
Abstract

English

This thesis studies the group of circular units C of a compositum of quadratic
fields k = Q(

√
d1, . . . ,

√
ds), where d1, . . . , ds are square-free odd integers

and d1 ≡ 3 (mod 4). In the main part (Chapter 2) we construct a basis of
C, compute the index of C in the full group of units of k and derive a lower
bound for the divisibility of this index by a power of 2. These results give
a lower bound for the divisibility of the class number of the maximal real
subfield of k by a power of 2 if the ramification index e at 2 is equal to 1 or
2.

In Chapter 3 we describe the group C in the last case that has not been
covered yet, namely in the case when the ramification index e of 2 equals
4. Let W be the group of roots of unity in k and let G = Gal(k/Q). The
key property of the group C allowing to solve the case e ≤ 2 is that for any
ε ∈ C and any σ ∈ G there is ρ ∈ W and η ∈ C such that ε1−σ = ρη2.
But this key property is not satisfied in the mentioned case e = 4 and so
we cannot use the same approach. Nevertheless, using the three maximal
subfields of k whose ramification index at 2 is 2, we are able to describe
an explicit maximal independent system of units in C. Let C̃ be the group
generated by W and by this system. Then we can compute the index [E : C̃]
and give a reasonable upper bound for the index [C : C̃].
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Česky

Tato práce se zabývá studiem grupy kruhových jednotek C v kompozitu
kvadratických těles k = Q(

√
d1, . . . ,

√
ds), kde d1, . . . , ds jsou lichá celá č́ısla

nedělitelná druhou mocninou prvoč́ısla a zároveň d1 ≡ 3 (mod 4). V hlavńı
části práce (kapitola 2) zkonstruujeme bázi grupy C, spoč́ıtáme index této
grupy v grupě všech jednotek tělesa k a źıskáme odhad pro dělitelnost to-
hoto indexu mocninou prvoč́ısla 2. Na základě těchto výsledk̊u nav́ıc můžeme
źıskat odhad dělitelnosti počtu tř́ıd ideál̊u maximálńıho reálného podtělesa
tělesa k mocninou 2, jestliže index e větveńı dvojky v k/Q je roven 1 nebo
2.

V kapitole 3 se zabýváme studiem grupy C v posledńım možném př́ıpadě,
tedy pokud index větveńı e v 2 je roven 4. Označme W grupu všech odmocnin
z jedné tělesa k a G = Gal(k/Q). Kĺıčová vlastnost grupy C umožňuj́ıćı řešit
př́ıpad e ≤ 2 je, že pro každé ε ∈ C a σ ∈ G existuje η ∈ C a ρ ∈ W tak, že
ε1−σ = ρη2. Avšak tato kĺıčová vlastnost neńı splněna ve zmı́něném př́ıpadě
e = 4. I přesto lze popsat maximálńı nezávislý systém jednotek v C využit́ım
tř́ı maximálńıch podtěles k, jejichž index větveńı v 2 je 2. Jestliže označ́ıme
C̃ grupu generovanou t́ımto maximálńı systémem jednotek a grupou všech
odmocnin z jedné, bude možné spoč́ıtat index [E : C̃] a dát horńı odhad
dělitelnosti indexu [C : C̃] mocninou 2.
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Introduction

The principal concern of this thesis is to deal with some aspects of class
number of composita of quadratic fields. The main attention is focused on
the group of circular units C and to the description of this group by means
of a basis modulo roots of unity. The main goal of the thesis is to compute
the index of C in the group E of all units of a compositum of quadratic field.

At first, we start with a brief historical overview concerning circular units
in cyclotomic, and more generally abelian fields. By an abelian field we have
in mind a Galois extension of Q which is finite and whose Galois group is
abelian. The well-known Kronecker-Weber theorem states that any abelian
field is a subfield of a cyclotomic field. As we explain, in the case of an
abelian field it is not so clear how to define the group of circular units.

In the middle of 19th century E. Kummer studied the p-th cyclotomic
field Q(ζp), where p is an odd prime and ζp = e2πi/p is a p-th root of unity.

He noticed that the regulator of
1−ζa

p

1−ζp
, where a = 2, . . . p−1

2
, is equal to R ·h+;

here R is the regulator of Q(ζp) and h+ is the class number of the maximal
real subfield Q(ζp + ζ−1

p ) of Q(ζp). By today language we can say that these
numbers together with ζp generate a subgroup C of circular units, which has
index h+ in the full group of units E.

In 1953, H. W. Leopoldt in [16] studied units of a real abelian field k
and defined “group of formal circular units”. He showed that his group is of
finite index in the full group E of units of k and that this index is equal to
the class number h of k multiplied by an explicit factor. Later on, this result
was improved by R. Gillard in [5].

The numbers 1−ζa
n

1−ζn
, where n is a positive integer, ζn = e2πi/n and a ∈ Z,

1 < a < n
2
, (a, n) = 1, were studied also by algebraic topologists: John Milnor

asked whether these numbers are multiplicatively independent for any of n.
The negative answer to this question was given by K. Ramachandra who
showed that they can be dependent. Moreover in [20] he gave a new explicit
construction of a maximal independent system of units of the n-th cyclotomic
field Q(ζn).

This construction can be used to obtain a maximal independent system
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6 Introduction

of units in any abelian field k (see [28], Theorem 8.2). Let us mention that
the subgroup of units generated by the Ramachandra units has a finite index
in the full group of units and that this index is an explicit multiple of the
class number of maximal real subfield k+ of k.

An important progress was made by Sinnott who gave in [22] and [23]
a new definition of the group C of circular units of an abelian field k. Sin-
nott group of circular units can be described by means of explicit generators
and, roughly speaking, contains all previously defined groups. These two
pieces of paper of Sinnott are devoted not only to circular units but also to
Stickelberger ideal.

The starting point for this investigation of the Stickelberger ideal S was
the result of Iwasawa. Let us denote R− = (1− j)Z[G] where G = Gal(k/Q)
and j is the complex conjugation. In [8] Iwasawa has computed for k =
Q(ζpm) that the index [R− : R− ∩S] is equal to the relative class number h−

of k. An elementary proof of this result of Iwasawa was obtained by Skula
in [24] (for a detailed study of the matrices made by means of bases of the
Sickelberger ideal, see also [9], [25] and [26]). Following Sinnott, let us define
the Stickelberger ideal S of the nth cyclotomic field Q(ζn):

For any a ∈ Z let

θ(a) =
∑

0<r<n, (r,n)=1

〈
−ar

n

〉
σ−1

r ∈ Q[G],

where 〈x〉 is the fractional part of x, G denotes the Galois group G =
Gal(Q(ζn)/Q) and σr ∈ G is the automorphism determined by σr(ζn) = ζr

n.
Then θ(a) is called the Stickelberger element. Let S

′
be the Z-module gen-

erated in the rational group ring Q[G] by the set {θ(a); a ∈ Z}. The Stick-
elberger ideal of Q(ζn) is the intersection S = S

′ ∩ Z[G].
Now we shall try to mention some reasons why these two very different

notions - group of circular units and Stickelberger ideal are studied together.
The first interrelation - universal ordinary distributions: The

group of circular units as well as the Stickelberger ideal can be described
by means of the module generated by values of an odd (Stickelberger ideal)
and even (the circular units) Kubert’s universal ordinary distribution (for
more details, see [10]). Using the results of [10] we can obtain a system
of independent generators of the group of circular units and a basis of the
Stickelberger ideal as Z-module for a general case of a cyclotomic field (see
[11]; Theorem 6.1 and 6.2) or a compositum of quadratic fields (see [12]).

The second interrelation - the class number: Let k be an abelian
field, G = Gal(k/Q), S is the Stickelberger ideal of k (to keep this introduc-
tion simple we have defined S only for cyclotomic field, the general case of an
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abelian field is similar but much more technical) and A = {α ∈ Z[G]; ∀σ ∈
G : (1 − σ)(1 + j)α = 0}, where j is the complex conjugation. Sinnott has
shown in [23] that the index of S in A is in the form

[A : S] = h− · c−k
where h− is the relative class number of k and c−k is the rational number
whose definition does not involve the class number h−. Similarly, Sinnott
has also found the index [E : C] in the form

[E : C] = h+ · c+
k

where h+ is the class number of k+ and c+
k is the rational number whose

definition does not involve the class number h+. Both c−k and c+
k can be

expressed in terms involving a so-called Sinnott module U .
The third interrelation – annihilators of the ideal class group:

The elements of the Stickelberger ideal are annihilators of the ideal class
group of the field k. The main step in the proof of this result is the following
theorem (Stickelberger relation).

If n 6≡ 2 (mod 4) is a positive integer and ζn = e2πi/n a primitive nth root
of unity then Z[ζn] is the ring of algebraic integers of the nth cyclotomic field
Q(ζn). Let P be a prime ideal of Z[ζn] not containing n and F = Z[ζn]/P the
residue class field. Let χ be the nth power residue symbol on Z[ζn] and ψ the
additive character on F determined by the trace. Let g(P ) =

∑
a∈F

χ−1(a)ψ(a)

be the corresponding Gauss sum. Then g(P )n ∈ Z[ζn] and we have the
following classical factorization of the principal ideal (g(P )n) generated by
g(P )n:

Theorem 1. (The Stickelberger Relation)

(g(P )n) =
∏

t

P tσ−1
t = P

P
t

tσ−1
t

where the product and the sum are taken over all 1 ≤ t < n which are
relatively prime to n and σt is the element of Gal(Q(n)/Q) determined by
σt(ζn) = ζt

n.

Proof. See [7; Theorem 2 on page 209]

Since the exponent
∑
t

tσ−1
t does not depend on P and since each class of

ideals in the ideal class group contains such ideal P , one obtains that
∑
t

tσ−1
t

annihilates the ideal class group of Q(ζn).



8 Introduction

Sinnott has proved that for any abelian field k any element of the Stick-
elberger ideal (defined by him) is an annihilator of the ideal class group of
k.

Let us mention that this result is important for imaginary abelian fields
while for a real abelian field it says only a trivial fact because in this case
any element of the Stickelberger ideal is a multiple of the absolute norm.

Thaine in [27] showed a method to obtain annihilators of the ideal class
group Cl(k) of a real abelian field k. If an odd prime p does not divide the
degree [k : Q] then Sinnott formula implies that the p-Sylow subgroups Cl(k)p

of Cl(k) and (E/C)p of E/C are of the same order: |Cl(k)p| = |(E/C)p|.
Thaine proved the following statement:

Theorem 2. Let k be a totally real abelian number field, G = Gal(k/Q), let
C be the group of circular units defined as above, and let Cl(k) be the class
group of k. Let p be an odd prime not dividing [k : Q]. If θ ∈ Z[G] annihilates
(E/C)p then θ annihilates Cl(k)p.

Moreover, Thaine proved more since his theorem covers also the case
p = 2: if 2 - [k : Q] and θ ∈ Z[G] annihilates (E/C)2 then 2θ annihilates
Cl(k)2.

Thaine used in [27] different definition of the group of circular units than
Sinnott but Lettl in [17] has shown that these two definitions are equivalent.

Thaine’s method has been generalized by Rubin in [21] to any abelian
extension of number fields (instead of an abelian extension of Q) and any
prime p (allowing p to divide the degree of the extension).

Now let us introduce the main ideas of this thesis. The aim of this paper
can be understood as a counterpart of Kučera’s results about the compositum
of quadratic fields. In [12] Kučera studied a compositum k of quadratic fields
such that −1 is not a square in the genus field K of k in narrow sense. He has
constructed bases of the Stickelberger ideal and the group of circular units
and computed indices of these modules. This paper is the motivation of my
work.

This thesis consists of three parts. In the first part (Chapter 1) we intro-
duce some basic definitions and statements that we will use later. At first,
we mention a brief overview about the circular units in cyclotomic fields and
also in abelian fields. We recall some known results and theorems preceding
the results of this thesis.

The main part of this thesis are Chapters 2 and 3 where we study the
compositum k of quadratic fields such that −1 is a square in the genus field
K of k in the narrow sense. Then the ramification index of 2 in k is equal to
2 or 4. Chapter 2 is devoted to the former case (when 2 is not a square in
K) while Chapter 3 covers the latter case (when 2 is a square in K). In both



Introduction 9

cases we construct a group C of circular units of k, which is slightly larger
than the Sinnott’s group given in [23], we find a basis of C and compute the
index of C in the group E of all units of k. The case studied in Chapter 3 is
much more difficult and we are not able to construct an explicit basis of C
here. So instead of that we describe only an explicit maximal independent
system of units here and give a reasonable upper bound for the index of the
subgroup generated by this system.

Thus these two chapters contain the results of the papers [18], [19] which
together with [12] cover all composita of quadratic fields. Moreover, these
results give a lower bound for the divisibility of the class number of the
maximal real subfield of k by a power of 2.

This thesis and presented results have been achieved under the support
of the Grant Agency of the Czech Republic by the projects 201/04/381 and
201/07/0191.
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Chapter 1

Preliminaries

At first, let us mention some basic definitions we will use later on: An al-
gebraic number field K is a finite extension of the rationals Q. An algebraic
integer is a root of a monic polynomial with integral coefficients. The set of
all algebraic integers in k forms the ring R of algebraic integers of the field
k. Recall that R is a Dedekind domain, so every nonzero ideal of R can be
uniquely written as a product of nonzero prime ideals of R.

Dirichlet’s unit theorem gives the structure of the group E of all units of
the ring R. The theorem states that the group of units is finitely generated
and has rank (maximal number of multiplicatively independent generators of
the non-torsional part) equal to r = r1 +r2−1 where r1 is the number of real
embeddings and r2 the number of conjugate pairs of complex embeddings
of k, e.g. the group of units is isomorphic to its torsion subgroup multiplied
with r copies of Z (and n = r1 +2r2 is the degree of the extension k over Q).

If we want to describe the multiplicative structure of the ring of algebraic
integers R of K we will use fractional ideals. A fractional ideal is a nonzero
finitely generated R-submodule of K. In other words, such an ideal can be
written in the form αa where α ∈ K, α 6= 0 and a is a nonzero ideal of
R. Consequently, we can denote I(K) the group of all fractional ideals of
K. A fractional ideal is called principal if it is equal to αR for a suitable
α ∈ K, α 6= 0. Since the principal ideals form the subgroup P (K) of I(K) we
define ideal class group (class group in brief) Cl of R as the quotient group
Cl = I(K)/P (K).

Dirichlet theorem states that the group E of units of R is finitely gen-
erated. Moreover the class group Cl of R is finite. The order of Cl (the
size of the class group) is given by the class number h = |Cl|. In order to
understand the arithmetic of R it is useful to know the explicit generators
of E and a structure of the class group Cl (or at least the class number h).
The relation between the class number h of K and the arithmetic of R is
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12 Preliminaries

following:

• h = 1 if and only if R is a unique factorization domain

• h = 2 if and only if factorization in R is not unique in general but any
two factorizations of a given element of R have the same number of
factors (this result is given by L. Carlitz in [3])

All cyclotomic fields of class number h = 1 are described in [28] (see
Theorem 11.1).

1.1 Circular units in cyclotomic fields

The most natural situation where one can consider circular units is in the
case of cyclotomic fields. Let n be a positive integer such that n 6≡ 2 (mod 4)
and ζn be a primitive nth root of unity, i.e. ζn = e2πi/n. Then we call
Q(n) = Q(ζn) to be the nth cyclotomic field. In general, we don’t know
the explicit generators of the full group of units in the ring of algebraic
integers Z[ζn] of Q(n). However, for cyclotomic fields, we are able to find
explicitly a special group of units, called the circular units. The group of
circular units C(Q(n)) can be defined as the intersection of the subgroup of
the multiplicative group Q(n)× generated by 1− ζn, 1− ζ2

n, . . . , 1− ζn−1
n and

the group of all units E(Q(n)) as follows

C(Q(n)) = 〈{1− ζa
n; a ∈ Z, 1 ≤ a ≤ n− 1}〉 ∩ E(Q(n)).

An important property of the circular units is the fact that the group
C(Q(n)) is of finite index in the full group of units E(Q(n)). Moreover, this
index is closely connected to the class number h+ of the maximal real subfield
Q(ζn + ζ−1

n ) = R ∩ Q(n) of the nth cyclotomic field. Sinnott proved in [22]
that

[E(Q(n)) : C(Q(n))] = 2c · h+
Q(n) ,

where h+
Q(n) is the class number of the maximal real subfield Q(ζn + ζ−1

n ) of

Q(n) and c is given explicitly by the number s of ramified primes in Q(n) (i.e.
the primes dividing n) as follows

c =

{
0, if s = 1,

2s−2 + 1− s, if s > 1.

Since the real units multiplied by roots of unity are of index 1 or 2 in
the full group of units (see Theorem 4.12 in [28]) then it is sufficient to work
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with real units. If n is a prime power it is not so difficult to find a basis of
C(Q(n)). The cyclotomic units of C(Q(n)) are generated by −1 and the units

1− ζa
n

1− ζn

, 1 < a <
n

2
, (a, n) = 1.

In general case, the situation is much more complicated since the relations
among the generators are more difficult with the increasing number of prime
divisors of n. It is not so easy to construct such a basis, especially to find
the set of generators which will be suitable. Such a basis of the group of
circular units of the nth cyclotomic field was found by Gold, Kim in [6] and
independently by Kučera in [11].

1.2 Circular units in abelian fields

In contrast to a cyclotomic field it is not so clear how to construct the group
C of circular units of an abelian number field k. Let n be the conductor
of k, i.e. n is the least positive integer satisfying k ⊆ Q(n). As mentioned
before we have several possibilities how to define the group C. We recall the
best known of them. Since we want to find explicit generators of C and to
compute the index of this group in the full group of units we want to use
Sinnott’s definition. Sinnott group CS(k) of circular units of k can be defined
by the intersection

CS(k) = 〈{NQ(r)/Q(r)∩k(1− ζa
r ); 1 < r |n, (a, r) = 1} ∪ {−1}〉 ∩ E(k).

Sinnott’s class number formula states that

[E(k) : CS(k)] = h+
k Q

∏
p|n[kp : Q]

[k : Q]
2−g(e+Z[G] : e+U) (*)

where h+
k is the class number of k+, Q = [E : E+W ] is the Hasse unit index

(Q = 1 if k is real), kp is the maximal subfield of k ramified only at p and the
integer g = 1− [k : Q] if k is real. If k is imaginary then we only know that
g is between the number of primes p |n with kp imaginary and the number
of them with [kp : Q] even. One approach how to avoid problems with the
integer g was described by Kučera who enlarged the set of generators of CS(k)
by adding

√
p for each p |n such that

√
p ∈ k to the generators. Then we

obtain slightly bigger group whose index is given by a formula which differs
from (*) only at one point: g is replaced by the number of primes p |n with
[kp : Q] even.
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The most serious problem is to describe the Sinnott module U and to
determine the index (e+Z[G] : e+U). Sinnott proved that this index is an
integer that can be divisible only by primes dividing the degree [k : Q] and
also by 2 if k is imaginary. The precise value of this index is known only
in some special cases. For example, if k is ramified at most at two finite
primes, or if the degree of k is the square of an odd prime, or if k is real
and G is cyclic, or if K is a compositum of quadratic fields. The latter case
was investigated by Kučera in [12] where he found the basis of the group of
circular units and its index in the group of all units of the compositum of
quadratic fields k such that −1 is not a square in the genus field of k in the
narrow sense.

The second, well-known definition of circular units is mentioned in the
Washington’s monograph on cyclotomic fields ([28]) as the intersection CW (k) =
k ∩ C(Q(n)). So we call CW (k) as Washington group of circular units. It is
easy to see that CS(k) ⊆ CW (k). Generally we don’t have the same proper-
ties as in Sinnott definition. We know neither the explicit generators nor the
index of the group of circular units in the full group of units as in the case of
CS(k). As a comparison between Sinnott and Washington groups of circular
units we can consider the following theorem.

Theorem 1. Let K be the genus field of an abelian field k in narrow sense.
Let p be an odd prime such that p |[CW (k) : CS(k)]. Then p |[K : k].

Let us mention that if p | [K : k] then p | [k : Q]. For the proof of this
theorem, other definitions of circular units and more details see [13].

The natural question arises how to determine the set of abelian fields
having the property CW (k) = CS(k). Kučera has partially succeeded in this
problem in [13] by the following way:

Theorem 2. Let k be a compositum of any finite number of imaginary
abelian fields, each of them being ramified at one prime. Then CS(k) =
CW (k).

1.3 Circular units in a compositum of quadratic

fields

In this part, let us mention some of the results determining the precise value
of the index (e+Z[G] : e+U) of Sinnott module U in the integral group ring
of the Galois group G = Gal(K/Q), especially in case of the compositum of
quadratic fields. The results introduced in this part were obtained by Kučera
in [12].
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Let k be the compositum of quadratic fields such that −1 is not a square
in the genus field K of k in the narrow sense. In such a field the Sinnott
module U corresponding to K satisfies the inclusion IU ⊆ 2U where I is
the augmentation ideal. Consequently we change slightly the definition of
the group of circular units C of k. This group contains Sinnott’s group
of circular units of k but it can be slightly bigger (by adding a

√
p to the

generators where p divides the conductor of k and
√

p ∈ k). The precise
definition of C can be found in Chapter 2. The reason why to define the
group C as an enlargement of Sinnott’s group is that the Galois group G
acts trivially on C/(±C2). In other words, the action of augmentation ideal
on C/W gives squares in C/W , where W is the group of roots of unity in k.
The following lemma gives this key property:

Lemma 3. For any ε ∈ C and any σ ∈ G there is ρ ∈ W and η ∈ C such
that ε1−σ = ρη2.

Proof. See [12; Lemma 2].

Now the previous Lemma gives us the nice tool how to construct bases
and mainly how to compute the index of C in the group of all units E of the
field k, as follows

Theorem 4. Let X be the group of all Dirichlet characters corresponding
to k+. For any ξ ∈ X let kξ be the maximal subfield of k ramified only at
primes dividing the conductor of ξ. Then

[E : C] =

( ∏

ξ∈X, ξ 6=1

2 · [k : kξ]

[k : k+]

)
· (#X)−

1
2
(#X) ·Qh+,

where Q is the Hasse unit index and h+ is the class number of k+.

Proof. See [12; Theorem 1].

Consequently, we have obtained the formula for Sinnott index (e+Z[G] :
e+U)

Proposition 5. Let R = Z[Gal(k/Q)], e+ = 1
2
(1 + j) where j is the complex

conjugation. Then

(e+Z[G] : e+U) = [ k+ : Q ]−(1/2)[ k+:Q ] ·
∏

ξ ∈X

[ k : kξ ]

Proof. See [12; Proposition 1].
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As an application of these results let us mention the divisibility of the
class number of some real fields by a power of 2. Let n be the number of
primes ramifying in k.

Theorem 6. Let 2l = [k : Q].

i) If k is real then

22l−1−l−n−(l
2) | [E : C],

ii) if k is imaginary then

22l−1−l−n−(l
2) | [E : C],

Proof. See [12; Theorem 2].

Corollary 7. Let k be equal to its genus field K in narrow sense. If k/Q is
ramified at least at two primes congruent to 3 modulo 4 then

22n−2−n−(n
2)−1 |h+.

Proof. See [12; Example on page 156]

1.4 Other applications

Another example of applications of these results can be found in the com-
putation of the parity of the class number of biquadratic fields. Conner
and Hurrelbrink in [4] determine the parity of the class number of any bi-
quadratic field up to the cases Q(

√
p,
√

q) where p, q are different primes such

that p ≡ q ≡ 1 (mod 4) and the Legendre symbol (p/q) = 1 and Q(
√

p,
√

2)
where p is a prime, p ≡ 1 (mod 8).

Kučera has extended these results in [14] where he has obtained the crite-
rion for the parity of the class number of these biquadratic fields in general,
especially if p ≡ q ≡ 1 (mod 4) or p ≡ 1 (mod 4) and q = 2 (for more details
see [14; Theorem 1 and Theorem 2]). Later, Bulant has used his methods to
determine the parity of the class number of the field Q(

√
p,
√

q,
√

r), where
p, q, r are primes congruent to 1 mod 4 as follows

Theorem 8. Let p, q and r be different primes such that p, q, r ≡ 1 (mod 4)
Let h denote the class number of Q(

√
p,
√

q,
√

r)
1. If (p/q) = (p/r) = (q/r) = −1, fix upq, upr, uqr ∈ Z satisfying u2

pq ≡
pq (mod r), u2

pr ≡ pr (mod q), u2
qr ≡ qr (mod p). Then h is even if and only if
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(upq/r)(upr/q)(uqr/p) = −1.
2. If (p/q) = 1, (p/r) = (q/r) = −1, then the parity of h is the same as the
parity of the class number of the biquadratic field Q(

√
p,
√

q)
3. If (p/q) = (q/r) = 1, (p/r) = −1, then h is even.
4. If (p/q) = (p/r) = (q/r) = 1, then h is even. (Moreover, if we denote
by vpq, vpr, vqr, vpqr the highest exponents of 2 dividing the class number of
Q(
√

p,
√

q),Q(
√

p,
√

r),Q(
√

q,
√

r),Q(
√

p,
√

q,
√

r), respectively, then vpqr >
1 + vpq + vpr + vqr.)

Similarly he proved this statement in case p = 2 (see [1]; Theorem 2).
Finally, Bulant has tried to find an integer n such that any compositum of
n quadratic fields has to have an even class number. He was successful and
was able to prove this is really true for n = 5 (see [2]).
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Chapter 2

The ramification index of 2
being 2

This chapter deals with the compositum k of a finite number of quadratic
fields such that −1 is a square in K but 2 is not a square in K, where K is
the genus field of k in narrow sense.

The aim of this chapter is to construct a group C of circular units of
k, which is slightly larger than the Sinnott’s group given in [23]. We find
a basis of C and compute the index of C in the group E of all units of k
(see Proposition 4). The main result of this paper is a lower bound for the
divisibility of [E : C] by a power of 2 (see Theorem 25). These results give
a lower bound for the divisibility of the class number of the maximal real
subfield of k by a power of 2.

2.1 Definition of C

Let k be a compositum of quadratic fields and let K be the genus field of k
in narrow sense. We assume that

√−1 ∈ K and
√

2 /∈ K. We define a set J
of signed primes ramifying in k as follows

J = {p ∈ Z ; p ≡ 1 (mod 4), |p| is a prime ramifying in k} ∪ {−2}.
For any p ∈ J , let us define

n{p} =

{
|p| if p is odd,

4 if p = −2,
K{p} =

{
Q(
√

p) if p is odd,

Q(
√−1) if p = −2.

For any L ⊆ J let us denote nL =
∏

p∈L

n{p}, KL =
∏

p∈L

K{p} if L 6= ∅ and

K∅ = Q, and finally QL = Q(ζL), where ζL = e2πi/nL is a primitive nLth root
of unity. It is easy to see that KJ equals K.

19
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For any L ⊆ J let us now define

εL =





1 if L = ∅,
1√
p
NQL/KL

(1− ζL) if L = {p}, p 6= −2,

i if L = {−2},
NQL/KL

(1− ζL) if #L > 1,

and ηL = NKL/kL
(εL) where kL = k ∩ KL. It is easy to see that all εL are

units of KL.
For any p ∈ J let σp be the generator of Gal(KJ/KJ\{p}). Then we denote

G = Gal(KJ/Q).

Lemma 1. Let p ∈ L ⊆ J . Then

NKL/KL\{p}(εL) =





− sgn p if L = {p},
tp,q · ε1−Frob(|p|,K{q})

{q} if L = {p, q}, p 6= q, q 6= −2,

1 if L = {p,−2}, |p| ≡ 1 (mod 4),

−i if L = {p,−2}, |p| ≡ 3 (mod 4),

ε
1−Frob(|p|,KL\{p})
L\{p} if #L > 2,

where sgn p means the sign of p, Frob(|p|, KL\{p}) is the Frobenius automor-
phism of |p| in KL\{p}/Q and tp,q is defined by means of the Legendre symbol
as follows:

tp,q =

( |p|
|q|

)
.

Proof. At first, let us suppose #L > 1. Then

NKL/KL\{p}(εL) = NQL\{p}/KL\{p}(NQL/QL\{p}(1− ζL))

= NQL\{p}/KL\{p}((1− ζL\{p})
1−Frob−1(|p|,QL\{p}))

= NQL\{p}/KL\{p}(1− ζL\{p})
1−Frob(|p|, KL\{p}),

because Frob2(|p|, KL\{p}) is the identity. So the lemma is proved if #L > 2.
If L = {p,−2} then

NQ{−2}/K{−2}(1− ζ{−2}) = 1− i
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and the third and fourth case of the lemma follows from

(1− i)1−Frob(|p|, K{−2}) =

{
1 if |p| ≡ 1 (mod 4)

−i if |p| ≡ 3 (mod 4).

Similarly by using (
√

q)1−Frob(|p|,K{q}) = tp, q we prove the second case. If
L = {p} the lemma follows easily.

Lemma 2. Let L ⊆ J , σ ∈ G. Then

ε1−σ
L = %

∏
S⊆L

ε2aS
S

for suitable aS ∈ Z, where % ∈ {1,−1, i,−i} depends on the choice of L and
σ.

Proof. This can be proved in the same way as Lemma 2 of [12].

Lemma 3. Let L ⊆ J , σ ∈ G. Then

η1−σ
L = %

∏
S⊆L

η2aS
S ,

for suitable aS ∈ Z, where % ∈ {1,−1, i,−i} ∩ k depends on the choice of L
and σ.

Proof. This is a corollary of Lemma 2 and of the fact that ηS ∈ k implies
% ∈ k.

Now let us denote W the group of roots of unity of k. Since k is a
compositum of quadratic fields then it is not difficult to prove that # W | 24.
Moreover, we assume that

√
2 /∈ KJ and so # W | 12. Further, we need to

define the set X as follows:

X = {ξ ∈ Ĝ; ξ(σ) = 1 for all σ ∈ Gal(KJ/k+)},

where Ĝ is the group of characters of G. Then X can be viewed as the group
of all Dirichlet characters corresponding to the maximal real subfield k+ of
k. For any ξ ∈ X define

Lξ = {p ∈ J ; ξ(σp) = −1}.
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Finally, let C denote the group generated by W and by {ησ
L; L ⊆ J, σ ∈ G}

and let E denote the full group of units of k. Notice that C contains Sinnott’s
group of circular units defined in [23]. It can be shown that these two groups
do not coincide in general.

Proposition 4. Let B = {ηLξ
; ξ ∈ X, ξ 6= 1}. Then B is a basis of non-

torsion part of C and moreover

[E : C] =

( ∏

ξ∈X, ξ 6=1

2 · [k : kLξ
]

[k : k+]

)
· (#X)−

1
2
(#X) ·Qh+,

where Q = [E : E+W ] is the Hasse unit index (Q = 1 if k is real) and h+ is
the class number of k+.

Proof. This can be proved in the same way as Theorem 1 and Lemma 5 of
[12].

2.2 Circular Units that are Squares in K

For any ε ∈ C and any σ ∈ G Lemma 2 implies that ε1−σ is up to a root of
unity the square of a unit in C. But # W | 12 and so any ρ ∈ W can be
uniquely written in the form ρ = ∆ · (δ ·ϕ)2, where ∆, δ ∈ {1, i} and ϕ3 = 1.
Moreover, if # W | 4 then ϕ = 1 and if # W | 6 then ∆ = 1. Therefore we
have the identity

ε1−σ = ∆(σ, ε) · (δ(σ, ε) · ϕ(σ, ε) · ψ(σ, ε))2,

where ∆(σ, ε), δ(σ, ε) ∈ {1, i}, ϕ(σ, ε) ∈ {1, ζ3, ζ
2
3} and ψ(σ, ε) belongs to the

group generated by the set B. Moreover ∆(σ, ε), δ(σ, ε), ϕ(σ, ε) and ψ(σ, ε)
are uniquely determined by the previous identity.

Lemma 5. Let σ ∈ G. Then ∆(σ, ·)2 and ψ(σ, ·) are homomorphisms, i.e.,
for any ε, η ∈ C,

∆(σ, εη)2 = (∆(σ, ε) ∆(σ, η))2,

ψ(σ, εη) = ψ(σ, ε) ψ(σ, η).

Proof. The lemma follows from the identity (εη)1−σ = ε1−ση1−σ and from
the definition of ε1−σ in the form as above.
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Lemma 6. Let σ, τ ∈ G and ε ∈ C. Then

∆(στ, ε)2 = (∆(σ, ε) ∆(τ, ε))2

Proof. From the relation

1 =
ε1−σ · (ε1−τ )σ

ε1−στ

and by decomposing ε1−σ as at the beginning of this chapter it is easy to
see that ∆(σ, ε)∆(τ, ε)σ/∆(στ, ε) ∈ {±1,±i} is a square in k. The identity
follows because ±i is not a square in k and ∆(τ, ε)σ = ±∆(τ, ε).

Proposition 7. Let ε ∈ E be such that there exists a function f : G → KJ

satisfying ε1−σ = f(σ)2 for any σ ∈ G. If there exists a function g : G →
{−1, 1} such that fg is a crossed homomorphism, i.e., for all σ, τ ∈ G

f(στ)g(στ) = f(σ)g(σ)(f(τ)g(τ))σ,

then ε or 2ε is a square in KJ .

Proof. Similarly as in [12], Proposition 2, we can show that there is α ∈ K∗
J

and b ∈ Q∗ such that b = εα2 and that ±b = c2
∏
p∈L

p for a suitable c ∈ Q∗ and

L ⊆ J . The proposition follows from the fact that
√−1 ∈ KJ and

√
p ∈ KJ

for all p ∈ J, p 6= −2.

Remark 8. The sufficient condition of Proposition 7 is also necessary. If
ε = η2 or 2ε = η2 for a suitable η ∈ KJ then f(σ) = η1−σ satisfies ε1−σ =
f(σ)2 and for any f : G → KJ with f(σ)2 = ε1−σ we have the function
g : G → {−1, 1} determined by g(σ) = η1−σ/f(σ), such that fg is a crossed
homomorphism.

Now let us denote for any σ, τ ∈ G and for any ε ∈ C

〈σ, τ〉ε = ∆(σ, ψ(τ, ε))2.

Lemma 9. Let σ, τ ∈ G and ε ∈ C. Then

〈σ, τ〉εη = 〈σ, τ〉ε〈σ, τ〉η
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Proof. The lemma follows immediately from Lemma 5.

Proposition 10. Let ε ∈ C. Then ε or 2ε is a square in KJ if and only if
the following conditions are satisfied for any σ, τ ∈ G:

(C1) (∆(σ, ε))2 = 1,

(C2) 〈σ, σ〉ε = 1,

(C3) 〈σ, τ〉ε = 〈τ, σ〉ε
(C4) δ(σ, ε)τ−1 · δ(τ, ψ(σ, ε))2 = δ(τ, ε)σ−1 · δ(σ, ψ(τ, ε))2

(C5) (δ(σ, ε))σ+1 · δ(σ, ψ(σ, ε))2 = 1

Proof. At first, let us suppose that there is γ ∈ KJ such that ε = γ2 or
ε = 2γ2. Then

(γ1−σ)2 = ε1−σ = ∆(σ, ε) · (δ(σ, ε) · ϕ(σ, ε) · ψ(σ, ε))2, (1)

and easily ∆(σ, ε) is a square in KJ . It follows immediately that we have the
condition (C1) because i is not a square in KJ . Therefore (1) implies

γ1−σ = ±δ(σ, ε) · ϕ(σ, ε) · ψ(σ, ε). (2)

It is easy to see that

(δ(σ, ε))1−τ =

{
δ(σ, ε)2 if iτ = −i,

1 otherwise

and that ϕ(σ, ε)1−τ is a third root of unity, so a square in KJ . Then substi-
tuting

ψ(σ, ε)1−τ = ∆(τ, ψ(σ, ε)) · (δ(τ, ψ(σ, ε)) · ϕ(τ, ψ(σ, ε)) · ψ(τ, ψ(σ, ε)))2 (3)

for τ = σ to the identity obtained from (2) by the application of 1 − σ,
we deduce that ∆(σ, ψ(σ, ε)) is a square in KJ but i is not a square in KJ .
So the condition (C2) follows. Similarly we substitute (3) to the identity
γ(1−σ)(1−τ) = γ(1−τ)(1−σ). Since ϕ(·, ·) is a third root of unity then

ϕ(σ, ε)1−τ · ϕ(τ, ψ(σ, ε))2

ϕ(τ, ε)1−σ · ϕ(σ, ψ(τ, ε))2
= 1
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and consequently

δ(σ, ε)1−τ ·∆(τ, ψ(σ, ε)) · (δ(τ, ψ(σ, ε)) · ψ(τ, ψ(σ, ε)))2

δ(τ, ε)1−σ ·∆(σ, ψ(τ, ε)) · (δ(σ, ψ(τ, ε)) · ψ(σ, ψ(τ, ε)))2
= 1.

By using the same arguments as above we deduce

∆(τ, ψ(σ, ε))

∆(σ, ψ(τ, ε))
= 1

because this is a square in KJ . So the condition (C3) follows.
By the same way the identity γ(1−σ)(1−τ) = γ(1−τ)(1−σ) gives that

(
ψ(τ, ψ(σ, ε))

ψ(σ, ψ(τ, ε))

)2

∈ W.

Since ψ(·, ·) belongs to the non-torsion group generated by B then

ψ(τ, ψ(σ, ε))

ψ(σ, ψ(τ, ε))
= 1.

Moreover, as δ(·, ·) is a fourth root of unity, then

δ(σ, ε)1−τ · δ(τ, ψ(σ, ε))2

δ(τ, ε)1−σ · δ(σ, ψ(τ, ε))2
= 1

which implies (C4). To prove the last condition compare (1) and

γ(1−σ)2 = δ(σ, ε)1−σ · ϕ(σ, ε)1−σ · (δ(σ, ψ(σ, ε)) · ϕ(σ, ψ(σ, ε))

· ψ(σ, ψ(σ, ε)))2.

Hence using the same facts as in proving the previous condition we have the
last one.

On the other hand, suppose that the conditions (C1)-(C5) are satisfied.
Let us denote f(σ) = δ(σ, ε) ϕ(σ, ε) ψ(σ, ε) for any σ ∈ G. Hence, the condi-
tion (C1) implies ε1−σ = f(σ)2. Then

1 =
ε1−στ

ε1−σ(ε1−τ )σ
=

(
f(στ)

f(σ)(f(τ))σ

)2

.

Let us denote χε(σ, τ) = f(στ)
f(σ)(f(τ))σ . The previous identity implies χε(σ, τ) =

±1. By substituting

ψ(τ, ε)1−σ = ∆(σ, ψ(τ, ε)) · (δ(σ, ψ(τ, ε)) · ϕ(σ, ψ(τ, ε)) · ψ(σ, ψ(τ, ε)))2 (4)
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to the identity χε(σ, τ) = f(στ)f(τ)1−σ

f(σ)f(τ)
and using the facts that ϕ(σ, ε) is a

third root of unity and ψ(σ, ε) belongs to a non-torsion group, we deduce
that

χε(σ, τ) = δ(στ, ε) · δ(τ, ε)−σ · δ(σ, ε)−1 · δ(σ, ψ(τ, ε))2 ·∆(σ, ψ(τ, ε)).

The conditions (C2) and (C5) imply χε(σ, σ) = 1. Since the conditions (C3)
and (C4) are satisfied we have χε(σ, τ) = χε(τ, σ). This identity states that
f(σ)τ · f(τ) = f(τ)σ · f(σ) for any σ, τ ∈ G. Hence for any ρ ∈ G

χε(σρ, τ) · χε(σ, ρ) =
f(σρτ)

f(σρ)f(τ)σρ
· f(σρ)

f(σ)ρf(ρ)
=

f(σρτ)

(f(τ)σf(σ))ρf(ρ)

=
f(σρτ)

(f(τ)f(σ)τ )ρf(ρ)
=

f(σρτ)

f(τρ)f(σ)ρτ
· f(ρτ)

f(τ)ρf(ρ)
(5)

= χε(ρτ, σ) · χε(ρ, τ).

Let us fix a basis σ1, . . . , σl of G. So for any σ ∈ G there is a unique Vσ ⊆
{1, . . . , n} such that σ =

∏
i∈V

σi. We define the mapping g : G → {−1, 1} by

g(σ) =
∏
i∈Vσ

χε

( ∏
j∈Vσ , j<i

σj, σi

)
.

Let us show that for any linear ordering ≺ on {σ1, . . . , σl} we have

g(σ) =
∏
i∈Vσ

χε


 ∏

j∈Vσ, σj≺ σi

σj, σi


 . (6)

Indeed, any linear ordering can be obtained from the initial ordering
σ1 ≺ . . . ≺ σn by a finite number of interchanges of neighbors. If two
orderings ≺ and ¿ differ just by the interchange of the couple of neighbors
σi, σj (i.e. σi ≺ σj but σi À σj and for all {σk, σl} 6= {σi, σj} we have σk ≺ σl

if and only if σk ¿ σl) then the right hand sides of (6) are different for ≺ and
¿ only if both i, j ∈ Vσ in which case the corresponding products differ just
in two factors: the former has factors χε(τ, σi) · χε(τσi, σj) while the latter
has χε(τ, σj) · χε(τσj, σi), where τ =

∏
k∈Vσ, σk<σi, σk<σj

σk. But these products

are the same (see (5)).
We shall show that for any σ, τ ∈ G we have

χε(σ, τ) = g(σ)g(τ)g(στ). (7)
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We shall use the induction with respect to |Vτ |. If Vτ = ∅ then τ = 1 and
χε(σ, 1) = 1 = g(σ)2. So let us assume that |Vτ | = m > 0 and that the
result has been proved for all τ with |Vτ | < m. Let us choose i ∈ Vτ and
write τ = σiτ

′, so |V ′
τ | = m − 1. Using (5), the induction hypothesis for τ ′,

g(σi) = 1 given by (6), we obtain

χε(σ, τ) = χε(σ, σiτ
′) = χε(σi, τ

′) · χε(σσi, τ
′) · χε(σ, σi)

= χε(σi, τ
′) · g(σσi) · g(τ ′) · g(στ) · χε(σ, σi)

= g(τ) · g(στ) · g(σσi) · χε(σi, σ).

So we need to show that g(σ) = g(σσi) · χε(σi, σ). On one hand, if i /∈ Vσ

this easily follows from the definition of g. On the other hand, if i ∈ Vσ then
for σ′ = σσi we have Vσ′ = Vσ − {i} and g(σ) = g(σ′) · χε(σi, σ

′). Using (5)
and χε(σi, σi) = 1 we have

χε(σ, σi) = χε(σ
′σi, σi) = χε(σ

′, σi) · χε(σ
′, σ2

i ) · χε(σi, σi) = χε(σ
′, σi).

The definition of χε(σ, τ) and (7) give that fg is a crossed homomorphism
and Proposition 7 gives that ε or 2ε is a square in KJ . The proposition is
proved.

2.3 The Index of [C : D′′]

In this chapter we study the set D′′ of all units ε ∈ C that satisfy all condi-
tions (C1)-(C5) of Proposition 10. Our aim is to show that D′′ is a subgroup
of C and to compute its index.

Lemma 11. Let ε ∈ C and let σ, τ ∈ G. Then

〈·, τ〉ε : G → {−1, 1}
〈σ, ·〉ε : G → {−1, 1}

are homomorphisms.

Proof. The first identity follows from Lemma 6. The identity ε1−ρτ = ε1−ρ(ε1−τ )ρ

gives that ψ(ρτ, ε)−2ψ(ρ, ε)2ψ(τ, ε)2ρ ∈ W . Then by substituting

ψ(τ, ε)1−ρ = ∆(ρ, ψ(τ, ε))(δ(ρ, ψ(τ, ε)) · ϕ(ρ, ψ(τ, ε)) · ψ(ρ, ψ(τ, ε)))2.

to the latter identity we have

(
ψ(ρ, ε) ψ(τ, ε)

ψ(ρτ, ε)

)2

· ψ(ρ, ψ(τ, ε)−4 ∈ W
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Since the group generated by B has no torsion then

ψ(ρ, ε) ψ(τ, ε)

ψ(ρτ, ε)
· ψ(ρ, ψ(τ, ε)−2 = 1

and by applying ∆(σ, ·)2 to this relation, Lemma 5 gives the second identity.

Lemma 12. Let us denote rσ,τ (ε) = 〈σ, τ〉ε〈τ, σ〉ε. Then

rσ,τ (εη) = rσ,τ (ε)rσ,τ (η),

rρσ,τ (ε) = rρ,τ (ε)rσ,τ (ε),

rρ,στ (ε) = rρ,σ(ε)rρ,τ (ε)

for all σ, ρ, τ ∈ G and for all ε, η ∈ C.

Proof. The first identity follows from Lemma 9. The second and the third
ones are easy corollaries of Lemma 11.

Let us now define a subgroup of the group of circular units C. Recall
that Lemma 5, Lemma 9 and Lemma 12 state that ∆(σ, ·)2,
〈σ, σ〉·, rσ,τ (·) are homomorphisms C → {−1, 1}.
Definition 13. Let D be the intersection of the kernels of the following
homomorphisms C → {−1, 1} : ∆(σ, ·)2, 〈σ, σ〉· for all σ ∈ G and rσ,τ (·) for
all σ, τ ∈ G.

Remark 14. Notice that D is the subgroup of all units in C satisfying the
conditions (C1), (C2), (C3) of Proposition 10.

Lemma 15. Let 2l = [k : Q]. Then

[C : D] = 2a,

where a ≤ 2l +
(

l
2

) − 1 if
√−1 ∈ k, a ≤ l +

(
l
2

) − 1 if
√−1 /∈ k and k is

imaginary, and a ≤ l +
(

l
2

)
if k is real.

Proof. Let τ1, . . . , τl ∈ G be such that their restrictions to k are generators of
Gal(k/Q). If the restrictions of σ, τ ∈ G to k coincide then ∆(σ, ε) = ∆(τ, ε)
and ψ(σ, ε) = ψ(τ, ε) for any ε ∈ C. So D is the intersection of the kernels
∆(σ, ·)2, 〈σ, σ〉· and rσ,τ (·), where σ, τ runs over the subgroup of G generated
by τ1, . . . , τl. Moreover, using Lemma 6, Lemma 12 and Lemma 11 we obtain
that D is the intersection of the kernels of ∆(τi, ·)2, 〈τi, τi〉· for 1 ≤ i ≤ l and
rτi,τj

(·), for 1 ≤ i < j ≤ l. If
√−1 /∈ k then ∆(τi, ·) = 1. The lemma follows

from observation that if k is imaginary and τ1 is the complex conjugation
then ψ(τ1, ε) = 1 and so 〈τ1, τ1〉ε = 1 for all ε ∈ C.
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Lemma 16. Let us denote

sσ,τ (ε) = δ(τ, ε)σ−1 · δ(σ, ψ(τ, ε))2 · δ(σ, ε)τ−1 · δ(τ, ψ(σ, ε))2.

Then

sσ,τ (εη) = sσ,τ (ε)sσ,τ (η),

sρσ,τ (ε) = sρ,τ (ε)sσ,τ (ε),

sρ,στ (ε) = sρ,σ(ε)sρ,τ (ε)

for any σ, τ, ρ ∈ G and ε, η ∈ D.

Proof. It is easy to see that

δ(σ, ε)τ−1 =

{
δ(σ, ε)2 if iτ = −i,

1 otherwise.

We deduce from the relation (εη)1−σ = ε1−ση1−σ that

∆(σ, εη)δ(σ, εη)2 = ∆(σ, ε)δ(σ, ε)2∆(σ, η)δ(σ, η)2.

Since ∆(σ, ε) = 1 for all ε ∈ D then δ(σ, εη)2 = δ(σ, ε)2δ(σ, η)2, hence
δ(σ, εη)1−τ = δ(σ, ε)1−τδ(σ, η)1−τ . Interchanging σ and τ gives δ(τ, εη)1−σ =
δ(τ, ε)1−σδ(τ, η)1−σ.

Moreover, Lemma 6 states that ψ(τ, εη)1−σ = ψ(τ, ε)1−σψ(τ, ε)1−σ and
consequently we deduce from this relation that

∆(σ, ψ(τ, εη))δ(σ, ψ(τ, εη))2 = ∆(σ, ψ(τ, ε))δ(σ, ψ(τ, ε))2∆(σ, ψ(τ, η))

· δ(σ, ψ(τ, η))2.

Similarly, interchanging σ and τ ,

∆(τ, ψ(σ, εη))δ(τ, ψ(σ, εη))2 = ∆(τ, ψ(σ, ε))δ(τ, ψ(σ, ε))2∆(τ, ψ(σ, ε))

· δ(τ, ψ(σ, ε))2.

Since ε ∈ D we have rσ,τ (ε) = 1 which means

∆(σ, ψ(τ, ε)) = ∆(τ, ψ(σ, ε)).

Similarly η ∈ D gives

∆(σ, ψ(τ, η)) = ∆(τ, ψ(σ, η))
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and εη ∈ D gives

∆(σ, ψ(τ, εη)) = ∆(τ, ψ(σ, εη)).

Putting things together we obtain

δ(σ, ψ(τ, εη))2

δ(τ, ψ(σ, εη))2
=

δ(σ, ψ(τ, ε))2

δ(τ, ψ(σ, ε))2
· δ(σ, ψ(τ, η)2

δ(τ, ψ(σ, η))2
.

The first identity follows.
Since σρ− 1 = σ − 1 + (ρ− 1)σ then

δ(τ, ε)σρ−1 = δ(τ, ε)σ−1δ(τ, ε)ρ−1. (i)

Further, we use the identity

1 =
ε1−σ · (ε1−ρ)(σ−1) · ε1−ρ

ε1−σρ
. (8)

At first, we express

(ε1−ρ)(σ−1) = ∆(ρ, ε)σ−1 · ϕ(ρ, ε)2(σ−1) · ψ(ρ, ε)2(σ−1)

and consequently we substitute ψ(ρ, ε)2(1−σ) in the relation (8) by the identity

(ψ(ρ, ε)1−σ)2 = (∆(σ, ψ(ρ, ε)) · (ϕ(σ, ψ(ρ, ε)) · ψ(σ, ψ(ρ, ε)))2)2.

Since ϕ(·, ·) is a third root of unity, ∆(σ, ε) = ∆(ρ, ε) = ∆(σρ, ε) = 1 as
ε ∈ D, and ψ(·, ·) belongs to the non-torsion group then we obtain from (8)
the identity

δ(σρ, ε)2 = δ(σ, ε)2δ(ρ, ε)2∆(σ, ψ(ρ, ε))2. (9)

In both cases, independently whether iτ = −i or iτ = i, this gives

δ(σρ, ε)τ−1 = δ(σ, ε)τ−1δ(ρ, ε)τ−1∆(σ, ψ(ρ, ε))τ−1. (ii)

By putting ψ(τ, ε) instead of ε in the relation (8) we obtain the identity

1 =
ψ(τ, ε)1−σ · (ψ(τ, ε)1−ρ)(σ−1) · ψ(τ, ε)1−ρ

ψ(τ, ε)1−σρ
. (10)

As before, we express

(ψ(τ, ε)1−ρ)(σ−1) = ∆(ρ, ψ(τ, ε))σ−1 · ϕ(ρ, ψ(τ, ε))2(σ−1)

· ψ(ρ, ψ(τ, ε))2(σ−1).
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Hence, substituting

(ψ(ρ, ψ(τ, ε))1−σ)2 = ∆(σ, ψ(ρ, ψ(τ, ε)))2 · ϕ(σ, ψ(ρ, ψ(τ, ε)))4

· ψ(σ, ψ(ρ, ψ(τ, ε)))4

to the identity (10) similarly as in previous case we obtain

δ(σρ, ψ(τ, ε))2 = δ(σ, ψ(τ, ε))2δ(ρ, ψ(τ, ε))2 ·∆(ρ, ψ(τ, ε))σ−1

· ∆(σ, ψ(τ, ε))∆(ρ, ψ(τ, ε))

∆(σρ, ψ(τ, ε))
·∆(σ, ψ(ρ, ψ(τ, ε)))2. (iii)

Finally, we express ψ(σ, ψ(ρ, ε)) and ψ(·, ε) in the relation
(

ψ(σ, ε)ψ(ρ, ε)

ψ(σρ, ε)

)1−τ

= ψ(σ, ψ(ρ, ε))−2(1−τ)

which was obtained in the proof of Lemma 6. Since again ψ(·, ·) belongs to
the non-torsion group and ϕ(·, ·) is a third root of unity then we have

δ(τ, ψ(σρ, ε))2 = δ(τ, ψ(σ, ε))2δ(τ, ψ(ρ, ε))2

· ∆(τ, ψ(σ, ε))∆(τ, ψ(ρ, ε))

∆(τ, ψ(σρ, ε))
·∆(τ, ψ(σ, ψ(ρ, ε)))2. (iv)

Since ε is in the kernel of the homomorphism rσ,τ (·) for all σ, τ ∈ G then
it is easy to see that ∆(σ, ψ(τ, ε)) = ∆(τ, ψ(σ, ε)). In order to prove the
identity sρσ,τ (ε) = sρ,τ (ε)sσ,τ (ε) we multiply the identities (i), (ii), (iii), (iv)
and use Lemma 6. Therefore we have to show that

1 = ∆(ρ, ψ(τ, ε))σ−1 ·∆(σ, ψ(ρ, ε))τ−1 ·∆(τ, ψ(σ, ψ(ρ, ε)))2 (11)

·∆(σ, ψ(ρ, ψ(τ, ε)))2.

At first, expressing the relation ψ(ρ, ε)(1−τ)(σ−1) = ψ(ρ, ε)(1−σ)(τ−1) as before
we deduce that

∆(τ, ψ(ρ, ε))σ−1 ·∆(σ, ψ(τ, ψ(ρ, ε)))−2

∆(σ, ψ(ρ, ε))τ−1 ·∆(τ, ψ(σ, ψ(ρ, ε)))−2
= 1.

Since ∆(τ, ψ(ρ, ε))σ−1 = ∆(ρ, ψ(τ, ε))σ−1 as ε ∈ D, we obtain that the iden-
tity (11) is equivalent to

∆(σ, ψ(τ, ψ(ρ, ε)))2 ·∆(σ, ψ(ρ, ψ(τ, ε)))−2 = 1.

Hence, using the relation ε(1−ρ)(1−τ) = ε(1−τ)(1−ρ) it is easy to see that
ψ(τ, ψ(ρ, ε)) = ψ(ρ, ψ(τ, ε)) which gives exactly what we need. The sec-
ond identity of the lemma follows. The third one is a consequence of the
second one using the symmetry sσ,τ (ε) = sτ,σ(ε).
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Now we need to define another subgroup of C. Recall that Lemma 16
states that sσ,τ (·) is a homomorphism D → {−1, 1} for each σ, τ ∈ G.

Definition 17. Let D′ be the intersection of the kernels of the homomor-
phisms sσ,τ (·) : D → {−1, 1} for all σ, τ ∈ G.

Remark 18. Notice that D′ is the subgroup of all units in C satisfying the
conditions (C1), (C2), (C3), (C4) of Proposition 10.

Lemma 19. Let 2l = [k : Q]. Then

[D : D
′
] = 2b,

where b ≤ (
l
2

)
if
√−1 ∈ k and b ≤ (

l+1
2

)
otherwise.

Proof. If the restrictions of σ, τ ∈ G to k(i) coincide then sσ,ρ(ε) = sτ,ρ(ε) for
any ρ ∈ G and ε ∈ D. Let τ1, . . . , τm ∈ G be such that their restrictions to
k(i) form a basis of Gal(k(i)/Q). Lemma 16 implies that D′ is the intersection
of the kernels of sτi,τj

(·) for 1 ≤ i < j ≤ m. The lemma follows.

Lemma 20. Let us denote tσ(ε) = δ(σ, ε)σ+1δ(σ, ψ(σ, ε))2. Then

tσ(εη) = tσ(ε)tσ(η),

tστ (ε) = tσ(ε)tτ (ε)

for all ε, η ∈ D
′
and for all σ, τ ∈ G.

Proof. It follows easily that

δ(σ, ε)1+σ =

{
δ(σ, ε)2 if iσ = i,

1 otherwise.

The relation (εη)1−σ = ε1−ση1−σ gives that ∆(σ, ·)δ(σ, ·)2 is a homomorphism
for all ε, η ∈ C. Therefore using the definition of D (namely the condition
(C1) of Proposition 10) we have δ(σ, ·)2 : D → {−1, 1} is a homomorphism
for any σ ∈ G. Similarly, the identity ψ(σ, εη)1−σ = ψ(σ, ε)1−σψ(σ, η)1−σ (see
Lemma 5) states that ∆(σ, ψ(σ, ·))δ(σ, ψ(σ, ·))2 : C → {−1, 1} is a homomor-
phism for any σ ∈ G. Hence, the definition of D (namely the condition (C2)
of Proposition 10) gives that δ(σ, ψ(σ, ·))2 : D → {−1, 1} is a homomorphism
for any σ ∈ G. The first identity follows.

Since στ + 1 = (σ + 1)τ + (τ + 1)(−1) + 2 then

δ(στ, ε)στ+1 = δ(στ, ε)σ+1 · δ(στ, ε)τ+1 · δ(στ, ε)2. (12)
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Moreover, for ρ = σ or ρ = τ independently whether iρ = −i or iρ = i,
the identity δ(στ, ε)2 = δ(σ, ε)2δ(τ, ε)2∆(σ, ψ(τ, ε))2 obtained in the proof of
Lemma 16 (see the identity (11)), gives that

δ(στ, ε)ρ+1 = δ(σ, ε)ρ+1δ(τ, ε)ρ+1∆(σ, ψ(τ, ε))ρ+1. (13)

Therefore, putting (12) and (13) together we obtain

δ(στ, ε)στ+1 = δ(σ, ε)σ+1 · δ(τ, ε)σ+1 ·∆(σ, ψ(τ, ε))σ+1 · δ(τ, ε)τ+1 (14)

· δ(σ, ε)τ+1 ·∆(τ, ψ(σ, ε))τ+1 · δ(σ, ε)2 · δ(τ, ε)2

·∆(σ, ψ(τ, ε))2.

As ∆(σ, ψ(τ, ε))2 = ∆(σ, ψ(τ, ε))−2 and since δ(σ, ε)2 = δ(σ, ε)−2 we have

δ(στ, ε)στ+1 = δ(σ, ε)σ+1 · δ(τ, ε)τ+1 · δ(σ, ε)τ−1 · δ(τ, ε)σ−1

·∆(σ, ψ(τ, ε))σ−1 ·∆(τ, ψ(σ, ε))τ+1. (15)

Now we use the identity (iv) obtained in the proof of Lemma 16. Hence,
changing ρ to τ and τ to στ we obtain

δ(στ, ψ(στ, ε))2 = δ(στ, ψ(σ, ε))2 · δ(στ, ψ(τ, ε))2 ·∆(στ, ψ(σ, ψ(τ, ε)))2

· ∆(στ, ψ(σ, ε))∆(στ, ψ(τ, ε))

∆(στ, ψ(στ, ε))
. (16)

Further, we substitute δ(στ, ψ(σ, ε))2 and δ(στ, ψ(τ, ε))2 in this relation by
the identity (iii) obtained in the proof of Lemma 16 where we change ρ to τ
(and eventually τ to σ). Then the condition (C2) of Proposition 10 gives

δ(στ, ψ(στ, ε))2 = δ(σ, ψ(σ, ε))2 · δ(τ, ψ(τ, ε))2 · δ(σ, ψ(τ, ε))2

· δ(τ, ψ(σ, ε))2 ·∆(τ, ψ(σ, ε)) ·∆(σ, ψ(τ, ε)) (17)

·∆(τ, ψ(σ, ε))σ−1 ·∆(σ, ψ(τ, ψ(τ, ε)))−2

·∆(σ, ψ(τ, ψ(σ, ε)))−2 ·∆(στ, ψ(σ, ψ(τ, ε)))2.

If we use the condition (C3) of Proposition 10 and the identity

sσ,τ (ε) = δ(τ, ε)σ−1 · δ(σ, ψ(τ, ε))2 · δ(σ, ε)τ−1 · δ(τ, ψ(σ, ε))2 = 1

resulting from the definition of D′, then multiplying (15) and (17) we obtain

tστ (ε) = tσ(ε) · tτ (ε) ·∆(σ, ψ(τ, ε))σ−1 ·∆(τ, ψ(σ, ε))σ−1

·∆(τ, ψ(σ, ε))τ−1 ·∆(σ, ψ(τ, ψ(τ, ε)))−2 ·∆(σ, ψ(τ, ψ(σ, ε)))−2

·∆(στ, ψ(σ, ψ(τ, ε)))2. (18)
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It follows from Lemma 6 that

∆(στ, ψ(σ, ψ(τ, ε)))2 = ∆(σ, ψ(σ, ψ(τ, ε)))2 ·∆(τ, ψ(σ, ψ(τ, ε)))2.

Hence, we have to show that

∆(τ, ψ(σ, ε))σ−1 ·∆(σ, ψ(τ, ε))σ−1 ·∆(τ, ψ(σ, ε))τ−1

·∆(σ, ψ(τ, ψ(τ, ε)))−2 ·∆(σ, ψ(τ, ψ(σ, ε)))−2 ·∆(σ, ψ(σ, ψ(τ, ε)))2

·∆(τ, ψ(σ, ψ(τ, ε)))2 = 1.

Similarly as in the proof of Lemma 16 we deduce easily from the relation
ε(1−σ)(1−τ) = ε(1−τ)(1−σ) that

ψ(τ, ψ(σ, ε)) = ψ(σ, ψ(τ, ε))

and so we have

∆(σ, ψ(τ, ψ(σ, ε)))−2 ·∆(σ, ψ(σ, ψ(τ, ε)))2 = 1.

Further, it is easy to see that ∆(σ, ψ(τ, ε))σ−1 ·∆(τ, ψ(σ, ε))σ−1 = 1 and we
only need to show that

∆(τ, ψ(σ, ε))τ−1 ·∆(σ, ψ(τ, ψ(τ, ε)))−2 ·∆(τ, ψ(σ, ψ(τ, ε)))2 = 1.

The relation ψ(τ, ε)(1−τ)(1−σ) = ψ(τ, ε)(1−σ)(1−τ) implies that

∆(τ, ψ(τ, ε))1−σ · ϕ(τ, ψ(τ, ε))2(1−σ) · ψ(τ, ψ(τ, ε))2(1−σ)

∆(σ, ψ(τ, ε))1−τ · ϕ(σ, ψ(τ, ε))2(1−τ) · ψ(σ, ψ(τ, ε))2(1−τ)
= 1.

At first, we express

ψ(τ, ψ(τ, ε))2(1−σ) = ∆(σ, ψ(τ, ψ(τ, ε)))2 · ϕ(σ, ψ(τ, ψ(τ, ε)))4

· ψ(σ, ψ(τ, ψ(τ, ε)))4.

Similarly we have

ψ(σ, ψ(τ, ε))2(1−τ) = ∆(τ, ψ(σ, ψ(τ, ε)))2 · ϕ(τ, ψ(σ, ψ(τ, ε)))4

· ψ(τ, ψ(σ, ψ(τ, ε)))4.

Putting things together and using that ϕ(·, ·) is a third root of unity and
ψ(·, ·) belongs to the non-torsion group generated by B we obtain

∆(τ, ψ(τ, ε))1−σ ·∆(σ, ψ(τ, ψ(τ, ε)))2

∆(σ, ψ(τ, ε))1−τ ·∆(τ, ψ(σ, ψ(τ, ε)))2
= 1.

Recall that ∆(τ, ψ(τ, ε)) = 1. Hence, the identity ∆(σ, ψ(τ, ε))1−τ = ∆(τ, ψ(σ, ε))τ−1

gives

∆(τ, ψ(σ, ε))τ−1 ·∆(σ, ψ(τ, ψ(τ, ε)))−2 ·∆(τ, ψ(σ, ψ(τ, ε)))2 = 1.

The lemma follows immediately.
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Now we define another subgroup of C. Recall that Lemma 20 states that
tσ(·) is a homomorphism D′ → {−1, 1} for every σ ∈ G.

Definition 21. Let D′′ be the intersection of the kernels of the homomor-
phisms tσ(·) : D′ → {−1, 1} for all σ ∈ G.

Remark 22. Notice that D′′ is the subgroup of all units in C satisfying all
conditions of Proposition 10, in other words D′′ = C ∩ (K2

J ∪ 2K2
J).

Lemma 23. Let 2l = [k : Q]. Then

[D
′
: D

′′
] = 2c,

where c ≤ l − 1 if
√−1 ∈ k, c ≤ l if

√−1 /∈ k and k is imaginary, and
c ≤ l + 1 if k is real.

Proof. This follows from Lemma 20 similarly as Lemma 15 and Lemma 19
using the observation that if k is imaginary and τ1 is the complex conjugation
then tτ1(ε) = 1 for all ε ∈ C.

2.4 The Divisibility of [E : C] by a Power of 2

In this chapter we introduce the main results of this text.

Lemma 24. Let ε ∈ C. If there is γ ∈ KJ such that ε = γ2 or ε = 2γ2,
then ξε defined by ξε(σ) = γ1−σ is a character on Gal(KJ/k), i.e., ξε :
Gal(KJ/k) → {−1, 1} is a homomorphism, and γ ∈ k if and only if ξε is
the principal character. Moreover

ξ̃ : C ∩ (KJ
2 ∪ 2KJ

2) → ̂Gal(KJ/k),

where ξ̃(ε) = ξε, is a homomorphism, i.e., ξεη(σ) = ξε(σ)ξη(σ) for all ε, η ∈
C ∩ (KJ

2 ∪ 2KJ
2) and for any σ ∈ G.

Proof. The lemma follows immediately from 1−στ = (1−σ)+(1− τ)σ.

Theorem 25. Let n = #J and 2l = [k : Q].

i) If k is real then

22l−n−l2−l−3 | [E : C],

ii) If k is imaginary and
√−1 /∈ k then

22l−1−n−l2−l−1 | [E : C],
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iii) If
√−1 ∈ k then

22l−1−n−l2−l | [E : C].

Proof. Let D′′′ = C ∩ (k2 ∪ 2k2), i. e. D′′′ consists of all ε ∈ C of the
form ε = η2 or ε = 2η2 for a suitable η ∈ k. Recall that from Lemma 24
and the definitions of D′′ and D′′′ it follows that [D′′ : D′′′] = 2d, where
d ≤ n− l. Moreover, using Lemma 15, Lemma 19 and Lemma 23 we know
that [C : D′′′] = [C : D] · [D : D′] · [D′ : D′′] · [D′′ : D′′′] = 2a+b+c+d, where

a + b + c + d ≤





l2 + n + l + 1 if k is real

l2 + n + l − 1 if k is imaginary and
√−1 /∈ k

l2 + n + l − 2 if
√−1 ∈ k.

From the definition of E and D′′′ we know that rank E = rank D′′′. Each unit
in D′′′ is of the form η2 or 2η2 for a suitable η ∈ k. Since (2η2)·(2ϑ2) = (2ηϑ)2

is again a square, there is a basis of D′′′ where all elements but at most one are
squares. Therefore we have 22l−2 | [E : D′′′] if k is real and 22l−1−2 | [E : D′′′]
if k is imaginary. The theorem follows using [E : C] = [E:D′′′]

[C:D′′′] .

Putting together Proposition 4 and Theorem 25 we obtain a lower bound
for the divisibility of the class number h+ by a power of 2. A very explicit
special case of this result is given by the following example.

Example 26. Let us denote n = #J. Let us suppose k = KJ and #{p ∈
J ; p < 0} > 1. Then

[E : C] = 22n−2−n ·Qh+,

which can be obtained in the same way as in [12] (see Theorem 1 and Remark
below its proof). Then Theorem 25 gives

22n−1−2n−n2 | [E : C]

and consequently
22n−2−n−n2−1 | h+

because Q | 2.



Chapter 3

The ramification index of 2
being 4

The aim of this chapter is to describe the group of circular units C of a
compositum k of quadratic fields in the last case that has not been covered
yet, namely in the case when the ramification index e of 2 equals 4. It is easy
to see that e divides 4. If e = 1 or e = 2 we already know a basis of C and
an explicit formula for the index of C in the full group of units E (see [12]
and [18]). The main ingredience for these results was the observation that
the action of the augmentation ideal of Z[G], where G = Gal(k/Q), on the
quotient C/W , where W is the group of all roots of unity in k, gives squares
in C/W . In other words, for any ε ∈ C and any σ ∈ G there is ρ ∈ W
and η ∈ C such that ε1−σ = ρη2. Unfortunately this key property of the
group of circular units of a compositum of quadratic field is not satisfied in
the mentioned case e = 4 (see Example 8 for k = Q(

√−1,
√

2,
√−3) below).

Therefore if e = 4 we cannot use the same approach for k. Nevertheless,
using the three maximal subfields of k whose ramification index at 2 is 2,
we are able to describe an explicit maximal independent system of units in
C. Let C̃ be the group generated by W and by this system. Then we can
compute the index [E : C̃] and give a reasonable upper bound for the index
[C : C̃] (see Theorem 7 and Proposition 5).

3.1 Definitions and basic results

Let k be a compositum of quadratic fields and let K be the genus field of k
in narrow sense. We assume that both −1 and 2 are squares in K. We put

J = {−1,−2, 2} ∪ {p ∈ Z; p ≡ 1 (mod 4), |p| is a prime ramifying in k}.

37
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For any p ∈ J , let

n{p} =





|p| if p /∈ {−1,−2, 2},
4 if p = −1,

8 if p = ±2.

For any L ⊆ J let nL be the smallest common multiple of n{p} for all p ∈ L
(by convention n∅ = 1), moreover similarly as in previous Chapter 2 let us
denote

ζS = e2πi/nS , QS = Q(ζS), KS = Q(
√

p; p ∈ S), kS = k ∩KS.

We call a subset L ⊆ J admissible if L contains at most one of the
numbers −1, 2, and −2. For any admissible set L ⊆ J we define

εL =





1 if L = ∅,
i if L = {−1},
1√
p
NQL/KL

(1− ζL) if L = {p}, p 6= −1,

NQL/KL
(1− ζL) if #L > 1,

and ηL = NKL/kL
(εL).

Let χ2 and χ−2 be the unique even and odd Dirichlet character of conduc-
tor 8, respectively. For each p ∈ J − {2,−2} let χp be the unique Dirichlet
character of conductor n{p}, so χp is odd if and only if p < 0.

Let X be the group of all even Dirichlet characters corresponding to k.
Each χ ∈ X can be written in the form χ =

∏
p∈Lχ

χp for a unique admissible
set Lχ ⊆ J . Then the conductor of χ is equal to nLχ .

It is easy to see that, for any admissible set L ⊆ J , a character χ ∈ X
belongs to the set of Dirichlet characters corresponding to the field kL if and
only if Lχ ⊆ L.

Let C be the group of circular units of k defined in [12]. This group
contains the Sinnott’s group of circular units of k but it can be slightly
bigger. Similarly, for any S ⊆ J let CS be the group of circular units of kL

defined in [12]. If L is admissible then the ramification index of 2 in kL is
not equal to 4 and so we know the following basis of CL:

Lemma 1. If L ⊆ J is admissible then a basis of CL is formed by the set of
all ηLχ where χ ∈ X is non-trivial and satisfies Lχ ⊆ S.

Proof. If −1 /∈ L see see [12, Lemma 5], otherwise see [18, Proposition 1.4].
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Let W be the group of all roots of unity in k. Let C̃ be the subgroup of
the multiplicative group k× generated by W and by all conjugates of ηL for
all admissible sets L ⊆ J . Let G = Gal(k/Q) be the Galois group of k.

Lemma 2. For any ε ∈ C̃ and any σ ∈ G there is ρ ∈ W and η ∈ C̃ such
that ε1−σ = ρη2.

Proof. Consider a conjugate of ηL for an admissible set L ⊆ J . If −1 /∈ L
use [12, Lemma 2], otherwise use [18, Lemma 1.2].

Lemma 3. The set W ∪ {ηLχ ; χ ∈ X, χ 6= 1} generates the group C̃.

Proof. Lemma 2 gives that C̃ is as a group generated by W and by ηL for
all admissible sets L ⊆ J . For any admissible set L ⊆ J we can show that
if L 6= Lχ for all χ ∈ X then ηL can be written as a multiplicative Z-linear
combination of ηL for L ( L (modulo roots of unity). If −1 /∈ L use [12,
Lemma 5], otherwise use [18, pp. 1077].

3.2 The index of C̃ in C

Proposition 4. The group C of circular units of k is generated by C̃ and
by all conjugates of NQL/kL

(1 − ζL), where L ⊆ J is not admissible, L 6=
{−1, 2,−2}, and the ramification index of kL at 2 is 4.

Proof. Let E be the full group of units of k. By definition (see [15]), C is the
intersection of E and a group D, where D is generated by −1, by

√
p for all

p ∈ J such that p > 0 and
√

p ∈ k, and by all conjugates of NQL/kL
(1− ζL)

for all non-empty L ⊆ J .
For a non-empty L ⊆ J , it is well-known that NQL/kL

(1 − ζL) is a unit
if and only if nL is not a prime-power. Moreover, if p ∈ J and p < 0 then
all units of k{p} are roots of unity. Therefore C̃ is the intersection of E and

a group D̃, where D̃ is generated by −1, by
√

p for all p ∈ J such that
p > 0 and

√
p ∈ k, and by all conjugates of NQL/kL

(1− ζL) for all admissible
non-empty L ⊆ J .

If L is not admissible and the ramification index of kL at 2 is not 4 then
kL = kL′ for a suitable admissible L′ ⊆ L. Hence D is generated by D̃ and by
NQL/kL

(1− ζL) for all non-admissible L ⊆ J such that the ramification index

of kL at 2 is 4. This norm is a unit unless L = {−1, 2,−2} and
√−1,

√
2 ∈ k,

in which case kL = Q(
√−1,

√
2) is the eighth cyclotomic field. But the group

of all units of the eighth cyclotomic field is generated by ζ8 and by

η = ζ−1
8 · 1− ζ3

8

1− ζ8

= 1 + ζ8 + ζ−1
8 = 1 +

√
2.
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We have

η{2} =
1√
2

NQ(ζ8)/Q(
√

2)(1− ζ8) =
√

2− 1 = η−1

and the proposition follows.

Proposition 5. The group C̃ is of finite index in C and [C : C̃] ≤ 2n, where
n is the number of all L ⊆ J such that {−1, 2,−2} ( L and the ramification
index of kL at 2 is 4. Moreover, the Galois action of G on C/C̃ is trivial.

Proof. Let T = J − {−1, 2,−2}. For any x ∈ {−1, 2,−2} let ρx be the
generator of Gal(K/KT∪{x}). For any S ⊆ T we put L = S ∪ {−1, 2,−2}
and ε = NQL/kL

(1− ζL). Then

ε2 = ε1+ρ−1 · ε1+ρ−2 · (ε1+ρ2
)−ρ−1 .

For any x ∈ {−1, 2,−2} we have

ε1+ρx = NQL/kT∪{x}(1− ζL) = ηT∪{x}

because NQL/QT∪{x}(1 − ζL) = 1 − ζT∪{x}. We have obtained ε2 ∈ C̃ and for

any σ ∈ G Lemma 2 gives ε2(1−σ) ∈ W · C̃2, which implies ε1−σ ∈ C̃. The
proposition follows by means of Proposition 4.

3.3 A basis of C̃ and the index of C̃ in E

Theorem 6. The set {ηLχ ; χ ∈ X, χ 6= 1} is a Z-basis of C̃, i.e. elements

of this set are multiplicatively independent and together with W generate C̃.

Proof. Proposition 5 gives that C̃ and C has the same Z-rank. As the index
[E : C] is finite, C̃ and E has the same Z-rank and the Z-rank of E is
equal to the number of elements of the given set. The theorem follows from
Lemma 3.

Having a Z-basis allows us to compute the index:

Theorem 7. We have

[E : C̃] =

( ∏

χ∈X, χ 6=1

2 · [k : kLχ ]

[k : k+]

)
· |X|−|X|/2 ·Qh+,

where k+ is the maximal real subfield of k, |X| means the number of charac-
ters in X, Q = [E : W · (E ∩ k+)] is the Hasse unit index of k and h+ is the
class number of k+.



A basis of C̃ and the index of C̃ in E 41

Proof. This can be proved in the same way as Theorem 1 in [12].

The following example shows that the estimate of the index [C : C̃] can
be precise. It seems to be an interesting question whether this holds true in
general.

Example 8. Let k = Q(
√−1,

√
2,
√−3). Then k is the 24th cyclotomic field.

Sinnott’s formula for the index of the group of circular units of a cyclotomic
field (see Theorem 4.1 in [22]) gives that (for the field k) the Sinnott’s group
of circular units of k equals E and so we also have C = E. Then Theorem
6.1 in [11] gives the following Z-basis of C: α = 1− ζ, β = 1− ζ19, γ = 1−ζ9

1−ζ3 .

As β is a conjugate of α, we see that we obtain α · β−1 by an action of the
augmentation ideal on α. As both α and β belong to a basis we see that
α · β−1 is not a square modulo roots of unity in E. Theorem 6 states that
η{2}, η{−1,−3} and η{−2,−3} form a Z-basis of C̃. We have

η{2} = (1 +
√

2)−1 = ζ3 · γ,

η{−1,−3} = 1− ζ2 = ζ · α · β−1 · γ,

η{−2,−3} = α · β.

The determinant of the transition matrix gives the index [C : C̃] = 2 for k,
which equals the upper bound given by Proposition 5.
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