Abstract

English

This thesis studies the group of circular units C' of a compositum of quadratic
fields k = Q(v/dy,...,V/d,), where dy, ..., d, are square-free odd integers
and d; = 3(mod4). In the main part (Chapter 2) we construct a basis of
C, compute the index of C' in the full group of units of k£ and derive a lower
bound for the divisibility of this index by a power of 2. These results give
a lower bound for the divisibility of the class number of the maximal real
subfield of k£ by a power of 2 if the ramification index e at 2 is equal to 1 or
2.

In Chapter 3 we describe the group C' in the last case that has not been
covered yet, namely in the case when the ramification index e of 2 equals
4. Let W be the group of roots of unity in k& and let G = Gal(k/Q). The
key property of the group C allowing to solve the case e < 2 is that for any
e € C and any 0 € G there is p € W and € C such that e'77 = pn?.
But this key property is not satisfied in the mentioned case ¢ = 4 and so
we cannot use the same approach. Nevertheless, using the three maximal
subfields of k£ whose ramification index at 2 is 2, we are able to describe
an explicit maximal independent system of units in C. Let C be the group
generated by W and by this system. Then we can compute the index [E : C]
and give a reasonable upper bound for the index [C : C].



Cesky

Tato préce se zabyva studiem grupy kruhovych jednotek C' v kompozitu
kvadratickych téles k = Q(v/dy, ..., \/ds), kde di, ..., ds jsou lich4 celd &isla
nedélitelnd druhou mocninou prvoéisla a zéroven d; = 3 (mod4). V hlavni
casti prace (kapitola 2) zkonstruujeme bazi grupy C, spocitdme index této
grupy v grupé vsech jednotek télesa k a ziskdme odhad pro délitelnost to-
hoto indexu mocninou prvocisla 2. Na zakladé téchto vysledku navic muzeme
ziskat odhad deélitelnosti poc¢tu tiid idealu maximalniho realného podtélesa
télesa k mocninou 2, jestlize index e vétveni dvojky v k/Q je roven 1 nebo
2.

V kapitole 3 se zabyvame studiem grupy C' v poslednim mozném piipadeé,
tedy pokud index vétveni e v 2 je roven 4. Oznac¢me W grupu vSech odmocnin
z jedné télesa k a G = Gal(k/Q). Klicova vlastnost grupy C' umoznujici fesit
pripad e < 2 je, ze pro kazdé ¢ € C'a 0 € G existujen € C' a p € W tak, ze
el=7 = pn?. Avsak tato klicovd vlastnost neni splnéna ve zminéném piipadé
e = 4. I presto lze popsat maximalni nezavisly systém jednotek v C' vyuzitim
t11 maximalnich podtéles k, jejichz index vétveni v 2 je 2. Jestlize oznacime
C grupu generovanou timto maximélni systémem jednotek a grupou viech
odmocnin z jedné, bude mozné spocitat index [E : C] a dat horni odhad
délitelnosti indexu [C': C] mocninou 2.
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Introduction

The principal concern of this thesis is to deal with some aspects of class
number of composita of quadratic fields. The main attention is focused on
the group of circular units C' and to the description of this group by means
of a basis modulo roots of unity. The main goal of the thesis is to compute
the index of C' in the group F of all units of a compositum of quadratic field.

At first, we start with a brief historical overview concerning circular units
in cyclotomic, and more generally abelian fields. By an abelian field we have
in mind a Galois extension of Q which is finite and whose Galois group is
abelian. The well-known Kronecker-Weber theorem states that any abelian
field is a subfield of a cyclotomic field. As we explain, in the case of an
abelian field it is not so clear how to define the group of circular units.

In the middle of 19th century E. Kummer studied the p-th cyclotomic
field Q((,), where p is an odd prime and ¢, = e?™/? is a p-th root of unity.
ig’j, where a = 2, . .. p%l, is equal to R-ht;
here R is the regulator of Q((,) and h' is the class number of the maximal
real subfield Q(¢, + ¢ ) of Q(¢,). By today language we can say that these
numbers together with (, generate a subgroup C of circular units, which has
index A" in the full group of units E.

In 1953, H. W. Leopoldt in [16] studied units of a real abelian field k
and defined “group of formal circular units”. He showed that his group is of
finite index in the full group E of units of £ and that this index is equal to
the class number A of k multiplied by an explicit factor. Later on, this result
was improved by R. Gillard in [5].

The numbers igﬁ, where n is a positive integer, ¢, = ™™ and a € Z,
1 <a< §,(a,n) =1, werestudied also by algebraic topologists: John Milnor
asked whether these numbers are multiplicatively independent for any of n.
The negative answer to this question was given by K. Ramachandra who
showed that they can be dependent. Moreover in [20] he gave a new explicit
construction of a maximal independent system of units of the n-th cyclotomic

field Q(C).

This construction can be used to obtain a maximal independent system

He noticed that the regulator of
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6 INTRODUCTION

of units in any abelian field k (see [28], Theorem 8.2). Let us mention that
the subgroup of units generated by the Ramachandra units has a finite index
in the full group of units and that this index is an explicit multiple of the
class number of maximal real subfield k™ of k.

An important progress was made by Sinnott who gave in [22] and [23]
a new definition of the group C of circular units of an abelian field k. Sin-
nott group of circular units can be described by means of explicit generators
and, roughly speaking, contains all previously defined groups. These two
pieces of paper of Sinnott are devoted not only to circular units but also to
Stickelberger ideal.

The starting point for this investigation of the Stickelberger ideal S was
the result of Iwasawa. Let us denote R~ = (1 —j) Z|G] where G = Gal(k/Q)
and j is the complex conjugation. In [8] Iwasawa has computed for k =
Q(¢ym) that the index [R™ : R~ N S] is equal to the relative class number A~
of k. An elementary proof of this result of Iwasawa was obtained by Skula
in [24] (for a detailed study of the matrices made by means of bases of the
Sickelberger ideal, see also [9], [25] and [26]). Following Sinnott, let us define
the Stickelberger ideal S of the nth cyclotomic field Q((,):

For any a € Z let

)= > (-)oteqd)

0<r<n, (rn)=1

where (z) is the fractional part of x, G denotes the Galois group G =
Gal(Q(¢,)/Q) and o, € G is the automorphism determined by o,(¢,) = (.
Then 6(a) is called the Stickelberger element. Let S" be the Z-module gen-
erated in the rational group ring Q[G] by the set {f(a); a € Z}. The Stick-
elberger ideal of Q((,) is the intersection S = S" N Z[G].

Now we shall try to mention some reasons why these two very different
notions - group of circular units and Stickelberger ideal are studied together.

The first interrelation - universal ordinary distributions: The
group of circular units as well as the Stickelberger ideal can be described
by means of the module generated by values of an odd (Stickelberger ideal)
and even (the circular units) Kubert’s universal ordinary distribution (for
more details, see [10]). Using the results of [10] we can obtain a system
of independent generators of the group of circular units and a basis of the
Stickelberger ideal as Z-module for a general case of a cyclotomic field (see
[11]; Theorem 6.1 and 6.2) or a compositum of quadratic fields (see [12]).

The second interrelation - the class number: Let k£ be an abelian
field, G = Gal(k/Q), S is the Stickelberger ideal of k (to keep this introduc-
tion simple we have defined .S only for cyclotomic field, the general case of an
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abelian field is similar but much more technical) and A = {« € Z|G]; Vo €
G: (1 —0)(1+j)a =0}, where j is the complex conjugation. Sinnott has
shown in [23] that the index of S in A is in the form

[A:S]=h" ¢

where h~ is the relative class number of £ and ¢, is the rational number
whose definition does not involve the class number h~. Similarly, Sinnott
has also found the index [E : C] in the form

[E:Cl=h"-¢f

where hT is the class number of k™ and ¢ is the rational number whose
definition does not involve the class number h™. Both ¢; and ¢ can be
expressed in terms involving a so-called Sinnott module U.

The third interrelation — annihilators of the ideal class group:
The elements of the Stickelberger ideal are annihilators of the ideal class
group of the field k. The main step in the proof of this result is the following
theorem (Stickelberger relation).

If n # 2 (mod 4) is a positive integer and (, = e a primitive nth root
of unity then Z[(,] is the ring of algebraic integers of the nth cyclotomic field
Q(¢n)- Let P be a prime ideal of Z[(,] not containing n and F' = Z[(,,|/ P the
residue class field. Let x be the nth power residue symbol on Z[(,,] and v the

additive character on F' determined by the trace. Let g(P) = Y x*(a)¥(a)
aEl
be the corresponding Gauss sum. Then g(P)" € Z[¢,] and we have the

following classical factorization of the principal ideal (g(P)™) generated by
g(pP)™:

Theorem 1. (The Stickelberger Relation)

2mi/n

n ot Zt0;1
(9(Py) =[] P = P*

t

where the product and the sum are taken over all 1 < t < n which are
relatively prime to n and o, is the element of Gal(Q™ /Q) determined by

ot(Gn) = G-

Proof. See [7; Theorem 2 on page 209] O
Since the exponent Y to; * does not depend on P and since each class of

ideals in the ideal class gtroup contains such ideal P, one obtains that ) to, !

t
annihilates the ideal class group of Q((,).
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Sinnott has proved that for any abelian field k& any element of the Stick-
elberger ideal (defined by him) is an annihilator of the ideal class group of
k.

Let us mention that this result is important for imaginary abelian fields
while for a real abelian field it says only a trivial fact because in this case
any element of the Stickelberger ideal is a multiple of the absolute norm.

Thaine in [27] showed a method to obtain annihilators of the ideal class
group Cl(k) of a real abelian field k. If an odd prime p does not divide the
degree [k : Q] then Sinnott formula implies that the p-Sylow subgroups Cl(k),
of Cl(k) and (E/C), of E/C are of the same order: |Clk),| = [(E/C),|.
Thaine proved the following statement:

Theorem 2. Let k be a totally real abelian number field, G = Gal(k/Q), let
C' be the group of circular units defined as above, and let Cl(k) be the class
group of k. Let p be an odd prime not dividing [k : Q|. If 0 € Z|G| annihilates
(E/C), then 0 annihilates Cl(k),.

Moreover, Thaine proved more since his theorem covers also the case
p=2:if 21 [k: Q] and 0§ € Z|G] annihilates (E/C)s then 26 annihilates
Cl(k)s.

Thaine used in [27] different definition of the group of circular units than
Sinnott but Lettl in [17] has shown that these two definitions are equivalent.

Thaine’s method has been generalized by Rubin in [21] to any abelian
extension of number fields (instead of an abelian extension of Q) and any
prime p (allowing p to divide the degree of the extension).

Now let us introduce the main ideas of this thesis. The aim of this paper
can be understood as a counterpart of Kucera’s results about the compositum
of quadratic fields. In [12] Kucera studied a compositum k of quadratic fields
such that —1 is not a square in the genus field K of k in narrow sense. He has
constructed bases of the Stickelberger ideal and the group of circular units
and computed indices of these modules. This paper is the motivation of my
work.

This thesis consists of three parts. In the first part (Chapter 1) we intro-
duce some basic definitions and statements that we will use later. At first,
we mention a brief overview about the circular units in cyclotomic fields and
also in abelian fields. We recall some known results and theorems preceding
the results of this thesis.

The main part of this thesis are Chapters 2 and 3 where we study the
compositum k of quadratic fields such that —1 is a square in the genus field
K of k in the narrow sense. Then the ramification index of 2 in £ is equal to
2 or 4. Chapter 2 is devoted to the former case (when 2 is not a square in
K) while Chapter 3 covers the latter case (when 2 is a square in K). In both
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cases we construct a group C' of circular units of k, which is slightly larger
than the Sinnott’s group given in [23], we find a basis of C' and compute the
index of C'in the group E of all units of k. The case studied in Chapter 3 is
much more difficult and we are not able to construct an explicit basis of C'
here. So instead of that we describe only an explicit maximal independent
system of units here and give a reasonable upper bound for the index of the
subgroup generated by this system.

Thus these two chapters contain the results of the papers [18], [19] which
together with [12] cover all composita of quadratic fields. Moreover, these
results give a lower bound for the divisibility of the class number of the
maximal real subfield of k by a power of 2.

This thesis and presented results have been achieved under the support
of the Grant Agency of the Czech Republic by the projects 201/04/381 and
201/07/0191.
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Chapter 1

Preliminaries

At first, let us mention some basic definitions we will use later on: An al-
gebraic number field K is a finite extension of the rationals Q. An algebraic
integer is a root of a monic polynomial with integral coefficients. The set of
all algebraic integers in k forms the ring R of algebraic integers of the field
k. Recall that R is a Dedekind domain, so every nonzero ideal of R can be
uniquely written as a product of nonzero prime ideals of R.

Dirichlet’s unit theorem gives the structure of the group F of all units of
the ring R. The theorem states that the group of units is finitely generated
and has rank (maximal number of multiplicatively independent generators of
the non-torsional part) equal to r = r; +ry — 1 where 7 is the number of real
embeddings and 7, the number of conjugate pairs of complex embeddings
of k, e.g. the group of units is isomorphic to its torsion subgroup multiplied
with r copies of Z (and n = 71 + 2ry is the degree of the extension k over Q).

If we want to describe the multiplicative structure of the ring of algebraic
integers R of K we will use fractional ideals. A fractional ideal is a nonzero
finitely generated R-submodule of K. In other words, such an ideal can be
written in the form aa where o € K, o # 0 and a is a nonzero ideal of
R. Consequently, we can denote I(K) the group of all fractional ideals of
K. A fractional ideal is called principal if it is equal to aR for a suitable
a € K, a # 0. Since the principal ideals form the subgroup P(K) of I(K) we
define ideal class group (class group in brief) Cl of R as the quotient group
Cl=1(K)/P(K).

Dirichlet theorem states that the group E of units of R is finitely gen-
erated. Moreover the class group Cl of R is finite. The order of Cl (the
size of the class group) is given by the class number h = |Cl|. In order to
understand the arithmetic of R it is useful to know the explicit generators
of E and a structure of the class group C! (or at least the class number h).
The relation between the class number h of K and the arithmetic of R is

11
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following:
e h =1 if and only if R is a unique factorization domain

e h = 2 if and only if factorization in R is not unique in general but any
two factorizations of a given element of R have the same number of
factors (this result is given by L. Carlitz in [3])

All cyclotomic fields of class number h = 1 are described in [28] (see
Theorem 11.1).

1.1 Circular units in cyclotomic fields

The most natural situation where one can consider circular units is in the
case of cyclotomic fields. Let n be a positive integer such that n # 2 (mod 4)
and ¢, be a primitive nth root of unity, i.e. (, = e**¥". Then we call
Q™ = Q(¢,) to be the nth cyclotomic field. In general, we don’t know
the explicit generators of the full group of units in the ring of algebraic
integers Z[(,] of Q™. However, for cyclotomic fields, we are able to find
explicitly a special group of units, called the circular units. The group of
circular units C(Q™) can be defined as the intersection of the subgroup of
the multiplicative group Q> generated by 1 — ¢,,1 —¢2,...,1 (""" and
the group of all units £(Q™) as follows

CQ)=({1-C%aecZ1<a<n-—1}) N EQM).

An important property of the circular units is the fact that the group
C(Q™M) is of finite index in the full group of units E£(Q™). Moreover, this
index is closely connected to the class number A" of the maximal real subfield
Q¢ +¢Y) =R N QM of the nth cyclotomic field. Sinnott proved in [22]
that

[E(Q(n)) : C(Q(n))] =2° h(—g(n)a
where h&(m is the class number of the maximal real subfield Q(¢, + ¢, ') of

Q™ and ¢ is given explicitly by the number s of ramified primes in Q™ (i.e.
the primes dividing n) as follows

0, if s =1,
c =
27241 —5, ifs>1.

Since the real units multiplied by roots of unity are of index 1 or 2 in
the full group of units (see Theorem 4.12 in [28]) then it is sufficient to work
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with real units. If n is a prime power it is not so difficult to find a basis of
C(Q™). The cyclotomic units of C(Q™) are generated by —1 and the units

1 — (o
1_5:, 1<a<g,(a,n):1.

In general case, the situation is much more complicated since the relations
among the generators are more difficult with the increasing number of prime
divisors of n. It is not so easy to construct such a basis, especially to find
the set of generators which will be suitable. Such a basis of the group of
circular units of the nth cyclotomic field was found by Gold, Kim in [6] and
independently by Kucera in [11].

1.2 Circular units in abelian fields

In contrast to a cyclotomic field it is not so clear how to construct the group
C' of circular units of an abelian number field k. Let n be the conductor
of k, i.e. n is the least positive integer satisfying & C Q™. As mentioned
before we have several possibilities how to define the group C. We recall the
best known of them. Since we want to find explicit generators of C' and to
compute the index of this group in the full group of units we want to use
Sinnott’s definition. Sinnott group Cs(k) of circular units of k& can be defined
by the intersection

Cs(k) = ({Nawgom(l = ¢ L <r|n, (a,r) = 13 U{-1}) N E(k).

Sinnott’s class number formula states that

Hp'nl:k:p : Q)
[k : Q)

where h; is the class number of k%, Q = [E : ETW] is the Hasse unit index
(Q = 1if k is real), k, is the maximal subfield of k£ ramified only at p and the
integer g = 1 — [k : Q] if k is real. If k is imaginary then we only know that
g is between the number of primes p|n with k, imaginary and the number
of them with [k, : Q] even. One approach how to avoid problems with the
integer g was described by Kucera who enlarged the set of generators of Cg(k)
by adding ,/p for each p|n such that \/p € k to the generators. Then we
obtain slightly bigger group whose index is given by a formula which differs
from (*) only at one point: g is replaced by the number of primes p|n with

[kp : Q] even.

[E(k): Cs(k)] = h Q 279(e"Z|G] : etU) (*)
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The most serious problem is to describe the Sinnott module U and to
determine the index (e*Z[G] : etU). Sinnott proved that this index is an
integer that can be divisible only by primes dividing the degree [k : Q] and
also by 2 if k£ is imaginary. The precise value of this index is known only
in some special cases. For example, if k£ is ramified at most at two finite
primes, or if the degree of k is the square of an odd prime, or if k is real
and G is cyclic, or if K is a compositum of quadratic fields. The latter case
was investigated by Kucera in [12] where he found the basis of the group of
circular units and its index in the group of all units of the compositum of
quadratic fields k such that —1 is not a square in the genus field of k£ in the
Narrow sense.

The second, well-known definition of circular units is mentioned in the
Washington’s monograph on cyclotomic fields ([28]) as the intersection Cy, (k) =
kN C(Q™). So we call Cy (k) as Washington group of circular units. It is
easy to see that Cs(k) C Cy (k). Generally we don’t have the same proper-
ties as in Sinnott definition. We know neither the explicit generators nor the
index of the group of circular units in the full group of units as in the case of
Cs(k). As a comparison between Sinnott and Washington groups of circular
units we can consider the following theorem.

Theorem 1. Let K be the genus field of an abelian field k in narrow sense.
Let p be an odd prime such that p|[Cw (k) : Cs(k)]. Then p|[K : k].

Let us mention that if p | [K : k] then p | [k : Q]. For the proof of this
theorem, other definitions of circular units and more details see [13].

The natural question arises how to determine the set of abelian fields
having the property Cy (k) = Cs(k). Kucera has partially succeeded in this
problem in [13] by the following way:

Theorem 2. Let k be a compositum of any finite number of imaginary
abelian fields, each of them being ramified at one prime. Then Cg(k) =

Cw (k).

1.3 Circular units in a compositum of quadratic
fields

In this part, let us mention some of the results determining the precise value
of the index (eTZ[G] : etU) of Sinnott module U in the integral group ring
of the Galois group G = Gal(K/Q), especially in case of the compositum of
quadratic fields. The results introduced in this part were obtained by Kucera
in [12).
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Let £ be the compositum of quadratic fields such that —1 is not a square
in the genus field K of k in the narrow sense. In such a field the Sinnott
module U corresponding to K satisfies the inclusion /U C 2U where [ is
the augmentation ideal. Consequently we change slightly the definition of
the group of circular units C' of k. This group contains Sinnott’s group
of circular units of k but it can be slightly bigger (by adding a /p to the
generators where p divides the conductor of k and \/p € k). The precise
definition of C' can be found in Chapter 2. The reason why to define the
group C as an enlargement of Sinnott’s group is that the Galois group G
acts trivially on C'/(£C?). In other words, the action of augmentation ideal
on C'/W gives squares in C'/W, where W is the group of roots of unity in k.
The following lemma gives this key property:

Lemma 3. For any e € C and any o € G there is p € W and n € C such
that 177 = pn?.

Proof. See [12; Lemma 2]. O

Now the previous Lemma gives us the nice tool how to construct bases
and mainly how to compute the index of C' in the group of all units E of the
field k, as follows

Theorem 4. Let X be the group of all Dirichlet characters corresponding
to k. For any & € X let ke be the mazimal subfield of k ramified only at
primes dividing the conductor of &. Then

2 [k ke 1

E-Cl= A H#X)2#XD L opT
geX,&#1

where QQ 1s the Hasse unit index and h* is the class number of k.

Proof. See [12; Theorem 1]. O

Consequently, we have obtained the formula for Sinnott index (et Z[G] :
etU)

Proposition 5. Let R = Z[Gal(k/Q)], et = (1 + j) where j is the complex
congugation. Then

(eZIG): et U) = [k : Q)AL T [k : ke
£eX

Proof. See [12; Proposition 1]. O
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As an application of these results let us mention the divisibility of the
class number of some real fields by a power of 2. Let n be the number of
primes ramifying in k.

Theorem 6. Let 2! = [k : Q.

i) If k is real then
221—1—l—n—(é) | [E : C]

Y

ii) if k is imaginary then

l

227 n=G) | [E: 0,

Proof. See [12; Theorem 2. O

Corollary 7. Let k be equal to its genus field K in narrow sense. If k/Q is
ramified at least at two primes congruent to 3 modulo 4 then

92" 2—n—(})~1 | B

Proof. See [12; Example on page 156] [

1.4 Other applications

Another example of applications of these results can be found in the com-
putation of the parity of the class number of biquadratic fields. Conner
and Hurrelbrink in [4] determine the parity of the class number of any bi-
quadratic field up to the cases Q(,/p, /q) where p, ¢ are different primes such
that p = ¢ = 1 (mod4) and the Legendre symbol (p/q) = 1 and Q(/p, v2)
where p is a prime, p = 1 (mod 8).

Kucera has extended these results in [14] where he has obtained the crite-
rion for the parity of the class number of these biquadratic fields in general,
especially if p=¢ = 1(mod4) or p=1(mod4) and ¢ = 2 (for more details
see [14; Theorem 1 and Theorem 2]). Later, Bulant has used his methods to
determine the parity of the class number of the field Q(,/p, \/q, V/T), where

p,q,r are primes congruent to 1 mod 4 as follows

Theorem 8. Let p,q and r be different primes such that p,q,r = 1 (mod 4)

Let h denote the class number of Q(\/p, \/q, VT)

1. If (p/a) = (p/r) = (a/r) = =1, fit upg, wpr,uqy € L satisfying uz, =
pq (modr),u2. = pr(modq),uz. = qr (modp). Then h is even if and only if

) pr
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(tpg/7) (Upr/q) (Ugr/p) = —1.
2. If (p/q) =1, (p/r) = (¢/r) = —1, then the parity of h is the same as the

parity of the class number of the biquadratic field Q(\/p, \/q)

3. If (p/q) = (q/r) = 1,(p/r) = —1, then h is even.

4. If (p/q) = (p/r) = (q/r) = 1, then h is even. (Moreover, if we denote
by Vpg, Upr, Ugr, Upgr the highest exponents of 2 dividing the class number of
Q(/ps /a): Q(\/p, V1), Q(\/q, VT), Q(\/P, /T, V/T), Tespectively, then vyg, >

1+ Vpg + Upr + V)

Similarly he proved this statement in case p = 2 (see [1]; Theorem 2).
Finally, Bulant has tried to find an integer n such that any compositum of
n quadratic fields has to have an even class number. He was successful and
was able to prove this is really true for n =5 (see [2]).
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Chapter 2

The ramification index of 2
being 2

This chapter deals with the compositum k of a finite number of quadratic
fields such that —1 is a square in K but 2 is not a square in K, where K is
the genus field of k in narrow sense.

The aim of this chapter is to construct a group C' of circular units of
k, which is slightly larger than the Sinnott’s group given in [23]. We find
a basis of C' and compute the index of C' in the group E of all units of £
(see Proposition 4). The main result of this paper is a lower bound for the
divisibility of [E : C] by a power of 2 (see Theorem 25). These results give
a lower bound for the divisibility of the class number of the maximal real
subfield of k£ by a power of 2.

2.1 Definition of C

Let k£ be a compositum of quadratic fields and let K be the genus field of &k
in narrow sense. We assume that v/—1 € K and /2 ¢ K. We define a set J
of signed primes ramifying in k as follows

J={p€Z;p=1(mod4), |p| is a prime ramifying in k} U {—2}.
For any p € J, let us define

|p| if p is odd, Q(/p) ifpisodd,
Nipy = o Ky = VP L
4  ifp=-2, Q(v-1) ifp=-2.

For any L C J let us denote n;, = [] ngy, K = [] Ky if L # 0 and

peL peL
Ky = Q, and finally Q" = Q((1.), where (;, = €?™/™ is a primitive nzth root
of unity. It is easy to see that K; equals K.

19
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For any L C J let us now define

1 L= 0,
1 . .
. = FiNar/k, (L= () if L={p}.p# -2,
i if L={-2),

NQL/KL(l_CL) if #L> 1,

and 1y, = Ng, /i, (er) where k, = kN Kp. It is easy to see that all e, are
units of K.

For any p € J let 0, be the generator of Gal(K;/K j\(p1). Then we denote
G = Gal(K;/Q).

Lemma 1. Let pe L C J. Then

(

—Ssgnp if L= {p}}
1-Frob(|p[, K4 .
tog * g (Ipl: K ¢q3) if L={p,q}, p#q q# -2,
Nk, /K (er) = 1 if L={p,—2}, |p| = 1(mod4),
i L= {p.~2), |p| =3 (mod ),
1-=Frob(|p[,Kr\ {p .
€\ {p} A if #L > 2,

\

where sgnp means the sign of p, Frob(|p|, Kp\(py) is the Frobenius automor-
phism of |p| in K\ /Q and t, 4 is defined by means of the Legendre symbol

as follows:
\pl)
tog = (1 ] -
i (IQ|

Proof. At first, let us suppose #L > 1. Then

NKL/KL\{p} <€L) = NQL\{p}/KL\{p} (NQL/QL\{p}<1 — <L>>

—Frob=1(lp|. L\ P}
= Natatoh /ey g (1= Crgpy) 70 T

= NQL\{p}/KL\{p}(]_ - CL\{p})l—Frob(\PLKL\{p})7

because Frob®(|p|, K1, (p}) is the identity. So the lemma is proved if #L > 2.
If L ={p,—2} then

NQ{fz}/K{ﬁ}(l — C{,Q}) =1—1
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and the third and fourth case of the lemma follows from

(1- Z-)lfFrob(\pLK{_Q}) _ {1 if [p| =1 (mod4)

—i if |p| = 3 (mod 4).

Similarly by using (y/g)'"™PPhw) = ¢, . we prove the second case. If
L = {p} the lemma follows easily. O

Lemma 2. Let LC J, 0 € G. Then

for suitable ag € Z, where o € {1, —1,1,—i} depends on the choice of L and
0.

Proof. This can be proved in the same way as Lemma 2 of [12]. O

Lemma 3. Let LC J, 0 € G. Then

n 7 =o | [ e,

scL

for suitable ag € Z, where o € {1,—1,i,—i} Nk depends on the choice of L
and o.

Proof. This is a corollary of Lemma 2 and of the fact that ng € k implies
o€ k. O

Now let us denote W the group of roots of unity of k. Since k is a
compositum of quadratic fields then it is not difficult to prove that # W | 24.
Moreover, we assume that v/2 ¢ K; and so # W | 12. Further, we need to
define the set X as follows:

X ={¢eG;&o)=1forall o € Gal(K,;/k")},

where G is the group of characters of G. Then X can be viewed as the group
of all Dirichlet characters corresponding to the maximal real subfield k™ of
k. For any ¢ € X define

Le={pe J; €(0,) = —1}.



22 THE RAMIFICATION INDEX OF 2 BEING 2

Finally, let C' denote the group generated by W and by {n7; L C J, 0 € G}
and let F denote the full group of units of k. Notice that C' contains Sinnott’s
group of circular units defined in [23]. It can be shown that these two groups
do not coincide in general.

Proposition 4. Let B = {n.; { € X, { # 1}. Then B is a basis of non-
torsion part of C' and moreover

o= (1

£eX, £#1

2- [/{Z . kLE] 1

e ) e X)) 2 # X L opt

where Q = [E : ETW] is the Hasse unit index (Q =1 if k is real) and h™ is
the class number of k™.

Proof. This can be proved in the same way as Theorem 1 and Lemma 5 of
[12]. O

2.2 Circular Units that are Squares in K

For any € € C and any ¢ € G Lemma 2 implies that 177 is up to a root of
unity the square of a unit in C. But #W | 12 and so any p € W can be
uniquely written in the form p = A (- )2, where A,§ € {1,i} and ¢ = 1.
Moreover, if #W | 4 then ¢ = 1 and if # W | 6 then A = 1. Therefore we
have the identity

77 = Ao,e) - (3(0.¢) - plo,) - (o, 2))?,

where A(o,¢),0(0,¢) € {1,i}, 0(0,¢) € {1,(3,(3} and ¥ (0, ) belongs to the
group generated by the set B. Moreover A(o,¢),d(0,¢),p(0,¢) and ¢(o,¢)
are uniquely determined by the previous identity.

Lemma 5. Let o € G. Then A(o,-)? and +(0,-) are homomorphisms, i.e.,
for any e,n € C,

A(U7 677)2 = (A(O-a 8) A(Uv 77))2’
v(o,en) = (o) ¥(o,n).

Proof. The lemma follows from the identity (en)'™° = &'771!77 and from

the definition of €!77 in the form as above. O
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Lemma 6. Let 0,7 € G and e € C. Then

Aot e)? = (A(0,e) A(T,¢))?

Proof. From the relation

5170 . (5177)0

L= 81_UT

and by decomposing €77 as at the beginning of this chapter it is easy to
see that A(o,e)A(r,e)?/A(oT,e) € {£1,+i} is a square in k. The identity

follows because +i is not a square in k and A(7,¢)? = £A(7,¢). O

Proposition 7. Let € € E be such that there exists a function f: G — K
satisfying €177 = f(0)? for any o € G. If there exists a function g : G —
{—1,1} such that fg is a crossed homomorphism, i.e., for all o,7 € G

flom)g(or) = f(o)g(a)(f(T)g(T))7,
then € or 2¢ is a square in K.

Proof. Similarly as in [12], Proposition 2, we can show that there is o € K%

and b € Q* such that b = ea? and that +b = ¢ [] p for a suitable ¢ € Q* and
peL

L C J. The proposition follows from the fact that /—1 € K; and \/p € K
for all p € J,p # —2. n

Remark 8. The sufficient condition of Proposition 7 is also necessary. If
e = n* or 2¢ = n? for a suitable n € K; then f(c) = n'~7 satisfies e!77 =
f(0)? and for any f : G — Kj; with f(0)? = €77 we have the function
g: G — {—1,1} determined by g(c) = n'=7/f(c), such that fg is a crossed
homomorphism.

Now let us denote for any 0,7 € G and for any ¢ € C

(0,7)e = Alo,9(7,€))".

Lemma 9. Let 0,7 € G and ¢ € C. Then

<U7 7_>877 = <U7 7->8<07 7->77
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Proof. The lemma follows immediately from Lemma 5. O

Proposition 10. Let € € C. Then € or 2¢ is a square in K if and only if
the following conditions are satisfied for any o, 7 € G:

(C1) (Alo,e))* =1,

(C2) (0,0)c =1,

(C3) (o,7)e = (T,0)c

(C4) 0(o,e) =" - 0(r,¢p(0,€))* = 0(7,)7~" - (0, ¥(7,€))?
(C5) (0(0,€))7" - 0(0,1)(0,€))* = 1

Proof. At first, let us suppose that there is v € K such that ¢ = 72 or
e = 272. Then

(v'77) =" = A(o,) - (0(0,¢) - p(0,€) - ¥(0,€))", (1)

and easily A(o,¢) is a square in K. It follows immediately that we have the
condition (C1) because i is not a square in K ;. Therefore (1) implies

71_0 - :t(S(O', 8) ’ @(07 5) ’ 1/}<0-7 8)' (2)
It is easy to see that

§(o,e)? if T = —i,

1 otherwise

(0(0,e)" 7 = {

and that ¢(o,£)!"7 is a third root of unity, so a square in K;. Then substi-
tuting

U(o,e)' T = Ar,¥(0,€)) - (3(7,9(0,€)) - ¢(1,8(0,€)) - (1, ¥(0,€)))* (3)

for 7 = o to the identity obtained from (2) by the application of 1 — o,
we deduce that A(o,1(0,¢)) is a square in K; but i is not a square in K.
So the condition (C2) follows. Similarly we substitute (3) to the identity
A(1=0)0=7) — (1=7)(1=9) Since ¢(-,-) is a third root of unity then

00,2 plr (0.0 _
()0(7-7 8)1_0 ’ (:0(07 w(Tu E))2
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and consequently
0(0,6)'" "7 - A(7,¥(0,€)) - (6(7, ¥(0,€)) - (T, ¥ (0,€)))?
6(1,€)'=7 - Ao, 9(7,€)) - (6(0, ¥(T,€)) - ¥(0,9(7, €)))?

By using the same arguments as above we deduce
A(r, ¥(0,¢))
Ao, ¥(7,¢€))

because this is a square in K ;. So the condition (C3) follows.
By the same way the identity y(1=?)(1=7) = ~(1-7){1=9) giyes that

Ul ¥(0,) )
—= ] eW.
<¢(0,@/}(T, €))

Since (-, -) belongs to the non-torsion group generated by B then

(1, 9(0,¢))
(o, 9(7,€))

Moreover, as (-, -) is a fourth root of unity, then

6(o,e)' "7 - (1, 9(0,€))?
0(1,e)1=7 - 6(0, (7, €))?

which implies (C4). To prove the last condition compare (1) and

Y = 5(0,6)' 7 - p(0,6) 7 - (6(0,(0,)) - (o, ¥(0,€))
(0,9(0,€)))”.

Hence using the same facts as in proving the previous condition we have the
last one.

On the other hand, suppose that the conditions (C1)-(C5) are satisfied.
Let us denote f(o) = d(0,¢) p(0,¢)(0,¢e) for any o € G. Hence, the condi-
tion (C1) implies €!77 = f(0)2. Then

=1.

=1

=1.

=1

- 51—07’ B ( f(O'T) )2
el=o(e=m)  \flo)(f(r))7) ~

Let us denote x.(o,7) = % The previous identity implies x.(o,7) =

+1. By substituting

U(1,6)'77 = Ao, 9(7,€)) - (8(0, (7, ) - (0, 9(,€)) - (0, 9(,€)))* (4)
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to the identity x.(o,7) = % and using the facts that ¢(o,¢) is a

third root of unity and (o, e) belongs to a non-torsion group, we deduce
that

Xe(o,7) = 0(o7,8) - 6(7,8) "7 - §(o,e) - 8(a,1h(1,€))? - A(o,9¢(T,€)).

The conditions (C2) and (C5) imply x.(o,0) = 1. Since the conditions (C3)
and (C4) are satisfied we have x.(o,7) = x.(7,0). This identity states that
flo) - f(r) = f(1)? - f(o) for any 0,7 € G. Hence for any p € G

ve(op.7) - xo(0.p) = flopr) — flop) f(opT)
o - flop)f(r)or fla)?f(p)  (f(T)7f(o)) f(p)
_ flopT) _ [flopr)  flpT) (5)
(f(@)f @) ) flp)  flrp)flo)m f(T)7f(p)
= Xe(pT,0) - X (P, 7).
Let us fix a basis 1, ..., 0, of G. So for any ¢ € G there is a unique V,, C
{1, ..., n} such that 0 = [] o;. We define the mapping g : G — {—1,1} by
eV
g(a) = H Xe ( H 0y, O_i> .
i€V, JEV,, j<i
Let us show that for any linear ordering < on {0y, ..., 0;} we have

g(o) = H Xe H 055 Oi | - (6)

1€Vy J€Vs, 0= 04

Indeed, any linear ordering can be obtained from the initial ordering
o1 < ... < o0, by a finite number of interchanges of neighbors. If two
orderings < and < differ just by the interchange of the couple of neighbors
0i,0; (i.e. 0; < o; but 0; > 0; and for all {0y, 0,} # {0, 0;} we have o, < 0
if and only if o), < ;) then the right hand sides of (6) are different for < and
< only if both i, 7 € V, in which case the corresponding products differ just
in two factors: the former has factors x.(7,0;) - x.(70;,0;) while the latter

has x:(7,0;) - xe(70j,0;), where 7 = 11 o). But these products
k€Vs, o <0y, 0 <0j
are the same (see (5)).
We shall show that for any 0,7 € G we have

X:(0,7) = g(o)g(T)g(oT). (7)
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We shall use the induction with respect to |V, |. If V. = () then 7 = 1 and
Xe(o,1) = 1 = g(0)% So let us assume that |V,] = m > 0 and that the
result has been proved for all 7 with |V;| < m. Let us choose ¢ € V, and
write 7 = 0,7, so |V!| = m — 1. Using (5), the induction hypothesis for 7/,
g(o;) =1 given by (6), we obtain

Xs(07 T) = X€(UJ UiT/) = XE(O-i7 7—/) : Xs(gai; TI) : Xs(ay Ui)
= X:(05,7') - glooi) - g(7') - g(o7T) - X (0, 04)
=g(1)-g(oT) - g(o0;) - X:(04,0).

So we need to show that g(o) = g(00;) - x:(04,0). On one hand, if i ¢ V,
this easily follows from the definition of g. On the other hand, if i € V,, then
for o' = oo; we have V., =V, — {i} and g(o) = g(¢’) - x-(0s,0"). Using (5)
and x.(o;,0;) = 1 we have

XE(Ua Ui) = XE(U,O-iv Oi) = XE(OJ) Ui) : XE(OJa O—z2> : XE(Oia Oi) = XE(Olv Oi)-

The definition of x.(o,7) and (7) give that fg is a crossed homomorphism
and Proposition 7 gives that € or 2¢ is a square in K ;. The proposition is
proved. O]

2.3 The Index of [C: D"

In this chapter we study the set D” of all units ¢ € C' that satisfy all condi-
tions (C1)-(C5) of Proposition 10. Our aim is to show that D" is a subgroup
of C' and to compute its index.

Lemma 11. Lete € C and let o,7 € G. Then

(,T)e: G —{-1,1}
(0,)e : G — {-1,1}

are homomorphisms.

Proof. The first identity follows from Lemma 6. The identity e!=°" = gl=¢(gl=7)?

gives that ¥(p7,e) % (p, €)*(1,€)* € W. Then by substituting
w(Tu 8)1_p = A(pa 1/)(7-7 5))(6<p7 ¢(Tv 5)) ’ ¢<p7 ¢(T, 5)) ’ ¢(P7 1/J<T7 €>)>2'
to the latter identity we have

U(p,e) (T, e) 2 B
(W) “Y(p,(re) e W
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Since the group generated by B has no torsion then
Plp ) ¥(r,¢)
v(pr )

and by applying A(o, -)? to this relation, Lemma 5 gives the second identity.
O

) ¢<P, 1/)(7—’ 5)_2 =1

for all o, p, 7 € G and for all e,n € C.

Proof. The first identity follows from Lemma 9. The second and the third
ones are easy corollaries of Lemma 11. Il

Let us now define a subgroup of the group of circular units C. Recall
that Lemma 5, Lemma 9 and Lemma 12 state that A(c,-)?,
(0,0).,75-(+) are homomorphisms C' — {—1,1}.

Definition 13. Let D be the intersection of the kernels of the following
homomorphisms C' — {—1,1} : A(o,-)?, (0,0). for all ¢ € G and r, () for
all o,7 € G.

Remark 14. Notice that D is the subgroup of all units in C' satisfying the
conditions (C1), (C2), (C3) of Proposition 10.

Lemma 15. Let 2! = [k : Q. Then
[C: D] =2%,

where a < 2l+(;)—1 ifvV—=1€k, a< l+(é)—1 if V=1 ¢ k and k is
imaginary, and a < | + (é) if k is real.

Proof. Let 7,..., 7 € G be such that their restrictions to k are generators of
Gal(k/Q). If the restrictions of 0,7 € G to k coincide then A(c,e) = A(T,¢€)
and ¢(o,e) = (7,¢) for any € € C. So D is the intersection of the kernels
A(o,-)? {(0,0). and 1, ,(-), where o, 7 runs over the subgroup of G generated
by 71, ..., ;. Moreover, using Lemma 6, Lemma 12 and Lemma 11 we obtain
that D is the intersection of the kernels of A(7;,-)?, (7, 7). for 1 <7 <[ and
oo (+), for 1 <i < j <1 If /=1 ¢ k then A(7;,-) = 1. The lemma follows
from observation that if k is imaginary and 7 is the complex conjugation
then ¢(7m,e) =1 and so (r, 7). = 1 for all € € C. O
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Lemma 16. Let us denote

Then

for any o,7,p € G and e,n € D.

Proof. 1t is easy to see that

2 -f -T — _.
5(o,e) ! = {5(0,6) if i i,

1 otherwise.

We deduce from the relation (en)!=7 = ¢!=n'=7 that
A(o,en)d(0,en)? = A(o,£)d(0. €)* A0, 1)3(0, 7).

Since A(c,e) = 1 for all ¢ € D then 6(0,en)* = §(0,¢)?6(0,n)?, hence
8(c,en)t™" = §(0,e)"78(o,m)! 7. Interchanging o and T gives §(,en)' 7 =
5(r, )8 (r,m)te.

Moreover, Lemma 6 states that ¢(7,en)'™7 = o(7,e)' 77 (r,€)' 77 and
consequently we deduce from this relation that

A(o, (7, en))d (0, d(r,en))* = Ao, ¥(7,€))d(0,9(7,€))* Ao, (7, 1))
0o, 0(m,m))%.

Similarly, interchanging ¢ and T,

A(T,9(0,en)d(T, ¢ (0, en))? = A(T,9(0,€))3(7,9(0,€))* AT, 9(0, €))
0(T, (0, €))2.

Since € € D we have 7, -(¢) = 1 which means

Ao, (7)) = A7, ¢(0, €)).

Similarly n € D gives

A(O‘, w(Ta 77)) = A(Tv ¢(U’ 77))
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and en € D gives
Ao, (T, en)) = A(7,¢(0, €n)).
Putting things together we obtain

The first identity follows.
Since op —1=0—1+ (p— 1)o then

§(r,e)P ™t = 6(7,e)7 1o(r,e)P L. (i)
Further, we use the identity

=0 (A=p\(o—1) . 1—p
1€ (e'=P) €

81—0,0

At first, we express

(") = Ap,e)" - p(p, e)* 7D - (p,e)* Y

and consequently we substitute 1 (p, £)20~7) in the relation (8) by the identity

W(ﬁ% 5>1_0)2 = (A(U,?ﬂ(p, 5)) ’ (@(va(pv 5)) ’ W@Wﬂa 5)))2>2'

Since ¢(+,-) is a third root of unity, A(o,e) = A(p,e) = A(op,e) = 1 as
e € D, and ¥¢(-,-) belongs to the non-torsion group then we obtain from (8)
the identity

8(0p.2)* = 8(0.2)*8(p, €A, 1 (p. 2))* (9)
In both cases, independently whether :™ = —i or ¢7 = ¢, this gives
8(0p,e)1 = 8(o,2)78(p, )" Ao, b(pye)) . (i)

By putting (7, €) instead of € in the relation (8) we obtain the identity

Ur,e) " () ) (o)
9(r, |

1= (10)

As before, we express

W (7,e) ") = Ap,¥(7,2))7 " - (p,(r,€))* Y
-(p,h(r,€))* Y.
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Hence, substituting

W(p,e(r,€))177)% = Ao,y (p, ¥(7,)))* - (0, 9(p, 9 (7, €)))*
’ w(o-v w(p7 Yﬁ(ﬂ 8))>4

to the identity (10) similarly as in previous case we obtain

(7, (7€) = 80, 6(7,2)) %0, 6(7,2))* - A, (7,2) "
A AEDAP YD) N
Mooy Al vlp v ) G

Finally, we express ©(c,9(p,€)) and ¢(-, €) in the relation

Y(o,€)Y(p,€) 1_T: . —2(1-7)
= )

which was obtained in the proof of Lemma 6. Since again (-,-) belongs to
the non-torsion group and (-, ) is a third root of unity then we have

o(r, 9 (op,€))* = d(r,0(0,€))*0(r, U (p, €))?
AC YDA ()
A1, 9(ap, €))

Since ¢ is in the kernel of the homomorphism 7, -(-) for all o, 7 € G then
it is easy to see that A(c,¢(7,¢)) = A(7,9(0,¢)). In order to prove the
identity s,,.-(€) = $,.+(€)S,.-(¢) we multiply the identities (i), (ii), (iii), (iv)
and use Lemma 6. Therefore we have to show that

1= A(ﬁa WT’ 6))071 ’ A(U> w(pa 6))771 ’ A(Ta w(Ua ¢(P> 5)))2 (11)
' A(va(p7¢(7_> 5)))2'

At first, expressing the relation 1(p, €)== = 4)(p, )1~} 1) a5 before
we deduce that

AT, ¥ (p, )"t Alo, (1, 9(p,€))) > _

A(U’ w(p> 5))7-71 ’ A(T7 w<07 w(p’ E)))72

Since A(7,v¢(p, €))7t = A(p,¥(7,€))°" " as € € D, we obtain that the iden-
tity (11) is equivalent to

Ao, (r,¥(p,€)))* - Alo,d(p,¥(r,€)) 7> = 1.

Hence, using the relation e!=”0-7) = (0=7)(=r) it i5 easy to see that
(1, (p,e)) = Y(p, (1, €)) which gives exactly what we need. The sec-
ond identity of the lemma follows. The third one is a consequence of the
second one using the symmetry s, .(g) = $;.,(€). O

(. (o, v(p,e)% (iv)
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Now we need to define another subgroup of C. Recall that Lemma 16
states that s, -(-) is a homomorphism D — {—1,1} for each 0,7 € G.

Definition 17. Let D’ be the intersection of the kernels of the homomor-
phisms s,,(-) : D — {—1,1} for all 0,7 € G.

Remark 18. Notice that D’ is the subgroup of all units in C satisfying the
conditions (C1), (C2), (C3), (C4) of Proposition 10.

Lemma 19. Let 2' = [k : Q]. Then
[D:D'] =2

where b < (l) ifv—1€kand b < (ZH) otherwise.

2 2

Proof. If the restrictions of 0,7 € G to k(i) coincide then s, ,(¢) = s, ,(¢) for
any p € G and € € D. Let 7y,...,7, € G be such that their restrictions to
k(i) form a basis of Gal(k(7)/Q). Lemma 16 implies that D’ is the intersection
of the kernels of s, . () for 1 <4 < j < m. The lemma follows. O

Lemma 20. Let us denote t,(g) = §(0,e)76(0,1(0,¢))*. Then

to(en) = to(e)ts(n),
tor(€) = to ()t (g)

for alle,n € D" and for all 0,7 € G.

Proof. 1t follows easily that

e
1 otherwise.

The relation (en)' =7 = 771!~ gives that A(c,-)d(o, -)? is a homomorphism
for all e,n € C. Therefore using the definition of D (namely the condition
(C1) of Proposition 10) we have §(o,-)> : D — {—1,1} is a homomorphism
for any o € G. Similarly, the identity ¢(o,en)' = = (0, €)= (0,n) =7 (see
Lemma 5) states that A(c, (0, -))d(0,v(0,-))? : C — {—1,1} is a homomor-
phism for any o € G. Hence, the definition of D (namely the condition (C2)
of Proposition 10) gives that 6(o,%(c,-))* : D — {—1,1} is a homomorphism
for any o € G. The first identity follows.

Since o7 +1= (0 + 1)7 + (7 + 1)(—1) + 2 then

§(or,e)7™ M =6(or,)7 - §(oT,e)™ - §(oT, €)% (12)
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Moreover, for p = o or p = 7 independently whether ¥ = —i or ¥ = i,
the identity §(oT,€)? = 6(0,€)%(7,€)*A(0,1(T,€))? obtained in the proof of
Lemma 16 (see the identity (11)), gives that

d(or,e)" ™t =d(0,e)""o(r, )" Ao, (7)) (13)
Therefore, putting (12) and (13) together we obtain
§(or,e)7 ™t =6(0,8)7t - 6(7,e)7 T - Ao, (7, 8)7 T - 0(r, )™ (14)

5(o, ) AT, Y(0,8)) T - 6(0,6)? - 5(T, )
- A(o, (7, €))%
As A(o,9(7,€))? = Ao,9(7,¢)) "2 and since §(o,€)* = §(0,e)~2 we have
§(or,e)7™ = 6(0,6)7t - 5(r, ) - 0(0,e) - 5(T,e)
Ao, ¥(1,e))7 " - AT, (o)) (15)

Now we use the identity (iv) obtained in the proof of Lemma 16. Hence,
changing p to 7 and 7 to o7 we obtain

6(UT7 ?/1(07', 5»2 = 5(0-7—7 ¢<U7 8))2 ’ 5(077 w(Tv g))2 ' A(UTv w((j? 1/}(7—7 8)))2
. A(oT,(0,¢))A(oT, (T, ¢€)) (16)
Ao, ¢(oT,€)) '

Further, we substitute §(o7,%(0,¢))? and §(o7,v(7,¢))? in this relation by
the identity (iii) obtained in the proof of Lemma 16 where we change p to 7
(and eventually 7 to o). Then the condition (C2) of Proposition 10 gives

d(or,¥(0T,e))* = d(0,9(0,€))* - (7, ¥(7,€))* - (0, (7, €))*

(1, d(0,€))” - A7, ¥(0,€)) - Ao, (T, 2)) (17)
AT P(0,)7 " Ao, (7, (T €))7
Ao, ¥(7,1(0,€))) 7 Ao, (0,9 (7, €))".

If we use the condition (C3) of Proposition 10 and the identity

Sor(€) = 0(7,)77 - 8(0,9(7, €))% 0(0, ) - 8(, (0, €)= 1
resulting from the definition of D', then multiplying (15) and (17) we obtain
tw(ﬁ) = ty(e) - tr(e) - Ao, (7€) - A(7,4(0,€))7"

A(r,4(0,2)) " Alo, (7, (7, €))7 - Ao, v(r,¥(0,€)))
Aor,¥(0,9(r,)))*. (18)
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It follows from Lemma 6 that

A(UTa ¢(07 w(Ta 6)))2 = A<U: ¢(0'> ¢(7-7 5)))2 ’ A(Ta T/J(Ua w(Tv 8)))2'
Hence, we have to show that
A(r,9(0,8))7 - Ao, 9(1,€))7 - A7, 0(0,¢)) 7
) A(O-’ ¢<7—7 w(T’ 5)))_2 ’ A(U7 77Z}(T7 ¢(0-7 6)»_2 : A(O', ¢(Ua @/’(T» 6)))2
A(T,9(0,9(T,€)))* = 1.

Similarly as in the proof of Lemma 16 we deduce easily from the relation
S(1-0)(1-7) — J1-1)(1=0) that

b(7,¥(0,€)) = (o, (7, €))

and so we have

Ao, ¥(1,4(0,€))) % - Ao, d(0,9(T,€)))* = L.
Further, it is easy to see that A(o,v(7,€))7 ™' - A(7,¢(0,¢))° ! =1 and we
only need to show that
A(r,d(0,e)) - Ao, (r,0(7,€))) 7 - AT, 9 (0,¥(7,€)))” = 1.

The relation ¢(7,e)1=70=9) = (7, 2)1=0=7) implies that

A(r,9(r, €))7 - (7, 9(7,€)* =7 - (7, 4 (7, €))7

Ao, (7,€)) 7 - p(o,1(7, )20 - (o, 1h(7, €) )27
At first, we express

G(1,9(7,6)) 7 = Ao, (1, 4(7,€)))? - plo, (7, 9(7,€)))*

(o, (1, 9(7, )"

=1.

Similarly we have

V(o 9(7,))" 7 = A(1,9(0,9(7,)))* - (7, ¥ (0, %(7, 2)))*
(7, U0, (7, €))) "

Putting things together and using that ¢(-,-) is a third root of unity and
¥(+,-) belongs to the non-torsion group generated by B we obtain

A(Ta w(Tv 8))1_0 ) A(Ua w(Ta w(Ta 5)))2

A(J7 w<7_7 5))177- ’ A(T> @D(U, ¢(7—? 5)))2
Recall that A(7,1(7,¢)) = 1. Hence, the identity A(c, 9 (7,€))""" = A(1,¢(0,€))"
gives

A(r,9(0,€)) ™" Ao, (7, 9(7,€))) 7 - Alr,9(0, (7, €)))* = 1.

The lemma follows immediately. ]

=1.
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Now we define another subgroup of C. Recall that Lemma 20 states that
t,(+) is a homomorphism D' — {—1,1} for every o € G.

Definition 21. Let D” be the intersection of the kernels of the homomor-
phisms t,(-) : D' — {—1,1} for all 0 € G.

Remark 22. Notice that D" is the subgroup of all units in C' satisfying all
conditions of Proposition 10, in other words D" = C' N (K% U 2K?%).

Lemma 23. Let 2! = [k : Q]. Then
[D":D"] =2°,

where ¢ < 1 —1if /=1 €k, c <lif V=1 ¢& k and k is imaginary, and
c <Il+1ifk is real

Proof. This follows from Lemma 20 similarly as Lemma 15 and Lemma 19
using the observation that if k is imaginary and 7 is the complex conjugation
then ¢, (¢) =1 for all e € C. O

2.4 The Divisibility of [E : C] by a Power of 2

In this chapter we introduce the main results of this text.

Lemma 24. Let ¢ € C. If there is v € Ky such that € = ~* or e = 272,
then & defined by &.(o) = 77 is a character on Gal(K;/k), ie., &
Gal(K;/k) — {—1,1} is a homomorphism, and v € k if and only if & is
the principal character. Moreover

£: CN(K2U2K,?) — Gal(K, k),

where £(e) = &, is a homomorphism, i.c., (o) = &.(0)&,(a) for all e,m €
CN(K;>U2K,;%) and for any o € G.

Proof. The lemma follows immediately from 1 —o7 = (1—0)+(1—7)0. O
Theorem 25. Let n = #J and 2' = [k : Q).

i) If k is real then
2217117127173 ‘ [E : C]a

it) If k is imaginary and /—1 ¢ k then

221—1—n—12—l—1 | [E : C],
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iii) If /—1 € k then
22 =l R ().

Proof. Let D" = C N (k? U 2k?), i. e. D" consists of all ¢ € C of the
form e = n? or ¢ = 2n? for a suitable n € k. Recall that from Lemma 24
and the definitions of D” and D" it follows that [D” : D"] = 2¢ where

d < n —[. Moreover, using Lemma 15, Lemma 19 and Lemma 23 we know
that [C: D" =[C:D]-[D:D'l-[D':D"]-[D": D"] = 20tttetd wwhere

P+n+1+1 ifkisreal
at+b+c+d<<SP+n+1-1 ifkisimaginary and /-1 ¢ k
P+n+l-2 if/~1ek.

From the definition of £ and D" we know that rank £/ = rank D"’. Each unit
in D" is of the form n? or 2n? for a suitable n € k. Since (2n?)-(29%) = (2n9)?
is again a square, there is a basis of D"’ where all elements but at most one are

squares. Therefore we have 222 |[E : D" if k is real and 22 ' ~2|[E : D"

if k is imaginary. The theorem follows using [E : C] = 271 O

Putting together Proposition 4 and Theorem 25 we obtain a lower bound
for the divisibility of the class number h' by a power of 2. A very explicit
special case of this result is given by the following example.

Example 26. Let us denote n = #J. Let us suppose k = K; and #{p €
J; p <0} > 1. Then
[E:C)=2"""".Qh",

which can be obtained in the same way as in [12] (see Theorem 1 and Remark
below its proof). Then Theorem 25 gives

22" ==t | B O

and consequently
22"_27n7n271 | th

because @ | 2.



Chapter 3

The ramification index of 2
being 4

The aim of this chapter is to describe the group of circular units C' of a
compositum k of quadratic fields in the last case that has not been covered
yet, namely in the case when the ramification index e of 2 equals 4. It is easy
to see that e divides 4. If e = 1 or e = 2 we already know a basis of C' and
an explicit formula for the index of C' in the full group of units F (see [12]
and [18]). The main ingredience for these results was the observation that
the action of the augmentation ideal of Z|G|, where G = Gal(k/Q), on the
quotient C'/W, where W is the group of all roots of unity in k, gives squares
in C/W. In other words, for any ¢ € C' and any o € G there is p € W
and 1 € C such that 179 = pn?. Unfortunately this key property of the
group of circular units of a compositum of quadratic field is not satisfied in
the mentioned case e = 4 (see Example 8 for k = Q(v/—1, v/2, vV/—3) below).
Therefore if e = 4 we cannot use the same approach for k. Nevertheless,
using the three maximal subfields of k whose ramification index at 2 is 2,
we are able to describe an explicit maximal independent system of units in
C. Let C be the group generated by W and by this system. Then we can
compute the index [E : CN’] and give a reasonable upper bound for the index
[C': C] (see Theorem 7 and Proposition 5).

3.1 Definitions and basic results

Let k be a compositum of quadratic fields and let K be the genus field of £
in narrow sense. We assume that both —1 and 2 are squares in K. We put

J={-1,-2,2} U{p€Z; p=1(mod4), |p| is a prime ramifying in k}.

37
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For any p € J, let

|p’ 1fp §é {_17_272}7
Nipy = 4 ifp = —1,
8 ifp=42.

For any L C J let ny be the smallest common multiple of ny, for all p € L
(by convention ng = 1), moreover similarly as in previous Chapter 2 let us
denote

(s =e¥ms Q°=Q(¢s), Ks=Q(/p;p€S), ks=knKs.

We call a subset L C J admissible if L contains at most one of the
numbers —1, 2, and —2. For any admissible set L C J we define

1 if L =10,

i if L= {—1},

7 Noryi, (1= ¢C) if L={p}, p# -1,
NQL/KL(l—CL) if #L > 1,

and n; = Ng, /i, (€1).

Let x2 and x_5 be the unique even and odd Dirichlet character of conduc-
tor 8, respectively. For each p € J — {2, -2} let x,, be the unique Dirichlet
character of conductor ny,y, so x, is odd if and only if p < 0.

Let X be the group of all even Dirichlet characters corresponding to k.
Each x € X can be written in the form y = Hpe L, Xp for a unique admissible
set L, € J. Then the conductor of x is equal to ng, .

It is easy to see that, for any admissible set . C J, a character y € X
belongs to the set of Dirichlet characters corresponding to the field &, if and
only if L, C L.

Let C' be the group of circular units of & defined in [12]. This group
contains the Sinnott’s group of circular units of k£ but it can be slightly
bigger. Similarly, for any S C J let C's be the group of circular units of kj,
defined in [12]. If L is admissible then the ramification index of 2 in kj, is
not equal to 4 and so we know the following basis of C':

Lemma 1. If L C J is admissible then a basis of Cp, is formed by the set of
all ng,, where x € X is non-trivial and satisfies L, C S.

Proof. If —1 ¢ L see see [12, Lemma 5], otherwise see [18, Proposition 1.4].
L
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Let W be the group of all roots of unity in k. Let C' be the subgroup of
the multiplicative group k* generated by W and by all conjugates of 7 for
all admissible sets L C J. Let G = Gal(k/Q) be the Galois group of k.

Lemma 2. For any e € C and any o € G there is p € W and n € C such
that e'=7 = pn?.

Proof. Consider a conjugate of 7, for an admissible set L C J. If —1 ¢ L
use [12, Lemma 2|, otherwise use [18, Lemma 1.2]. O

Lemma 3. The set W U {n.; x € X, x # 1} generales the group C.

Proof. Lemma 2 gives that C is as a group generated by W and by 7 for
all admissible sets L. C J. For any admissible set L C .J we can show that
if L # L, for all x € X then 7, can be written as a multiplicative Z-linear
combination of n;, for L C L (modulo roots of unity). If —1 ¢ L use [12,
Lemma 5], otherwise use [18, pp. 1077]. O

3.2 The index of C in C

Proposition 4. The group C of circular units of k is generated by C and
by all conjugates of Ngr,, (1 — (), where L C J is not admissible, L #
{—1,2, -2}, and the ramification index of ki, at 2 is 4.

Proof. Let E be the full group of units of k. By definition (see [15]), C' is the
intersection of £/ and a group D, where D is generated by —1, by ,/p for all
p € J such that p > 0 and /p € k, and by all conjugates of Ngz /,, (1 — (1)
for all non-empty L C J.

For a non-empty L C J, it is well-known that Ngz /4, (1 — (z) is a unit
if and only if ny is not a prime-power. Moreover, if p € J and p < 0 then
all units of kg are roots of unity. Therefore C' is the intersection of E and
a group D, where D is generated by —1, by /P for all p € J such that
p > 0and \/p € k, and by all conjugates of Nz, (1 — (1) for all admissible
non-empty L C J.

If L is not admissible and the ramification index of k; at 2 is not 4 then
ki =k, for a suitable admissible L’ C L. Hence D is generated by D and by
Ngt /i, (1 =z ) for all non-admissible L C .J such that the ramification index
of kz at 2 is 4. This norm is a unit unless L = {—1,2, —2} and v/—1,v/2 € k,
in which case k;, = Q(v/—1,v/2) is the eighth cyclotomic field. But the group
of all units of the eighth cyclotomic field is generated by (s and by

1- G

= =1+G+G =1+V2

n=¢t-
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We have ]
_ _ 1
My = 75 Neworewn (1= 6) = V2-1=y
and the proposition follows. O

Proposition 5. The group C' is of finite index in C' and C C’] < 2" where
n is the number of all L C J such that {—1,2, -2} C L and the ramification
index of k, at 2 is 4. Moreover, the Galois action of G on C'/C' is trivial.

Proof. Let T = J — {—1,2,—-2}. For any =z € {—1,2,—2} let p, be the
generator of Gal(K/Krygyy). Forany S C T we put L = SU{-1,2,-2}
and € = Ngz /i, (1 — (). Then

52 _ 61+P71 .€1+P72 X (51-1—02)7/)—1‘

For any z € {—1,2, —2} we have

gt = NQL/kTU{z}(l — (L) = N7U{a)

because Nz grue (1 — () = 1 — (ruay- \jVe have obtained £2 € C z}nd for
any 0 € G Lemma 2 gives ¢2!=9) € W . C?, which implies =7 € C. The
proposition follows by means of Proposition 4. n

3.3 A basis of C and the index of C in E

Theorem 6. The set {n;; x € X, x # 1} is a Z-basis of C, i.e. elements
of this set are multiplicatively independent and together with W generate C'.

Proof. Proposition 5 gives that C' and C has the same Z-rank. As the index
[E : C] is finite, C' and E has the same Z-rank and the Z-rank of E is
equal to the number of elements of the given set. The theorem follows from
Lemma 3. O

Having a Z-basis allows us to compute the index:
Theorem 7. We have
~ 2- [k‘ : kL ]
E-C = 2 ed ) x X2 L ol
peai=( I1 %50 ) e an,
XEX, x#1

where kT is the mazimal real subfield of k, | X | means the number of charac-
ters in X, Q = [E : W - (ENkT)] is the Hasse unit index of k and h* is the
class number of k.
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Proof. This can be proved in the same way as Theorem 1 in [12]. O

The following example shows that the estimate of the index [C' : C] can
be precise. It seems to be an interesting question whether this holds true in
general.

Example 8. Let k = Q(v/—1,/2,v/—3). Then k is the 24th cyclotomic field.
Sinnott’s formula for the index of the group of circular units of a cyclotomic
field (see Theorem 4.1 in [22]) gives that (for the field k) the Sinnott’s group
of circular units of k£ equals E and so we also have C' = E. Then Theorem
6.1 in [11] gives the following Z-basis of C: a =1—¢, 8 =1—-¢19, v = }jgi.
As 3 is a conjugate of a, we see that we obtain a - 37! by an action of the
augmentation ideal on «. As both « and (8 belong to a basis we see that
a - 371 is not a square modulo roots of unity in E. Theorem 6 states that

N2y, N{-1,—3) and ng_y 3y form a Z-basis of C. We have

ngy = (1+V2)7'=¢,
N-1,-3y = 1-C=Ca B9,
N{-2,-3} = Q- 3.

The determinant of the transition matrix gives the index [C' : C] = 2 for k,
which equals the upper bound given by Proposition 5.
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