
Structure of Finite Semigroups and
Language Equations

Michal Kunc

Masaryk University Brno

Outline

Structure of finite semigroups:

1) Green’s relations

2) Factorization forests

3) Examples of applications to regular languages

Well quasiorders

Systems of language equations:

1) Explicit

2) Implicit

Basic Notions

Semigroup S: set equipped with an associative binary operation ·

Monoid M : semigroup with identity element 1 (x · 1 = 1 · x = x)

Group G: monoid where every element has an inverse (x · x−1 = x−1 · x = 1)

Subgroup of a semigroup = subsemigroup which is a group

(identity element of the subgroup need not be 1, but has to be idempotent, i.e. x · x = x)

Smallest monoid containing a semigroup S:

S1 =

S if S is a monoid

S ∪ {1} if S contains no identity element

Homomorphism ϕ : S → T . . . ϕ(xy) = ϕ(x)ϕ(y)

Monoid homomorphism . . . additionally ϕ(1) = 1

Congruence ρ on S: equivalence ρ ⊆ S × S satisfying x ρ x′ & y ρ y′ =⇒ xy ρ x′y′

Kernel of a homomorphism ϕ : S → T :

ker(ϕ) = { (x, y) ∈ S × S | ϕ(x) = ϕ(y) }

Congruences = kernels of homomorphisms.

Words

A . . . finite alphabet

A∗ . . . monoid of all finite words over A with concatenation as operation

semigroup A+ ⊆ A∗ . . . empty word ε excluded

Homomorphisms A∗ →M and A+ → S uniquely defined by any choice of images of letters.

Language L ⊆ A∗ recognized by a homomorphism ϕ : A∗ →M to a finite monoid, if

L = ϕ−1(F) for some F ⊆M .

Language L ⊆ A+ recognized by a homomorphism ϕ : A+ → S to a finite semigroup, if

L = ϕ−1(F) for some F ⊆ S.

recognizable = regular

recognizing homomorphism provides a deterministic automaton for both L and its reverse:

set of states M

δa(x) = x · ϕ(a)

δr
a(x) = ϕ(a) · x

initial state 1, accepting states F

Ordered Semigroups

Ordered semigroup: monotone partial order≤ on S, i.e. x ≤ x′ & y ≤ y′ =⇒ xy ≤ x′y′

(ordinary semigroup ordered by =)

F ⊆ S upward closed w.r.t.≤ . . . if x ≤ y and x ∈ F , then y ∈ F

Language L ⊆ A∗ recognized by a homomorphism ϕ : A∗ →M to a finite ordered monoid

(M,≤), if L = ϕ−1(F) for some F ⊆M upward closed w.r.t.≤.

Homomorphism ϕ : A∗ → (M,≤) induces a monotone quasiorder on A∗:

u ≤ϕ v ⇐⇒ ϕ(u) ≤ ϕ(v)

(quasiorder = reflexive and transitive relation)

L ⊆ A∗ recognized by ϕ ⇐⇒ L upward closed w.r.t.≤ϕ

Conversely, any monotone quasiorder≤ on A∗ determines a congruence on A∗:

w ∼ w′ ⇐⇒ w ≤ w′ & w′ ≤ w

A∗/ ∼ ordered monoid: w∼ ≤ w′∼ ⇐⇒ w ≤ w′

projection homomorphism ν : A∗ → A∗/∼

Syntactic Homomorphism

L . . . a language over A

contexts of w ∈ A∗ in L: CL(w) = { (u, v) | u, v ∈ A∗, uwv ∈ L }

Syntactic monotone quasiorder of L on A∗:

for w, w′ ∈ A∗, w ≤L w′ ⇐⇒ CL(w) ⊆ CL(w′)

Syntactic congruence = the corresponding equivalence relation:

w ∼L w′ ⇐⇒ w ≤L w′ & w′ ≤L w

ML = A∗/ ∼L syntactic (ordered) monoid (with ordering induced by≤L)

ϕL : A∗ → A∗/ ∼L syntactic homomorphism

ML smallest (ordered) monoid recognizing L with respect to division (quotient of a submonoid)

ML finite ⇐⇒ L regular

for L ⊆ A+: SL = A+/ ∼L syntactic semigroup

additional letters in alphabet =⇒ new zero in the syntactic monoid (0 · x = x · 0 = 0)

ϕL(w) is idempotent if and only if ∀u, v ∈ A∗, n ∈ N : uwv ∈ L ⇐⇒ uwnv ∈ L

Products of elements of semigroups versus recognizing languages:

evaluation homomorphism:

eval : M∗ →M eval(x1 . . . xn) = x1 · · ·xn

ϕ : A∗ →M homomorphism

substitution f from M∗ to A∗ defined by f(x) = { a ∈ A | ϕ(a) = x }

Then ϕ−1(x) = f({x1 . . . xn ∈M∗ | x1 · · ·xn = x })

Transformations

Q . . . a (finite) set

Full transformation monoid T (Q) . . . all mappings Q→ Q with composition as operation

A = (Q, A, δ) deterministic automaton without initial and final states

δa : Q→ Q action of a ∈ A

determines homomorphism ϕ : A∗ → T (Q), where ϕ(a) = δa

ϕ(w) = δ∗w extended transition function

{ δ∗w | w ∈ A+ } subsemigroup of T (Q) . . . transition semigroup T (A) ofA

• generated by δa for a ∈ A

• recognizes all languages accepted byA

transition monoid = T (A) ∪ {idQ}

syntactic semigroup = transition semigroup of the minimal automaton

Every semigroup S is isomorphic to a subsemigroup of T (S1):

δx(y) = y · x S ∼= { δx | x ∈ S }

Partial transformations: PT (Q) ⊆ T (Q ∪ {s}), where s is a new sink state

Group Languages

Finite transformation semigroup is a group

⇐⇒ contains only permutations

⇐⇒ minimal automaton is dually deterministic

⇐⇒ minimal automaton does not contain the pattern

• a

•

• a

(automaton cannot remember letters, only counts)

Relations

Full relation monoidR(Q) ⊇ T (Q) . . . all binary relations on Q with composition as operation

(p, q) ∈ σ ◦ δ ⇐⇒ ∃r ∈ Q : (p, r) ∈ σ & (r, q) ∈ δ

A = (Q, A, δ) non-deterministic automaton without initial and final states

δa = { (p, q) ∈ Q×Q | (p, a, q) ∈ δ } for all a ∈ A

determines homomorphism ϕ : A∗ → R(Q), where ϕ(a) = δa

subsemigroup ofR(Q) generated by mappings δa recognizes all languages accepted byA

Monogenic Subsemigroups

x ∈ S generates the subsemigroup 〈x〉 = {xn | n ∈ N }

Case 1: 〈x〉 infinite, isomorphic to (N, +)

x x2 x3 · · ·

Case 2: there exist smallest index i ≥ 1 and period p ≥ 1 such that xi+p = xi

xi+1 · · ·

x x2 · · · xi = xi+p
...

xi+p−1 · · ·

{xi, . . . , xi+p−1} cyclic subgroup of S

xω = lim
n→∞

xn! = x|S|! unique idempotent in 〈x〉, identity element of the subgroup

periodic semigroup = all monogenic subsemigroups are finite

finite =⇒ periodic

idempotents are exactly elements xω for x ∈ S

Green’s Relations

I ⊆ S left (right) ideal of S . . . SI ⊆ I (IS ⊆ I)

I ⊆ S ideal of S . . . SIS ⊆ I

left (right) ideal generated by x ∈ S . . . S1x (xS1)

ideal generated by x ∈ S . . . S1xS1

Green’s quasiorders:

y ≤L x ⇐⇒ S1y ⊆ S1x ⇐⇒ y ∈ S1x

y ≤R x ⇐⇒ yS1 ⊆ xS1 ⇐⇒ y ∈ xS1

y ≤J x ⇐⇒ S1yS1 ⊆ S1xS1 ⇐⇒ y ∈ S1xS1

y ≤L x =⇒ yz ≤L xz

y ≤R x =⇒ zy ≤R zx

S1xS1 = { y ∈ S | y ≤J x }

Green’s equivalence relations:

x L y ⇐⇒ y ≤L x & y ≤L x ⇐⇒ S1x = S1y

x R y ⇐⇒ y ≤R x & y ≤R x ⇐⇒ xS1 = yS1

x J y ⇐⇒ y ≤J x & y ≤J x ⇐⇒ S1xS1 = S1yS1

quasiorders induce partial ordering of the corresponding classes

multiplying element from any side descending in the ordering of J -classes

multiplying element from the left (right) descending in the ordering of L(R)-classes

In a monoid, invertible elements form the top J -class, which is a group.

Zero always forms a one-element bottom J -class.

Every semigroup has at most one minimal J -class.

Lemma: L ◦ R = R ◦ L

Proof:

x R y L z =⇒ y = xs, x = yt, z = uy, y = vz

w = uyt = ux = zt =⇒ x = yt = vzt = vuyt = vw, z = uy = uxs = uyts = ws

·s
→

x y

u· ↓ ↑ v·

w z

←
·t

Remaining Green’s equivalences: H = L ∩R, D = L ◦ R

x D y ⇐⇒ xR∩ yL 6= ∅ ⇐⇒ xL ∩ yR 6= ∅

H ⊆ L(R) ⊆ D ⊆ J

eggbox . . . D-class row . . . R-class column . . . L-class cell . . . H-class

Bijections BetweenH-Classes

·s
→

x y

u· ↓ ↑ v·

w z

←
·t

·s and ·t mutually inverse bijections between L-classes of x and y, which preserveR-classes

u· and v· mutually inverse bijections betweenR-classes of x and w, which preserve L-classes

 bijections between allH-classes in aD-class

Examples:

A∗:

u ≤L v ⇐⇒ v is a suffix of u

u ≤R v ⇐⇒ v is a prefix of u

u ≤J v ⇐⇒ v is a factor of u

u J v ⇐⇒ u D v ⇐⇒ u L v ⇐⇒ u R v ⇐⇒ u H v ⇐⇒ u = v

(J -trivial semigroup)

T (Q):

ρ ≤L σ ⇐⇒ Im(ρ) ⊆ Im(σ) ρ L σ ⇐⇒ Im(ρ) = Im(σ)

ρ ≤R σ ⇐⇒ ker(ρ) ⊇ ker(σ) ρ R σ ⇐⇒ ker(ρ) = ker(σ)

ρ ≤J σ ⇐⇒ |Im(ρ)| ≤ |Im(σ)|

ρ D σ ⇐⇒ ρ J σ ⇐⇒ |Im(ρ)| = |Im(σ)|

Schützenberger Groups

M monoid, H H-class of M

(right) Schützenberger group Γ(H): all bijections of H of the form x 7→ xs, where s ∈M

|Γ(H)| = |H|

Schützenberger groups ofH-classes in the sameD-class are isomorphic.

For everyH-class H , either H2 ∩H = ∅ or H is a subgroup maximal w.r.t. inclusion and

isomorphic to its Schützenberger group.

Maximal subgroups are preciselyH-classes containing an idempotent.

Theorem: In every finite (periodic) semigroup,D = J .

Proof:

x J y =⇒ ∃p, q, s, t ∈ S1 : x = pyq, y = sxt

y = spyqt = (sp)2y(qt)2 = · · · = (sp)ωy(qt)ω = (sp)ω(sp)ωy(qt)ω = (sp)ωy

x L yq: x = p · yq

yq = (sp)ωyq = (sp)ω−1spyq = (sp)ω−1s · x

y R yq: y = y(qt)ω = yq · t(qt)ω−1

Example: subsemigroup of PT (2)

·y
→

·x
←

y· ↓ x xy

x· ↑ yx y

0

x: • • y: • •

xy: • • yx: • •

x2 = y2 = 0 xyx = x yxy = y

Similar example: subsemigroup of PT (2)

·y
→

·x
←

y· ↓ x xy

x· ↑ yx y

0

x: • • y: • •

xy: • • yx: • •

x2 = 0 xyx = x yxy = y

More interesting example: subsemigroup of T (3)

x x2

y yx

z zx

z2 z2x

x:

•

•

•

x2:

•

•

•

y:

•

•

•

yx:

•

•

•

z:

•

•

•

zx:

•

•

•

z2:

•

•

•

z2x:

•

•

•

x and z belong to the same L-class of T (3)

Basic Properties of Green’s Relations in Finite Semigroups

Lemma: S finite semigroup, x, y ∈ S such that x ≤L y and x J y. Then x L y.

Proof: x = sy =⇒ y = txu = tsyu = (ts)ωyuω = (ts)ω−1tsy = (ts)ω−1tx.

Reformulations: In any finite semigroup:

• x ≤J xs =⇒ x R xs

• x <L y =⇒ x <J y

Corollary: In any finite semigroup, sxt H x =⇒ sx H xt H x.

Proof: sx ≤L x, x ≤R sx, sx J x

Lemma: If x and y are J -equivalent elements of a finite semigroup, then xy J x if and only if

there exists an idempotent e such that x L e R y. In that case, we have x R xy L y.

Proof of “⇐=” :

x = se, y = et =⇒ xy = seet = xt

·t
→

x xy

s· ↑

e y

Lemma: If x and y are J -equivalent elements of a finite semigroup, then xy J x if and only if

there exists an idempotent e such that x L e R y. In that case, we have x R xy L y.

Proof of “=⇒” :

xy ≤R x & xy J x =⇒ xy R x

xy ≤L y & xy J y =⇒ xy L y

x = xys & y = txy =⇒ (tx)2 = txtxys = txys = tx

·y
→

x xy

t· ↓ ↑ x·

tx y

←
·s

Recalling example: subsemigroup of PT (2)

·y
→

·x
←

y· ↓ x xy

x· ↑ yx y

0

x: • • y: • •

xy: • • yx: • •

x2 = 0 xyx = x yxy = y

Regular Elements

y is a (semigroup) inverse of x, if xyx = x & yxy = y

x ∈ S is regular = has an inverse

x belongs to a subgroup =⇒ x is regular

y inverse of x =⇒ xy and yx are idempotents in the sameD-class

·y
→

x xy

y· ↓ ↑ x·

yx y

←
·x

x ∈ S regular ⇐⇒ ∃y, z ∈ S : x = (yz)ωy (inverse is z(yz)ω−1)

Examples:

A+: no regular elements

T (Q):

ρ is idempotent ⇐⇒ ∀q ∈ Im(ρ) : ρ(q) = q

ρ belongs to a subgroup ⇐⇒ ρ|Im(ρ) : Im(ρ)→ Im(ρ) is a bijection

⇐⇒ Im(ρ) forms a transversal (set of representatives) of ker(ρ)

every element is regular

RegularD-Classes

Example:

aD-class of T (3) with two-elementH-classes

x e y f � �

z g u � � �

� � � � � �

x:

•

•

•

e:

•

•

•

f :

•

•

•

g:

•

•

•

IdempotentsR-related to x are e and f . Idempotents L-related to x are e and g.

x has 4 inverses: x (group inverse), y, z, u.

y:

•

•

•

z:

•

•

•

u:

•

•

•

RegularD-Classes

RegularD-class — equivalent definitions:

1) Contains an idempotent.

2) Contains a regular element.

3) Every element is regular.

4) Every L-class and everyR-class contains an idempotent.

2 =⇒ 3: xyx = x, yxy = y, z = xs, x = zt

z
·t
→ x

·y
→ xy

z(ty)z = xyxs = xs = z, (ty)z(ty) = tyxy = ty

In a finite semigroup, aD-class is regular if and only if it contains some elements x and y

together with their product xy.

regularD-class . . . products can stay there for arbitrarily many multiplications

Every idempotent is a left identity for itsR-class and a right identity for its L-class.

Proof: x = es =⇒ ex = ees = es = x

Theorem: (Miller & Clifford 1956)

There is a bijection between inverses of x and pairs of idempotents (e, f) such that e R x L f ;

there exists exactly one inverse y such that e L y R f , and it satisfies xy = e and yx = f .

Proof: if e = xs, take y = fs

x(fs)x = xsx = ex = x

(fs)x(fs) = fsxs = fse = fs

·s
→

x e

f y

→
·s

Consequence:

Idempotents e and f belong to the sameD-class if and only if there exist mutually inverse

elements x and y such that e = xy and f = yx.

·y
→

x e = xy

y· ↓ ↑ x·

f = yx y

←
·x

Consequence:

TwoH-classes in the sameD-class, which contain an idempotent, are isomorphic subgroups.

Proof: isomorphism z 7→ yzx, where x and y are mutually inverse elements such that e = xy

and f = yx.

0-Simple Semigroups

Simple semigroup = has no proper ideal = has only one J -class

Null semigroup . . . S2 = {0}

0-simple semigroup . . . S2 6= {0} & exactly two ideals {0}, S (two J -classes {0}, S \ {0})

S simple =⇒ S ∪ {0} 0-simple

A finite semigroup S is simple ⇐⇒ ∀x, y ∈ S : xω+1 = x & (xyx)ω = xω .

Regular language is recognizable by a finite simple semigroup if and only if its minimal

automaton does not contain the pattern

•
a
• b

•

•
a
• b

Equivalent formulation:

For any letters a, b ∈ A, Im(δa) forms a transversal (set of representatives) of ker(δb).

Structure ofD-Classes

Rees quotient:

I ideal of S, S/I = (S \ I) ∪ {0}

(subset I ⊆ S downward closed w.r.t. J becomes zero of S/I)

corresponds to congruences of the form idS ∪ I × I

Divisibility in regularD-classes:

D regularD-class, e ∈ D idempotent, x R e =⇒ x ∈ eD and e ∈ xD
·y
→

x e = xy

f = yx y

←
·x

Consequence:

D regularD-class, x, y ∈ D =⇒ ∃z ∈ D : x ∈ zD & z ∈ xD & y ∈ Dz & z ∈ Dy

Principal Factors

Principal factors of a finite semigroup S:

• bottomD-class (= least ideal) is a simple semigroup

•D non-regularD-class =⇒ D ∪ {0} = S1DS1/(S1DS1 \D) is a null-semigroup

•D regularD-class =⇒ D ∪ {0} = SDS/(SDS \D) is a 0-simple semigroup

Principal factors of homomorphic images:

S, T finite semigroups, ϕ : S ։ T onto homomorphism

∀x ∈ S, z ∈ T : z ≤J ϕ(x) ⇐⇒ ∃y ≤J x : ϕ(y) = z

D aD-class of T , choose x J -minimal in ϕ−1(D)

Then y <J x =⇒ ϕ(y) <J ϕ(x). =⇒ D is the image of xD

Every principal factor of T is image of a principal factor of S via homomorphism induced by ϕ.

Every (maximal) subgroup of T is of the form ϕ(G) for a (maximal) subgroup G of S.

Proof:

e ∈ T idempotent =⇒ exists idempotent f ∈ S : ϕ(f) = e & f J -minimal in ϕ−1(eH)

(ϕ(y) H e =⇒ ϕ(yω) = e)

eH = ϕ(fH): x ∈ S satisfies ϕ(x) H e =⇒ ϕ(fxf) = ϕ(x) & fxf H f

Classification of Finite 0-Simple Semigroups

Rectangular bands: R and L arbitrary finite sets

multiplication on R × L: (r, ℓ) · (r′, ℓ′) = (r, ℓ′)

(r, ℓ) R (r′, ℓ′) ⇐⇒ r = r′ (r, ℓ) L (r′, ℓ′) ⇐⇒ ℓ = ℓ′

allH-classes are trivial groups

S simple =⇒ H is a congruence, S/H is a rectangular band and allH-classes are

isomorphic groups

Rees matrix semigroup: R and L finite sets, G finite group

P = (pℓr)ℓ∈L, r∈R . . . L×R-matrix with entries in G ∪ {0} and with at least one

non-zero entry in every row and every column

multiplication on M
0(R, L, G, P) = (R ×G× L) ∪ {0}:

(r, g, ℓ) · (r′, g′, ℓ′) =

(r, g · pℓr′ · g′, ℓ′) if pℓr′ 6= 0

0 if pℓr′ = 0

Matrix representation of M0(R, L, G, P):

(r, g, ℓ) corresponds to the matrix with only one non-zero entry g in the position (r, ℓ)

sandwich multiplication: M ·N = MPN

Theorem: (Rees 1940)

A finite semigroup is 0-simple if and only if it is isomorphic to some M
0(R, L, G, P).

Proof:

S . . . 0-simple semigroup

G . . . Schützenberger group of the non-zeroD-class

R . . . the set ofR-classes, L . . . the set of L-classes

choose a groupH-class and elements tr and sℓ, for r ∈ R and ℓ ∈ L

·sℓ→ ℓ

G sℓ

tr· ↓

r tr trgsℓ

Every element can be uniquely expressed in the form trgsℓ, for r ∈ R, g ∈ G and ℓ ∈ L.

(trgsℓ)(tr′g′sℓ′) = tr(gsℓtr′g′)sℓ′ set pℓr = sℓtr ∈ G ∪ {0}

Finite simple semigroups: all entries of P belong to G

Repetitions in Products

Lemma: (cancellation rule in a J -class)

In every finite semigroup: x J y J z J xy = xyz =⇒ y = yz.

Proof: y R yz, x· is a bijection betweenR-classes of y and xy

Repetitions in products staying in the same J -class:

Lemma: J a J -class of a finite semigroup, x1 · · ·xn ∈ J , |{ i | xi ∈ J }| > |J |.

Then there exist i < j such that xi, xj ∈ J and xi · · ·xj = xi.

Proof:

k smallest such that xk ∈ J

∀j ≥ k : xk · · ·xj ∈ J =⇒

∃k ≤ i < j : xi, xj ∈ J & xk · · ·xi = xk · · ·xj (by pigeonhole principle)

xk · · ·xi−1 J xi J xi+1 · · ·xj J (xk · · ·xi−1)xi(xi+1 · · ·xj)

cancellation rule =⇒ xi · · ·xj = xi

Finite Power Property

L possesses the finite power property ⇐⇒ ∃n : L+ = L ∪ L2 ∪ · · · ∪ Ln

Does a given regular language L have the finite power property?

decidable (Hashiguchi 1979, Simon 1978)

Construction: (Birget & Rhodes 1984)

ϕ : A+ → S homomorphism recognizing L and L+

define mapping τ : A+ → ℘(S3)

τ(w) = { (ϕ(t), ϕ(u), ϕ(v)) | t, u, v ∈ A+, w = tuv }

τ induces a semigroup operation on τ(L+) ⊆ ℘(S3) τ homomorphism

Theorem: For a regular language L, the following conditions are equivalent: (MK 2006)

• L possesses the finite power property.

• For all w ∈ L+, there exists n such that wn ∈ L ∪ · · · ∪ Ln.

• Every regularD-class of τ(L+) contains some element of τ(L).

• L+ = L ∪ · · · ∪ L(j+1)h

j . . . maximal size of a J -class of S

h . . . length of the longest chain of J -classes in τ(L+)

Star-Free Languages and Aperiodic Semigroups

star-free language = definable by rational expression with union, concatenation and

complementation (without Kleene star)

Example: A = {a, b}, (ab)
+

= a∅ ∩ ∅b ∩ ∅aa∅ ∩ ∅bb∅ is star-free

Aperiodic semigroup S — equivalent definitions:

• ∀x ∈ S ∃n : xn+1 = xn (xω+1 = xω)

• periodic semigroup where all subgroups are trivial

Prohibited pattern in minimal automaton:

cycle labelled by a non-primitive word wn, n ≥ 2 (counter-free automaton)

Lemma: Periodic semigroup is aperiodic ⇐⇒ H is trivial.

Proof: y = xs & x = ty =⇒ y = tys = tωysω = tω+1ysω = ty = x

M finite monoid, x, x1, . . . , xn ∈M .

Task: Describe all products y = x1 · · ·xn satisfying y H x using union, concatenation,

complementation and descriptions of products belonging to higher J -classes.

Lemma: x1 · · ·xn H x ⇐⇒

1. x1 · · ·xi R x for some i ≤ n,

2. xi · · ·xn L x for some i ≤ n,

3. x1 · · ·xn ≥J x.

Proof of “⇐=” : y = x1 · · ·xn

y ≥J x & y ≤R x & y ≤L x =⇒ y R x & y L x

These three conditions can be expressed using characterizations for higher J -classes by

considering positions i, where they become true (1 and 2) or false (3). This is a local event.

Lemma:

x1 · · ·xi R x for some i ⇐⇒ exists i such that x1 · · ·xi−1 >J x and x1 · · ·xi R x.

Proof of “=⇒” : take the smallest i such that x1 · · ·xi R x

Lemma: x1 · · ·xn �J x ⇐⇒ either xi �J x for some i

or xi+1 · · ·xj−1 >J x and xi · · ·xj �J x for some i < j.

Proof of “=⇒” : Take i ≤ j such that xi · · ·xj �J x and j − i is smallest possible.

i = j =⇒ xi �J x

i < j =⇒ y = xi+1 · · ·xj−1 ≥J x

y ≥L xiy ≥J x and y ≥R yxj ≥J x (minimality of xiyxj)

Assume y J x. Then xiy J yxj J y, and so xiy L y and yxj R y.
·xj
→

y yxj

xi· ↓

xiy xiyxj

xi · · ·xj = xiyxj J y J x, contradiction

Therefore y >J x.

Theorem: Regular language L is star-free ⇐⇒ M(L) is aperiodic. (Schützenberger 1965)

Proof: “=⇒” direct verification

“⇐=” ϕ : A∗ →M homomorphism, where M is a finite aperiodic monoid, i.e.H-trivial

We prove that ϕ−1(x) is star-free for all x ∈M by induction downwards on≥J :

• highest J -class = {1}:

ϕ−1(1) = A∗ \ (A∗ · { a ∈ A | ϕ(a) 6= 1 } ·A∗)

• induction step:

ϕ(w) = x ⇐⇒ ϕ(w) H x

ϕ−1(x) = (RA∗ ∩A∗L) \A∗JA∗

R =
⋃

{ϕ−1(y)a | y ∈M, a ∈ A, y >J x, yϕ(a) R x }

L =
⋃

{ aϕ−1(y) | y ∈M, a ∈ A, y >J x, ϕ(a)y L x }

J = { a ∈ A | ϕ(a) �J x }

∪
⋃

{ aϕ−1(y)b | y ∈M, a, b ∈ A, y >J x, ϕ(a)yϕ(b) �J x }

M isH-trivial =⇒ ϕ−1(y) definable by induction assumption

Example:M((a2)
∗
) is a two-element group =⇒ (a2)

∗
is not star-free

Occurrences of Idempotents in Products

S finite semigroup, E(S) the set of idempotents of S

Lemma: ∀n ≥ |S| : Sn = S · E(S) · S

Proof: x1, . . . , xn ∈ S

case 1: x1 · · ·xi all different =⇒ some of them is idempotent

case 2: x1 · · ·xi = x1 · · ·xixi+1 · · ·xj =⇒ x1 · · ·xi = x1 · · ·xi(xi+1 · · ·xj)
ω

Theorem: For every finite semigroup S and k ≥ 2 there exists n such that for every

x1, . . . , xn ∈ S there is an idempotent e ∈ E(S) and 0 ≤ i1 < · · · < ik ≤ n satisfying

xij+1 · · ·xiℓ
= e for all 1 ≤ j < ℓ ≤ n.

follows directly from Ramsey’s theorem: graph nodes = positions in the word x1 . . . xn

colours = elements of S

Hall & Sapir 1996: S has n non-idempotent elements =⇒ every sequence of 2n elements

contains a factor evaluating to an idempotent (optimal value)

Factorization Forests

ϕ : A∗ →M homomorphism to a finite monoid

factorization forest of ϕ:

d : {w ∈ A∗ | |w| ≥ 2 } → (A+)
+

such that

if d(w) = (w1, . . . , wn) then:

1) w = w1 . . . wn

2) |wi| < |w|

3) n ≥ 3 =⇒ ϕ(w) = ϕ(w1) = · · · = ϕ(wn) is idempotent

d provides for every word w a tree with root labelled by w, nodes labelled by its factors and

leaves by letters, which expresses successive factorizations of w up to letters.

Node with more than two successors =⇒ all labels evaluate to the same idempotent.

height of d: (height of the highest tree)

h(a) = 0 for a ∈ A

h(w) = max{h(w1), . . . , h(wn)}+ 1 if d(w) = (w1, . . . , wn)

h(d) = sup{h(w) | w ∈ A+ }

Example:

M = (Z, +)/2Z (two-element group)

ϕ : {a, b}+ →M ϕ(a) = 1, ϕ(b) = 0 (identity element)

Minimal height of a factorization forest for ϕ is 5:

if |w|a odd, w = bkaŵ, then

d(w) =

(bk, a) if ŵ = ε

(bka, ŵ) if ŵ 6= ε

if |w|a even, w = bk0abk1 . . . abkn , then

d(w) =

(a, bk1a) if n = 2, k0 = k2 = 0

(b, . . . , b
︸ ︷︷ ︸

k0

, abk1a, b, . . . , b
︸ ︷︷ ︸

k2

, . . . , abkn−1a, b, . . . , b
︸ ︷︷ ︸

kn

) otherwise

word abbbabbbabbbabbba requires tree of height 5

Theorem: (Simon 1990, Kufleitner 2008)

Every morphism from A∗ to a finite monoid M has a factorization forest of height 3|M | − 1.

(tight bound for all finite groups; for aperiodic monoids height 2|M | is sufficient)

Proof idea: inductive construction w.r.t. J -classes

long products staying in the same J -class:

x1, . . . , xn, x1 · · ·xn belong to the same J -class =⇒

H-class of xi+1 · · ·xj uniquely determined byR-class of xi+1 and L-class of xj

(xi+1 · · ·xj J xj & xi+1 · · ·xj ≤L xj =⇒ xi+1 · · ·xj L xj)

consider repetitions of the pairs (xiL, xi+1R)

factors between places with the same pair belong to the sameH-class

Equivalent formulation: For every homomorphism ϕ to a finite monoid there exists a regular

expression representing A∗ where Kleene star is applied only to languages L satisfying

ϕ(L) = {e} for some idempotent e.

Example of application: decidability of limitedness of distance automata (Simon 1990)

Polynomials

monomial of degree k over A

. . . language of the form A∗
0a1A

∗
1 · · · akA∗

k , where ai ∈ A and Ai ⊆ A

polynomial = finite union of monomials

(languages of level 3/2 of the Straubing-Thérien concatenation hierarchy)

Factorization forest d gives for every w ∈ A+ a monomial Pd(w) of degree at most 2h(d):

Pd(a) = {a} for a ∈ A

Pd(w) = Pd(w1) · Pd(w2) if d(w) = (w1, w2)

Pd(w) = Pd(w1) · alph(w)∗ · Pd(wn) if d(w) = (w1, . . . , wn) with n ≥ 3

Theorem: (Arfi 1991)

For a regular language L ⊆ A∗ the following conditions are equivalent:

1) L is a polynomial.

2) L is recognizable by a finite ordered monoid (M,≤) where every idempotent e ∈ E(M) is

the least element of the subsemigroup e · {x ∈M | e ≤J x }∗ · e.

3) ∀v, w ∈ A∗ : ϕL(w) = ϕL(w2) & alph(v) ⊆ alph(w) =⇒ w ≤L wvw

Proof of “2 =⇒ 1”:

ϕ : A∗ →M recognizes finite unions of languages {w ∈ A∗ | ϕ(w) ≥ x } for x ∈M .

d . . . factorization forest of ϕ of height 3|M |

We verify {w ∈ A∗ | ϕ(w) ≥ x } =
⋃

ϕ(w)≥x

Pd(w)

(this is a polynomial because degrees are bounded by 23|M |)

⊆: w ∈ Pd(w)

⊇: It is sufficient to prove by induction that v ∈ Pd(w) =⇒ ϕ(v) ≥ ϕ(w).

If d(w) = (w1, w2) then v ∈ Pd(w) = Pd(w1) · Pd(w2)

=⇒ v = v1v2, ϕ(v1) ≥ ϕ(w1), ϕ(v2) ≥ ϕ(w2)

=⇒ ϕ(v) = ϕ(v1v2) ≥ ϕ(w1w2) = ϕ(w)

If d(w) = (w1, . . . , wn) with n ≥ 3 then v ∈ Pd(w) = Pd(w1) · alph(w)
∗ · Pd(wn)

=⇒ v = v1uvn, ϕ(v1) ≥ ϕ(w1), ϕ(vn) ≥ ϕ(wn), alph(u) ⊆ alph(w)

=⇒ ϕ(u) ∈ {x ∈M | ϕ(w) ≤J x }∗

=⇒ ϕ(v) = ϕ(v1)ϕ(u)ϕ(vn) ≥ ϕ(w1)ϕ(u)ϕ(wn) = ϕ(w)ϕ(u)ϕ(w) ≥ ϕ(w)

Well Quasiorders

Recognizing Languages by Monotone Quasiorders

Monotone quasiorder≤ on A∗: u ≤ v & ũ ≤ ṽ =⇒ uũ ≤ vṽ

L recognized by≤ . . . L upward closed w.r.t.≤

monotone quasiorder≤ recognizes L ⇐⇒ ≤ contained in the syntactic quasi-order of L

(u ≤ v =⇒ CL(u) ⊆ CL(v) =⇒ u ≤L v)

Special case:

recognized by a congruence = union of its classes = recognized by the quotient monoid

recognizing by finite ordered monoids = recognizing by monotone quasiorders with finite index

Are there quasiorders on A∗ with infinite index which recognize only regular languages?

all upward closed languages are regular ⇐⇒ all downward closed languages are regular

(closure under complementation)

Well Quasiorders (Wqo)

w ∈ L minimal in L ⊆ A∗ w.r.t.≤ ⇐⇒ (∀u ∈ L : u ≤ w =⇒ w ≤ u)

Equivalent definitions of well quasiorder≤ on A∗:

• Every infinite sequence of words contains an infinite ascending subsequence.

• For every infinite sequence (wi)
∞
i=1 there exist i < j such that wi ≤ wj .

• Contains neither infinite descending chains
r

r

r

p
p
p

nor infinite antichains r r r p p p

• Every upward closed language over A is finitely generated.

• Every non-empty language over A has some minimal element, but only finitely many

non-equivalent minimal elements.

• There is no infinite ascending sequence of upward closed languages.

Special case: Congruence of finite index is a monotone well quasiorder.

recognizing by monotone well quasiorders = recognizing by well partially ordered monoids

Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, de Luca & Varricchio 1994)

For any language L ⊆ A∗ the following conditions are equivalent:

1) L is regular.

2) L is upward closed w.r.t. a monotone wqo on A∗.

3) L is upward closed w.r.t. a left-monotone wqo on A∗ and w.r.t. a right-monotone wqo on A∗.

(language upward closed w.r.t. a right-monotone wqo need not be regular)

Proof of “3 =⇒ 1”:

Left and right syntactic quasiorders≤ℓ
L and≤r

L are wqos.

w ≤ℓ
L w′ ⇐⇒ (∀u ∈ A∗ : uw ∈ L =⇒ uw′ ∈ L) ⇐⇒ Cℓ

L(w) ⊆ Cℓ
L(w′)

w ≤r
L w′ ⇐⇒ (∀v ∈ A∗ : wv ∈ L =⇒ w′v ∈ L) ⇐⇒ Cr

L(w) ⊆ Cr
L(w′)

L non-regular =⇒ exists infinite sequence (wi)
∞
i=1, where Cℓ

L(wi) 6= Cℓ
L(wj)

contains subsequence (ui)
∞
i=1 strictly increasing w.r.t. <ℓ

L

i.e. i < j =⇒ Cℓ
L(ui) ⊂ Cℓ

L(uj)

Cℓ
L(ui) is upward closed w.r.t.≤r

L:

v ∈ Cℓ
L(ui) & v ≤r

L v′ =⇒ ui ∈ Cr
L(v) ⊆ Cr

L(v′) =⇒ v′ ∈ Cℓ
L(ui)

(Cℓ
L(ui))

∞
i=1 strictly increasing sequence of languages upward closed w.r.t.≤r

L

contradicts that≤r
L is wqo

Nash-Williams Minimal Bad Sequence Argument

How to prove a quasiorder to be wqo?

(X,≤) . . . a quasiordered set

Xω . . . the set of infinite sequences (xi)
∞
i=1, where xi ∈ X

(xi)
∞
i=1 ∈ Xω bad sequence . . . ∀i, j : i < j =⇒ xi � xj

E another quasiordering on X , ∼ the corresponding equivalence relation

quasiorder Xω lexicographically w.r.t.E:

(xi)
∞
i=1 E (yi)

∞
i=1 ⇐⇒ either ∀i : xi ∼ yi

or ∃n : xn ⊳ yn & ∀i < n : xi ∼ yi

Lemma:

If X contains no infinite descending sequence w.r.t.E and≤ is not a wqo,

then there exists a bad sequence for≤ minimal w.r.t.E.

Proof: Inductively choose xi minimal w.r.t.E such that x1, . . . , xi can be prolonged into a bad

sequence.

Proof method for wqo property:

Take a bad sequence and construct a smaller one.

Derivation Relations of Context-Free Rewriting Systems

Example: “scattered subword” relation

a1 . . . an ≤ u0a1u1 . . . anun

context-free rewriting system R = { ε→ a | a ∈ A }

≤ is the derivation relation⇒∗
R of R

≤ is wqo (Higman 1952):

(wi)
∞
i=1 bad sequence minimal w.r.t. length quasiorder

infinitely many wi start with the same letter a: wik
= avk for k = 1, . . . ,∞

w1, . . . , wi1−1, v1, v2, . . . is a bad sequence smaller than the original one

=⇒ every language closed under inserting letters is regular

Unitary context-free systems:

R = { ε→ w | w ∈ I }, where I ⊆ A∗ finite

(to obtain standard context-free system, replace every rule ε→ w with rules a→ aw and

a→ wa for all a ∈ A)

Examples:

I = A: “scattered subword” relation

I = { aā | a ∈ A }: generates Dyck language

Unitary Context-Free Systems

Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, D’Alessandro & Varricchio 2005)

For every unitary system R = { ε→ w | w ∈ I }, the following conditions are equivalent:

• ⇒∗
R is a wqo on (alph(I))

∗

• ⇒∗
R is a wqo on {w | ε⇒∗

R w }

• {w | ε⇒∗
R w } is regular

• I is unavoidable over alph(I)

I ⊆ A+ unavoidable over A — equivalent definitions:

• every infinite word over A has a factor belonging to I

• there are only finitely many finite words over A without factors from I

• ∃n : An ⊆ A∗IA∗

Examples: A = {a, b}

I = {a2, b2} avoidable, I = {a2, b2, ab} unavoidable

General Context-Free Systems

Theorem: (Bucher & Ehrenfeucht & Haussler 1985)

For every context-free rewriting system R, the following conditions are equivalent:

• ⇒∗
R is a wqo on A∗

• { awa | a ∈ A, w ∈ A∗, a⇒∗
R awa } is unavoidable over A

• { aw | a ∈ A, w ∈ A+, a⇒∗
R aw } ∪ {wa | a ∈ A, w ∈ A+, a⇒∗

R wa }

is unavoidable over A

Are these conditions decidable?

Unavoidability is decidable for regular sets: I unavoidable ⇐⇒ A∗ \ A∗IA∗ finite

But sets in these conditions are context-free.

Context-Free Derivations Defined by Homomorphisms

ϕ : A∗ → (M,≤) homomorphism

R = { a→ w | a ∈ A, w ∈ A+, ϕ(a) ≤ ϕ(w) }

notation:⇒∗
ϕ ≡ ⇒

∗
R

u⇒∗
ϕ v ⇐⇒ u = a1 . . . an, ai ∈ A

& v = v1 . . . vn, vi ∈ A+

& ϕ(ai) ≤ ϕ(vi)

⇒∗
ϕ ⊆ ≤ϕ

ϕ(A) = M =⇒ sufficient to take finite

R = { a→ bc | a, b, c ∈ A, ϕ(a) = ϕ(bc) } ∪ { a→ b | ϕ(a) ≤ ϕ(b) }

⇒∗
ϕ is a wqo =⇒ sufficient to take finite

R = { a→ w | a ∈ A, w ∈ min{u ∈ A+ | |u| ≥ 2, ϕ(a) ≤ ϕ(u) } }

Example:

M = (Z, +)/2Z (two-element group)

≤ is =

ϕ : {a, b}+ →M ϕ(a) = 1, ϕ(b) = 0 (identity element)

⇒∗
ϕ: .

.

.
.
.
.

ab2 a3 bab b2a aba a2b ba2 b3

ab ba a2 b2

a b

a⇒∗
ϕ a3, b⇒∗

ϕ b2 | ba2b | babab {a3, b2, ba2b, babab} is unavoidable

Therefore⇒∗
ϕ is a wqo.

Example:

ϕ(a) 6= ϕ(a2) = 0, two incomparable elements

⇒∗
ϕ is not wqo: ak cannot be rewritten; aω avoids all awa such that a⇒∗

ϕ awa

Theorem: (Bucher & Ehrenfeucht & Haussler 1985)

For every context-free rewriting system R, the following conditions are equivalent:

1) For every regular L ⊆ A∗, {w | ∃u ∈ L : u⇒∗
R w } is regular.

2) For every a ∈ A, {w | a⇒∗
R w } is regular.

3) There exists homomorphism ϕ : A∗ →M to a finite ordered monoid such that⇒∗
R =⇒∗

ϕ.

Proof:

3 =⇒ 2: a⇒∗
R w ⇐⇒ ϕ(w) ∈ {x ∈M | x ≥ ϕ(a) }

2 =⇒ 1: substitute {w | a⇒∗
R w } for every a ∈ A in L

1 =⇒ 3: ϕa : A+ →Ma syntactic homomorphism to ordered monoid for {w | a⇒∗
R w }

ϕ : A+ →M =
∏

a∈A

Ma ϕ(w) = (ϕa(w))a∈A

ϕ(b) ≤ ϕ(w) ⇐⇒ ∀a ∈ A ∀u, v ∈ A∗ : a⇒∗
R ubv =⇒ a⇒∗

R uwv

⇐⇒ b⇒∗
R w

Problem: For which homomorphisms ϕ : A∗ →M to a finite ordered monoid is⇒∗
ϕ wqo?

Theorem: (MK 2005)

For every homomorphism ϕ : A∗ →M to a finite unordered monoid (i.e.≤ is =),

⇒∗
ϕ is a wqo ⇐⇒ ϕ(A∗) is a chain of simple semigroups.

Chain of simple semigroups S — equivalent definitions:

• S = S1 ∪ · · · ∪ Sn, where Si are pairwise disjoint, Si · Sj ⊆ Smax{i,j}

• For every x, y ∈ S either xy J x or xy J y.

Si . . . simple semigroups,J -classes of S

Open problem: What about for arbitrary ordered monoids?

Computability of Closure

Is the upward closure of languages w.r.t. wqo⇒∗
R computable?

closure computable =⇒ emptiness problem decidable

For scattered subword ordering:

emptiness problem decidable & effective intersection with regular languages =⇒ computable

(van Leeuwen 1978)

(holds, in particular, for context-free languages)

In general: unknown even for closure of one letter.

Are there other monotone quasiorders than wqos that recognize only regular languages?

Theorem: (Bucher & Ehrenfeucht & Haussler 1985)

For every decidable monotone quasiorder≤ on A∗ satisfying u ≤ v =⇒ |u| ≤ |v|,

the following conditions are equivalent:

• All upward closed languages are regular.

• All upward closed languages are recursive.

• ≤ is a wqo.

(applies to all derivation relations of non-erasing context-free systems)

Wqos Defined by Other Rewriting Systems

Shuffle analogue:

rewriting rules w → w u, for u ∈ I ,

i.e. w0 . . . wn → w0u1w1 . . . unwn, for u1 . . . un ∈ I

Theorem: (Haussler 1985)

→∗ is a wqo ⇐⇒ I is subsequence unavoidable

regularity conditions for permutable and periodic languages based on wqos defined by rewriting

(de Luca & Varricchio)

Closure Properties of Well Quasiorders

Closure properties corresponding to operations on finite monoids:

substructures: ≤ monotone wqo on A∗ and f : B∗ → A∗ homomorphism

⊑ quasiorder induced on B∗: u ⊑ v ⇐⇒ f(u) ≤ f(v)

Then⊑ is a monotone wqo on B∗.

quotients: ≤ wqo on A∗ and⊑ ⊇ ≤ quasiorder on A∗ =⇒ ⊑ wqo on A∗

products: ≤ and⊑ monotone wqos on A∗ =⇒ ≤ ∩ ⊑ monotone wqo on A∗

≤ wqo on X and⊑ quasiorder on Y

f : X ։ Y onto mapping satisfying x ≤ y =⇒ f(x) ⊑ f(y)

Then⊑ is a wqo on Y .

≤ wqo on X and⊑ wqo on Y =⇒ componentwise quasiordering on X × Y is a wqo

≤ wqo on X

quasiordering of X∗:

a1 . . . am ⊑ b1 . . . bn ⇐⇒ ∃ 1 ≤ i1 < · · · < im ≤ n such that aj ≤ bij

(infinite rewriting system: ε→ a, a→ b, for a ≤ b, a, b ∈ X)

Higman 1952: ⊑ is a wqo on X∗

F . . . the set of subsets of X upward closed w.r.t.≤

⊇ is not in general wqo on F better quasiorders

⊆ is a wqo on the set of finitely generated downward closed subsets of X

(isomorphic to a subset of (F ,⊇))

Language Equations

Language equation = equation over some algebra of languages

• constants: languages over A

• operations: concatenation, Boolean operations, . . .

• finite set of variables V = {X1, . . . , Xn}

• solution: mapping α : V → ℘(A∗)

• long ago: explicit systems of polynomial equations — context-free languages

• today: renewed interest, surprising recent results

What are we interested in?

• expressive power, properties of solutions

• decidability of existence and uniqueness of solutions

• algorithms for finding (minimal and maximal) solutions

Explicit Systems of Equations
Corresponding to Basic Models of Computation

Description of Regular Languages

Example:

q1

b

q2

a

a

X1 = {ε} ∪X2 · a X2 = X1 · b ∪X2 · a

Regular languages = components of smallest (largest, unique) solutions of explicit systems

Xi = Ki ∪
n⋃

j=1

Xj · Lj,i i = 1, . . . , n

of left-linear equations with finite constants Ki and Lj,i

Matrix notation: union instead of summation

row vectors X = (Xi) and S = (Ki), matrix R = (Lj,i)

X = S + XR

Solving Explicit Systems of Left-Linear Equations

Theorem: (one direction of Kleene theorem)

Components of the smallest solution of the system X = S + XR can be constructed

from entries of R and S using ∪, · and ∗.

The system as an automaton:

• language Rj,i labels the transition from state j to state i

• a word from Si is read when entering the automaton at state i

Proof:

The smallest solution of X = S + XR is SR∗, where R∗ = E + R + R2 + · · · .

Inductive formula for computing R∗ as a block matrix:

A B

C D

∗

=

(A + BD∗C)∗ A∗B(D + CA∗B)∗

D∗C(A + BD∗C)∗ (D + CA∗B)∗

Description of Context-Free Languages

Example: Dyck language of correct bracketings over A = {(,)}:

context-free grammar: X1 −→ ε | X2X1 X2 −→ (X1)

system of language equations: X1 = {ε} ∪X2 ·X1 X2 = {(} ·X1 · {)}

Ginsburg & Rice 1962:

context-free languages = components of smallest (largest, unique) solutions of explicit systems

Xi = Pi i = 1, . . . , n

of polynomial equations with finite Pi ⊆ (A ∪ V)
∗

elegant matrix notation for some normal forms

Quadratic Greibach Normal Form

Every context-free grammar generating only non-empty words can be algorithmically modified so

that right-hand sides of rules belong to AV2 ∪AV ∪A.

Construction: (Rosenkrantz 1967)

Start with Chomsky normal form, i.e. right hand sides in V2 ∪ A.

Matrix notation: X = S + XR,

where S is a vector over ℘(A) and R is a matrix over ℘(V).

Equivalently: X = SR∗

Replace R∗ with matrix of new variables: X = SY Y = E + RY

In R replace every occurrence of variable Xk with the set (SY)k ⊆ AV .

Remove ε-rules.

Generalizations of Context-Free Languages

Conjunctive languages (Okhotin 2001):

• analogy of alternating finite automata and Turing machines for context-free grammars

• additionally intersection allowed in equations

• we can specify that a word satisfies certain syntactic conditions simultaneously

• for unary alphabet, smallest solutions are in EXPTIME and can be EXPTIME-complete

(Jeż & Okhotin 2008)

(context-free unary languages are regular = ultimately periodic)

encoding in positional notation, e.g. binary notation of { a2n

| n ∈ N } is regular 10∗

Linear conjunctive languages:

exactly languages accepted by one-way real-time cellular automata (Okhotin 2004)

←− input word

←− output value

Examples:

{wcw | w ∈ {a, b}∗ }, { anbncn | n ∈ N }, all computations of a Turing machine

All Boolean Operations

Okhotin 2003:

components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages

Boolean grammars (Okhotin 2004):

• semantics defined only for some systems

• generalization of conjunctive languages

• parsing using standard techniques

• ⊆ DTIME(n3) ∩DSPACE(n)

• used to give a formal specification of a simple programming language

Okhotin 2007:

equations with concatenation and any clone of Boolean operations

(concatenation and symmetric difference: universal)

Arithmetical hierarchy:

• components of largest and smallest solutions w.r.t. lexicographical ordering

• levels characterized by the number of variables in equations (Okhotin 2005)

Implicit Equations

Equations over Words

• constants are letters, for variables only words are substituted

• for instance, solutions of equation xba = abx are exactly x = a(ba)n, where n ∈ N0

• term unification modulo associativity

• PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions

(Makanin 1977, Plandowski 2006)

• Conjecture: Satisfiability problem is NP-complete.

• satisfiability-equivalent to language equations with only letters as constants and concatenation:

shortlex-minimal words of an arbitrary language solution form a word solution

Satisfiability of language equations by arbitrary languages is undecidable for

• equations with finite constants, union and concatenation

• systems of equations with regular constants and concatenation (MK 2007)

Conjugacy of Languages

KM = ML . . . languages K and L are conjugated via a language M

Words u and v are conjugated ⇐⇒ v can be obtained from u by cyclic shift.

MK 2007:

Conjugacy of regular languages via any language containing ε is not decidable.

Satisfiability of systems KX = XL, A∗X = A∗ is not decidable for regular languages K , L.

Cassaigne & Karhumäki & Salmela 2007:

Conjugacy of finite bifix codes via any non-empty language is decidable.

Open questions:

• removal of the requirement on ε

• conjugacy of finite languages (satisfiability of equations with finite constants)

• conjugacy via regular or finite languages (satisfiability by regular or finite languages)

Identity checking problem for regular expressions:

f , g regular expressions with variables X1, . . . , Xn (union, concatenation, Kleene star, letters)

Does f(L1, . . . , Ln) = g(L1, . . . , Ln) hold for arbitrary (regular) languages L1, . . . , Ln?

• trivially decidable (treat variables as letters and compare regular languages)

• decidable also with the shuffle operation (Meyer & Rabinovich 2002)

• open problems for expressions with intersection

Rational systems: (defined by a finite transducer)

Every rational system of word equations is algorithmically equivalent to some of its finite

subsystems =⇒ satisfiability of rational systems of word equations is decidable.

(Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system {XnZ = Y nZ | n ∈ N }?

undecidable (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)

Language Inequalities Defining Basic Automata

Minimal automaton of a language L:

state reached by w ∈ A∗ = largest solution of the inequality w ·Xw ⊆ L

Xw
a
→ Xwa

initial state Xε

final states Xw, where w ∈ L

Universal automaton of a language L

= smallest non-deterministic automaton admitting morphism from every automaton accepting L

state = maximal solution of the inequality X · Y ⊆ L

(X, Y)
a
→ (X ′, Y ′) ⇐⇒ aY ′ ⊆ Y ⇐⇒ Xa ⊆ X ′

(X, Y) initial state ⇐⇒ ε ∈ X

(X, Y) final state ⇐⇒ ε ∈ Y

General Results About Language Inequalities

Jeż & Okhotin 2008: Even for unary alphabet, finite constants, concatenation and union:

components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages

Example: Minimal solutions of X ∪ Y = L are precisely disjoint decompositions of L.

In the presence of union and concatenation, interesting properties are demonstrated

by maximal solutions.

Systems of Inequalities with Constant Right-Hand Sides

Pi ⊆ Li Li ⊆ A∗ regular, Pi ⊆ (A ∪ V)∗ arbitrary

maximal solutions: (Conway 1971)

• finitely many, all of them regular

• for context-free expressions Pi: algorithmically regular

• every solution is contained in a maximal one

• all components are recognized by the syntactic homomorphism of the languages Li

Analogy: preservation of regularity by arbitrary inverse substitutions:

Largest solution of the inequality ϕ(X) ⊆ A∗ \ L is X = A∗ \ (ϕ−1(L)).

Systems of equations with constant right-hand sides:
Pi = Li Li ⊆ A∗ regular, Pi ⊆ (A ∪ V)∗ regular expression

• satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)

• Is satisfiability decidable if Pi can contain intersection?

General Left-Linear Inequalities

K0 ∪X1K1 ∪ · · · ∪XnKn ⊆ L0 ∪X1L1 ∪ · · · ∪XnLn

Kj , Lj regular =⇒ basic properties of the inequality can be expressed using

formulae of monadic second-order theory of infinite |A|-ary tree

Example: b ∪Xa ⊆ X ∪Xba

X is a solution ⇐⇒ X(b) ∧
(
∀x : X(x) =⇒ (X(xa) ∨ ∃y : X(y) ∧ x = yb)

)

X minimal ⇐⇒ ∀Y : (Y is a solution ∧ ∀x : Y (x) =⇒ X(x)) =⇒

=⇒ (∀x : X(x) =⇒ Y (x))

minimal solutions: • = “X holds” ◦ = “X does not hold”

a∗ ∪ b : •
a b

•
a b

•
a b

• ◦ ◦ ◦

ba∗ : ◦
a b

◦
a b

•
a b

◦ ◦ • ◦

Rabin 1969 =⇒ algorithmically solvable using tree automata

very special case of set constraints (letters as unary functions)

EXPTIME-complete (even when complementation is allowed) (1994–2006)

Yet More General Left-Linear Inequalities

K0 ∪X1K1 ∪ · · · ∪XnKn ⊆ L0 ∪X1L1 ∪ · · · ∪XnLn

Kj arbitrary, Lj regular

largest solution: (MK 2005)

• regular

• for context-free Kj : algorithmically regular

• direct construction of the automaton accepting the solution

Concatenations on the Right

Previous cases:

. . . ⊆ L constants on the right fix the context

XK ∪ . . . ⊆ XL ∪ . . . local modifications on one side

Next task:

. . . ⊆ XLY general concatenations on the right

We need to classify words according to their decompositions with respect to constant languages.

A Quasiorder for Dealing with Concatenations on the Right

Applying well-quasiorders to inequalities:

Construct a wqo on A∗ such that every solution is contained in an upward closed solution.

Systems of inequalities Pi ⊆ Qi

Pi ⊆ (A ∪ V)∗ arbitrary

Qi . . . regular expressions over variables and languages recognizable by

a homomorphism ϕ : A∗ → (M,≤)

Recalling definition:

u⇒∗
ϕ v ⇐⇒ u = a1 . . . an, ai ∈ A

& v = v1 . . . vn, vi ∈ A+

& ϕ(ai) ≤ ϕ(vi)

Theorem: All maximal solutions are recognizable by the quasiorder⇒∗
ϕ. (MK 2005)

Proof: α arbitrary solution

define β(X) = {u ∈ A∗ | ∃v ∈ α(X) : v ⇒∗
ϕ u }, for every X ∈ V

β(X) ⊇ α(X)

β is a solution:

u ∈ β(Pi) =⇒ ∃v ∈ α(Pi) : v ⇒∗
ϕ u (because⇒∗

ϕ is monotone)

we prove by induction on structure of Qi:

v ∈ α(Qi) & v ⇒∗
ϕ u =⇒ u ∈ β(Qi)

e subexpression of Qi, v ∈ α(e), v ⇒∗
ϕ u

• e variable: u ∈ β(e) by definition of β

• e constant: u ∈ α(e) ⊆ β(e) because ϕ(u) ≥ ϕ(v)

• e union or intersection: u ∈ β(e) by induction hypothesis

• e = e1 · e2: v = v1 · v2, v1 ∈ α(e1), v2 ∈ α(e2)

definition of⇒∗
ϕ =⇒ u = u1 · u2, v1 ⇒

∗
ϕ u1, v2 ⇒

∗
ϕ u2

induction hypothesis =⇒ u1 ∈ β(e1), u2 ∈ β(e2) =⇒ u ∈ β(e)

Every component of β is a finite union of languages of the form

〈a1 . . . an〉⇒∗

ϕ
= ϕ−1(〈ϕ(a1)〉≤) · · ·ϕ−1(〈ϕ(an)〉≤), where a1, . . . , an ∈ A.

Inequalities with Restrictions on Constants

Systems of inequalities Pi ⊆ Qi

Pi ⊆ (A ∪ V)∗ arbitrary

Qi . . . regular expressions over variables and languages recognizable by finite simple semigroups

(or all together by a finite chain of finite simple semigroups)

(can contain infinite unions and intersections, provided only finitely many constants are used)

MK 2005:

• All maximal solutions are regular.

• The class of polynomials of group languages is closed under taking maximal solutions

of such systems.

• If L is recognizable by a finite chain of finite simple semigroups, then every union

of powers of L is regular. (X ⊆
⋃

n∈N

Ln, for arbitrary N ⊆ N)

Semi-commutation Inequalities

XK ⊆ LX K arbitrary, L regular

largest solution:

• always regular (MK 2005)

• for context-free K : algorithmically recursive

• if K and L finite and all words in K longer than all in L: algorithmically regular (Ly 2007)

Game: position: w ∈ A∗

attacker: chooses u ∈ K

plays w −→ wu

defender: chooses v ∈ L

wu = vw̃

plays wu −→ w̃

largest solution = all winning positions of the defender

Encoding Defender’s Strategies for Initial Word w

Labelled tree:

defender moves along the edges = removes prefixes of w

label =∼L-class of the current remainder of w

Example: w = abcd, L = {a, ab, abcde, bc, c, cd, da}

[abcd]∼L ()

[bcd]∼L (a) (ab) [cd]∼L

[d]∼L (a, bc) [d]∼L (ab, c) (ab, cd) 1

Well-quasiordering Trees

w ≤ v . . . winning strategies of the defender for w can be used also for v

Example:

s s

t t < t

p q p q

Largest solution is upward closed with respect to≤.

Kruskal 1960: ≤ is wqo.

Simple Equations Possessing Universal Power

MK 2005:

Every co-recursively enumerable language can be described as the largest solution of any of the

following systems with regular constants K , L, M and N .

XK ⊆ LX XK ⊆ LX XK ⊆ LX

X ⊆M XM ⊆ NX MX ⊆ XN

Special case: XL = LX

• formulated by Conway 1971

• positive results:

at most three-element languages, regular codes (Karhumäki & Latteux & Petre 2005)

MK 2007:

There exists a finite language L such that the largest solution C(L) of XL = LX is not

recursively enumerable.

Example: L regular, but C(L) non-regular

A = {a, b, c, e, ê, f, f̂ , g, ĝ}

L = {c, ef, ga, e, fg, f̂ ê, aĝ, ê, ĝf̂ , fgbaĝ} ∪ cM ∪Mc ∪

∪A∗bA∗bA∗ ∪ (A \ {c})∗b(A \ {c})∗ \N

M = efga+ba∗ ∪ ga∗ba∗ĝf̂ ∪ a∗ba∗ĝf̂ ê ∪ fga∗ba∗ĝ

N = {efg, fg, g, ε} · a∗ba∗ · {ε, ĝ, ĝf̂ , ĝf̂ ê}

encodes simultaneous decrementation of two counters and zero-test

Configuration: [[[e]f]g]amban[ĝ[f̂ [ê]]]

Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

efgamban

efgamban

· ĝf̂ fgambanĝf̂

gambanĝf̂ fgambanĝf̂ · c · c /∈ L2
· A∗

gaam−1banĝf̂ · ê

am−1banĝf̂ ê

...

efgam−1ban−1

Games That Can Be Encoded (Jeandel & Ollinger)

Example:

ab

a

a2A∗

A∗baA∗

A∗bA∗

b
b2

• = attacker should play modification on the left

◦ = defender should play modification on the right

position of the game: a vertex of the graph and a word

labels of attacker’s vertices: allowed words

labels of edges: words to be added by attacker or removed by defender

• when attacker modifies on one side, defender has to modify on the other

• bipartite graph for each type of edges

• at most one common vertex for any two connected components of different types

• only one type of edges leading from each of attacker’s vertices

• non-empty labels of edges only around one attacker’s vertex for each type of edges

Some Open Problems

• satisfiability of equations with concatenation (and union) over finite or regular languages

• satisfiability of equations with concatenation and finite constants

• Conjecture: (Ratoandromanana 1989)

Among codes, equation XY = Y X has only solutions of the form X = Lm, Y = Ln.

Equivalently: Every code has a primitive root.

• regularity of solutions of other simple systems of inequalities, for example:

KXL ⊆MX

KX ⊆ LX, XM ⊆ XN

• existence of algorithms for finding regular solutions

• methods for proving properties of conjunctive and Boolean grammars

• existence of non-trivial shuffle decomposition X Y = L of a regular language L

• existence of non-trivial unambiguous decompositions of regular languages

