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Introduction Characteristics of Time Series

Characteristics of Time Series

Time Series (Discrete–Time Stochastic Processes)

A time series is a sequence of random variables
{Yt , t = 0,±1,±2, . . .}
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Introduction Weak Stationarity

Second Order Statistical Description

Definition

Stochastic process {Yt , t ∈ T} is said to be a second-order process if
EY 2

t <∞ for all t ∈ T .

Mean

Mean EYt = µt <∞ for all t ∈ T .

Autocovariance and Autocorelation

Autocovariance CY (t, s) of a random process {Yt , t ∈ Z} is defined
as the covariance of Yt and Ys :

CY (t, s) = E (Yt − EYt)(Ys − EYs)

In particular, when t = s, we have
CY (t, t) = E (Yt − EYt)

2 = DYt

Autocorrelation coefficient is defined as
RY (t, s) = CY (t,s)√

DYtDYs
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Introduction Weak Stationarity

Weak Stationarity

We introduce weak stationarity which require that time series exhibit
certain time-invariant behavior.

Definition

A time series {Yt , t ∈ Z} is (weak) stationary if EYt <∞ for each t,
and

(i) EYt = µ is a constant, independent of t, and
(ii) CY (t, t + k) is independent of t for each k .

Notation

If {Yt , t ∈ Z} is (weak) stationary denote by
γY (k) = CY (t, t + k)
ρY (k) = RY (t, t + k)

for all t.
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Introduction Weak Stationarity

Spectral theory

Spectral density

Let {Yt , t ∈ Z} be a zero mean stationary random sequence with the
autocovariance function satisfying

∞∑
t=−∞

|γ(t)| <∞.

Then the spectral density function is the continuous function f (λ) given
by the uniformly convergent series

f (λ) =
∞∑

t=−∞
γ(t)e−iλt

(see Doob 1953, p. 476).
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Introduction Weak Stationarity

White Noise

Definition

The process {εt , t ∈ T} is said to be an White Noise

if εt are uncorrelated random variables,

each with zero mean and variance σ2
ε > 0

Notation: εt ∼WN(0, σ2
ε).

Definition

If εt are also independent and identically distributed, then the process
{εt , t ∈ T} is said to be an IID process.

Notation: εt ∼ IID(0, σ2
ε).
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Introduction Weak Stationarity

Gaussian White Noise

εt = ηt − µ ∼ WN(0, σ2
ε)

where ηt ∼ N(µ = 1, σ2 = 1)

density: fη(x) = 1√
2πσ2

exp {−1
2

(x−µ)2

σ2 } pro x ∈ R

mean: Eηt = µ

variance: Dηt = σ2 = σ2
ε
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Introduction Weak Stationarity

Exponential White Noise

εt = ηt − µ ∼ WN(0, σ2
ε)

where ηt ∼ Exp(µ = 1)

density: fη(x) = 1
µ exp {− 1

µx} pro x ≥ 0

mean: Eηt = µ

variance: Dηt = µ2 = σ2
ε
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Introduction Weak Stationarity

Beta-distributed White Noise

εt = ηt − µ ∼ WN(0, σ2
ε)

where ηt ∼ Beta(a = 1.25, b = 1.25)

density: fη(x) = Γ(a+b)
Γ(a)Γ(b) xa−1(1− x)b−1 pro x ∈ (0, 1)

mean: Eηt = µ = a
a+b

variance: Dηt = ab
(a+b)2(a+b+1)

= σ2
ε
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Introduction Weak Stationarity

ARMA Process

Definition

The process {Yt , t ∈ Z} is said to be an ARMA(p, q) process

if {Yt , t ∈ Z} is stationary and

if for every t ∈ Z,

Yt − ϕ1Yt−1 − · · · − ϕpYt−p = εt + θ1εt−1 + · · ·+ θqεt−q

where εt ∼WN(0, σ2
ε).

We say that {Yt , t ∈ Z} is an ARMA(p, q) process with mean µ

if {Yt − µ, t ∈ Z} is an ARMA(p, q) process.

Special cases

If p = 0 then Yt is said to be moving average process MA(q).

If q = 0 then Yt is said to be autoregressive AR(p).
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Introduction Weak Stationarity

Backshift Operators and Characteristic Polynomials

Backshift Operator B such that

BYt = BYt−1 and BkYt = BYt−k for all k ∈ Z

ARMA notation using backshift operators

Yt ∼ ARMA(p, q) : Φ(B)Yt = Θ(B)εt

Characteristic polynomials

AR part Φ(z) = 1− ϕ1z − · · · − ϕpzp

MA part Θ(z) = 1 + θ1z + · · ·+ θqzp

defined on |z | < 1.

Marie Forbelská (MU – ÚMS) Spectral Density Estimation via AR Modeling Podleśı, 3. 9. – 6. 9. 2013 11 / 83



AR(2) : Yt = 0.5Yt−1 + 0.2Yt−2 + εt , εt ∼ N(0, 1)
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Introduction Weak Stationarity

Causality and Invertibility of ARMA Processes

Definition

An ARMA(p, q) process is said to be causal (relative to {εt}) if there

exists a sequence of constants {ψi} such that
∞∑
i=0

|ψi | <∞ and

Yt =
∞∑
i=0

ψiεt−i , t ∈ Z

Which is equivalent to the condition

Φ(z) = 1− ϕ1z − . . .− ϕpzp 6= 0, ∀ |z | < 1

A similar definition for the invertibility of an ARMA(p, q) process relative
to εt can be presented if we interchange the role of {Yt} with {εt}. Then
the invertibility is equivalent to the condition

Θ(z) = 1 + θ1z + . . .+ θpzq 6= 0, ∀ |z | < 1
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Introduction Weak Stationarity

Spectral density of ARMA process

Spectral density of a MA(q) process

fY (ω) = σ2
ε

2π

∣∣Θ (e−iω)∣∣2 for ω ∈ 〈−π, π〉

Spectral density of a AR(p) process

fY (ω) = σ2
ε

2π
1

|Φ(e−iω)|2
for ω ∈ 〈−π, π〉

Spectral density of a ARMA(p, q) process

fY (ω) = σ2
ε

2π
|Θ(e−iω)|2
|Φ(e−iω)|2

for ω ∈ 〈−π, π〉

where

Θ(z) = 1 + θ1z + . . .+ θqzq and Φ(z) = 1− ϕ1z − . . .− ϕpzp.
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Introduction Weak Stationarity

Moments of the AR(p) process

To calculate the mean we need causal AR(p) process:

EYt = E
∑∞

j=0 ψjεt−j =
∑∞

j=0 ψjEεt−j = 0.

Calculation of the autocovariance function is complicated:
first equation Yt = ϕ1Yt−1 + · · ·+ ϕpYt−p + εt
multiplied by a term Yt−k and calculate the mean values of both sides, i.e.

EYtYt−k︸ ︷︷ ︸
=γ(k)

= ϕ1 EYt−1Yt−k︸ ︷︷ ︸
=γ(k−1)

+ · · ·+ ϕp EYt−pYt−k︸ ︷︷ ︸
=γ(k−p)

+EεtYt−k .

then we compute

EYt−kεt = E (
∞∑
j=0

ψjεt−j−k)εt =
∞∑
j=0

ψjEεt−j−kεt =
∞∑
j=0

ψjσ
2
εδj+k

=

{
σ2
ε k = 0,

0 otherwise
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Introduction Weak Stationarity

Yule–Walker equations

By simple modifications of the previous equations we get Yule–Walker
equations

for the autocovariance function

for k = 0: γ(0) − ϕ1γ(1) − · · ·− ϕpγ(p) = σ2
ε

for k 6= 0: γ(k) − ϕ1γ(k−1) − · · ·− ϕpγ(k−p) = 0

for the autocorrelation function

for k = 0: ρ(0)︸︷︷︸
=1

− ϕ1ρ(1) − · · ·− ϕpρ(p) = σ2
ε

γ(0)

for k 6= 0: ρ(k) − ϕ1ρ(k−1) − · · ·− ϕpρ(k−p) = 0 (YW∗)

Yule–Walker equation is a widely used method to estimate the coefficients
of the AR(p) models.
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Introduction Weak Stationarity

Limit properties of the ρ(k) of the AR(p) process

Solution of the homogeneous differential equation, which we marked with
a (YW∗), we get in addition to recurrent relationship too explicit form of
the autocorrelation function

ρAR(p)(k) =
m∑
j=1

(
pj−1∑
s=0

cjsks

)
λkj =

m∑
j=1

(
pj−1∑
s=0

cjsks

)
rkj e ikθj ,

where cjs are constants determined by the initial conditions and λj = rje
iθj

are the inverse of the roots of the Φ(z) = 1− ϕ1z − . . .− ϕpzp with
multiplicities pj . Because holds

|λj | = rj < 1, kde Φ(z0j) = 0 pro z0j = 1
λj
,

we get here, that ρ(k) decreases for k →∞ exponentially to zero, i.e.

ρ(k) −−−→
k→∞

0,

which is a very important property identification autoregressive AR(p)
processes.
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Introduction Weak Stationarity

AR(1) : Yt = 0.5Yt−1 + εt , εt ∼ N(0, 1)

0 50 100 150 200 250 300

−4

−3

−2

−1

0

1

2

3

4

ACF

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1
fAR(ω) = σ2

ε
2π

1
|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6
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Introduction Weak Stationarity

AR(1) : Yt = −0.5Yt−1 + εt , εt ∼ N(0, 1)
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Introduction Weak Stationarity

AR(1) : Yt = 0.95Yt−1 + εt , εt ∼ N(0, 1)
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Introduction Weak Stationarity

AR(1) : Yt = −0.95Yt−1 + εt , εt ∼ N(0, 1)
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Introduction Weak Stationarity

AR(2) : Yt = −0.75Yt−1 − 0.75Yt−2 + εt , εt ∼ N(0, 1)
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Introduction Weak Stationarity

MA(2) : Yt = εt − 0.2279εt−1 + 0.2488εt−2, εt ∼ N(0, 1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

ACF

−30 −20 −10 0 10 20 30

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
fMA(ω) = σ2

ε
2π

∣∣Θ (e−iω)∣∣2

−3 −2 −1 0 1 2 3

0.10

0.15

0.20

0.25

0.30

0.35
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Introduction Weak Stationarity

MA(4) : Yt = εt + 0.8εt−1 + 0.2εt−4, εt ∼ N(0, 1)
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Introduction Weak Stationarity

MA(12) : Yt = εt + 0.8εt−1 + 0.2εt−12, εt ∼ N(0, 1)
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Introduction Weak Stationarity

ARMA(1, 1) : Yt = 0.5Yt−1 + εt + 0.5εt−1, εt ∼ N(0, 1)
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Introduction Weak Stationarity

ARMA(2, 1) : Yt = 0.2Yt−1 + 0.7Yt−1 + εt + 0.5εt−1, εt ∼ N(0, 1)
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Introduction Weak Stationarity

ARMA(1, 2) : Yt = −0.75Yt−1 + εt − εt−1 + 0.25εt−2, εt ∼ N(0, 1)
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Introduction Weak Stationarity

ARMA(1, 3) : Yt = −0.6Yt−1 + εt − 0.7εt−1 + 0.4εt−2 + 0.4εt−3, εt ∼ N(0, 1)
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Introduction Weak Stationarity

ARMA(2, 2) : Yt = 0.8897Yt−1 − 0, 4858Yt−2 + εt − 0.2279εt−1 + 0.2488εt−2, εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal linear models

So far we have discussed the links between neighboring random variables

. . . ,Yt ,Yt+1,Yt+2, . . . .

If a random process also includes seasonal fluctuations, it is necessary to
notice the dependencies between random variables, which divides season
length L.

. . . ,Yt ,Yt+L,Yt+2L, . . . .

First, we introduce seasonal differential operator of length L > 0:
∆LYt =Yt − Yt−L = (1− BL)Yt

∆2
LYt =∆L(∆LYt) = ∆L(Yt−Yt−L)

=(Yt−Yt−L)−(Yt−L−Yt−2L)
=Yt−2Yt−L+Yt−2L = (1−BL)2Yt

...
∆D

L Yt =(1− BL)DYt
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Introduction Stationary seasonal linear models

Construction seasonal models

To better understand the structure of seasonal patterns in the B–J
methodology, divide, for example, monthly data (L = 12) for r years
in the following table.

Year January February · · · December

1 Y1 Y2 · · · Y12

2 Y13 Y14 · · · Y24
...

...
...

...
...

r Y1+12(r−1) Y2+12(r−1) · · · Y12+12(r−1)

For each column j ∈ {1, . . . , 12} separately consider a ARMA(P,Q)
model of the same type:

Yj+12t = π1Yj+12(t−1) + · · ·+ πPYj+12(t−1)+

ηj+12t + ψ1ηj+12(t−1) + · · ·+ ψQηj+12(t−1)

Because all 12 random processes is of the same type, we can write
π(B12)Yt = Ψ(B12)ηt .
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Introduction Stationary seasonal linear models

Remap white noise to the new process

When 12 white noise of the same type {η1+12t} ∼ WN(0, σ2
η)

{η2+12t} ∼ WN(0, σ2
η)

...
...

...
{η12+12t} ∼ WN(0, σ2

η)

sequentially assemble in time and create a single random process

{η∗t , t = 0,±1,±2, . . .},

we do not get white noise, it is recalled that:

Eη∗t η
∗
t+h = 0 only where h that are multiples of 12

Eη∗t ηt+h 6= 0 may occur for any other h,

therefore model the process ηt as a general ARMA(pq) process

Φ(B)η∗t = Θ(B)εt , εt ∼WN(0, σ2
ε).
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Introduction Stationary seasonal linear models

Stationary SARMA models

General stationary seasonal mixed SARMA model:

Φ(B)π(BL)Yt = Θ(B)Ψ(BL)εt ∼ SARMA(p, q)× (P,Q)L

kde

Φ(B) = 1− ϕ1B − · · · − ϕpBp

π(BL) = 1− π1BL − · · · − πPBPL

Θ(B) = 1 + θ1B + · · ·+ θqBp

Ψ(BL) = 1 + ψ1BL + · · ·+ ψQBQL

MA homogeneous seasonal models

Yt = Θ(B)Ψ(BL)εt ∼ SARMA(0, q)× (0,Q)L.

AR homogeneous seasonal models

Φ(B)π(BL)Yt = εt ∼ SARMA(p, 0)× (P, 0)L
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Introduction Stationary seasonal linear models

SARMA model as a special type of ARMA model

Consider a simple example SARMA(1, 0)× (1, 0)12 model:

Φ(B)π(B12)Yt = εt

(1− ϕ1B)(1− π1B12)Yt = εt

(1− ϕ1B − π1B12 + ϕ1π1B13)Yt = εt

Yt − ϕ1Yt−1 − π1Yt−12 + ϕ1π1Yt−13 = εt

We see that it is a special case of AR(13) model in which:

10 coefficients are zero,
three remaining non-zero coefficients were created on two parameters:.

Relationship between SARMA and ARMA models

Model SARMA(p, q)× (P,Q)L is actually ARMA(p + PL,QL + q) model
with additional conditions on AR and MA coefficients.
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Introduction Stationary seasonal linear models

Pure seasonal homogeneous model with MA parts: Yt = Ψ(B12)εt

SARMA(0, 0)(0, 1)12 : Yt = (1− 0.95B12)εt : Yt = εt − 0.95εt−12, εt ∼ N(0, 1)

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

−4

−2

0

2

ACF

−60 −40 −20 0 20 40 60

−0.5

0.0

0.5

1.0

fSMA(ω) = σ2
ε

2π

∣∣Ψ (e−i12ω
)∣∣2

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Marie Forbelská (MU – ÚMS) Spectral Density Estimation via AR Modeling Podleśı, 3. 9. – 6. 9. 2013 36 / 83



Introduction Stationary seasonal linear models

Pure seasonal homogeneous model with AR parts: π(B12)Yt = εt

SARMA(0, 0)(0, 1)12 : (1− 0.95B12)Yt = εt : Yt = 0.95Yt−12 + εt , εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Pure seasonal homogeneous model with AR parts: π(B12)Yt = εt

SARMA(0, 0)(2, 0)12 : (1− 0.3B12 + 0.1B24)Yt = εt : Yt = 0.3Yt−12 − 0.1Yt−24 + εt , εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal homogeneous model with MA parts: Yt = Θ(B)Ψ(B12)εt

SARMA(0, 1)(0, 1)12 : Yt = (1 + 0.9B)(1− 0.4B12)εt : Yt = εt + 0.9εt−1 − 0.4εt−12 − 0.36εt−13, εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal homogeneous model with MA parts: Yt = Θ(B)Ψ(B12)εt

SARMA(0, 1)(0, 1)12 : Yt = (1 + 0.9B)(1 + 0.4B12)εt : Yt = εt + 0.9εt−1 + 0.4εt−12 + 0.36εt−13, εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal homogeneous model with AR parts: Φ(B)π(B12)Yt = εt

SARMA(1, 0)(1, 0)12 : (1− 0.5B)(1− 0.7B12)Yt = εt : Yt = 0.5Yt−1 + 0.7Yt−12 − 0.35Yt−13 + εt , εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal homogeneous model with AR parts: Φ(B)π(B12)Yt = εt

SARMA(1, 0)(1, 0)12 : (1− 0.9B)(1− 0.7B12)Yt = εt : Yt = 0.9Yt−1 + 0.7Yt−12 − 0.63Yt−13 + εt , εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.5B)(1− 0.7B12)Yt = (1 + 0.9B)(1− 0.4B12)εt
Yt = 0.5Yt−1 + 0.7Yt−12 − 0.35Yt−13 + εt + 0.9εt−1 − 0.4εt−12 − 0.36εt−13, εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.5B)(1− 0.7B12)Yt = (1 + 0.9B)(1 + 0.4B12)εt
Yt = 0.5Yt−1 + 0.7Yt−12 − 0.35Yt−13 + εt + 0.9εt−1 + 0.4εt−12 + 0.36εt−13, εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.9B)(1− 0.7B12)Yt = (1 + 0.9B)(1− 0.4B12)εt
Yt = 0.9Yt−1 + 0.7Yt−12 − 0.63Yt−13 + εt + 0.9εt−1 − 0.4εt−12 − 0.36εt−13, εt ∼ N(0, 1)
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Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.9B)(1− 0.7B12)Yt = (1 + 0.9B)(1 + 0.4B12)εt
Yt = 0.9Yt−1 + 0.7Yt−12 − 0.635Yt−13 + εt + 0.9εt−1 + 0.4εt−12 + 0.36εt−13, εt ∼ N(0, 1)
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Estimation of moments

Estimation of moments

Let Y = (Y1, . . . ,Yn)T be a time series observed at equally-spaced time
points t1, . . . , tn. We consider the problem of using these data to forecast
Yn+1 at time tn+1.

-�∆

t1 t2 · · ·

-�∆

ti ti+1 · · ·

-�∆

tn−1 tn

Denote by ∆ = ti+1 − ti . Then
ti = t1 + (i − 1)∆ for i = 2, . . . , n
i = ti−t1

∆ + 1

Without loss of generality, we can therefore assume that ti = i .
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Estimation of moments

Estimation of the second order moments

Suppose we have data Y1, . . . ,Yn from a stationary time series. We can
estimate

Empirical Mean Estimator

Ŷ = 1
n

n∑
t=1

Yt

Empirical Autocovariance Function Estimator

Ck = γ̂(k) = 1
n−k

n−k∑
t=1

(Yt − Ȳ )(Yt+k − Ȳ ) for k = 0, 1, . . . , n − 1

Empirical Autocorrelation Function Estimator

ρ̂(k) = γ̂(k)
γ̂(0)
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Estimation of moments

Example with ACF estimates for AR(2)

AR(2) : (1− 1.5B + 0.75B2)Yt = εt : Yt = 1.5Yt−1 − 0.75Yt−2 + εt , εt ∼ N(0, 1)
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Estimation of moments

Example with ACF estimates for AR(2)

Empirical estimate for ACF
n = 100
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Estimation of moments

Example with ACF estimates for AR(2) (cont.)

Empirical estimate for ACF
n = 300

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

Empirical estimate for ACF
n = 500

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

red . . . theoretical values
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Estimation of moments

Example with ACF estimates for AR(2) (cont.)

Empirical estimate for ACF
n = 1000
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Estimation of moments

Monte Carlo study for the 1000 replication

Empirical estimate for ACF
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●
●●●●●●
●
●●●●

●●

●

●

●

●●

●●

●
●
●

●●
●

●

●●●

●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●● ●

● ●●
●●
●

●
●

●

●
●

●

●

●●●

●

●●

●

●

●●

●

●

●

● ●

●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−
0.

5
0.

0
0.

5
1.

0 n = 100
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●
●

● ● ● ●
● ● ● ●

Empirical estimate for ACF
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●

●●

●●

● ●

●

●●

●●

●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●●
●
●

●●

●●

●
●
●

●●●

●
●●

●

●●

●●●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●●

●

●●●●

●
●
●
●
●
●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●
●

●

●
●●●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●●

●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−
0.

5
0.

0
0.

5
1.

0 n = 200
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●
●

● ● ● ●
● ● ● ●

red . . . theoretical values
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Estimation of moments

Monte Carlo study for the 1000 replication (cont. 1)

Empirical estimate for ACF
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Estimation of moments

Monte Carlo study for the 1000 replication (cont. 2)

Empirical estimate for ACF
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Total Mortality (weekly
data)

n = 508
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Total Mortality
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Total Mortality
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Cardiovascular Mortality
n = 508
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Cardiovascular Mortality
Spectral Density
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Cardiovascular Mortality
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Temperature (weekly data)
n = 508
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Marie Forbelská (MU – ÚMS) Spectral Density Estimation via AR Modeling Podleśı, 3. 9. – 6. 9. 2013 62 / 83



LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Temperature
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Temperature
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Relative Humidity
n = 508
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Relative Humidity
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Relative Humidity (weekly
data)
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Carbon Monoxide (weekly
data)
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Carbon Monoxide (weekly data)
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LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Carbon Monoxide (weekly
data)
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Marie Forbelská (MU – ÚMS) Spectral Density Estimation via AR Modeling Podleśı, 3. 9. – 6. 9. 2013 70 / 83



LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Hydrocarbons
n = 508
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Michálek, J., Bud́ıková, M., Brázdil, R. Metody odhadu trendu časové
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