Structure of Finite Semigroups and Language Equations

Michal Kunc

Masaryk University Brno

Outline

Structure of finite semigroups:

- 1) Green's relations
- 2) Factorization forests
- 3) Examples of applications to regular languages

Well quasiorders

Systems of language equations:

- 1) Explicit
- 2) Implicit

Basic Notions

Semigroup *S*: set equipped with an associative binary operation \cdot Monoid *M*: semigroup with identity element 1 $(x \cdot 1 = 1 \cdot x = x)$ Group *G*: monoid where every element has an inverse $(x \cdot x^{-1} = x^{-1} \cdot x = 1)$ Subgroup of a semigroup = subsemigroup which is a group

(identity element of the subgroup need not be 1, but has to be idempotent, i.e. $x \cdot x = x$)

Smallest monoid containing a semigroup S:

$$S^1 = egin{cases} S & ext{if } S ext{ is a monoid} \ S \cup \{1\} & ext{if } S ext{ contains no identity element} \end{cases}$$

Homomorphism $\varphi \colon S \to T \ldots \varphi(xy) = \varphi(x)\varphi(y)$ Monoid homomorphism ... additionally $\varphi(1) = 1$

Congruence ρ on S: equivalence $\rho \subseteq S \times S$ satisfying $x \ \rho \ x' \ \& \ y \ \rho \ y' \implies xy \ \rho \ x'y'$

Kernel of a homomorphism $\varphi \colon S \to T$:

$$\ker(\varphi) = \{ (x, y) \in S \times S \mid \varphi(x) = \varphi(y) \}$$

Congruences = kernels of homomorphisms.

Words

$A \dots$ finite alphabet

 $A^* \dots$ monoid of all finite words over A with concatenation as operation semigroup $A^+ \subseteq A^* \dots$ empty word ε excluded

Homomorphisms $A^* \to M$ and $A^+ \to S$ uniquely defined by any choice of images of letters.

Language $L \subseteq A^*$ recognized by a homomorphism $\varphi \colon A^* \to M$ to a finite monoid, if $L = \varphi^{-1}(F)$ for some $F \subseteq M$.

Language $L \subseteq A^+$ recognized by a homomorphism $\varphi \colon A^+ \to S$ to a finite semigroup, if $L = \varphi^{-1}(F)$ for some $F \subseteq S$.

recognizable = regular

recognizing homomorphism provides a deterministic automaton for both L and its reverse:

set of states M $\delta_a(x) = x \cdot \varphi(a)$ $\delta_a^{\rm r}(x) = \varphi(a) \cdot x$ initial state 1, accepting states F

Ordered Semigroups

Ordered semigroup: monotone partial order \leq on S, i.e. $x \leq x' \& y \leq y' \implies xy \leq x'y'$ (ordinary semigroup ordered by =)

 $F \subseteq S$ upward closed w.r.t. $\leq \ldots$ if $x \leq y$ and $x \in F$, then $y \in F$

Language $L \subseteq A^*$ recognized by a homomorphism $\varphi \colon A^* \to M$ to a finite ordered monoid (M, \leq) , if $L = \varphi^{-1}(F)$ for some $F \subseteq M$ upward closed w.r.t. \leq .

Homomorphism $\varphi \colon A^* \to (M, \leq)$ induces a monotone quasiorder on A^* : $u \leq_{\varphi} v \iff \varphi(u) \leq \varphi(v)$ (quasiorder = reflexive and transitive relation)

 $L\subseteq A^* \text{ recognized by } \varphi \iff L \text{ upward closed w.r.t.} \leq_{\varphi} \varphi$

Conversely, any monotone quasiorder \leq on A^* determines a congruence on A^* :

 $\begin{array}{lll} w\sim w' \iff w \leq w' \And w' \leq w \\ A^*/\sim \text{ordered monoid:} & w\sim \leq w' \sim \iff w \leq w' \\ \text{projection homomorphism } \nu \colon A^* \to A^*/\sim \end{array}$

Syntactic Homomorphism

 $L \dots$ a language over A

contexts of $w \in A^*$ in L: $C_L(w) = \{ (u, v) \mid u, v \in A^*, uwv \in L \}$

Syntactic monotone quasiorder of L on A^* :

for $w, w' \in A^*$, $w \leq_L w' \iff C_L(w) \subseteq C_L(w')$

Syntactic congruence = the corresponding equivalence relation:

 $w \sim_L w' \iff w \leq_L w' \& w' \leq_L w$

 $M_L = A^* / \sim_L$ syntactic (ordered) monoid (with ordering induced by \leq_L) $\varphi_L \colon A^* \to A^* / \sim_L$ syntactic homomorphism

 M_L smallest (ordered) monoid recognizing L with respect to division (quotient of a submonoid) M_L finite $\iff L$ regular

for $L \subseteq A^+$: $S_L = A^+ / \sim_L$ syntactic semigroup

additional letters in alphabet \implies new zero in the syntactic monoid ($0 \cdot x = x \cdot 0 = 0$) $\varphi_L(w)$ is idempotent if and only if $\forall u, v \in A^*, n \in \mathbb{N}$: $uwv \in L \iff uw^n v \in L$ Products of elements of semigroups versus recognizing languages:

evaluation homomorphism:

eval: $M^* \to M$ eval $(x_1 \dots x_n) = x_1 \cdots x_n$

 $\varphi \colon A^* \to M$ homomorphism

substitution f from M^* to A^* defined by $f(x) = \{ a \in A \mid \varphi(a) = x \}$ Then $\varphi^{-1}(x) = f(\{ x_1 \dots x_n \in M^* \mid x_1 \dots x_n = x \})$

Transformations

 $Q \dots \, {\rm a}$ (finite) set

Full transformation monoid $\mathcal{T}(Q)$... all mappings $Q \to Q$ with composition as operation

 $\begin{aligned} \mathcal{A} &= (Q, A, \delta) \text{ deterministic automaton without initial and final states} \\ \delta_a \colon Q \to Q \text{ action of } a \in A \\ \text{determines homomorphism } \varphi \colon A^* \to \mathcal{T}(Q) \text{, where } \varphi(a) = \delta_a \\ \varphi(w) &= \delta_w^* \text{ extended transition function} \end{aligned}$

 $\{ \delta_w^* \mid w \in A^+ \}$ subsemigroup of $\mathcal{T}(Q) \dots$ transition semigroup $\mathcal{T}(\mathcal{A})$ of \mathcal{A}

- generated by δ_a for $a \in A$
- \bullet recognizes all languages accepted by ${\cal A}$

transition monoid = $\mathcal{T}(\mathcal{A}) \cup {\mathrm{id}_Q}$

syntactic semigroup = transition semigroup of the minimal automaton

Every semigroup S is isomorphic to a subsemigroup of $\mathcal{T}(S^1)$:

 $\delta_x(y) = y \cdot x \qquad \qquad S \cong \{ \, \delta_x \mid x \in S \, \}$

Partial transformations: $\mathcal{PT}(Q) \subseteq \mathcal{T}(Q \cup \{s\})$, where s is a new sink state

Group Languages

Finite transformation semigroup is a group

- \iff contains only permutations
- \iff minimal automaton is dually deterministic
- \iff minimal automaton does not contain the pattern

(automaton cannot remember letters, only counts)

Relations

Full relation monoid $\mathcal{R}(Q) \supseteq \mathcal{T}(Q) \dots$ all binary relations on Q with composition as operation $(p,q) \in \sigma \circ \delta \iff \exists r \in Q \colon (p,r) \in \sigma \& (r,q) \in \delta$

$$\begin{split} \mathcal{A} &= (Q,A,\delta) \text{ non-deterministic automaton without initial and final states} \\ \delta_a &= \{ (p,q) \in Q \times Q \mid (p,a,q) \in \delta \} \text{ for all } a \in A \\ \text{determines homomorphism } \varphi \colon A^* \to \mathcal{R}(Q) \text{, where } \varphi(a) = \delta_a \\ \text{subsemigroup of } \mathcal{R}(Q) \text{ generated by mappings } \delta_a \text{ recognizes all languages accepted by } \mathcal{A} \end{split}$$

Monogenic Subsemigroups

 $x \in S$ generates the subsemigroup $\langle x \rangle = \{ \, x^n \mid n \in \mathbb{N} \, \}$

Case 1: $\langle x \rangle$ infinite, isomorphic to $(\mathbb{N}, +)$

Case 2: there exist smallest index $i \ge 1$ and period $p \ge 1$ such that $x^{i+p} = x^i$

 $\{x^i, \ldots, x^{i+p-1}\}$ cyclic subgroup of S $x^{\omega} = \lim_{n \to \infty} x^{n!} = x^{|S|!}$ unique idempotent in $\langle x \rangle$, identity element of the subgroup

periodic semigroup = all monogenic subsemigroups are finite

finite \implies periodic

idempotents are exactly elements x^{ω} for $x \in S$

Green's Relations

$$\begin{split} I &\subseteq S \text{ left (right) ideal of } S \dots SI \subseteq I \ (IS \subseteq I) \\ I &\subseteq S \text{ ideal of } S \dots SIS \subseteq I \end{split}$$

left (right) ideal generated by $x\in S$... S^1x (xS^1) ideal generated by $x\in S$... S^1xS^1

Green's quasiorders:

$$\begin{split} y &\leq_{\mathcal{L}} x \iff S^{1}y \subseteq S^{1}x \iff y \in S^{1}x \\ y &\leq_{\mathcal{R}} x \iff yS^{1} \subseteq xS^{1} \iff y \in xS^{1} \\ y &\leq_{\mathcal{J}} x \iff S^{1}yS^{1} \subseteq S^{1}xS^{1} \iff y \in S^{1}xS^{1} \\ y &\leq_{\mathcal{L}} x \implies yz \leq_{\mathcal{L}} xz \\ y &\leq_{\mathcal{R}} x \implies zy \leq_{\mathcal{R}} zx \\ S^{1}xS^{1} = \{ y \in S \mid y \leq_{\mathcal{J}} x \} \end{split}$$

Green's equivalence relations:

$$x \mathcal{L} y \iff y \leq_{\mathcal{L}} x \& y \leq_{\mathcal{L}} x \iff S^{1}x = S^{1}y$$

$$x \mathcal{R} y \iff y \leq_{\mathcal{R}} x \& y \leq_{\mathcal{R}} x \iff xS^{1} = yS^{1}$$

$$x \mathcal{J} y \iff y \leq_{\mathcal{J}} x \& y \leq_{\mathcal{J}} x \iff S^{1}xS^{1} = S^{1}yS^{1}$$

quasiorders induce partial ordering of the corresponding classes multiplying element from any side \rightsquigarrow descending in the ordering of \mathcal{J} -classes multiplying element from the left (right) \rightsquigarrow descending in the ordering of $\mathcal{L}(\mathcal{R})$ -classes

In a monoid, invertible elements form the top \mathcal{J} -class, which is a group. Zero always forms a one-element bottom \mathcal{J} -class. Every semigroup has at most one minimal \mathcal{J} -class. Lemma: $\mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$

Proof:

 $x \mathcal{R} y \mathcal{L} z \implies y = xs, x = yt, z = uy, y = vz$ $w = uyt = ux = zt \implies x = yt = vzt = vuyt = vw, z = uy = uxs = uyts = ws$

Remaining Green's equivalences: $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$, $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$

 $x \mathcal{D} y \iff x\mathcal{R} \cap y\mathcal{L} \neq \emptyset \iff x\mathcal{L} \cap y\mathcal{R} \neq \emptyset$

 $\mathcal{H} \subseteq \mathcal{L}(\mathcal{R}) \subseteq \mathcal{D} \subseteq \mathcal{J}$

eggbox ... \mathcal{D} -class row ... \mathcal{R} -class column ... \mathcal{L} -class cell ... \mathcal{H} -class

Bijections Between \mathcal{H} -Classes

 $\cdot s$ and $\cdot t$ mutually inverse bijections between \mathcal{L} -classes of x and y, which preserve \mathcal{R} -classes $u \cdot a$ and $v \cdot mutually$ inverse bijections between \mathcal{R} -classes of x and w, which preserve \mathcal{L} -classes

 \rightsquigarrow bijections between all \mathcal{H} -classes in a \mathcal{D} -class

Examples:

A^* :

$$\begin{split} & u \leq_{\mathcal{L}} v \iff v \text{ is a suffix of } u \\ & u \leq_{\mathcal{R}} v \iff v \text{ is a prefix of } u \\ & u \leq_{\mathcal{J}} v \iff v \text{ is a factor of } u \\ & u \mathcal{J} v \iff u \mathcal{D} v \iff u \mathcal{L} v \iff u \mathcal{R} v \iff u \mathcal{H} v \iff u = v \\ & (\mathcal{J}\text{-trivial semigroup}) \end{split}$$

$\mathcal{T}(Q)$:

$$\begin{split} \rho &\leq_{\mathcal{L}} \sigma \iff \operatorname{Im}(\rho) \subseteq \operatorname{Im}(\sigma) & \rho \mathcal{L} \sigma \iff \operatorname{Im}(\rho) = \operatorname{Im}(\sigma) \\ \rho &\leq_{\mathcal{R}} \sigma \iff \ker(\rho) \supseteq \ker(\sigma) & \rho \mathcal{R} \sigma \iff \ker(\rho) = \ker(\sigma) \\ \rho &\leq_{\mathcal{J}} \sigma \iff |\operatorname{Im}(\rho)| \leq |\operatorname{Im}(\sigma)| \\ \rho \mathcal{D} \sigma \iff \rho \mathcal{J} \sigma \iff |\operatorname{Im}(\rho)| = |\operatorname{Im}(\sigma)| \end{split}$$

Schützenberger Groups

M monoid, H $\mathcal H\text{-}{\rm class}$ of M

(right) Schützenberger group $\Gamma(H)$: all bijections of H of the form $x\mapsto xs$, where $s\in M$ $|\Gamma(H)|=|H|$

Schützenberger groups of \mathcal{H} -classes in the same \mathcal{D} -class are isomorphic.

For every \mathcal{H} -class H, either $H^2 \cap H = \emptyset$ or H is a subgroup maximal w.r.t. inclusion and isomorphic to its Schützenberger group.

Maximal subgroups are precisely \mathcal{H} -classes containing an idempotent.

Theorem: In every finite (periodic) semigroup, $\mathcal{D} = \mathcal{J}$.

Proof:

$$\begin{split} x \mathcal{J} y \implies \exists p, q, s, t \in S^1 \colon x = pyq, \ y = sxt \\ y = spyqt = (sp)^2 y(qt)^2 = \cdots = (sp)^{\omega} y(qt)^{\omega} = (sp)^{\omega} (sp)^{\omega} y(qt)^{\omega} = (sp)^{\omega} y \\ x \mathcal{L} yq \colon \quad x = p \cdot yq \\ yq = (sp)^{\omega} yq = (sp)^{\omega-1} spyq = (sp)^{\omega-1} s \cdot x \\ y \mathcal{R} yq \colon \quad y = y(qt)^{\omega} = yq \cdot t(qt)^{\omega-1} \end{split}$$

Example: subsemigroup of $\mathcal{PT}(2)$

Similar example: subsemigroup of $\mathcal{PT}(2)$

More interesting example: subsemigroup of $\mathcal{T}(3)$

x and z belong to the same $\mathcal{L}\text{-class}$ of $\mathcal{T}(3)$

Basic Properties of Green's Relations in Finite Semigroups

Lemma: S finite semigroup, $x, y \in S$ such that $x \leq_{\mathcal{L}} y$ and $x \mathcal{J} y$. Then $x \mathcal{L} y$. Proof: $x = sy \implies y = txu = tsyu = (ts)^{\omega}yu^{\omega} = (ts)^{\omega-1}tsy = (ts)^{\omega-1}tx$.

Reformulations: In any finite semigroup:

- $x \leq_{\mathcal{J}} xs \implies x \mathcal{R} xs$
- $x <_{\mathcal{L}} y \implies x <_{\mathcal{J}} y$

Corollary: In any finite semigroup, $sxt \mathcal{H} x \implies sx \mathcal{H} xt \mathcal{H} x$.

Proof: $sx \leq_{\mathcal{L}} x$, $x \leq_{\mathcal{R}} sx$, $sx \mathcal{J} x$

Lemma: If x and y are \mathcal{J} -equivalent elements of a finite semigroup, then $xy \mathcal{J} x$ if and only if there exists an idempotent e such that $x \mathcal{L} e \mathcal{R} y$. In that case, we have $x \mathcal{R} xy \mathcal{L} y$.

Proof of " \Leftarrow ": $x = se, y = et \implies xy = seet = xt$ $\therefore t$ $s \cdot \uparrow \qquad xy$ $\underline{e} \qquad y$ Lemma: If x and y are \mathcal{J} -equivalent elements of a finite semigroup, then $xy \mathcal{J} x$ if and only if there exists an idempotent e such that $x \mathcal{L} e \mathcal{R} y$. In that case, we have $x \mathcal{R} xy \mathcal{L} y$.

Proof of " \Longrightarrow " :

$$\begin{aligned} xy \leq_{\mathcal{R}} x \& xy \ \mathcal{J} \ x \implies xy \ \mathcal{R} \ x \\ xy \leq_{\mathcal{L}} y \& xy \ \mathcal{J} \ y \implies xy \ \mathcal{L} \ y \\ x = xys \& y = txy \implies (tx)^2 = txtxys = txy \end{aligned}$$

$$\stackrel{\leftarrow}{\cdot s}$$

Recalling example: subsemigroup of $\mathcal{PT}(2)$

Regular Elements

```
y is a (semigroup) inverse of x, if xyx = x \& yxy = y
```

 $x \in S$ is regular = has an inverse

x belongs to a subgroup $\implies x$ is regular

y inverse of $x \implies xy$ and yx are idempotents in the same \mathcal{D} -class

Examples:

 A^+ : no regular elements

$\mathcal{T}(Q)$:

 $\begin{array}{l} \rho \text{ is idempotent } \Longleftrightarrow \; \forall q \in \operatorname{Im}(\rho) \colon \rho(q) = q \\ \rho \text{ belongs to a subgroup } \iff \rho|_{\operatorname{Im}(\rho)} \colon \operatorname{Im}(\rho) \to \operatorname{Im}(\rho) \text{ is a bijection} \\ \iff \operatorname{Im}(\rho) \text{ forms a transversal (set of representatives) of } \ker(\rho) \end{array}$

every element is regular

Regular \mathcal{D} -Classes

Example:

Idempotents \mathcal{R} -related to x are e and f. Idempotents \mathcal{L} -related to x are e and g.

x has 4 inverses: x (group inverse), y, z, u.

Regular \mathcal{D} -Classes

Regular \mathcal{D} -class — equivalent definitions:

- 1) Contains an idempotent.
- 2) Contains a regular element.
- 3) Every element is regular.

4) Every \mathcal{L} -class and every \mathcal{R} -class contains an idempotent.

$$2 \implies 3: \quad xyx = x, yxy = y, z = xs, x = zt$$
$$z \xrightarrow{\cdot t} x \xrightarrow{\cdot y} xy$$
$$z(ty)z = xyxs = xs = z, (ty)z(ty) = tyxy = ty$$

In a finite semigroup, a \mathcal{D} -class is regular if and only if it contains some elements x and y together with their product xy.

regular \mathcal{D} -class ... products can stay there for arbitrarily many multiplications

Every idempotent is a left identity for its \mathcal{R} -class and a right identity for its \mathcal{L} -class. Proof: $x = es \implies ex = ees = es = x$

Theorem:

(Miller & Clifford 1956)

There is a bijection between inverses of x and pairs of idempotents (e, f) such that $e \mathcal{R} x \mathcal{L} f$; there exists exactly one inverse y such that $e \mathcal{L} y \mathcal{R} f$, and it satisfies xy = e and yx = f.

Proof: if
$$e = xs$$
, take $y = fs$
$$\underline{x(fs)}x = \underline{xs}x = ex = x$$
$$(fs)\underline{x(fs)} = fs\underline{xs} = fse = fs$$

$$\stackrel{\cdot s}{\rightarrow}$$

Consequence:

Idempotents e and f belong to the same \mathcal{D} -class if and only if there exist mutually inverse elements x and y such that e = xy and f = yx.

Consequence:

Two \mathcal{H} -classes in the same \mathcal{D} -class, which contain an idempotent, are isomorphic subgroups.

Proof: isomorphism $z \mapsto yzx$, where x and y are mutually inverse elements such that e = xy and f = yx.

0-Simple Semigroups

Simple semigroup = has no proper ideal = has only one \mathcal{J} -class

Null semigroup $\dots S^2 = \{0\}$

0-simple semigroup ... $S^2 \neq \{0\}$ & exactly two ideals $\{0\}$, S (two \mathcal{J} -classes $\{0\}$, $S \setminus \{0\}$)

 $S \text{ simple } \implies S \cup \{0\} \text{ 0-simple}$

A finite semigroup S is simple $\iff \forall x, y \in S \colon x^{\omega+1} = x \& (xyx)^{\omega} = x^{\omega}.$

Regular language is recognizable by a finite simple semigroup if and only if its minimal automaton does not contain the pattern

Equivalent formulation:

For any letters $a, b \in A$, $\text{Im}(\delta_a)$ forms a transversal (set of representatives) of ker (δ_b) .

Structure of \mathcal{D} -Classes

Rees quotient:

 $I \text{ ideal of } S, \qquad S/I = (S \setminus I) \cup \{0\}$

(subset $I\subseteq S$ downward closed w.r.t. ${\mathcal J}$ becomes zero of S/I)

corresponds to congruences of the form $\mathrm{id}_S \cup I imes I$

Divisibility in regular \mathcal{D} -classes:

D regular $\mathcal D\text{-class}, e\in D$ idempotent, $x \mathrel{\mathcal R} e \implies x \in eD$ and $e \in xD$

x	e = xy
f = yx	y

 $\stackrel{\cdot y}{\longrightarrow}$

 $\overleftarrow{\cdot x}$

Consequence:

 $D \text{ regular } \mathcal{D}\text{-class, } x, y \in D \implies \exists z \in D \colon x \in zD \ \& \ z \in xD \ \& \ y \in Dz \ \& \ z \in Dy$

Principal Factors

Principal factors of a finite semigroup S:

- bottom $\mathcal{D}\text{-}\text{class}$ (= least ideal) is a simple semigroup
- D non-regular \mathcal{D} -class $\implies D \cup \{0\} = S^1 D S^1 / (S^1 D S^1 \setminus D)$ is a null-semigroup
- D regular \mathcal{D} -class $\implies D \cup \{0\} = SDS/(SDS \setminus D)$ is a 0-simple semigroup

Principal factors of homomorphic images:

S, T finite semigroups, $\varphi \colon S \twoheadrightarrow T$ onto homomorphism $\forall x \in S, \ z \in T \colon z \leq_{\mathcal{J}} \varphi(x) \iff \exists y \leq_{\mathcal{J}} x \colon \varphi(y) = z$

 $D \ a \ \mathcal{D}$ -class of T, choose $x \ \mathcal{J}$ -minimal in $\varphi^{-1}(D)$ Then $y <_{\mathcal{J}} x \implies \varphi(y) <_{\mathcal{J}} \varphi(x)$. $\implies D$ is the image of $x\mathcal{D}$

Every principal factor of T is image of a principal factor of S via homomorphism induced by φ .

Every (maximal) subgroup of T is of the form $\varphi(G)$ for a (maximal) subgroup G of S. **Proof**:

 $\begin{array}{l} e \in T \text{ idempotent} \implies \text{ exists idempotent } f \in S \colon \varphi(f) = e \And f \ \mathcal{J}\text{-minimal in } \varphi^{-1}(e\mathcal{H}) \\ (\varphi(y) \ \mathcal{H} \ e \implies \varphi(y^{\omega}) = e) \\ e\mathcal{H} = \varphi(f\mathcal{H}) \colon \quad x \in S \text{ satisfies } \varphi(x) \ \mathcal{H} \ e \implies \varphi(fxf) = \varphi(x) \And fxf \ \mathcal{H} \ f \end{array}$

Classification of Finite 0-Simple Semigroups

Rectangular bands: R and L arbitrary finite sets multiplication on $R \times L$: $(r, \ell) \cdot (r', \ell') = (r, \ell')$ $(r, \ell) \mathcal{R} (r', \ell') \iff r = r'$ $(r, \ell) \mathcal{L} (r', \ell') \iff \ell = \ell'$ all \mathcal{H} -classes are trivial groups

S simple $\implies \mathcal{H}$ is a congruence, S/\mathcal{H} is a rectangular band and all $\mathcal{H}\text{-}\text{classes}$ are isomorphic groups

Rees matrix semigroup: R and L finite sets, G finite group

 $P = (p_{\ell r})_{\ell \in L, r \in R} \dots L \times R$ -matrix with entries in $G \cup \{0\}$ and with at least one

non-zero entry in every row and every column

multiplication on $\mathfrak{M}^0(R, L, G, P) = (R \times G \times L) \cup \{0\}$:

$$(r, g, \ell) \cdot (r', g', \ell') = \begin{cases} (r, g \cdot p_{\ell r'} \cdot g', \ell') & \text{if } p_{\ell r'} \neq 0\\ 0 & \text{if } p_{\ell r'} = 0 \end{cases}$$

Matrix representation of $\mathfrak{M}^0(R, L, G, P)$:

 (r,g,ℓ) corresponds to the matrix with only one non-zero entry g in the position (r,ℓ) sandwich multiplication: $M\cdot N=MPN$

Theorem:

A finite semigroup is 0-simple if and only if it is isomorphic to some $\mathfrak{M}^0(R, L, G, P)$.

Proof:

- $S\ldots$ 0-simple semigroup
- $G \dots$ Schützenberger group of the non-zero $\mathcal{D}\text{-}\text{class}$
- $R \dots$ the set of $\mathcal R\text{-}{\rm classes}, L \dots$ the set of $\mathcal L\text{-}{\rm classes}$

choose a group $\mathcal H\text{-}{\rm class}$ and elements t_r and $s_\ell,$ for $r\in R$ and $\ell\in L$

Every element can be uniquely expressed in the form $t_r g s_\ell$, for $r \in R$, $g \in G$ and $\ell \in L$. $(t_r g s_\ell)(t_{r'} g' s_{\ell'}) = t_r (g s_\ell t_{r'} g') s_{\ell'} \quad \rightsquigarrow \quad \text{set } p_{\ell r} = s_\ell t_r \in G \cup \{0\}$

Finite simple semigroups: all entries of P belong to G
Repetitions in Products

Lemma: (cancellation rule in a \mathcal{J} -class) In every finite semigroup: $x \mathcal{J} y \mathcal{J} z \mathcal{J} xy = xyz \implies y = yz$.

Proof: $y \mathcal{R} yz$, $x \cdot$ is a bijection between \mathcal{R} -classes of y and xy

Repetitions in products staying in the same \mathcal{J} -class:

Lemma: J a \mathcal{J} -class of a finite semigroup, $x_1 \cdots x_n \in J$, $|\{i \mid x_i \in J\}| > |J|$. Then there exist i < j such that $x_i, x_j \in J$ and $x_i \cdots x_j = x_i$.

Proof:

 $k \text{ smallest such that } x_k \in J$ $\forall j \ge k \colon x_k \cdots x_j \in J \implies$ $\exists k \le i < j \colon x_i, x_j \in J \& x_k \cdots x_i = x_k \cdots x_j \text{ (by pigeonhole principle)}$ $x_k \cdots x_{i-1} \mathcal{J} x_i \mathcal{J} x_{i+1} \cdots x_j \mathcal{J} (x_k \cdots x_{i-1}) x_i (x_{i+1} \cdots x_j)$ cancellation rule $\implies x_i \cdots x_j = x_i$

Finite Power Property

L possesses the finite power property $\iff \exists n \colon L^+ = L \cup L^2 \cup \cdots \cup L^n$

Does a given regular language L have the finite power property? decidable (Hashiguchi 1979, Simon 1978)

Construction:

(Birget & Rhodes 1984)

$$\begin{split} \varphi \colon A^+ &\to S \text{ homomorphism recognizing } L \text{ and } L^+ \\ \text{define mapping } \tau \colon A^+ &\to \wp(S^3) \\ \tau(w) &= \{ \left(\varphi(t), \varphi(u), \varphi(v) \right) \mid t, u, v \in A^+, \ w = tuv \, \} \end{split}$$

 τ induces a semigroup operation on $\tau(L^+)\subseteq \wp(S^3) \quad \leadsto \quad \tau$ homomorphism

Theorem: For a regular language L, the following conditions are equivalent:

(MK 2006)

- *L* possesses the finite power property.
- For all $w \in L^+$, there exists n such that $w^n \in L \cup \cdots \cup L^n$.
- Every regular \mathcal{D} -class of $\tau(L^+)$ contains some element of $\tau(L)$.
- $L^+ = L \cup \dots \cup L^{(j+1)^h}$
 - $j \ldots$ maximal size of a $\mathcal J$ -class of S
 - $h\ldots$ length of the longest chain of $\mathcal J$ -classes in $au(L^+)$

Star-Free Languages and Aperiodic Semigroups

star-free language = definable by rational expression with union, concatenation and complementation (without Kleene star)

Example: $A = \{a, b\}$, $(ab)^+ = a\overline{\emptyset} \cap \overline{\emptyset}b \cap \overline{\overline{\emptyset}aa\overline{\emptyset}} \cap \overline{\overline{\emptyset}bb\overline{\emptyset}}$ is star-free

Aperiodic semigroup S — equivalent definitions:

- $\forall x \in S \exists n \colon x^{n+1} = x^n \quad (x^{\omega+1} = x^{\omega})$
- periodic semigroup where all subgroups are trivial

Prohibited pattern in minimal automaton:

cycle labelled by a non-primitive word w^n , $n \ge 2$ (counter-free automaton)

Lemma: Periodic semigroup is aperiodic $\iff \mathcal{H}$ is trivial.

 $\textbf{Proof:} \ y = xs \ \& \ x = ty \implies y = tys = t^{\omega}ys^{\omega} = t^{\omega+1}ys^{\omega} = ty = x \\$

M finite monoid, $x, x_1, \ldots, x_n \in M$.

Task: Describe all products $y = x_1 \cdots x_n$ satisfying $y \mathcal{H} x$ using union, concatenation, complementation and descriptions of products belonging to higher \mathcal{J} -classes.

Lemma: $x_1 \cdots x_n \mathcal{H} x \iff$

- 1. $x_1 \cdots x_i \mathcal{R} x$ for some $i \leq n$,
- 2. $x_i \cdots x_n \mathcal{L} x$ for some $i \leq n$,

3. $x_1 \cdots x_n \geq_{\mathcal{J}} x$.

Proof of " \Leftarrow ": $y = x_1 \cdots x_n$ $y \ge_{\mathcal{J}} x \& y \le_{\mathcal{R}} x \& y \le_{\mathcal{L}} x \implies y \mathcal{R} x \& y \mathcal{L} x$

These three conditions can be expressed using characterizations for higher \mathcal{J} -classes by considering positions i, where they become true (1 and 2) or false (3). This is a local event.

Lemma:

 $x_1 \cdots x_i \mathcal{R} x$ for some $i \iff$ exists i such that $x_1 \cdots x_{i-1} >_{\mathcal{J}} x$ and $x_1 \cdots x_i \mathcal{R} x$. **Proof of "** \Longrightarrow ": take the smallest i such that $x_1 \cdots x_i \mathcal{R} x$

Lemma:
$$x_1 \cdots x_n \not\geq_{\mathcal{J}} x \iff$$
 either $x_i \not\geq_{\mathcal{J}} x$ for some i
or $x_{i+1} \cdots x_{j-1} >_{\mathcal{J}} x$ and $x_i \cdots x_j \not\geq_{\mathcal{J}} x$ for some $i < j$.

Proof of " \Longrightarrow ": Take $i \leq j$ such that $x_i \cdots x_j \not\geq_{\mathcal{J}} x$ and j - i is smallest possible. $i = j \implies x_i \not\geq_{\mathcal{J}} x$ $i < j \implies y = x_{i+1} \cdots x_{j-1} \geq_{\mathcal{J}} x$ $y \geq_{\mathcal{L}} x_i y \geq_{\mathcal{J}} x$ and $y \geq_{\mathcal{R}} y x_j \geq_{\mathcal{J}} x$ (minimality of $x_i y x_j$) Assume $y \;\mathcal{J} x$. Then $x_i y \;\mathcal{J} \; y x_j \;\mathcal{J} \; y$, and so $x_i y \;\mathcal{L} \; y$ and $y x_j \;\mathcal{R} \; y$. $\therefore x_j \xrightarrow{\cdot x_j}$

Therefore $y >_{\mathcal{J}} x$.

Theorem: Regular language L is star-free $\iff \mathcal{M}(L)$ is aperiodic. (Schützenberger 1965)

Proof: " \implies " direct verification

" \Leftarrow " $\varphi \colon A^* \to M$ homomorphism, where M is a finite aperiodic monoid, i.e. \mathcal{H} -trivial We prove that $\varphi^{-1}(x)$ is star-free for all $x \in M$ by induction downwards on $\geq_{\mathcal{J}}$:

• highest \mathcal{J} -class = {1}: $\varphi^{-1}(1) = A^* \setminus (A^* \cdot \{ a \in A \mid \varphi(a) \neq 1 \} \cdot A^*)$

• induction step:

$$\begin{split} \varphi(w) &= x \iff \varphi(w) \mathcal{H} x\\ \varphi^{-1}(x) &= (RA^* \cap A^*L) \setminus A^*JA^*\\ R &= \bigcup \{ \varphi^{-1}(y)a \mid y \in M, \ a \in A, \ y >_{\mathcal{J}} x, \ y\varphi(a) \mathcal{R} x \}\\ L &= \bigcup \{ a\varphi^{-1}(y) \mid y \in M, \ a \in A, \ y >_{\mathcal{J}} x, \ \varphi(a)y \mathcal{L} x \}\\ J &= \{ a \in A \mid \varphi(a) \not\geq_{\mathcal{J}} x \}\\ & \cup \bigcup \{ a\varphi^{-1}(y)b \mid y \in M, \ a, b \in A, \ y >_{\mathcal{J}} x, \ \varphi(a)y\varphi(b) \not\geq_{\mathcal{J}} x \} \end{split}$$

M is $\mathcal{H}\text{-trivial}\implies \varphi^{-1}(y)$ definable by induction assumption

Example: $\mathcal{M}((a^2)^*)$ is a two-element group $\implies (a^2)^*$ is not star-free

Occurrences of Idempotents in Products

 ${\cal S}$ finite semigroup, ${\cal E}({\cal S})$ the set of idempotents of ${\cal S}$

```
Lemma: \forall n \ge |S|: S^n = S \cdot E(S) \cdot S

Proof: x_1, \dots, x_n \in S

case 1: x_1 \cdots x_i all different \implies some of them is idempotent

case 2: x_1 \cdots x_i = x_1 \cdots x_i x_{i+1} \cdots x_j \implies x_1 \cdots x_i = x_1 \cdots x_i (x_{i+1} \cdots x_j)^{\omega}
```

Theorem: For every finite semigroup S and $k \ge 2$ there exists n such that for every $x_1, \ldots, x_n \in S$ there is an idempotent $e \in E(S)$ and $0 \le i_1 < \cdots < i_k \le n$ satisfying $x_{i_j+1} \cdots x_{i_\ell} = e$ for all $1 \le j < \ell \le n$.

follows directly from Ramsey's theorem: graph nodes = positions in the word $x_1 \dots x_n$ colours = elements of S

Hall & Sapir 1996: *S* has *n* non-idempotent elements \implies every sequence of 2^n elements contains a factor evaluating to an idempotent (optimal value)

Factorization Forests

 $\varphi\colon A^* \to M$ homomorphism to a finite monoid

factorization forest of φ :

 $d: \{ w \in A^* \mid |w| \ge 2 \} \to (A^+)^+ \text{ such that}$ if $d(w) = (w_1, \dots, w_n)$ then: 1) $w = w_1 \dots w_n$ 2) $|w_i| < |w|$ 3) $n \ge 3 \implies \varphi(w) = \varphi(w_1) = \dots = \varphi(w_n)$ is idempotent

d provides for every word w a tree with root labelled by w, nodes labelled by its factors and leaves by letters, which expresses successive factorizations of w up to letters. Node with more than two successors \implies all labels evaluate to the same idempotent.

height of
$$d$$
: (height of the highest tree)
 $h(a) = 0$ for $a \in A$
 $h(w) = \max\{h(w_1), \dots, h(w_n)\} + 1$ if $d(w) = (w_1, \dots, w_n)$
 $h(d) = \sup\{h(w) \mid w \in A^+\}$

Example:

$$\begin{split} M &= (\mathbb{Z}, +)/2\mathbb{Z} \quad \text{(two-element group)} \\ \varphi \colon \{a, b\}^+ \to M \qquad \varphi(a) = 1, \, \varphi(b) = 0 \text{ (identity element)} \\ \text{Minimal height of a factorization forest for } \varphi \text{ is 5:} \\ \text{if } |w|_a \text{ odd, } w = b^k a \hat{w} \text{, then} \end{split}$$

$$d(w) = \begin{cases} (b^k, a) & \text{if } \hat{w} = \varepsilon \\ (b^k a, \hat{w}) & \text{if } \hat{w} \neq \varepsilon \end{cases}$$

if $|w|_a$ even, $w=b^{k_0}ab^{k_1}\dots ab^{k_n}$, then

$$d(w) = \begin{cases} (a, b^{k_1}a) & \text{if } n = 2, k_0 = k_2 = 0\\ (\underbrace{b, \dots, b}_{k_0}, ab^{k_1}a, \underbrace{b, \dots, b}_{k_2}, \dots, ab^{k_{n-1}}a, \underbrace{b, \dots, b}_{k_n}) & \text{otherwise} \end{cases}$$

word abbbabbbabbbabbbabbba requires tree of height 5

Theorem:

(Simon 1990, Kufleitner 2008)

Every morphism from A^* to a finite monoid M has a factorization forest of height 3|M| - 1. (tight bound for all finite groups; for aperiodic monoids height 2|M| is sufficient)

Proof idea: inductive construction w.r.t. \mathcal{J} -classes

long products staying in the same $\mathcal J$ -class:

 $x_1, \ldots, x_n, x_1 \cdots x_n$ belong to the same \mathcal{J} -class \implies

 \mathcal{H} -class of $x_{i+1} \cdots x_j$ uniquely determined by \mathcal{R} -class of x_{i+1} and \mathcal{L} -class of x_j

 $(x_{i+1}\cdots x_j \mathcal{J} x_j \& x_{i+1}\cdots x_j \leq_{\mathcal{L}} x_j \implies x_{i+1}\cdots x_j \mathcal{L} x_j)$

consider repetitions of the pairs $(x_i \mathcal{L}, x_{i+1} \mathcal{R})$

factors between places with the same pair belong to the same \mathcal{H} -class

Equivalent formulation: For every homomorphism φ to a finite monoid there exists a regular expression representing A^* where Kleene star is applied only to languages L satisfying $\varphi(L) = \{e\}$ for some idempotent e.

Example of application: decidability of limitedness of distance automata (Simon 1990)

Polynomials

monomial of degree k over A

... language of the form $A_0^*a_1A_1^*\cdots a_kA_k^*$, where $a_i\in A$ and $A_i\subseteq A$

polynomial = finite union of monomials

(languages of level 3/2 of the Straubing-Thérien concatenation hierarchy)

Factorization forest d gives for every $w \in A^+$ a monomial $P_d(w)$ of degree at most $2^{h(d)}$: $P_d(a) = \{a\}$ for $a \in A$ $P_d(w) = P_d(w_1) \cdot P_d(w_2)$ if $d(w) = (w_1, w_2)$ $P_d(w) = P_d(w_1) \cdot \operatorname{alph}(w)^* \cdot P_d(w_n)$ if $d(w) = (w_1, \dots, w_n)$ with $n \ge 3$

Theorem:

(Arfi 1991)

For a regular language $L \subseteq A^*$ the following conditions are equivalent:

1) L is a polynomial.

2) L is recognizable by a finite ordered monoid (M, ≤) where every idempotent e ∈ E(M) is the least element of the subsemigroup e · { x ∈ M | e ≤_J x }* · e.
3) ∀v, w ∈ A*: φ_L(w) = φ_L(w²) & alph(v) ⊆ alph(w) ⇒ w ≤_L wvw

Proof of "2 \implies 1":

 $\varphi \colon A^* \to M$ recognizes finite unions of languages $\{ w \in A^* \mid \varphi(w) \ge x \}$ for $x \in M$. $d \dots$ factorization forest of φ of height 3|M|We verify $\{ w \in A^* \mid \varphi(w) \ge w \} = -1 = -P_2(w)$

We verify $\{ w \in A^* \mid \varphi(w) \ge x \} = \bigcup_{\varphi(w) \ge x} P_d(w)$

(this is a polynomial because degrees are bounded by $2^{3|M|}$)

- $\subseteq: w \in P_d(w)$
- \supseteq : It is sufficient to prove by induction that $v \in P_d(w) \implies \varphi(v) \ge \varphi(w)$.

If
$$d(w) = (w_1, w_2)$$
 then $v \in P_d(w) = P_d(w_1) \cdot P_d(w_2)$
 $\implies v = v_1 v_2, \varphi(v_1) \ge \varphi(w_1), \varphi(v_2) \ge \varphi(w_2)$
 $\implies \varphi(v) = \varphi(v_1 v_2) \ge \varphi(w_1 w_2) = \varphi(w)$

If
$$d(w) = (w_1, \dots, w_n)$$
 with $n \ge 3$ then $v \in P_d(w) = P_d(w_1) \cdot \operatorname{alph}(w)^* \cdot P_d(w_n)$
 $\implies v = v_1 u v_n, \varphi(v_1) \ge \varphi(w_1), \varphi(v_n) \ge \varphi(w_n), \operatorname{alph}(u) \subseteq \operatorname{alph}(w)$
 $\implies \varphi(u) \in \{ x \in M \mid \varphi(w) \le_{\mathcal{J}} x \}^*$
 $\implies \varphi(v) = \varphi(v_1)\varphi(u)\varphi(v_n) \ge \varphi(w_1)\varphi(u)\varphi(w_n) = \varphi(w)\varphi(u)\varphi(w) \ge \varphi(w)$

Well Quasiorders

Recognizing Languages by Monotone Quasiorders

Monotone quasiorder \leq on A^* : $u \leq v \& \tilde{u} \leq \tilde{v} \implies u\tilde{u} \leq v\tilde{v}$

L recognized by $\leq \ldots L$ upward closed w.r.t. \leq

monotone quasiorder \leq recognizes $L \iff \leq$ contained in the syntactic quasi-order of L $(u \leq v \implies C_L(u) \subseteq C_L(v) \implies u \leq_L v)$

Special case:

recognized by a congruence = union of its classes = recognized by the quotient monoid

recognizing by finite ordered monoids = recognizing by monotone quasiorders with finite index

Are there quasiorders on A^* with infinite index which recognize only regular languages?

all upward closed languages are regular \iff all downward closed languages are regular (closure under complementation)

Well Quasiorders (Wqo)

 $w \in L \text{ minimal in } L \subseteq A^* \text{ w.r.t.} \leq \iff (\forall u \in L \colon u \leq w \implies w \leq u)$

Equivalent definitions of well quasiorder \leq on A^* :

- Every infinite sequence of words contains an infinite ascending subsequence.
- For every infinite sequence $(w_i)_{i=1}^{\infty}$ there exist i < j such that $w_i \leq w_j$.
- Contains neither infinite descending chains • · · ·
- Every upward closed language over A is finitely generated.
- Every non-empty language over A has some minimal element, but only finitely many non-equivalent minimal elements.
- There is no infinite ascending sequence of upward closed languages.

Special case: Congruence of finite index is a monotone well quasiorder.

recognizing by monotone well quasiorders = recognizing by well partially ordered monoids

Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, de Luca & Varricchio 1994)

For any language $L \subseteq A^*$ the following conditions are equivalent:

- 1) L is regular.
- 2) L is upward closed w.r.t. a monotone wqo on $A^{\ast}.$
- 3) L is upward closed w.r.t. a left-monotone wqo on A^* and w.r.t. a right-monotone wqo on A^* .

(language upward closed w.r.t. a right-monotone wqo need not be regular)

Proof of "3 \implies 1":

Left and right syntactic quasiorders \leq_L^{ℓ} and \leq_L^r are wqos. $w \leq_L^{\ell} w' \iff (\forall u \in A^* : uw \in L \implies uw' \in L) \iff C_L^{\ell}(w) \subseteq C_L^{\ell}(w')$ $w \leq_L^r w' \iff (\forall v \in A^* : wv \in L \implies w'v \in L) \iff C_L^r(w) \subseteq C_L^r(w')$ L non-regular \implies exists infinite sequence $(w_i)_{i=1}^{\infty}$, where $C_L^{\ell}(w_i) \neq C_L^{\ell}(w_j)$ contains subsequence $(u_i)_{i=1}^{\infty}$ strictly increasing w.r.t. $<_L^{\ell}$ i.e. $i < j \implies C_L^{\ell}(u_i) \subset C_L^{\ell}(u_j)$ $C_L^{\ell}(u_i)$ is upward closed w.r.t. \leq_L^r : $v \in C_L^{\ell}(u_i) \& v \leq_L^r v' \implies u_i \in C_L^r(v) \subseteq C_L^r(v') \implies v' \in C_L^{\ell}(u_i)$ $(C_L^{\ell}(w_i))^{\infty}$ strictly increasing accurate of large upward closed w.r.t. $<_L^r$

 $(C_L^{\ell}(u_i))_{i=1}^{\infty}$ strictly increasing sequence of languages upward closed w.r.t. \leq_L^r contradicts that \leq_L^r is wqo

Nash-Williams Minimal Bad Sequence Argument

How to prove a quasiorder to be wqo?

 $(X, \leq) \dots$ a quasiordered set $X^{\omega} \dots$ the set of infinite sequences $(x_i)_{i=1}^{\infty}$, where $x_i \in X$ $(x_i)_{i=1}^{\infty} \in X^{\omega}$ bad sequence $\dots \forall i, j : i < j \implies x_i \nleq x_j$

 \trianglelefteq another quasiordering on X, \sim the corresponding equivalence relation quasiorder X^{ω} lexicographically w.r.t. \trianglelefteq :

$$(x_i)_{i=1}^{\infty} \trianglelefteq (y_i)_{i=1}^{\infty} \iff \text{either } \forall i \colon x_i \sim y_i \\ \text{or } \exists n \colon x_n \lhd y_n \& \forall i < n \colon x_i \sim y_i$$

Lemma:

If X contains no infinite descending sequence w.r.t. \trianglelefteq and \le is not a wqo, then there exists a bad sequence for \le minimal w.r.t. \trianglelefteq .

Proof: Inductively choose x_i minimal w.r.t. \leq such that x_1, \ldots, x_i can be prolonged into a bad sequence.

Proof method for wqo property:

Take a bad sequence and construct a smaller one.

Derivation Relations of Context-Free Rewriting Systems

Example: "scattered subword" relation

 $\begin{array}{l} a_1 \dots a_n \leq u_0 a_1 u_1 \dots a_n u_n \\ \text{context-free rewriting system } R = \{ \varepsilon \rightarrow a \mid a \in A \} \\ \leq \text{ is the derivation relation } \Rightarrow_R^* \text{ of } R \\ \leq \text{ is wqo (Higman 1952):} \\ (w_i)_{i=1}^{\infty} \text{ bad sequence minimal w.r.t. length quasiorder} \\ \text{infinitely many } w_i \text{ start with the same letter } a: \quad w_{i_k} = a v_k \text{ for } k = 1, \dots, \infty \\ w_1, \dots, w_{i_1-1}, v_1, v_2, \dots \text{ is a bad sequence smaller than the original one} \\ \Longrightarrow \text{ every language closed under inserting letters is regular} \end{array}$

Unitary context-free systems:

 $R = \{ \varepsilon \to w \mid w \in I \}, \text{ where } I \subseteq A^* \text{ finite}$

(to obtain standard context-free system, replace every rule $\varepsilon \to w$ with rules $a \to aw$ and $a \to wa$ for all $a \in A$)

Examples:

I = A: "scattered subword" relation $I = \{ a\bar{a} \mid a \in A \}$: generates Dyck language

Unitary Context-Free Systems

Theorem: (Ehrenfeucht & Haussler & Rozenberg 1983, D'Alessandro & Varricchio 2005) For every unitary system $R = \{ \varepsilon \to w \mid w \in I \}$, the following conditions are equivalent:

- $\bullet \Rightarrow^*_R \text{ is a wqo on } (\mathrm{alph}(I))^*$
- \Rightarrow_R^* is a work on $\{ w \mid \varepsilon \Rightarrow_R^* w \}$
- { $w \mid \varepsilon \Rightarrow^*_R w$ } is regular
- $\bullet \ I$ is unavoidable over ${\rm alph}(I)$

 $I \subseteq A^+$ unavoidable over A — equivalent definitions:

- \bullet every infinite word over A has a factor belonging to I
- \bullet there are only finitely many finite words over A without factors from I
- $\exists n \colon A^n \subseteq A^* I A^*$

Examples: $A = \{a, b\}$ $I = \{a^2, b^2\}$ avoidable, $I = \{a^2, b^2, ab\}$ unavoidable

General Context-Free Systems

Theorem:

(Bucher & Ehrenfeucht & Haussler 1985)

For every context-free rewriting system R, the following conditions are equivalent:

- $\bullet \Rightarrow^*_R \text{ is a wqo on } A^*$
- $\{ awa \mid a \in A, w \in A^*, a \Rightarrow^*_R awa \}$ is unavoidable over A
- $\bullet \ \{ \ aw \ | \ a \in A, \ w \in A^+, \ a \Rightarrow^*_R aw \ \} \cup \ \{ \ wa \ | \ a \in A, \ w \in A^+, \ a \Rightarrow^*_R wa \ \}$ is unavoidable over A

Are these conditions decidable?

Unavoidability is decidable for regular sets: I unavoidable $\iff A^* \setminus A^*IA^*$ finite

But sets in these conditions are context-free.

Context-Free Derivations Defined by Homomorphisms

 $\varphi \colon A^* \to (M, \leq) \text{ homomorphism}$ $R = \{ a \to w \mid a \in A, \ w \in A^+, \ \varphi(a) \leq \varphi(w) \}$ notation: $\Rightarrow_{\varphi}^* \equiv \Rightarrow_R^*$ $u \Rightarrow_{\varphi}^* v \iff u = a_1 \dots a_n, a_i \in A$ $\& v = v_1 \dots v_n, v_i \in A^+$ $\& \varphi(a_i) \leq \varphi(v_i)$ $\Rightarrow_{\varphi}^* \subseteq \leq_{\varphi}$

$$\begin{split} \varphi(A) &= M \implies \text{sufficient to take finite} \\ R &= \{ a \to bc \mid a, b, c \in A, \ \varphi(a) = \varphi(bc) \} \cup \{ a \to b \mid \varphi(a) \leq \varphi(b) \} \end{split}$$

 $\Rightarrow_{\varphi}^{*} \text{ is a wqo} \implies \text{sufficient to take finite} \\ R = \{ a \to w \mid a \in A, \ w \in \min\{ u \in A^{+} \mid |u| \ge 2, \ \varphi(a) \le \varphi(u) \} \}$

Example:

Example:

 $\varphi(a) \neq \varphi(a^2) = 0$, two incomparable elements \Rightarrow^*_{φ} is not wqo: a^k cannot be rewritten; a^{ω} avoids all awa such that $a \Rightarrow^*_{\varphi} awa$

Theorem:

(Bucher & Ehrenfeucht & Haussler 1985)

For every context-free rewriting system R, the following conditions are equivalent:

- 1) For every regular $L \subseteq A^*$, $\{ w \mid \exists u \in L \colon u \Rightarrow^*_R w \}$ is regular.
- 2) For every $a \in A$, $\{ w \mid a \Rightarrow^*_R w \}$ is regular.

3) There exists homomorphism $\varphi \colon A^* \to M$ to a finite ordered monoid such that $\Rightarrow_R^* = \Rightarrow_{\varphi}^*$.

Proof:

$$\mathbf{3} \implies \mathbf{2}: \quad a \Rightarrow_R^* w \iff \varphi(w) \in \{ x \in M \mid x \ge \varphi(a) \}$$

2
$$\implies$$
 1: substitute $\{ w \mid a \Rightarrow^*_R w \}$ for every $a \in A$ in L

$$1 \implies 3: \quad \varphi_a \colon A^+ \to M_a \text{ syntactic homomorphism to ordered monoid for } \{ w \mid a \Rightarrow_R^* w \}$$
$$\varphi \colon A^+ \to M = \prod_{a \in A} M_a \qquad \varphi(w) = (\varphi_a(w))_{a \in A}$$
$$\varphi(b) \le \varphi(w) \iff \forall a \in A \ \forall u, v \in A^* \colon a \Rightarrow_R^* ubv \implies a \Rightarrow_R^* uwv$$
$$\iff b \Rightarrow_R^* w$$

Problem: For which homomorphisms $\varphi \colon A^* \to M$ to a finite ordered monoid is \Rightarrow^*_{φ} wqo?

Theorem:

(MK 2005)

For every homomorphism $\varphi \colon A^* \to M$ to a finite unordered monoid (i.e. \leq is =), \Rightarrow_{φ}^* is a wqo $\iff \varphi(A^*)$ is a chain of simple semigroups.

Chain of simple semigroups S — equivalent definitions:

- $S = S_1 \cup \cdots \cup S_n$, where S_i are pairwise disjoint, $S_i \cdot S_j \subseteq S_{\max\{i,j\}}$
- For every $x, y \in S$ either $xy \mathcal{J} x$ or $xy \mathcal{J} y$.
- $S_i \ldots$ simple semigroups, $\mathcal J$ -classes of S

Open problem: What about for arbitrary ordered monoids?

Computability of Closure

Is the upward closure of languages w.r.t. wqo \Rightarrow_R^* computable?

closure computable \implies emptiness problem decidable

For scattered subword ordering:

emptiness problem decidable & effective intersection with regular languages \implies computable

(van Leeuwen 1978)

(holds, in particular, for context-free languages)

In general: unknown even for closure of one letter.

Are there other monotone quasiorders than woos that recognize only regular languages?

Theorem:

(Bucher & Ehrenfeucht & Haussler 1985)

For every decidable monotone quasiorder \leq on A^* satisfying $u \leq v \implies |u| \leq |v|$, the following conditions are equivalent:

- All upward closed languages are regular.
- All upward closed languages are recursive.
- \leq is a wqo.

(applies to all derivation relations of non-erasing context-free systems)

Wqos Defined by Other Rewriting Systems

Shuffle analogue:

rewriting rules $w
ightarrow w \amalg u$, for $u \in I$,

i.e. $w_0 \ldots w_n \to w_0 u_1 w_1 \ldots u_n w_n$, for $u_1 \ldots u_n \in I$

Theorem:

(Haussler 1985)

 \rightarrow^* is a wqo \iff *I* is subsequence unavoidable

regularity conditions for permutable and periodic languages based on wqos defined by rewriting (de Luca & Varricchio)

Closure Properties of Well Quasiorders

Closure properties corresponding to operations on finite monoids:

quotients: \leq wdo on A^* and $\sqsubseteq \supseteq \leq$ quasiorder on $A^* \implies \sqsubseteq$ wdo on A^*

products: \leq and \sqsubseteq monotone works on $A^* \implies \leq \cap \sqsubseteq$ monotone works on A^*

 \leq wqo on X and \sqsubseteq quasiorder on Y $f: X \twoheadrightarrow Y$ onto mapping satisfying $x \leq y \implies f(x) \sqsubseteq f(y)$ Then \sqsubseteq is a wqo on Y.

 \leq wqo on X and \sqsubseteq wqo on $Y \implies$ componentwise quasiordering on $X \times Y$ is a wqo

 $\leq \text{wqo on } X \\ \text{quasiordering of } X^*: \\ a_1 \dots a_m \sqsubseteq b_1 \dots b_n \iff \exists 1 \leq i_1 < \dots < i_m \leq n \text{ such that } a_j \leq b_{i_j} \\ \text{(infinite rewriting system: } \varepsilon \to a, a \to b, \text{ for } a \leq b, a, b \in X) \\ \text{Higman 1952: } \sqsubseteq \text{ is a wqo on } X^*$

 \mathcal{F} ... the set of subsets of X upward closed w.r.t. \leq \supseteq is not in general wqo on \mathcal{F} $~ \rightsquigarrow$ better quasiorders

 \subseteq is a wqo on the set of finitely generated downward closed subsets of X (isomorphic to a subset of (\mathcal{F},\supseteq))

Language Equations

Language equation = equation over some algebra of languages

- constants: languages over A
- operations: concatenation, Boolean operations, ...
- finite set of variables $\mathcal{V} = \{X_1, \ldots, X_n\}$
- solution: mapping $\alpha \colon \mathcal{V} \to \wp(A^*)$
- long ago: explicit systems of polynomial equations context-free languages
- today: renewed interest, surprising recent results

What are we interested in?

- expressive power, properties of solutions
- decidability of existence and uniqueness of solutions
- algorithms for finding (minimal and maximal) solutions

Explicit Systems of Equations Corresponding to Basic Models of Computation

Description of Regular Languages

Example:

 $X_1 = \{\varepsilon\} \cup X_2 \cdot a \qquad X_2 = X_1 \cdot b \cup X_2 \cdot a$

Regular languages = components of smallest (largest, unique) solutions of explicit systems

 \boldsymbol{n}

$$X_i = K_i \cup \bigcup_{j=1}^n X_j \cdot L_{j,i} \qquad i = 1, \dots, n$$

of left-linear equations with finite constants K_i and $L_{j,i}$

Matrix notation: union instead of summation row vectors $X = (X_i)$ and $S = (K_i)$, matrix $R = (L_{j,i})$ X = S + XR

Solving Explicit Systems of Left-Linear Equations

Theorem: (one direction of Kleene theorem) Components of the smallest solution of the system X = S + XR can be constructed from entries of R and S using \cup , \cdot and *.

The system as an automaton:

- language $R_{j,i}$ labels the transition from state j to state i
- a word from S_i is read when entering the automaton at state i

Proof:

The smallest solution of X = S + XR is SR^* , where $R^* = E + R + R^2 + \cdots$. Inductive formula for computing R^* as a block matrix:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^* = \begin{pmatrix} (A+BD^*C)^* & A^*B(D+CA^*B)^* \\ D^*C(A+BD^*C)^* & (D+CA^*B)^* \end{pmatrix}$$

Description of Context-Free Languages

Example: Dyck language of correct bracketings over $A = \{(,)\}$:

context-free grammar: $X_1 \longrightarrow \varepsilon \mid X_2 X_1$ $X_2 \longrightarrow (X_1)$ system of language equations: $X_1 = \{\varepsilon\} \cup X_2 \cdot X_1$ $X_2 = \{(\} \cdot X_1 \cdot \{)\}$

Ginsburg & Rice 1962:

context-free languages = components of smallest (largest, unique) solutions of explicit systems $X_i = P_i \qquad i = 1, \dots, n$

of polynomial equations with finite $P_i \subseteq (A \cup \mathcal{V})^*$

elegant matrix notation for some normal forms

Quadratic Greibach Normal Form

Every context-free grammar generating only non-empty words can be algorithmically modified so that right-hand sides of rules belong to $AV^2 \cup AV \cup A$.

Construction:

(Rosenkrantz 1967)

Start with Chomsky normal form, i.e. right hand sides in $\mathcal{V}^2 \cup A$.

Matrix notation: X = S + XR,

where S is a vector over $\wp(A)$ and R is a matrix over $\wp(\mathcal{V})$.

Equivalently: $X = SR^*$

Replace R^* with matrix of new variables: X = SY Y = E + RY

In R replace every occurrence of variable X_k with the set $(SY)_k \subseteq A\mathcal{V}$.

Remove ε -rules.
Generalizations of Context-Free Languages

Conjunctive languages (Okhotin 2001):

- analogy of alternating finite automata and Turing machines for context-free grammars
- additionally intersection allowed in equations
- we can specify that a word satisfies certain syntactic conditions simultaneously
- for unary alphabet, smallest solutions are in EXPTIME and can be EXPTIME-complete (Jeż & Okhotin 2008)

(context-free unary languages are regular = ultimately periodic) encoding in positional notation, e.g. binary notation of $\{ a^{2^n} \mid n \in \mathbb{N} \}$ is regular 10^*

Linear conjunctive languages:

exactly languages accepted by one-way real-time cellular automata (Okhotin 2004)

Examples:

 $\{wcw \mid w \in \{a,b\}^*\}, \{a^nb^nc^n \mid n \in \mathbb{N}\}, \text{ all computations of a Turing machine}$

All Boolean Operations

Okhotin 2003:

components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages

Boolean grammars (Okhotin 2004):

- semantics defined only for some systems
- generalization of conjunctive languages
- parsing using standard techniques
- \subseteq DTIME $(n^3) \cap$ DSPACE(n)
- used to give a formal specification of a simple programming language

Okhotin 2007:

equations with concatenation and any clone of Boolean operations (concatenation and symmetric difference: universal)

Arithmetical hierarchy:

- components of largest and smallest solutions w.r.t. lexicographical ordering
- levels characterized by the number of variables in equations (Okhotin 2005)

Implicit Equations

Equations over Words

- constants are letters, for variables only words are substituted
- for instance, solutions of equation xba = abx are exactly $x = a(ba)^n$, where $n \in \mathbb{N}_0$
- term unification modulo associativity
- PSPACE algorithm deciding satisfiability, EXPTIME algorithm finding all solutions (Makanin 1977, Plandowski 2006)
- Conjecture: Satisfiability problem is NP-complete.
- satisfiability-equivalent to language equations with only letters as constants and concatenation: shortlex-minimal words of an arbitrary language solution form a word solution

Satisfiability of language equations by arbitrary languages is undecidable for

- equations with finite constants, union and concatenation
- systems of equations with regular constants and concatenation (MK 2007)

Conjugacy of Languages

 $KM = ML \dots$ languages K and L are conjugated via a language M

Words u and v are conjugated $\iff v$ can be obtained from u by cyclic shift.

MK 2007:

Conjugacy of regular languages via any language containing ε is not decidable. Satisfiability of systems KX = XL, $A^*X = A^*$ is not decidable for regular languages K, L.

Cassaigne & Karhumäki & Salmela 2007:

Conjugacy of finite bifix codes via any non-empty language is decidable.

Open questions:

- ullet removal of the requirement on arepsilon
- conjugacy of finite languages (satisfiability of equations with finite constants)
- conjugacy via regular or finite languages (satisfiability by regular or finite languages)

Identity checking problem for regular expressions:

f, g regular expressions with variables X_1, \ldots, X_n (union, concatenation, Kleene star, letters)

Does $f(L_1, \ldots, L_n) = g(L_1, \ldots, L_n)$ hold for arbitrary (regular) languages L_1, \ldots, L_n ?

- trivially decidable (treat variables as letters and compare regular languages)
- decidable also with the shuffle operation (Meyer & Rabinovich 2002)
- open problems for expressions with intersection

Rational systems: (defined by a finite transducer)

Every rational system of word equations is algorithmically equivalent to some of its finite subsystems \implies satisfiability of rational systems of word equations is decidable. (Culik II & Karhumäki 1983, Albert & Lawrence 1985, Guba 1986)

Do given finite languages form a solution of the system $\{X^n Z = Y^n Z \mid n \in \mathbb{N}\}$? undecidable (Lisovik 1997, Karhumäki & Lisovik 2003, MK 2007)

Language Inequalities Defining Basic Automata

Minimal automaton of a language L:

state reached by $w \in A^* =$ largest solution of the inequality $w \cdot X_w \subseteq L$ $X_w \xrightarrow{a} X_{wa}$ initial state X_{ε} final states X_w , where $w \in L$

Universal automaton of a language L

r = smallest non-deterministic automaton admitting morphism from every automaton accepting L

state = maximal solution of the inequality $X \cdot Y \subseteq L$ $(X, Y) \xrightarrow{a} (X', Y') \iff aY' \subseteq Y \iff Xa \subseteq X'$ (X, Y) initial state $\iff \varepsilon \in X$ (X, Y) final state $\iff \varepsilon \in Y$

General Results About Language Inequalities

Jeż & Okhotin 2008: Even for unary alphabet, finite constants, concatenation and union: components of unique (smallest, largest) solutions =

= recursive (recursively enumerable, co-recursively enumerable) languages

Example: Minimal solutions of $X \cup Y = L$ are precisely disjoint decompositions of L.

In the presence of union and concatenation, interesting properties are demonstrated by maximal solutions.

Systems of Inequalities with Constant Right-Hand Sides

$$P_i \subseteq L_i$$
 $L_i \subseteq A^*$ regular, $P_i \subseteq (A \cup \mathcal{V})^*$ arbitrary

maximal solutions:

(Conway 1971)

- finitely many, all of them regular
- for context-free expressions P_i : algorithmically regular
- every solution is contained in a maximal one
- all components are recognized by the syntactic homomorphism of the languages L_i

Analogy: preservation of regularity by arbitrary inverse substitutions:

Largest solution of the inequality $\varphi(X) \subseteq A^* \setminus L$ is $X = A^* \setminus (\varphi^{-1}(L))$.

Systems of equations with constant right-hand sides:

 $P_i = L_i$ $L_i \subseteq A^*$ regular, $P_i \subseteq (A \cup V)^*$ regular expression

- satisfiability by arbitrary (finite) languages is EXPSPACE-complete (Bala 2006)
- Is satisfiability decidable if P_i can contain intersection?

General Left-Linear Inequalities

$K_0 \cup X_1 K_1 \cup \cdots \cup X_n K_n \subseteq L_0 \cup X_1 L_1 \cup \cdots \cup X_n L_n$

 K_j , L_j regular \implies basic properties of the inequality can be expressed using formulae of monadic second-order theory of infinite |A|-ary tree

Example: $b \cup Xa \subseteq X \cup Xba$

$$\begin{aligned} X \text{ is a solution } &\iff X(b) \land \left(\forall x \colon X(x) \implies (X(xa) \lor \exists y \colon X(y) \land x = yb) \right) \\ X \text{ minimal } &\iff \forall Y \colon (Y \text{ is a solution} \land \forall x \colon Y(x) \implies X(x)) \implies \\ &\implies (\forall x \colon X(x) \implies Y(x)) \end{aligned}$$

minimal solutions: $\bullet = "X$ holds" $\circ = "X$ does not hold"

Rabin 1969 \implies algorithmically solvable using tree automata

very special case of set constraints (letters as unary functions)

EXPTIME-complete (even when complementation is allowed) (1994–2006)

Yet More General Left-Linear Inequalities

$K_0 \cup X_1 K_1 \cup \dots \cup X_n K_n \subseteq L_0 \cup X_1 L_1 \cup \dots \cup X_n L_n$

 K_j arbitrary, L_j regular

largest solution:

(MK 2005)

- regular
- for context-free K_j : algorithmically regular
- direct construction of the automaton accepting the solution

Concatenations on the Right

Previous cases:

$\ldots \subseteq L$		constants on the right fix the context
V T Z + 1	$\subset VI$	

 $XK \cup \ldots \subseteq XL \cup \ldots$ local modifications on one side

Next task:

 $\ldots \subseteq XLY$ general concatenations on the right

We need to classify words according to their decompositions with respect to constant languages.

A Quasiorder for Dealing with Concatenations on the Right

Applying well-quasiorders to inequalities:

Construct a wqo on A^* such that every solution is contained in an upward closed solution.

Systems of inequalities $P_i \subseteq Q_i$

 $P_i \subseteq (A \cup \mathcal{V})^*$ arbitrary

 $Q_i\ \dots$ regular expressions over variables and languages recognizable by a homomorphism $\varphi\colon A^*\to (M,\leq)$

Recalling definition:

$$u \Rightarrow_{\varphi}^{*} v \iff u = a_1 \dots a_n, a_i \in A$$

$$\& v = v_1 \dots v_n, v_i \in A^+$$

$$\& \varphi(a_i) \le \varphi(v_i)$$

Theorem: All maximal solutions are recognizable by the quasiorder \Rightarrow_{φ}^* .

(MK 2005)

Proof:
$$\alpha$$
 arbitrary solution
define $\beta(X) = \{ u \in A^* \mid \exists v \in \alpha(X) : v \Rightarrow_{\varphi}^* u \}$, for every $X \in \mathcal{V}$
 $\beta(X) \supseteq \alpha(X)$
 β is a solution:
 $u \in \beta(P_i) \implies \exists v \in \alpha(P_i) : v \Rightarrow_{\varphi}^* u$ (because \Rightarrow_{φ}^* is monotone)
we prove by induction on structure of Q_i :
 $v \in \alpha(Q_i) \& v \Rightarrow_{\varphi}^* u \implies u \in \beta(Q_i)$
 e subexpression of $Q_i, v \in \alpha(e), v \Rightarrow_{\varphi}^* u$
• e variable: $u \in \beta(e)$ by definition of β
• e constant: $u \in \alpha(e) \subseteq \beta(e)$ because $\varphi(u) \ge \varphi(v)$
• e union or intersection: $u \in \beta(e)$ by induction hypothesis
• $e = e_1 \cdot e_2$: $v = v_1 \cdot v_2, v_1 \in \alpha(e_1), v_2 \in \alpha(e_2)$
definition of $\Rightarrow_{\varphi}^* \implies u = u_1 \cdot u_2, v_1 \Rightarrow_{\varphi}^* u_1, v_2 \Rightarrow_{\varphi}^* u_2$
induction hypothesis $\implies u_1 \in \beta(e_1), u_2 \in \beta(e_2) \implies u \in \beta(e)$
Every component of β is a finite union of languages of the form
 $\langle a_1 \dots a_n \rangle_{\Rightarrow_{\varphi}^*} = \varphi^{-1}(\langle \varphi(a_1) \rangle_{\leq}) \dots \varphi^{-1}(\langle \varphi(a_n) \rangle_{\leq})$, where $a_1, \dots, a_n \in A$.

Inequalities with Restrictions on Constants

Systems of inequalities $P_i \subseteq Q_i$

 $P_i \subseteq (A \cup \mathcal{V})^*$ arbitrary

 $Q_i \dots$ regular expressions over variables and languages recognizable by finite simple semigroups (or all together by a finite chain of finite simple semigroups)

(can contain infinite unions and intersections, provided only finitely many constants are used)

MK 2005:

- All maximal solutions are regular.
- The class of polynomials of group languages is closed under taking maximal solutions of such systems.
- If L is recognizable by a finite chain of finite simple semigroups, then every union of powers of L is regular. $(X \subseteq \bigcup_{n \in N} L^n$, for arbitrary $N \subseteq \mathbb{N}$)

Semi-commutation Inequalities

$XK \subseteq LX$ K arbitrary, L regular

largest solution:

- always regular (MK 2005)
- for context-free K: algorithmically recursive
- if K and L finite and all words in K longer than all in L: algorithmically regular (Ly 2007)

```
\begin{array}{lll} \mbox{Game:} & \mbox{position:} & w \in A^* \\ & \mbox{attacker:} & \mbox{chooses} \ u \in K \\ & \mbox{plays} \ w \longrightarrow wu \\ & \mbox{defender:} \ \mbox{chooses} \ v \in L \\ & \ wu = v \tilde{w} \\ & \mbox{plays} \ wu \longrightarrow \tilde{w} \end{array}
```

largest solution = all winning positions of the defender

Encoding Defender's Strategies for Initial Word w

Labelled tree:

defender moves along the edges = removes prefixes of wlabel = \sim_L -class of the current remainder of w

Example: $w = abcd, L = \{a, ab, abcde, bc, c, cd, da\}$

Well-quasiordering Trees

 $w \leq v \dots$ winning strategies of the defender for w can be used also for v

Largest solution is upward closed with respect to \leq .

Kruskal 1960: \leq is wqo.

Simple Equations Possessing Universal Power

MK 2005:

Every co-recursively enumerable language can be described as the largest solution of any of the following systems with regular constants K, L, M and N.

$XK \subseteq LX$	$XK \subseteq LX$	$XK \subseteq LX$
$X \subseteq M$	$XM \subseteq NX$	$MX \subseteq XN$

Special case: XL = LX

- formulated by Conway 1971
- positive results:

at most three-element languages, regular codes (Karhumäki & Latteux & Petre 2005)

MK 2007:

There exists a finite language L such that the largest solution C(L) of XL = LX is not recursively enumerable.

Example: L regular, but $\mathcal{C}(L)$ non-regular

 $A = \{a, b, c, e, \hat{e}, f, \hat{f}, g, \hat{g}\}$

$$\begin{split} L &= \{c, ef, ga, e, fg, \hat{f}\hat{e}, a\hat{g}, \hat{e}, \hat{g}\hat{f}, fgba\hat{g}\} \cup cM \cup Mc \cup \\ &\cup A^*bA^*bA^* \cup (A \setminus \{c\})^*b(A \setminus \{c\})^* \setminus N \\ M &= efga^+ba^* \cup ga^*ba^*\hat{g}\hat{f} \cup a^*ba^*\hat{g}\hat{f}\hat{e} \cup fga^*ba^*\hat{g} \\ N &= \{efg, fg, g, \varepsilon\} \cdot a^*ba^* \cdot \{\varepsilon, \hat{g}, \hat{g}\hat{f}, \hat{g}\hat{f}\hat{e}\} \end{split}$$

encodes simultaneous decrementation of two counters and zero-test

Configuration: $[[[e]f]g]a^{m}ba^{n}[\hat{g}[\hat{f}[\hat{e}]]]$

Simultaneous Decrementation of Both Counters

Attacker forces defender to remove one a on each side:

Games That Can Be Encoded (Jeandel & Ollinger)

position of the game: a vertex of the graph and a word

labels of attacker's vertices: allowed words

labels of edges: words to be added by attacker or removed by defender

- when attacker modifies on one side, defender has to modify on the other
- bipartite graph for each type of edges
- at most one common vertex for any two connected components of different types
- only one type of edges leading from each of attacker's vertices
- non-empty labels of edges only around one attacker's vertex for each type of edges

Some Open Problems

- satisfiability of equations with concatenation (and union) over finite or regular languages
- satisfiability of equations with concatenation and finite constants

• Conjecture:

(Ratoandromanana 1989)

Among codes, equation XY = YX has only solutions of the form $X = L^m$, $Y = L^n$. Equivalently: Every code has a primitive root.

- regularity of solutions of other simple systems of inequalities, for example: $KXL \subseteq MX$ $KX \subseteq LX, \ XM \subseteq XN$
- existence of algorithms for finding regular solutions
- methods for proving properties of conjunctive and Boolean grammars
- existence of non-trivial shuffle decomposition $X \amalg Y = L$ of a regular language L
- existence of non-trivial unambiguous decompositions of regular languages