\begin{split} &A = \{a, b\} \\ &K = \{a\} \cup bA^* aA^* \\ &\text{does not have the FPP } (a^+ \subseteq K^+) \\ &L = \{b\}^+ \cup aA^+ \\ &\text{has the FPP } (L^+ = L \cup \{b\}^+ aA^+ = L \cup L^2) \end{split}$$

 \boldsymbol{K} and \boldsymbol{L} recognized by the monoid:

The Appropriate Semigroup

 $L \subseteq A^+ \text{ regular}$ homomorphism $\sigma \colon A^* \to \mathfrak{S}$ recognizing L, L^+ and $\{\varepsilon\}$

Define a mapping $\tau \colon A^* \to \wp(\mathfrak{S}^3)$ $\tau(w) = \{ (\sigma(x), \sigma(y), \sigma(z)) \mid x, y, z \in A^*, w = xyz \}$ Kernel of τ is a congruence of $A^* \implies \tau(A^*)$ is a monoid. $\mathfrak{T} = \tau(L^+)$ subsemigroup of $\tau(A^*)$.

Algebraic Characterization of the FPP

Theorem: The following conditions are equivalent:

- 1. L has the FPP.
- 2. $\forall w \in L^+ \exists n \in \mathbb{N} : w^n \in L \cup L^2 \cup \cdots \cup L^n$.
- 3. Every regular \mathcal{J} -class of \mathfrak{T} contains some element of $\tau(L)$.
- 4. $w \in L^+$, \mathcal{J} -class of $\tau(w)$ in \mathfrak{T} regular \Longrightarrow $\exists y \in L, x, z \in L^* : w = xyz \& \sigma(y) \mathcal{J}_{\mathfrak{S}} \sigma(w).$
- 5. $L^+ = L \cup L^2 \cup \cdots \cup L^{(j+1)^h}$.
 - $j\ldots$ maximal size of a ${\mathcal J}$ -class of ${\mathfrak S}$

 $h\ldots$ length of the longest chain of $\mathcal J$ -classes in $\mathfrak T$

Proof:

- 2 \Longrightarrow 3: direct calculation for $w \in L^+$ with $\tau(w)$ idempotent (common refinement of two decompositions $w^n \in L^m$, $m \leq n$)
- 4 \implies 5: induction with respect to \mathcal{J} -classes of \mathfrak{T} (based on length of words; maximality of decompositions)

Monoids Defined by Confluent Deletions

 $R \subseteq A^+$ regular $\mathcal{R} = \{ w \to \varepsilon \mid w \in R \}$ confluent rewriting system $\operatorname{norm}(w) \dots$ normal form of $w \in A^*$ with respect to \mathcal{R}

 $\mathfrak{G} = (\operatorname{norm}(A^*), \cdot) \qquad u \cdot v = \operatorname{norm}(uv)$

Rational languages in \mathfrak{G} : norm(L), where L is regular in A^*

Example: Free group over $A = \{a, b, \ldots\}$: Take a disjoint copy $A' = \{a', b', \ldots\}$. $R = \{xx', x'x \mid x \in A\} \subseteq (A \cup A')^*$

 $L=\{\varepsilon\}$ corresponds to "Dyck language" with symmetric brackets

d'Alessandro and Sakarovitch 2003:

The FPP for rational languages in free groups is decidable. (involved reduction to boundedness of distance automata)

A Generalization

Theorem: The FPP is uniformly decidable for rational languages in finitely generated monoids defined by a confluent regular system of deletions.

Rational monoids:

- $$\begin{split} \beta \colon A^+ &\to A^+ \text{ rational function,} \quad \beta \circ \beta = \beta \\ \mathfrak{M} &= (\beta(A^+), \cdot) \qquad u \cdot v = \beta(uv) \end{split}$$
- regular languages behave as in A^*
- can be algorithmically manipulated

The characterization of the FPP holds for monoids \mathfrak{M} satisfying:

- 1. Well defined length of elements: $\ell : \mathfrak{M} \setminus \{0\} \to \mathbb{N}_0$ $x \cdot y \neq 0 \implies \ell(x \cdot y) = \ell(x) + \ell(y)$
- 2. Each two decompositions $x \cdot y = z \cdot t \neq 0$ have a common refinement.
- 3. $\{0\}$ and $\{1\}$ are regular.

Proof of the Generalization

We construct for each regular language $L \subseteq \text{norm}(A^*)$ a different rational monoid satisfying the previous conditions.

homomorphism $\sigma \colon A^* \to \mathfrak{S}$ recognizing L, $\operatorname{norm}(A^*)$ and $\{\varepsilon\}$

$$\begin{split} \mathfrak{M} &= \left((\mathfrak{S} \times \operatorname{norm}(A^*) \times \mathfrak{S}) \cup \{1, 0\}, \cdot \right) \\ (p, u, q) \cdot (r, v, s) &= \\ \begin{cases} (p, uv, s) & \text{if } uv \in \operatorname{norm}(A^*) \\ & \text{and } \varepsilon \in \operatorname{norm}(\sigma^{-1}(q)L^*\sigma^{-1}(r)), \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

 $K = \{ \left(\sigma(x), y, \sigma(z) \right) \mid x, y, z \in A^*, \ y \neq \varepsilon, \ xyz \in L \, \}$

L has the FPP in $\mathfrak{G}\iff K$ has the FPP in \mathfrak{M}

Conclusion

Known positive results on the FPP can be obtained by a transparent algebraic construction.

Open questions

- 1. Application to star height and related problems?
- 2. The FPP for recognizable relations $\bigcup_{i=1}^n K_i \times L_i \text{, where } K_i \text{ and } L_i \text{ regular}$