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Ondřej POKORA

MATHEMATICAL MODELS
IN NEUROPHYSIOLOGY

MODELS OF OLFACTORY NEURONS

Dissertation

MASARYK UNIVERSITY
Faculty of Science

Department of Mathematics and Statistics

Supervisor: doc. RNDr. Petr Lánský, CSc. Brno 2009
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Abstract

In the first part, some basic properties of Fisher information about a scalar pa-

rameter are recalled and the relation to the variance of estimator of the param-

eter is explained. Some approximations of Fisher information are introduced

and their properties are derived. Further, several theoretical models for cod-

ing of odor intensity in olfactory sensory neurons are investigated. Behavior of

the models is described by stochastic processes of binding the odorant molecules

to the receptors and activation of receptor-odorant complexes. Characteristics

how well the odorant concentration can be estimated from the knowledge of re-

sponse, the concentration of activated neurons, are studied. Two different ap-

proaches in search for optimal odorant concentration are used, the first one uses

Fisher information and its approximations, the other one suggests to use some

information-theory measures. These measures of optimality are computed and

applied to locate the odorant concentration which is most suitable for coding.

The results are compared with the classical deterministic approach which judges

the odorant concentration optimality via steepness of the input-output (transfer)

function. The conclusion is, that the most suitable signal, from the point of view

of its identification, is not unique and the same holds for most informative signal.

The methods are illustrated on realistic models of olfactory sensory neurons, too.



Abstrakt

V prvnı́ části této práce jsou zmı́něny některé základnı́ vlastnosti Fisherovy mı́ry

informace skalárnı́ho parametru a je vysvětlena spojitost s rozptylem odhadu

tohoto parametru. Jsou zadefinovány některé aproximace Fisherovy mı́ry in-

formace a odvozeny jejich vlastnosti. Dále jsou zkoumány některé teoretické

modely pro kódovánı́ intenzity odorantu v olfaktornı́ch sensorických neuronech.

Chovánı́ těchto modelů je popsáno pomocı́ náhodných procesů vázánı́ molekul

odorantu na receptory a aktivace vzniklých komplexů. Jsou studovány charak-

teristiky, popisujı́cı́ jak přesně lze koncentraci odorantu určit ze znalosti odpově-

di, koncentrace aktivovaných receptorů. K tomu jsou užity dva odlišné přı́stupy:

prvnı́ z nich použı́vá Fisherovu mı́ru informace a jejı́ aproximace, druhý navrhuje

použitı́ některých veličin z teorie informace. Tato kritéria optimality jsou spo-

čı́tána a aplikována k určenı́ koncentrace odorantu, která je nejvhodnějšı́ pro

kódovánı́. Výsledky jsou porovnány s klasickým deterministickým přı́stupem,

který posuzuje optimalitu koncentrace odorantu podle strmosti přenosové fun-

kce. Závěrem je, že nejvhodnějšı́ signál nenı́ určen jednoznačně, a to jak z hledis-

ka jeho identifikace, tak z hlediska přenosu maxima informace. Metody jsou také

demonstrovány na realistických modelech olfaktornı́ch neuronů.
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List of symbols

E(X) expected value, mean of random variable X

Eθ(X) expected value of random variable X by given parameter θ

Var(X) variance, dispersion of random variable X

SD(X) standard deviation of X , SD(X)=
√

Var(X)

N(µ, σ2) normal (Gaussian) distribution with mean µ and variance σ2

U(a, b) continuous uniform distribution on interval (a, b), a < b

B(a, b) Beta distribution with parameters a > 0 and b > 0

Bi(n, θ) binomial distribution with parameters n ∈ N, θ ∈ [0, 1]

P{E} probability of event E

{Xt; t ≥ 0} continuous-time random process

X|y; X|Y =y random variable X conditioned by event Y =y

g(x; θ) probability density function of random variable X

with distribution dependent on scalar parameter θ

g(x|y) probability density function of X|Y =y

J(θ); JX(θ) Fisher information about parameter θ (in random variable X)

Jk(θ); JX
k (θ) approximation of JX(θ) specified by index k

ln x natural logarithm (of base e) of x

ex; exp{x} natural exponential function of x

pFq(a , b; x) generalized hypergeometric function at x

Γ(x) Gamma function at x

o(g(t)) “little-o”, represents function f(t) such that lim
t→∞

f(t)/g(t) = 0

(Ω,A, P) probability space

L2(Ω,A, P) set of real random variables defined upon (Ω,A, P)

with finite second moments

〈X, Y 〉 inner product of random variables X, Y in L2(Ω,A, P) space
∫

M
dµ Lebesgue integral with respect to measure µ

A odorant

Ā degraded odorant

R free (unbound) receptor

C activated signaling receptor-odorant complex

C∗ inactive receptor-odorant complex
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Introduction 1
Characterization of the input-output properties of sensory neurons and their mo-

dels is commonly done by using the so called input-output response functions,

R(s), in which the output is plotted against the strength of the signal, s. The out-

put is usually the spiking frequency, or rate of firing, but it can be also the activity

or level of any intermediate variable in the transduction cascade, e.g. concentra-

tion of activated receptors, effector enzyme concentration, ionic channel activity

or receptor potential. The response curves are usually monotonously increasing

functions (most often of sigmoid shape) assigning a unique response to an input

signal (see Figure 1.1 for illustration). In these curves, there are two special points

– the threshold below which the neuron does not respond or only a spontaneous

activity, rmin, is detected and the first level of the signal at which the response,

rmax, is saturated. The range of signals between threshold and saturation is called

dynamic (coding) range D. For formal treatment it is convenient to scale the range

of responses, [rmin, rmax], into interval [0, 1] or [0, rmax].

The intuitive concept of just noticeable difference has been deeply studied in

psychophysics. This concept is also implicitly involved in understanding of sig-

nal optimality in neurons. Having the transfer function R(s) and minimum de-

tectable increment ε of the response, we can calculate ∆s which is the just notice-

able difference in the signal. Following from the model given by the response

curve, ∆s depends on the slope of the response curve. In the case of an abstract

linear response curve, R(s) = s/D, we have ∆s = Dε. If the response curve

is nonlinear (for example sigmoidal as in Figure 1.1) we can see that ∆s varies

along D and the smallest values of the just noticeable difference in the signal are

achieved where the response curve is steepest. Therefore the stimulus intensity

for which the signal is optimal, that is the best detectable, is where the slope of

the transfer function is highest. This measure of signal optimality is based on de-

terministic transformation of the signal into a response. In other words it applies

to situations in which to each signal s corresponds a deterministically unique re-

sponse R(s).

However, in practice, an identical signal does not always yield the same re-

sponse. The variability can be intrinsic (on the way from signal to response) or

extrinsic (in the stimulus or when reading the response). These two kinds of

9



1. Introduction

s

R(s)

D

rmax

rmin

ǫ

ǫ

∆s ∆s

Figure 1.1: A schematic example of transfer function. The dynamic range D, threshold
response rmin and maximal discharge rmax are given. The size of the just noticeable dif-
ference ∆s in the signal corresponding to the just noticeable difference ε in the response
depends on the slope of the transfer function and is smallest where the slope is highest.

variability are not distinguished here and are collectively considered as noise

acting upon the signal-to-response transfer. The presence of noise complicates

the concept of signal optimality based on the just noticeable difference. Not only

a fixed response (e.g., firing rate) is assigned to every level of the stimulus (as

in the classical frequency coding schema), but also a probability distribution of

the responses. The noise causes two situations which should be avoided: differ-

ence in the responses is due to the noise and not to the signal-false alarm, the

signals are different but the difference is not noticed in the response-missed sig-

nal. To quantify these effects a new measures for signal optimality is required.

The main aim of this thesis is to propose and investigate alternative measures

of signal optimality, that can be applied to noisy transfer in olfactory sensory

neurons. It means, the measures have to take into account both factors – the slope

of the transfer function and the amplitude of the noise. As a general measure of

signal optimality in this case, Fisher information, which has become a common

tool in computational neuroscience, is proposed. This measure is extended by

some approximations of Fisher information, which are easier for computation. Other

group of applied criteria consists of different measures of transferred information,

defined in theory of information.

In Chapter 2, some essential theoretical properties of Fisher information are

recalled. The inverse of Fisher information J(θ) about parameter θ gives lower

bound for variance of any regular estimator θ̂ of the parameter θ of distribution of

10



1. Introduction

the response. This fact is used as a recipe how to find the signal estimable with the

highest precision. In general, the computation of Fisher information is difficult.

Some computationally simpler approximations Jk(θ) of Fisher information are

suggested and their relations with Fisher information are derived. Some of the

formal mathematical tools reappear in Chapter 3 and Chapter 4 again. This is due

to the fact that these chapters are based on already published articles and their

structure was designed as individual presentation.

Chapter 3 consists of contents of articles [1, 2], extended by computation of

a new criterion. Three theoretical models of concentration detector and a model

of flux detector are described. Behavior of the systems is described by stochas-

tic processes of binding the odorant molecules to the receptors and their activa-

tion. Characteristics how well the odorant concentration can be estimated from

the knowledge of response, the number of activated neurons, are studied. For

each model, the steady-state distribution of the number of activated receptors is

derived and the criteria of the signal optimality are computed and compared with

deterministic result. The contribution of the author is derivation of steady-state

distribution of the number of activated receptors in dependency on the odorant

intensity and computation of criteria of the signal optimality, introduced in Chap-

ter 2.

Chapter 4 contains mainly extended text of article [4]. Some earlier ideas can

be found in article [3], too. The aim of this chapter is to determine the stimu-

lus intensities which can be considered as the most important from two different

points of view: transferring as much information as possible and coding the in-

tensity as precisely as possible. These two problems are very different because,

for example, an informative signal may be difficult to identify. It is shown, that

the role of noise is crucial in both problems. To obtain the range of stimuli which

are the best identified, measures based on Fisher information are proposed, as

known from the theory of statistical inference. To classify the most important

stimuli from the point of view of information transfer, methods based on infor-

mation theory are suggested. It is presented, that both the most identifiable signal

and the most informative signal are not unique. To study this, a generic model

of input-output transfer function is analyzed under the influence of several dif-

ferent types of noise. Finally, the methods are illustrated on a biophysical model

and empirical data pertaining to olfactory sensory neurons. The contribution of

the author is the analysis of quality of the signal with respect to statistical infer-

ence based on Fisher information and its approximation described in Chapter 2,

the comparison of these criteria with the measures based on information-theory

and verification of the methodology on realistic models.

11



Fisher information
and its approximation 2
In this chapter, theoretical statements about Fisher information are given and

their connections with variance of a parameter estimator are explained. Further,

some new approximations of Fisher information are introduced and their relation

with Fisher information is derived.

2.1 Fisher information and its properties

In this section, only basic definitions and theorems from theory of estimation are

recalled; see [7, 49] for details. Let us denote L2(Ω,A, P) the set of real random

variables defined upon the same probability space (Ω,A, P), which have finite

second moments, i.e.

|E(X Y )| <∞ for X, Y ∈ L2(Ω,A, P) . (2.1)

Two random variables X, Y ∈ L2(Ω,A, P) are equivalent, if they are equal almost

everywhere with respect to measure µ, i.e.

µ ({ω ∈ Ω; X(ω) 6= Y (ω)}) = 0 . (2.2)

In this space, for X, Y ∈ L2(Ω,A, P) let us define inner product

〈X, Y 〉 = E(X Y ) . (2.3)

In this dissertation it is dealt with such random variables X ∈ L2(Ω,A, P)

which have probability density function f(x; θ) with respect to some countably

additive measure µ. The probability density f(x; θ) is assumed to be dependent

on a scalar parameter θ ∈ Θ. Thus, the inner product defined by (2.3) can be

rewritten explicitly as

〈X, Y 〉 = Eθ(X Y ) . (2.4)

Definition 1. Class of probability density functions {f(x; θ); θ ∈ Θ} is called reg-

ular if following conditions hold:

(i) parametric space Θ is open set and Θ 6= ∅ ,

12



2. Fisher information and its approximation 2.1. Fisher information and its properties

(ii) support M = {x ∈ (−∞,∞); f(x; θ) > 0} does not depend on parameter θ,

(iii) for almost all x ∈M with respect to measure µ(x), finite derivative
∂f(x; θ)

∂θ

exists,

∣
∣
∣
∣

∂f(x; θ)

∂θ

∣
∣
∣
∣
<∞ ,

(iv) for all θ ∈ Θ :

∫

M

∂f(x; θ)

∂θ
dµ(x) = 0 ,

(v) value JX(θ) = Eθ

((
∂ ln f(X; θ)

∂θ

)2
)

holds 0 < JX(θ) <∞ .

An estimator θ̂ of parameter θ in is some function θ̂ = H(X) of random vari-

able X . It is a random variable again and it depends on actual value of parame-

ter θ.

Definition 2. Estimator θ̂ = H(X) of parameter θ in random variable X with

probability density function f(x; θ) is called regular if following conditions hold:

(vi) the class of probability density functions {f(x; θ); θ ∈ Θ} is regular, i.e. it

satisfies conditions (i)–(v) on page 13,

(vii) θ̂ is unbiased, Eθ

(

θ̂
)

= θ ,

(viii) for all θ ∈ Θ :

∫

M

H(x)
∂f(x; θ)

∂θ
dµ(x) =

∂

∂θ

∫

M

H(x)f(x; θ)dµ(x) .

Condition (iv) of Definition 1 says that the exchange of order of derivative and

integral in relation

0 =
∂

∂θ

∫

M

f(x; θ)dµ(x) =
∂

∂θ

〈

f(X; θ),
1

f(X; θ)

〉

=

〈
∂f(X; θ)

∂θ
,

1

f(X; θ)

〉

(2.5)

is justified. Similarly, (viii) of Definition 2 can be rewritten in form

∂

∂θ

〈
H(X), 1

〉
=

〈

H(X) · ∂f(X; θ)

∂θ
,

1

f(X; θ)

〉

. (2.6)

Definition 3. The value

JX(θ) = Eθ

((
∂ ln f(X; θ)

∂θ

)2
)

=

〈
∂ ln f(X; θ)

∂θ
,
∂ ln f(X; θ)

∂θ

〉

(2.7)

is called Fisher information about parameter θ in random variable X .

13



2. Fisher information and its approximation 2.1. Fisher information and its properties

Fisher information is not measure of information in the sense of the theory

of information (e.g. like entropy). However, it gives how much “information”

is transferred into the distribution of X when the parameter θ changes. In other

words, it indicates how precisely the change in parameter can be identified (es-

timated) from the knowledge of the changed distribution. This point of view is

induced by following theorem, which was published in [18].

Theorem 4 (Cramér-Rao). Let θ̂ = H(X) be regular estimator of parameter θ with

finite second moment. Then, for all θ ∈ Θ following statement is fulfilled,

1

JX(θ)
≤ Var

(

θ̂
)

. (2.8)

Inequality (2.8) is called Cramér-Rao inequality and gives the lower bound for

variance of any regular estimator of the parameter.

Proof. Let us start with Cauchy-Schwarz inequality

〈

θ̂ − Eθ

(

θ̂
)

,
∂ ln f(X; θ)

∂θ

〉2

≤

≤
〈

θ̂ − Eθ

(

θ̂
)

, θ̂ − Eθ

(

θ̂
)〉

·
〈

∂ ln f(X; θ)

∂θ
,
∂ ln f(X; θ)

∂θ

〉

, (2.9)

where the right hand side is equal to product Var

(

θ̂
)

·JX(θ). Using relations (2.5)

and (2.6), computation of the inner product on the left hand side of (2.9) gives

〈

θ̂ − Eθ

(

θ̂
)

,
∂ ln f(X; θ)

∂θ

〉

=

〈

H(X),
∂ ln f(X; θ)

∂θ

〉

− θ

〈

1,
∂ ln f(X; θ)

∂θ

〉

=

=

〈

H(X) · ∂f(X; θ)

∂θ
,

1

f(X; θ)

〉

− θ

〈
∂f(X; θ)

∂θ
,

1

f(X; θ)

〉

︸ ︷︷ ︸

0

=

=
∂

∂θ

〈
H(X), 1

〉
=

∂

∂θ
Eθ(H(X)) =

∂

∂θ
θ = 1 . (2.10)

After assignment into (2.9) and rearrangement of the terms, inequality (2.8) is

obtained.

Some authors give more general statement for θ̂ = H(X) which does not need

to be unbiased estimator of θ. The proof of this statement is straightforward anal-

ogy of the proof of the previous Theorem.

14



2. Fisher information and its approximation 2.2. Approximation of Fisher information

Theorem 5 (Cramér-Rao). Let θ̂ = H(X) be an estimator of parametric function of θ

and let it have finite second moment. If conditions (vi) and (viii) on page 13 are fulfilled

and derivative
∂Eθ(θ̂)

∂θ
exists for all θ ∈ Θ, then, for all θ ∈ Θ following statement is

fulfilled,

1

JX(θ)




∂Eθ

(

θ̂
)

∂θ





2

≤ Var

(

θ̂
)

. (2.11)

Assuming we know the best estimator θ̂ = H(X) of θ in the sense of minimal

variance (even if there is no general method how to find this estimator), Cramér-

-Rao Theorem 4 can be seen as relation which gives the quality of estimator θ̂ as

a function of the true value of parameter θ. The idea of analysing Fisher informa-

tion JX(θ) as a function of θ to find the optimal value of θ, i.e. the value for which

the best estimator θ̂ has the lowest variance, is applied and further discussed in

Chapters 3 and 4.

Necessary condition on the distribution of X dependent on a parameter θ for

existence of an estimator of θ, which holds equality in Cramér-Rao inequality,

gives next theorem. Its proof can be found e.g. in [7].

Theorem 6. If regular estimator θ̂ = H(X) of parameter θ satisfies equality

Var

(

θ̂
)

=
(
JX(θ)

)
−1

for all θ ∈ Θ , (2.12)

then the probability density function has form

f(x; θ) = exp {c(θ)H(x)− b(θ) + a(x)} , (2.13)

where a(x), b(θ), c(θ) are some functions, fulfilling relation

dc(θ)

dθ
·db(θ)

dθ
=

1

θ
. (2.14)

Having the form (2.13), probability density function f(x; θ) belongs to expo-

nential class with respect to parameter θ, for details see Definition 12 and Re-

mark 13. Let us only briefly recall the sufficient condition for achieving equal-

ity (2.12). Theorems of Lehmann-Scheffé and Rao-Blackwell give a recipe where to

search for such an estimator: this regular estimator θ̂ should be a complete sufficient

statistics for θ in X .

2.2 Approximation of Fisher information

In general, it is difficult task to compute the Fisher information analytically. Usu-

ally the integral has to be computed numerically. Moreover, having only mea-

sured data without the knowledge of their distribution (which is a typical situ-

ation ), it is impossible to compute the Fisher information without estimation of

15



2. Fisher information and its approximation 2.2. Approximation of Fisher information

the probability density function. These reasons lead to search for some approx-

imation of the Fisher information. Following definition introduce a sequence of

such approximations. It is an extension of definition of approximation JX
2 (θ),

which was already used by several authors. For references, see Chapters 3 and 4.

Definition 7. Let X be random variable with probability density function f(x; θ)

dependent on a scalar parameter θ ∈ Θ. For k = 2, 3, . . . the sequence of approxi-

mations is defined,

JX
k (θ) =

1

Var(Xk−1)

(

∂E
(
Xk−1

)

∂θ

)2

. (2.15)

For k = 2, 3, . . ., let us introduce a sequence of conditions similar to rela-

tion (2.6),

∂

∂θ

〈
Xk−1, 1

〉
=

∂

∂θ

〈

Xk−1 · f(x; θ),
1

f(x; θ)

〉

=

〈
∂

∂θ

(
Xk−1 · f(x; θ)

)
,

1

f(x; θ)

〉

.

(2.16)

Following theorem says that approximations JX
k (θ) given by Definition 7 are

lower bounds for Fisher information JX(θ).

Theorem 8. Let X ∈ L2(Ω,A, P) be random variable with probability density function

f(x; θ) dependent on a scalar parameter θ ∈ Θ. If the class {f(x; θ); θ ∈ Θ} satis-

fies regularity conditions (i)–(v) of Definition 1, then, for those k = 2, 3, . . . for which

relation (2.16) is satisfied for all θ ∈ Θ, there is inequality

JX
k (θ) ≤ JX(θ) for all θ ∈ Θ . (2.17)

Proof. The principal idea of proof is similar to that one of proof of Cramér-Rao

Theorem 4 and it uses Cauchy-Schwarz inequality

〈

Xk−1 − Eθ

(
Xk−1

)
,
∂ ln f(X; θ)

∂θ

〉2

≤

≤
〈

Xk−1 − Eθ

(
Xk−1

)
, Xk−1 − Eθ

(
Xk−1

)
〉

·
〈

∂ ln f(X; θ)

∂θ
,
∂ ln f(X; θ)

∂θ

〉

(2.18)

for k = 1, 2, . . ., where f(X; θ) denotes the probability density function of X with

respect to the parameter θ. It is easy to verify that the right hand side of (2.18) is

equal to the product Var
(
Xk−1

)
JX(θ) of variance of Xk−1 and Fisher information
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2. Fisher information and its approximation 2.2. Approximation of Fisher information

about θ in X . Further, let us compute the inner product on the left hand side

of (2.18) using relations (2.5) and (2.16),

〈

Xk−1 − Eθ

(
Xk−1

)
,
∂ ln f(X; θ)

∂θ

〉

=

=

〈

Xk−1,
∂ ln f(X; θ)

∂θ

〉

−
〈

Eθ

(
Xk−1

)
,
∂ ln f(X; θ)

∂θ

〉

=

=

〈

Xk−1 · ∂f(X; θ)

∂θ
,

1

f(X; θ)

〉

− Eθ

(
Xk−1

)
·
〈

∂f(X; θ)

∂θ
,

1

f(X; θ)

〉

︸ ︷︷ ︸

0

=

=

〈

Xk−1 · ∂f(X; θ)

∂θ
,

1

f(X; θ)

〉

=

〈
∂

∂θ

(

Xk−1 · f(X; θ)
)

,
1

f(X; θ)

〉

=

=
∂

∂θ

〈

Xk−1 · f(X; θ),
1

f(X; θ)

〉

=
∂

∂θ

〈
Xk−1, 1

〉
=

∂Eθ

(
Xk−1

)

∂θ
. (2.19)

Finally, substituting (2.19) into left hand side of (2.18) and dividing by Var
(
Xk−1

)

the following inequality is obtained,

1

Var(Xk−1)

(

∂Eθ

(
Xk−1

)

∂θ

)2

≤
〈

∂ ln f(X; θ)

∂θ
,
∂ ln f(X; θ)

∂θ

〉

, (2.20)

which gives the statement of the theorem.

Lemma 9. Let X ∈ L2(Ω,A, P) be random variable with probability density function

f(x; θ) dependent on a scalar parameter θ ∈ Θ. If the class {f(x; θ); θ ∈ Θ} satisfies

regularity conditions (i)–(v) of Definition 1 and if for all θ ∈ Θ relation (2.16) is fulfilled

for some k ∈ {2, 3, . . .}, then, there is equality

JX
k (θ) = JX(θ) for all θ ∈ Θ (2.21)

if and only if
∂ ln f(x; θ)

∂θ
= r(θ)·

(
xk−1 − Eθ

(
Xk−1

))
(2.22)

for some function r(θ).

Proof. Equality in Cauchy-Schwarz inequality (2.18) is achieved if and only if

functions Xk − Eθ

(
Xk
)

and
∂ ln f

∂θ
are linearly dependent. Omitting the irrele-

vant case of null function (which means that f(x; θ) = f(x) does not depend on

parameter θ), it means that

∂ ln f(x; θ)

∂θ
= r(θ)·

(
xk−1 − Eθ

(
Xk−1

))
, (2.23)

where r(θ) is a constant or a function dependent on θ only.
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2. Fisher information and its approximation 2.2. Approximation of Fisher information

Lemma 10. Under the same conditions as in Lemma 9, the following conditions on

the probability density function are equivalent:

(i) for some function r(θ),

∂ ln f(x; θ)

∂θ
= r(θ)·

(
xk−1 − Eθ

(
Xk−1

))
; (2.24)

(ii) for some functions a(x), b(θ) and c(θ), f(x; θ) has form

f(x; θ) = exp
{
xk−1c(θ)− b(θ) + a(x)

}
. (2.25)

Proof. (i)⇒ (ii): Let us assume that the derivative of ln f(x; θ) with respect to θ can

be rewritten in form (2.24). Integrating (2.24) with respect to θ (over the support

M of x) and using notation

c(θ) =

∫

M

r(θ)dθ , b(θ) =

∫

M

r(θ)Eθ

(
Xk−1

)
dθ (2.26)

it gives

ln f(x; θ) = xk−1c(θ)− b(θ) + a(x) , (2.27)

where a(x) is the integral constant (can be a function of x). Taking the exponential

of (2.27), the expression (2.25) is obtained.

(ii) ⇒ (i): Assuming the form (2.25) of f(x; θ), derivative of its logarithm is

directly computed,

∂ ln f(x; θ)

∂θ
= xk−1 dc(θ)

dθ
− db(θ)

dθ
. (2.28)

Let us recall the relation (2.5), which implies that

〈
∂ ln f(x; θ)

∂θ
, 1

〉

=
∂

∂θ
〈1, 1〉 = 0 . (2.29)

This property applied on (2.28) gives relation

db(θ)

dθ
= Eθ

(
Xk−1

) dc(θ)

dθ
. (2.30)

Finally, substituting (2.30) into (2.28) and denoting r(θ) =
dc(θ)

dθ
, the expres-

sion (2.24) for
∂ ln f(x; θ)

∂θ
is obtained.
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2. Fisher information and its approximation 2.2. Approximation of Fisher information

Theorem 11. Let X ∈ L2(Ω,A, P) be random variable with probability density func-

tion f(x; θ) dependent on a scalar parameter θ ∈ Θ. If the class {f(x; θ); θ ∈ Θ} satisfies

regularity conditions (i)–(v) of Definition 1, then, for those k = 2, 3, . . . for which rela-

tion (2.16) is satisfied for all θ ∈ Θ, equality

JX
k (θ) = JX(θ) for all θ ∈ Θ (2.31)

is fulfilled if and only if the probability density function f(x; θ) of random variable X has

the form

f(x; θ) = exp
{
xk−1c(θ)− b(θ) + a(x)

}
(2.32)

for some functions a(x), b(θ), c(θ).

Proof. This theorem is direct consequence of joint statements of Lemma 9 and

Lemma 10. The way of proof follows the idea of equivalent conditions for holding

the equality JX(θ) = JX
2 (θ) published in [44].

Definition 12. Random variable X has a distribution belonging to exponential

class with respect to parameter θ and with power k, k = 1, 2, . . ., if probability

density function of X takes the form

f(x; θ) = exp
{
xkc(θ)− b(θ) + a(x)

}
(2.33)

for some functions a(x), b(θ), c(θ).

Let us note, that form (2.33) is equal to (2.13) with estimator H(x) = xk. De-

finition 12 allows us to formulate the statement of Theorem 11 by equivalence:

JX
k (θ) = JX(θ) for all θ ∈ Θ if and only if f(x; θ) belongs to the exponential class

with respect to parameter θ and with power k − 1.

Remark 13. In [53], the exponential class is defined as probability density func-

tions of the form

f(x; θ, φ) = exp

{
xθ − b(θ)

a(φ)
+ c(x, φ)

}

, (2.34)

where φ is nuisance parameter. Knowing φ, it is called exponential class with

canonical parameter θ. After necessary change of notation, it leads to exponential

class with power 1 by Definition 12 with k = 1.

Example 14. Let us suppose that random variable X has Gaussian distribution

X ∼ N(µ, σ2) with known variance σ2. Fisher information about the unknown

mean value µ,

JX(µ) =
1

σ2
, (2.35)
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Figure 2.1: Fisher information JX(µ) (dashed curve 1) and its approximations JX
k (µ) for

k = 3, 4, 5, 6 (curves 3–6) computed from random variable X ∼ N(µ, σ2 = 1).

does not depend on the true value µ (it means, all values of mean are estimable

with equal accuracy, which only depends on the variance) and its approximations

for k = 2, 3, 4 are equal to

JX
2 (µ) =

1

σ2
, (2.36)

JX
3 (µ) =

2µ2

2µ2σ2 + σ4
, (2.37)

JX
4 (µ) =

3 (µ2 + σ2)
2

3µ4σ2 + 12µ2σ4 + 5σ6
. (2.38)

Fisher information JX(µ) and approximations JX
k (µ) for k = 3, 4, 5, 6 are depicted

in Figure 2.1. The approximation JX
2 (µ) is accurate, JX

2 (µ) = JX(µ) = σ−2. This

result corresponds with the statement of Theorem 11, because Gaussian distri-

bution belongs to the exponential class with respect to parameter µ with power

k = 1, e.g. for σ2 = 1, probability density function is

f(x; µ) = exp

{

x1µ− µ2

2
− x2

2
− ln 2π

2

}

. (2.39)

Example 15. Let us suppose that random variable X has Gaussian distribution

X ∼ N(µ, σ2) with known mean µ. Fisher information about the unknown stan-

dard deviation σ,

JX(σ) =
2

σ2
, (2.40)
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Figure 2.2: (a) Fisher information JX(σ) (dashed curve 1) and its approximations JX
k (µ)

for k = 3, 4, 5, 6 (curves 3–6) computed from random variable X ∼ N(µ = 1, σ2). (b) De-
tail of (a).

depends on the true value σ (the larger the true variance is the worse estimate of

the standard deviation can be achieved) and its approximations for k = 2, 3, 4 are

equal to

JX
2 (σ) = 0 , (2.41)

JX
3 (σ) =

2

2µ2 + σ2
, (2.42)

JX
4 (σ) =

12µ2

3µ4 + 12µ2σ2 + 5σ4
. (2.43)

Fisher information JX(µ) and approximations JX
k (µ) for k = 3, 4, 5, 6 are depicted

in Figure 2.2. The approximation JX
2 (µ) gives no information about the quality of

estimate of σ, JX
2 (µ) is accurate for µ = 0.

Example 16. As the last example, let us assume random variable X with Gaussian

distribution X ∼ N(µ(θ), σ2(θ)) with both the mean and the variance dependent

on a parameter θ > 0,

µ(θ) =
θ

θ + 1
, σ2(θ) =

θ

(θ + 1)2
. (2.44)

Fisher information about the parameter θ and its approximations for k = 2, 3 are
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Figure 2.3: Both figures depict Fisher information JX(θ) (dashed curve 1) and its
approximations JX

k (θ) for k = 2, 3, 4, 5, 6 (curves 2–6) computed from random variable

X ∼ N

(
θ

θ+1 , θ
(θ+1)2

)

with coefficient of variation 1/
√

θ dependent on parameter θ > 0.

The horizontal axes have logarithmic scales.

equal to

JX(θ) =
θ2 + 1

2θ2(θ + 1)2
, (2.45)

JX
2 (θ) =

1

θ(θ + 1)2
, (2.46)

JX
3 (θ) =

1

2θ2 + 4θ3
. (2.47)

Fisher information JX(µ) and approximations JX
k (µ) for k = 2, 3, 4, 5, 6 are de-

picted in Figure 2.3.

Considering the Definition 7 and Theorem 11 one could expect that the ap-

proximations JX
k (θ) would be ordered (and would converge to the Fisher infor-

mation). But, this is not true in general, as can be seen on results of preceding

examples. However, some kinds of asymptotical ordering of JX(θ) and conver-

gence to JX(θ) can be seen in Figure 2.1, Figure 2.2 and Figure 2.3. These ordering

and convergence differ case to case.

22



Models of olfactory neurons 3
This chapter consists of contents of articles [1, 2], extended by computation of

a new criterion. Some theoretical models of olfactory neurons are described using

stochastic processes, the steady-state distribution of number of activated recep-

tors and criteria of the signal optimality are derived and compared with known

results.

3.1 Introduction

Signal processing in olfactory systems is initialized by binding of odorant mole-

cules to receptor molecules embedded in the membranes of sensory neurons.

Binding of odorants and receptor activation trigger a sequence of biochemical

events that result in the opening of ionic channels, the generation of receptor

potential which triggers a train of action potentials. Our models of the bind-

ing and activation of receptor sites are based on models proposed by Beidler [9],

Brown and Rothery [13], Cleland and Linster [17], Kaissling [30, 29], Lánský et

al. [42, 41], Lauffenburger and Linderman [46], Mankin and Mayer [50], Mau-

rin [51], Rospars et al. [62, 60]. The models can be, in general, classified into

two categories, concentration detectors and flux detectors. In the concentration

detector models it is assumed that the neuronal membrane is directly exposed

to the odorant molecules present in the external space. In other words, it is as-

sumed that the transfer of odorant molecules between the external space and

the perireceptor space is very fast and reversible. Thus the odorant concentra-

tions in both compartments are the same. We investigate three types of the con-

centration detectors which differ in the binding and activation mechanisms. In

the flux detector model it is assumed that the transfer of odorants from the exter-

nal to the perireceptor space is relatively slow and irreversible. Here, the degra-

dation must be included to compensate for the fact that no possible outflow of

the odorant occurs (see [30] for details).

All presented models aim to study theoretically how the concentration of

an odorant influences the steady-state number of activated receptor proteins and

how precisely the number of activated receptors can code the intensity of the
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Figure 3.1: Two concepts in search for the optimal odorant concentration for the ol-
factory neuron. The solid line describes the dependency between the odorant log-con-
centration, s (horizontal axis), and the response, the count of activated receptors (ver-
tical axis). (a) Deterministic approach is based on the slope of the input-output func-
tion C(s) (solid line). (b) Stochastic approach is based on the statistical properties of
the response; the mean response E(C(s)) (solid line) accompanied by standard deviations
E(C(s))± SD(C(s)) (dashed curves) are plotted. Dotted lines denotes the connection be-
tween change of response ε and corresponding change ∆ of the signal. For details see
text.

odorant. This is done either by investigating the classical deterministic models or

by using the statistical properties of the responses to the different concentrations

of the odorant. Under the statistical approach the behaviour of the number of

activated receptors is represented as a stochastic process with the odorant con-

centration as a parameter. Such a description was used for example by Arányi

and Tóth [8], Gurewich et al. [23], Kurtz [38], Lam and Lampard [39], Lánský and

Rospars [40], McNeil and Schach [54] and Tuckwell [67].

In the models, as well as in reality, neurons do not code all the concentrations

of odorant equally well. Here we compare the classical approach to the optimum

signal determination with the definition based on the application of Fisher in-

formation measure. Application of Fisher information in studies on the neural

computation has become a common tool recently; for example see Brunel and

Nadal [14], Johnson and Ray [28], Lánský et al. [45, 43], Sanchez-Montanes and

Pearce [64], Wilke and Eurich [68].

Both the deterministic and the stochastic concepts are described schematically

in Figure 3.1. The classical deterministic approach is depicted in Figure 3.1a,

where a unique response, C(s), is plotted against the odorant log-concentrati-
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3. Models of olfactory neurons 3.2. Models

on, s. The term “log-concentration” is meant as a quantity of molecules related to

a volume unit and expressed in natural logarithmic scale. Two equal changes ε in

response, the number of activated receptors C(s), are caused by different changes

in corresponding odorant concentrations, ∆1 < ∆2, because of varying slope of

the input-output function. Therefore, the changes in the odorant concentration

in region around ∆1 can be determined from the knowledge of the response C(s)

more precisely than in region around ∆2.

In the statistical approach, depicted in Figure 3.1b, not only the shape of

the mean response function but also fluctuations (deviations) of the response are

taken into account and plotted versus the odorant log-concentration, s. Hence

the changes ∆1 and ∆2 in odorant log-concentration are different from the situ-

ation in Figure 3.1a. Due to the larger variability of the responses in the central

part of the transfer function we obtain ∆1 ≈ ∆2.

Describing the behaviour of interaction with stochastic processes we gain the

probability distribution of the response C(s) and it is used to search for the opti-

mal signal. In models constructed below, the asymptotic mean of the process al-

ways coincides with the deterministic input-output function. However, this does

not need to be a general property in dependency on complexity of the model.

3.2 Models

Presented models consider interaction between odorant molecules and receptors

on the surface of olfactory receptor neurons. We assume that there is only one

odorant substance, that each receptor molecule possesses only one binding site

and that the total number of the receptors on the surface of the membrane is

fixed and equal to N . Let A denote the odorant molecule in perireceptor space

and AE in external space, with concentration A = es (in concentration detector) or

AE = es (in flux detector), which is assumed to be fixed until the olfactory system

achieves the steady state. We distinguish three states in which the receptors can

appear: unbound (free) state, R, bound inactive state, C∗, and bound activated

state C. Only activated receptors trigger the response. The models assume that

the response, the count of activated receptors, C(s), in steady state is completely

determined by the signal, which is fixed log-concentration, s, of odorant. Thus, in

the models investigated here the count is a dependent variable with the odorant

log-concentration, s, as a parameter. Three models of concentration detectors

and one flux detector model as stochastic processes, {Ct(s); t ≥ 0}, are described

now. Being interested in the steady state of these processes, we study the random

variable C(s) = C∞(s) = lim
t→∞

Ct(s).
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3.2.1 Basic model

At first we consider the simplest model in which each occupied receptor becomes

activated instantaneously with its occupation. Thus, the number of bound but

not activated receptors is always zero. It is assumed that each receptor is occu-

pied and released independently of others in accordance with stochastic reaction

schema

A + R
k1−→←−
k−1

C , (3.1)

where A represents an unbound molecule of odorant, R unoccupied receptor and

C stands for bound activated receptor (complex of the odorant molecule and

the receptor), k1 and k−1 are fixed reaction rates coefficients of association and

dissociation of the odorant molecules. The ratio K1 = k−1/k1 is commonly called

the dissociation constant. A receptor unbound at time t becomes bound (and acti-

vated) in time interval (t, t+∆t] with probability λ∆t+o(∆t), a receptor activated

at time t becomes unbound in time interval (t, t+∆t] with probability µ∆t+o(∆t).

The parameter λ is an increasing function of the concentration, A, of the odorant.

We consider this dependency to be linear, λ = k1A = k1e
s, with the constant of

proportionality k1 equal to the rate of association. The parameter µ is considered

to be equal to the rate of dissociation, µ = k−1. As the total number of receptor

sites on the surface of the membrane is equal to N , relation Rt+Ct = N is satisfied

for all t ≥ 0.

In accordance with these assumptions the continuous-time stochastic process

{Ct; t ≥ 0} giving the count of bound activated receptors at time t can be de-

scribed as a birth and death process (see [38, 39, 40]) with birth rates λi and death

rates µi,

λi = λ(N − i) = k1(N − i)es , (3.2)

µi = µi = k−1i (3.3)

for i ∈ {0, 1, . . . , N}. It means that the transition probabilities are

P

{

(i)
∆t−→ (i + 1)

}

= k1(N − i)es∆t + o(∆t) ,

P

{

(i)
∆t−→ (i− 1)

}

= k−1i∆t + o(∆t) .
(3.4)

This process, independently of the initial condition, achieves a stationary state

with probability distribution with mass function,

πi = P{C(s) = i} =

(

1 +
es

K1

)
−N (

N

i

)(
es

K1

)i

, i ∈ {0, 1, . . . , N} , (3.5)
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see for example [33]. Using this stationary distribution to derive the mean and

variance of the count of activated receptors in steady state, C(s), we obtain

E(C(s)) =
N

1 + K1e−s
, (3.6)

Var(C(s)) =
NK1e

−s

(1 + K1e−s)2 , (3.7)

E
(
C2(s)

)
=

N2 + NK1e
−s

(1 + K1e−s)2 , (3.8)

E
(
C4(s)

)
=

N (K1e
−s)

N−1

(1 + K1e−s)N 4F3

(

2, 2, 2, 1−N ; 1, 1, 1;− es

K1

)

, (3.9)

where

pFq(a , b; x) = pFq(a1, . . . , ap; b1, . . . , bq; x) =

∞∑

k=0

xk

k!

p
∏

i=1

Γ(ai + k)

Γ(ai)
q
∏

j=1

Γ(bj + k)

Γ(bj)

(3.10)

stands for generalized hypergeometric function at x (for details see [5]) and Γ(x)

denotes Gamma function. Hence, we have

4F3(2, 2, 2, 1−N ; 1, 1, 1; x) = 1 +

∞∑

k=1

xk

k!
(k + 1)3

k∏

i=1

(i−N) . (3.11)

As a function of s, the steady-state mean given by equation (3.6) monoton-

ically increases from 0 to N and it has typical sigmoidal shape with inflexion

point located at s = ln K1. Variance (3.7) has unimodal shape and, because of sat-

isfying of relation ∂E(C(s)) /∂s = Var(C(s)), its maximum value is achieved for

the same odorant log-concentration s = ln K1. For extremely low and high odor-

ant concentrations the variance tends to zero, Var(C(±∞)) = 0. The mean and

standard deviation as functions of the log-concentration of odorant are plotted in

Figure 3.2.

If the number of receptor sites, N , is sufficiently high, it is natural to consider

continuous variant of the steady-state count of activated receptors C(s) and we

need to know the distribution of such continuous approximation. One possibility

how to do it is to use the central limit theorem (for details see for example [49]).

The other legitimate approach is to use the diffusion approximation of the birth

and death process (3.3), as described for example in [64, 67]. Following Tuck-

well [67], the stochastic process {Ct; t ≥ 0} can be approximated by the process

{Yt; t ≥ 0},

Ct ≈ Yt =
λN

λ + µ
+
√

N Ut =
N

1 + K1e−s
+
√

N Ut , (3.12)
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Figure 3.2: (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of
activated receptors in the basic model, as functions of the odorant log-concentration, s,
in perireceptor space. Parameters are K1 = 1 and N = 100. Both the inflexion point of
the mean and the point of maximal standard deviation are located at s = ln K1 = 0.

where Ut is an Ornstein-Uhlenbeck stochastic process. Process Ut is given by

the stochastic differential equation

dUt = − (k1e
s + k−1) Ut dt +

√

2k1k−1es

k1es + k−1
dWt , (3.13)

where {Wt; t ≥ 0} is the standard Wiener process. The properties of Yt fol-

low directly from the fact that Ut is the Ornstein-Uhlenbeck process with drift

−(k1e
s + k−1) (see [33]). The process Yt is Gaussian and its steady-state moments

are given by equations (3.6) and (3.7). Therefore, the discrete stationary distribu-

tion of the steady-state count C(s) with mass function πi can be approximated by

a normal random variable with probability density function

g(x; s) =
1 + K1e

−s

√
2πNK1e−s

exp

{

−(N − x− xK1e
−s)

2

2NK1e−s

}

(3.14)

with s as a parameter. Note that due to the diffusion approximation the state

space of the continuous variant of the random variable C(s) is, at least formally,

the whole range, (−∞,∞). However, its validity holds only if π0 and πN are very

small.

Hereafter, we use the notation C(s) for both discrete as well as continuous

variant of the steady-state number of activated receptors. In case of eventual

misunderstanding we explicitly emphasize the type of variant.
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3.2.2 Model of simple activation

Consider now the model where not every bound receptor (complex) is activated

immediately. The receptors really appear in three states: unbound, R, occupied

but not activated, C∗, and occupied activated, C. Model described by Lánský and

Rospars [40] supposes that each occupied receptor can either become activated,

C, with probability p ∈ (0, 1), or stay inactive, C∗, with probability 1 − p, in-

dependently of its past behavior and of the behavior of other receptors. Such

an interaction corresponds to the following reaction schema,

C∗

k−1−→←−
k1N

A + R
k1A−→←−
k−1

C , (3.15)

where k1A = pk1 and k1N = (1 − p)k1 are association rate coefficients for the acti-

vated and inactive state and k1, k−1 have the same meaning as in basic model (3.1).

Denoting by Bt the number of bound receptors, B, at time t, regardless of

their activation, the relation Bt = Ct + C∗

t is satisfied. Then, because of the inde-

pendence of behaviour of the receptor sites the binding process follows reaction

schema

A + R
k1−→←−
k−1

B (3.16)

(compare with (3.1)) and provided Bt = b the random variable Ct has binomial

distribution Ct ∼ Bi(b, p) for all t ≥ 0. Then, the conditional steady-state distri-

bution is binomial, too, (C∞|B∞ = b) ∼ Bi(b, p). From the knowledge of the mass

function (3.5) of the random variable B∞, the unconditional probability distribu-

tion of C(s) can be derived,

πi = P{C(s) = i} =

(
N

i

)

q(s)i (1− q(s))N−i ; i ∈ {0, 1, . . . , N} , (3.17)

where q(s) = p/(1+K1e
−s). Hence, the steady-state number of activated receptors

has binomial distribution C(s) ∼ Bi(N, q(s)) and its mean and variance can be

directly derived,

E(C(s)) =
Np

1 + K1e−s
, (3.18)

Var(C(s)) =
NpK1e

−s

(1 + K1e−s)2 +
Np(1− p)

(1 + K1e−s)2 , (3.19)

E
(
C2(s)

)
=

Np (1 + p(N − 1) + K1e
−s)

(1 + K1e−s)2 , (3.20)

E
(
C4(s)

)
=

Np
(

1− p es

K1+es

)N

4F3

(

2, 2, 2, 1−N ; 1, 1, 1; p es

es(p−1)−K1

)

K1e−s − (p− 1)
. (3.21)
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Figure 3.3: (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of
activated receptors in model of simple activation, as functions of the odorant log-concen-
tration, s, in perireceptor space. Parameters are K1 = 1 and N = 100. Activation prob-
ability p is set to 0.8 (solid curves) and 0.4 (dashed curves). Inflexion points of the mean
curves are located at s = ln K1 = 0 (independently on the activation probability p). The
variance is either monotonically increasing (for p = 0.4) or has a maximum located at
s = ln K1 − ln(2p − 1) ≈ 0.511 (for p = 0.8).

steady-state mean (3.18) monotonically increases from 0 to Np and has sigmoidal

shape. Its inflexion point is located at s = ln K1, independently of the value of ac-

tivation probability p. For p ∈ (0, 0.5], variance (3.19) is monotonically increasing

from zero to the limit value Var(C(∞)) = Np(1 − p). For p ∈ (0.5, 1), it increases

from zero to maximal value N/4 achieved at s = ln K1 − ln(2p − 1) and then

decreases to the limit value Var(C(∞)) = Np(1− p). Both the mean and the stan-

dard deviation as functions of the log-concentration of odorant are plotted in

Figure 3.3. Of course, model (3.1) is a limit case of model (3.15) for p converg-

ing to 1. The continuous approximation of C(s) can be derived analogously as in

Section 3.2.1.

3.2.3 Double-step model

This model has often been used for describing odorant-receptor interaction (see

Kaissling [29], Gurewich et al. [23], Maurin [51], Rospars et al. [59, 60]). As in

the previous model, the receptors may appear in three different states. The in-

teraction between unbound, R, bound not activated, C∗, and bound activated
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receptors, C, is formed by the transitions via the stochastic reaction schema

A + R
k1−→←−
k−1

C∗

k2−→←−
k−2

C , (3.22)

where rate coefficients k2 and k−2 characterize the activation-deactivation pro-

cess. In contrast with the model of interaction with simple activation (3.15), in

the double-step interaction it is assumed that occupied receptor can become ac-

tivated only with a delay after the binding. Analogously as in the basic model,

the stochastic process {Ct; t ≥ 0} giving the count of activated receptors at time

t can be described as a homogenous Markov chain with (N + 1)(N + 2)/2 states

{(i, j); 0 ≤ i + j ≤ N} and transition probabilities (for time interval ∆t)

P

{

(i, j)
∆t−→ (i + 1, j)

}

= k1(N − i− j)es∆t + o(∆t) ,

P

{

(i, j)
∆t−→ (i− 1, j)

}

= k−1i∆t + o(∆t) ,

P

{

(i, j)
∆t−→ (i− 1, j + 1)

}

= k2i∆t + o(∆t) ,

P

{

(i, j)
∆t−→ (i + 1, j − 1)

}

= k−2j∆t + o(∆t) ,

(3.23)

where the first coordinate denotes the count of bound not activated receptors and

the second one denotes the count of activated receptors.

The stationary distribution of C(s) is multinomial; see [20] for general formu-

lae. The steady-state mean number of activated receptors, C(s), is

E(C(s)) =
N

1 + K2 (1 + K1e−s)
, (3.24)

where K2 = k−2/k2. We have not been able to evaluate the steady-state vari-

ance analytically. Nevertheless, it can be computed numerically and as its good

approximation we found the function

Var(C(s)) ≈ a + be−s

1 + ce−s + de−2s
(3.25)

with general parameters a, b, c, d. The steady-state mean given by equation (3.24)

monotonically increases from zero to N/(1+K2) and has (in general) asymmetric

sigmoidal shape with inflexion point located at s = ln K1 +ln K2− ln(1+K2). The

steady-state variance fulfills relations Var(C(−∞)) = 0 and Var(C(∞)) = a > 0.

Both the mean and the standard deviation as functions of the log-concentration

of odorant are depicted in Figure 3.4. The continuous approximation of C(s) can

be derived analogously as in Section 3.2.1.
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Figure 3.4: (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of
activated receptors in the double-step model, as functions of the odorant log-concen-
tration, s, in perireceptor space. Parameters are N = 100; K1 = 1 and K2 = 2 (solid
curves), K1 = 1 and K2 = 0.5 (dashed curves). Inflexion points of the mean curves are
located at s ≈ −0.405 (solid) and s ≈ −1.099 (dashed). The standard deviation is either
monotonically increasing (solid) or has a local maximum (dashed).

3.2.4 Flux detector

In contrast with the concentration detector, in the flux detector model, the rate

of influx of odorant from the external to the perireceptor space is quantitatively

taken into account. This scenario has been introduced by Kaissling [30] and fur-

ther analyzed by Lánský and Rospars [41], Rospars et al. [60]. The transfer of

odorant molecules between the external and perireceptor spaces is relatively slow

and irreversible (no outflux is permitted). The concentration of the odorant in

perireceptor space can be substantially higher than outside. Stochastic schema of

the single-step reaction is

AE

kI−→ A, A + R
k1−→←−
k−1

C
k0−→ R + Ā , (3.26)

where AE denotes the odorant of fixed concentration AE = es in the external

space, A odorant in the perireceptor space and Ā denotes degraded form of the

odorant (cannot interact with receptors anymore). The parameter kI is the rate of

influx of the odorant molecules from the external to the perireceptor space and

k0 is the rate of degradation of molecules of the odorant. Because of irreversible

reaction, the Michaelis-Menten constant KM = (k−1 + k0)/k1 should be used for
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description of reaction rate instead of the dissociation constant K1. Further, let us

denote the ratio of the influx and the degradation rates by K = kI/k0.

Continuous-time stochastic process {Ct; t ≥ 0} giving the count of activated

receptors at time t can be described by inhomogeneous birth and death process

with transition rates

λi,t = k1(N − i)At, µi = µi = (k−1 + k0)i; i ∈ {0, 1, . . . , N} , (3.27)

where At is the odorant concentration in the perireceptor space at time t. The

birth rates λi,t are time-dependent (inhomogeneous) because of the stable in-

flux of the odorant from the external to the perireceptor space. The process has

a stationary state C(s) if the relation s ≤ ln N − ln K is fulfilled. In this case

the concentration of the odorant in the perireceptor space reaches an equilibrium

A∞(s) < ∞. For s > lnN − ln K the process Ct converges to the value C(s)

whereas the odorant concentration At in the perireceptor space grows without

bounds.

Using the law of mass action, the deterministic behaviour of the flux detec-

tor model (see schema (3.26)) can be described by two independent differential

equations
dC(t)

dt
= k1NA(t)− (k−1 + k0 + k1A(t)) C(t) , (3.28)

dA(t)

dt
= kIe

s − k1NA(t) + (k−1 + k1A(t))C(t) , (3.29)

where A(t) denotes concentration of the odorant in the perireceptor space and

C(t) the number of activated receptors at time t ≥ 0. Computing steady-state

solution of equations (3.28) and (3.29), formally letting

dC(t)

dt
= 0 and

dA(t)

dt
= 0 , (3.30)

under the condition s ≤ ln N − lnK we obtain the steady-state odorant concen-

tration in the perireceptor space,

A∞(s) =
KMKes

(N −Kes)
. (3.31)

Now, we can replace the inhomogeneous birth and death process of the re-

action (3.26) with the homogenous one according to reaction (3.1). That means,

we consider the basic model of concentration detector with fixed concentration of

odorant in the perireceptor space, A∞(s). Both processes yield the same station-

ary probability distribution because of use of birth and death processes which are

markovian (they do not depend on the initial conditions). Corresponding time-

independent birth and death rates are

λi = k1(N − i)A∞(s), µi = k−1i; i ∈ {0, 1, . . . , N} . (3.32)
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Analogously as in Section 3.2.1 we derive the stationary probability distribution

{πi} of the birth and death process {Ct; t ≥ 0} with rates (3.32). Then, the mean

and the variance of the count of activated receptors in steady state, C(s), are

E(C(s)) =
k1NA∞(s)

k−1 + k1A∞(s)
, (3.33)

Var(C(s)) =
k2

1NA∞(s)

(k−1 + k1A∞(s))2 . (3.34)

Assuming s ≤ ln N − ln K and substituting (3.31) into equations (3.33) and (3.34)

the moments of of the count of activated receptors can be computed,

E(C(s)) = Kes , (3.35)

Var(C(s)) = Kes

(

1− Kes

N

)

, (3.36)

E
(
C2(s)

)
= Kes

(

1 +
(N − 1)Kes

N

)

, (3.37)

E
(
C4(s)

)
= Kes

(

1− Kes

N

)N−1

4F3

(

2, 2, 2, 1−N ; 1, 1, 1;
Kes

Kes −N

)

. (3.38)

Note that the Michaelis-Menten constant KM does not play any role in the be-

haviour of C(s).

The steady-state mean given by equation (3.35) is increasing function of the

odorant concentration. The variance (as a function of the odorant concentration)

given by equation (3.36) has unimodal asymmetric shape with maximum value

N/4 achieved for s = ln N − lnK − ln 2. For low as well as possible high odorant

log-concentrations it becomes practically zero, because

lim
s→−∞

Var(C(s)) = Var(C(lnN − ln K)) = 0 . (3.39)

The mean and standard deviation of C(s) are plotted in Figure 3.5. The contin-

uous approximation of C(s) can be derived analogously as in Section 3.2.1. It is

normally distributed and has the probability density function

g(x; s) =

√

Ne−s

2πK(N −Kes)
exp

{ −N(Kes − x)2

2Kes(N −Kes)

}

. (3.40)

3.3 Methods

We aim to investigate how precisely the odorant concentration, s, can be deter-

minated from a knowledge of the response, C(s), and which concentration levels
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Figure 3.5: (a) Mean E(C(s)) and (b) standard deviation SD(C(s)) of the number of
activated receptors in the flux detector model, as functions of the odorant log-concentra-
tion, s, in perireceptor space. Parameters are K = 1 and N = 100.

are optimal, that means can be well determinated from the knowledge of a ran-

dom sample of C(s). In other words, we consider an experiment in which a fixed

concentration is applied and steady-state responses of the system are observed.

These are independent (it is the random sample) realizations of random variable

C(s) from which we wish to determine s.

There are two properties limiting the optimal signal determination. First,

the minimal resolution ability. The system cannot distinguish two response val-

ues that are near one to another and the corresponding signal values are deter-

mined as equal. Moreover, there are two bounds, minimal and maximal response,

between them the system can code the information. Second, the fluctuation of re-

alizations of the response. On the same signal level, observed responses are not

equal.

The classical, deterministic, approach to determine the optimal concentration

is based on shape of the input-output function, f(s). This approach is commonly

used analyzing of various signal-response models using differential equations or

fitted functions, see for example Cleland and Linster [17], Lánský and Getz [42],

Nizami [57], Rospars et al. [60]. As an optimality measure the first derivative of

the input-output function with respect to the concentration of odorant is used,

J1(s) = ∂f(s)/∂s, which measures the slope of the function f(s). Because in

models proposed here the relation E(C(s)) = f(s) is fulfilled, we can define J1
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criterion as follows,

J1(s) =
∂E(C(s))

∂s
. (3.41)

The optimal concentration of odorant, s1, is that for which the measure J1 is max-

imal,

J1(s1) = max
s
{J1(s)} . (3.42)

An alternative approach used here, is based on statistical properties of C(s).

This approach in search for optimal signal was used in various applications of

signal-response dependencies, for example by Brunel and Nadal [14], Johnson

and Ray [28], Lánský et al. [45, 43], Sanchez-Montanes and Pearce [64], Wilke and

Eurich [68]. Models described in the previous section suppose that the observed

number of activated receptors in steady state, C(s), is a continuous random vari-

able with a distribution belonging to the regular parametric family of probability

density functions, C(s) ∼ g(x; s), with the odorant concentration, s, as a parame-

ter.

Determination of the concentration, s, from sampling responses {x1, . . . , xn}
of C(s) corresponds to its estimation, ŝ, in chosen family of probability density

functions. As a measure of optimality, the Fisher information

J(s) = E

((
∂ ln g(s)

∂s

)2
)

=

∫
1

g(x; s)

(
∂g(x; s)

∂s

)2

dx (3.43)

with respect to the odorant log-concentration, s, is used for sample of size equal

to one. See Definition 3 on page 13 for detailed description. For the sample

of size n independent measurements, the Fisher information about the param-

eter s is equal to nJ(s). Since this multiplication cannot change the behaviour of

the Fisher information as a function of s, we study characteristics of J(s) only.

It should be mentioned that optimality measures based on Fisher information

assume that the responses are recorded from different sensory neurons or sepa-

rated by a sufficient time period to ensure independence of the measurements.

Otherwise, the Fisher information would not be scaled with the sample size due

to autocorrelation in time-averaging measurements and the optimality criteria

should be modified.

The Cramér-Rao inequality (2.8) gives relation between the Fisher information

J(s) and quality of the estimator ŝ,

Var(ŝ) ≥ J(s)−1 , (3.44)

hence, the Fisher information is the inverse asymptotic variance of the best unbi-

ased estimator of s. Therefore, the higher the Fisher information J(s) is the better
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estimation of s can be achieved and we define the optimal odorant concentration,

s0, as the concentration for which the measure J is maximal,

J(s0) = max
s
{J(s)} . (3.45)

In some cases the analytical expression of the Fisher information is very com-

plicated. Then we can use the lower bound, J2(s) ≤ J(s), of the Fisher informa-

tion (see Definition 7 on page 16 and [43]),

J2(s) =
1

Var(C(s))

(
∂E(C(s))

∂s

)2

=
J1(s)

2

Var(C(s))
, (3.46)

which only requires the knowledge of first two moments of the distribution. Then

we can define the optimal odorant concentration, s2, in terms of J2(s) instead

of J(s) analogously. Moreover, we have equality J2(s) = J(s) if the family of

probability density functions g(x; s) fulfills the equation

1

g(x; s)

∂g(x; s)

∂s
= as

(

x− E(C(s))
)

(3.47)

for as independent on x (see Theorem 11 on page 19 and [43]).

Similarly, recalling Definition 7 on page 16, lower bound J3(s) of the Fisher

information can also be used as an optimality criterion,

J3(s) =
1

Var(C2(s))

(
∂E(C2(s))

∂s

)2

. (3.48)

3.4 Results

In this section we compute the optimality criteria J1(s), J2(s), J3(s) and J(s) for

the models of odorant-receptor interaction mentioned above and compare the re-

sults in searching for optimal concentration of odorant. In all this section C(s)

denotes the continuous random variable which gives the number of activated

receptors in steady state as a function of the odorant concentration, s. This is jus-

tified by using the diffusion approximation (3.12) and its analogous variants. In

accordance with the diffusion approximation, C(s) is assumed to have the normal

probability distribution with moments specified by the particular models,

C(s) ∼ N

(

E(C(s)) , Var(C(s))
)

. (3.49)
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3.4.1 Basic model

In the basic model based on reaction (3.1) the number of activated receptors in

steady state, C(s), has moments specified by equations (3.6) and (3.7) with re-

spect to the odorant log-concentration, s, in the perireceptor space. Assuming

the normal distribution of C(s), its probability density function is equal to (3.14).

All three criteria of optimality are directly derived,

J2(s) = J1(s) =
NK1e

−s

(1 + K1e−s)2 , (3.50)

J(s) =
1

2
+

(N − 2)K1e
−s

(1 + K1e−s)2
=

1

2
+

N − 2

N
J2(s) , (3.51)

the analytical expression of J3(s) can be easily expressed from the knowledge of

(3.8) and (3.9).

The shapes of optimality criteria are plotted in Figure 3.6. The criteria J1(s)

and J2(s) are equal and have unimodal shape. For N > 2 (which is natural in

reality), the Fisher information J(s) is also unimodal and it is very close to J1(s).

All these criteria attain maximum value N/4 for the odorant log-concentration

s0 = s1 = s2 = ln K1 . (3.52)

The criterion J3(s) has also unimodal shape, but its maximum is slightly shifted

from s1 to higher signal intensities. This shift, however, is very small and de-

pends only on N (the shift rises with increasing N). For extremely low as well

as high odorant concentrations all the criteria decrease, J1(±∞) = J2(±∞) = 0,

J(±∞) = 1/2. Both deterministic and statistical approach give the same result

and locate the optimal concentration of odorant in the region around the concen-

tration s1 (see Figure 3.6).

3.4.2 Model of simple activation

In the model of simple activation, where C(s) is normally distributed with mo-

ments given by equations (3.18) and (3.19), the criteria J1 and J2 are derived ana-

lytically,

J1(s) =
pNK1e

−s

(1 + K1es)2 , (3.53)

J2(s) =
pNK2

1e−s

(1 + K1e−s)2 (K1 + (1− p)es)
, (3.54)

J3(s) and the Fisher information J(s) are evaluated numerically.

As well as in basic model (3.1), maximum value of the criterion J1(s) is lo-

cated at odorant log-concentration s1 = ln K1, independently on the activation
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Figure 3.6: (a) Optimality criteria in the basic model: the criteria J1(s) = J2(s) (dotted
curve), J3(s) (dashed curve) and the Fisher information J(s) (solid curve). Parameters are
K1 = 1 and N = 100. Criteria J, J1, Js attain maximum value N/4 = 25 for the odorant
log-concentration s = ln K1 = 0. (b) Detail of (a); note, that the maximum of J3 criterion
is shifted.

probability p. The criterion J2(s) achieves its maximum for the odorant log-con-

centration

s2 = ln K1 − ln
4(1− p)√
9− 8p− 1

. (3.55)

For p ∈ (0, 1), the relation

s1 − ln 2 < s2 < s1 (3.56)

holds. For lower activation probabilities p the location of maximum of J2(s) is

shifted to lower concentrations of odorant. As shown in Figure 3.7 and Fig-

ure 3.8, the criteria J3(s) and J(s) behaves similarly as J2(s) criterion. Note, that

s0 < s2 < s1, s0 < s3 < s1 holds regardless of the value of p. The deterministic

and statistical approaches can give different results, the optimum from statisti-

cal point of view is located at lower concentrations of odorant than that obtained

with the approach based on the slope of the input-output function. Limiting be-

haviour of the optimality criteria is similar to the previous model (3.1), except for

J(∞) = 0.

3.4.3 Double-step model

Let us assume that the binding and activation process has two steps. It means that

the number of activated receptors has normal distribution with mean given by
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Figure 3.7: Optimality criteria in the model with simple activation: (a) first derivative
of the input-output function J1(s) (dotted curve) and Fisher information J(s) (solid),
(b) criteria J(s) (solid curve), J2(s) (dotted) and J3(s) as functions of the odorant log-con-
centration, s, in the perireceptor space. Maximum of J1(s) is located at s1 = 0. Maximum
of J2(s) is located at s2 ≈ −0.267 and maximum of J(s) at s ≈ −0.277. Parameters are
K1 = 1, N = 100 and p = 0.4.
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Figure 3.8: Optimality criteria in the model with simple activation: (a) first derivative
of the input-output function J1(s) (dotted curve) and Fisher information J(s) (solid),
(b) criteria J(s) (solid curve), J2(s) (dotted) and J3(s) as functions of the odorant log-con-
centration, s, in the perireceptor space. Maximum of J1(s) is located at s1 = 0. Maximum
of J2(s) is located at s2 ≈ −0.533 and maximum of J(s) at s ≈ −0.565. Parameters are
K1 = 1, N = 100 and p = 0.8.
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Figure 3.9: Optimality criteria in the double-step model: first derivative of the input-
output function J1(s) (dotted curve), Fisher information J(s) (solid) and its lower bound
J2(s) (dashed). (a) Parameters are N = 100, K1 = 1 and K2 = 2. Maximum of J1(s)
is located at s1 ≈ −0.405, maximum of Js(s) at s ≈ −0.977 and maximum of J(s) at
s ≈ −1.068. (b) Parameters are N = 100, K1 = 1 and K2 = 0.5. Maximum of J2(s)
is located at s1 ≈ −1.099, maximum of Js(s) at s ≈ −1.475 and maximum of J(s) at
s ≈ −1.506. Note, that s0 < s2 < s1 holds.

equation (3.24) and known variance, for example of the form (3.25). The criterion

J1 is equal to

J1(s) =
NK1K2e

−s

(

1 + K2 (1 + K1e−s)
)2 (3.57)

and its maximum is located at

s1 = ln K1 + ln K2 − ln(1 + K2) . (3.58)

The criteria J2(s) and J(s) are computed numerically. Their maximum val-

ues appear at lower levels of odorant log-concentrations than s1, as depicted in

Figure 3.9. Deterministic and statistical approaches give different results, in gen-

eral. Limit values of the optimality criteria are equal as in the model with simple

activation (3.15).

3.4.4 Flux detector

In the flux detector model (schema 3.26), the number of activated receptors in

steady state, C(s), has moments specified by equations (3.35) and (3.36) with re-

spect to the odorant log-concentration, s, in the external space. Assuming the nor-
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mal distribution of C(s), its probability density function is equal to (3.40). The

optimality criteria J1 and J2 are derived analytically,

J1(s) = E(C(s)) = Kes , (3.59)

J2(s) =
NKes

N −Kes
, (3.60)

J3(s) and the Fisher information J(s) are evaluated numerically.

All the criteria are monotonically increasing and satisfy the relation

J1(s) ≤ J2(s) ≤ J(s) for s ≤ ln N − ln K . (3.61)

The J1(s) criterion is equal to the steady-state mean, E(C(s)), and grows as the

odorant log-concentration, s, increases. For low odorant concentrations s, the cri-

teria J1 and J2 became equal. For maximum possible odorant log-concentrations

s → ln N − lnK the criteria J2 and J become equal and grow substantially more

faster than the criterion J1. Limit values of the optimality criteria are equal as in

the model with simple activation (schema 3.15). Nevertheless, both deterministic

and stochastic approach in search for the optimal signal give the same result and

locate the optimal odorant log-concentration at highest possible value

s1 = s2 = s0 = ln N − ln K . (3.62)

The shapes of optimality criteria J(s), J1(s), J2(s) and J3(s) as functions of odor-

ant log-concentrations s are depicted in Figure 3.10, where, for transparence,

the vertical axis has logarithmic scale.
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Figure 3.10: Optimality criteria in the flux detector model: (a) first derivative of
the input-output function J1(s) (dotted curve) and Fisher information J(s) (solid), (b) cri-
teria J(s) (solid curve), J2(s) (dotted) and J3(s) as functions of the odorant log-concen-
tration, s, in the external space. Maximum (limiting) values of all three criteria are located
at s1 = ln N − ln K . The vertical axis has logarithmic scaling. Parameters are K = 1 and
N = 100.
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Classification of stimuli 4
This chapter contains mainly extended text of article [4]. Some earlier ideas can

be found in article [3], too. A theoretical model of olfactory neuron with different

types of noise, an biophysical and an empirical model are analysed both from

point of view of statistical inference and from point of view of information theory.

4.1 Introduction

To determine how neural responses vary with different stimuli is a key ques-

tion. Characterization of the input-output properties of sensory neurons is com-

monly done by using the so called input-output transfer function, R(s), in which

the output (e.g. firing frequency) is plotted against the input s (stimulus inten-

sity; the vocabulary may depend on the sensory modality considered). Although

the output is usually the spiking frequency, it can also be the activity or level of

any intermediate variable, e.g. effector enzyme concentration, ionic channel con-

ductance or receptor potential. The response curves are usually monotonously

increasing functions, most often of sigmoid shape, assigning a unique response to

each input signal, as shown in different sensory systems ([16, 52, 57, 61] and oth-

ers). The response functions are usually presented as a single curve, sometimes

accompanied by standard deviations (see [12, Fig. 1] and [66, Fig. 2]), which in-

dicates that the relation between stimulus and response is influenced by random

factors. The complete distributions of response variability are not, as far as we

know, given in experimental reports, despite some attempts at understanding

and describing the response variability ([16]). Taking into account the variability

of responses, the published curves should be called more appropriately mean re-

sponse functions ([56]). As shown in this chapter, such a variability of responses

may substantially influence the determination of the stimulus intensities consid-

ered as optimal.

The intuitive concept of just noticeable difference has been deeply studied in

psychophysics ([22]). It is indirectly involved in the determination of the optimal

signal as derived from the transfer function R(s). If there is a minimum detectable

increment ε of the response, the just noticeable difference in the signal can be cal-
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culated for every stimulus intensity. Obviously, this just noticeable difference in

the signal is smallest, i.e. the system is most sensitive, where the transfer function

is the steepest. Therefore the optimal stimulus intensity, that is the best detected

intensity, is where the slope of the transfer function is the highest. This measure

of signal optimality is based on the deterministic (mean) transformation of a sig-

nal into a response. In other words it applies to situations in which to each signal

corresponds a deterministically unique response.

Variability is considered as a consequence of noise acting upon the transfer

function. The presence of noise complicates the concept of signal optimality

based on the just noticeable difference. To include the effects of noise, alternative

measures of signal optimality are required. The aim of this paper is to summa-

rize and investigate these measures that can be applied to noisy transfer func-

tions in sensory neurons. The measures have to take into account two factors –

the shape of the mean transfer function and the amplitude or complete distribu-

tion of the responses. Two points of view of optimality are employed and both

are related to the role of the sensory neurons – to transfer maximum information

and to do it reliably. The first measure is based on the question “which signal

intensity brings the highest information”. To answer this question, an additional

knowledge, the distribution of stimulus, is required. This approach stems from

information theory. The second approach is based on a different question “which

signal intensity can be most precisely deduced from a response” and it is based

on the theory of statistical inference.

4.2 Response function and optimality criteria

4.2.1 Response function and its variability

To illustrate the main concepts involved we consider a generic sigmoid trans-

fer function m(s) = (1 + e−s)
−1, to which a suitable fluctuation is added, taking

the form

R(s) = m(s) + ξ(s) , (4.1)

where m(s) is the firing frequency at stimulus intensity s and ξ(s) is the random

component of the firing frequency with mean equal to zero, E(ξ(s)) = 0. In other

words, for stimulation at level s, the response is a random variable R(s) given by

right-hand side of equation (4.1). As pointed out in Introduction (see p. 44), for

the present treatment only the shape of the curve is important, not its scale and

position. Thus, m(s) contains no free parameters. Function m(s) above is the so-

called Hill function with exponent n = 1 (noncooperative reactions), in logarith-

mic scale, so the effect of the Hill’s coefficient n, which is to modify the slope of
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the sigmoid curve, is left out. Depending on the distribution of ξ(s), model (4.1)

can result in negative values of the response, which is physically not acceptable.

Actually, the transfer function (4.1) is already normalized as its interval of varia-

tion is on [0, 1], which means that we assume there is no spontaneous activity (at

s = −∞, i.e. in absence of signal) and no response greater than one (asymptotic

maximum). In practice, a simple shift (adding a constant to R(s)) solves the prob-

lem of negative responses and nothing is changed in the following treatment.

We introduce three simple examples of noise distributions to show that the

choice of type of the distribution can substantially change the results in searching

for optimal signal. The first two examples are symmetrical and differ by the speed

of decay of the noise amplitude. The last one illustrates the effect of noise asym-

metry on the results. One of the simplest and most natural way to introduce

the noise in the transfer function is to assume that it has Gaussian distribution,

then

R(s) ∼ N
(
m(s), σ2(s)

)
, (4.2)

where variance σ2(s) also depends on the signal s. This dependency of the vari-

ance of the response on s substantially influences the signal identification as will

be seen later. We investigate two different examples of model (4.2). In the third

example another type of noise is introduced to see the effect of asymmetry in

the noise amplitude. In the first example we consider equation (4.2) specified by

σ2(s) = σ2
0(s) e−c s2

, (4.3)

where c ≥ 0. If c > 0, the variance tends to zero at the endpoints of the range of

the signal and parameter c controls how fast this tendency is. If c = 0, the variance

is a constant independent of signal intensity.

In the second example the variance of the response function depends on s in

the following way,

σ2(s) =
4 σ2

0 ec s

(1 + ec s)2 , (4.4)

where c ≥ 0. The difference between (4.3) and (4.4) is that the variance given

by (4.4) decreases more slowly with increasing absolute value of s. Both models

are illustrated in Figure 4.1.

In both examples (4.3) and (4.4) the Gaussian character of the responses is

preserved which does not need to be the case especially when extreme values of

the signal are presented. Thus we present another example in which the distribu-

tion of responses is not symmetrical,

R(s) ∼ B (β ec s, β) , (4.5)
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Figure 4.1: Mean transfer function m(s) (curve 1) and standard deviations SD(R(s))
of the response function for models with Gaussian distributed response with quickly
decreasing noise given by (4.3) (curve 2), slowly decreasing noise given by (4.4) (curve 3),
and Beta distributed response given by (4.5) (curve 4). Parameters are σ2

0 = 0.01 and
c = 0.5 for the Gaussian distribution and β = 14.15 for the Beta distribution to ensure
the same maximum value of the variance for all types of distribution.

where B denotes the Beta distribution with probability density function

B (x; a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for x ∈ (0, 1) (4.6)

and β > 0 is a free parameter controlling the amplitude of the noise as σ0 in (4.3)

and (4.4). This choice ensures that the mean response is again given by (4.1)

but the noise is not symmetrically distributed along the response axis, see Fig-

ure 4.1. It is commonly reported that firing rates have standard deviations which

are roughly comparable with their mean value (see [16, and references there]).

This is in contradiction with our concept of decreasing variability for extreme

values of the signal. However, models can be easily modified in this direction by

choosing appropriate dependency of the noise on the signal. Examples of simi-

lar kind of dependencies can be seen in the empirical and the biophysical model

studied in this paper.

Under the deterministic scenario, σ(s) ≡ 0, which is an idealization, as seen

from the experimental data, there is a one-to-one correspondence between signal

and response. In such a case any signal has a unique response and from the de-

tectability point of view all signals are equal. The same is true from the point of

view of transferred information. Nevertheless, it may be proposed that the most

suitable signal is that for which the difference between the responses, m(si) and
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Figure 4.2: Examples of response distributions g(r|s). Probability density functions
for s = −1.5 (dashed lines), s = 0 (solid lines) and s = 1.5 (dotted lines) are plotted.
(A) Model with Gaussian distribution of the response with quickly decreasing noise –
equation (4.3). In model with slowly decreasing noise of the response – equation (4.4)
– the distribution behaves qualitatively in the same way, but maximum of the density
varies slowly. (B) Model with Beta distribution of the response – equation (4.5). Parame-
ters are the same as in Figure 4.1, σ2

0 = 0.01, c = 0.5 and β = 14.15.

m(sj), to pair of different signal values, si and sj, keeping the same distance,

|si − sj | = const., is the highest. This has been pointed out by Borst and Theunis-

sen [12]: “the information in the response could be measured as the difference

between m(si) and m(sj)”. Obviously, such a signal for transfer functions (4.2)

and (4.5) is at s = 0, where the derivative of the transfer function is maximal.

4.2.2 Signal bringing the highest information

Information processing is the role of neuronal systems, and thus it is not surpris-

ing that classification of signals by their information content is very common in

computational neuroscience (see [58]). Under the stochastic scenario, for a given

signal s, there is not a unique response but a family of responses. Each of the re-

sponses appears with a predefined probability. From this point of view, equations

(4.2), (4.5) can be seen as determining the conditional probabilities of responses

given specific stimuli. The conditional probability density functions g(r|s) given

by the theoretical models defined above are illustrated in Figure 4.2.

Application of information theory is one possible extension of the criteria

based on the derivative of the mean transfer function mentioned in the previous

subsection. The use of information concept is based on calculating “a distance”
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between the conditional distribution of response, g(r|s), and the unconditional

distribution of response, g(r). For that purpose, however, the stimulus has to be

considered as a random variable, S, with probability distribution f(s), instead

of simply considering the deterministic stimulus. Then, by using Bayes formula,

the unconditional distribution of the response is calculated by

g(r) =

∫

M

g(r|s)f(s)ds , (4.7)

where the range of integration M depends on the distribution of stimuli. Alter-

natively, instead of assuming the distribution f(s), this approach can be used to

predict the stimulus distribution in natural conditions. This concept was intro-

duced in the study of the visual sensory system by Laughlin [47] and extended

recently to the auditory (see e.g. [48]) and olfactory systems (see e.g. [35]) by tak-

ing into account the specificity of these modalities.

Several examples of stimulus distribution, f(s), can be considered. The sim-

plest example is that of a uniform distribution, S ∼ U (−a/2, a/2), in which all

stimuli are equally likely. If we take into account that inflection point of the re-

sponse function (4.1) is located at zero, formally, the stimuli take values in the in-

terval (−a/2, a/2) and f(s) = 1/a. Another, maybe more realistic assumption is

that the stimuli are normally distributed, S ∼ N (0, a2/12), avoiding the extremal

values. For the sake of comparison we took variance equal to a2/12 which ensures

in both cases the same variance of the signal.

Now there are several options to define the distance between g(r|s) and g(r).

One possibility is to use the formula

I1(R|s) =

∫

g(r|s) ln
g(r|s)
g(r)

dr . (4.8)

Then the optimum signal is determined by searching the maximum of the crite-

ria I1(R|s). From (4.8) follows that I1(R|s) = 0 if the distribution of responses

does not depend on the signal, g(r|s) = g(r). Criterion (4.8) was called specific

surprise by DeWeese and Meister [19] and mentioned by several authors ([12, 11],

originally introduced by Fano [21]). It is Kullback-Leibler divergence between

marginal distribution gr and conditional distribution g(r|s) (see [34, 36, 55]). It

is “a distance” in some sense but not a true metric because of lack of symmetry

between the two distributions.

DeWeese and Meister [19] argued that I1(R|s) does not provide a good mea-

sure of stimulus significance and proposed a stimulus-specific information

I2(R|s) = −
∫

g(r) ln g(r)dr +

∫

g(r|s) ln g(r|s)dr , (4.9)
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which is again equal to zero for g(r|s) = g(r). The method was further discussed

by Butts [15]. Finally Bezzi [11] added two other measures, which are not men-

tioned in the present chapter because it is not primarily oriented at comparing

information-based measures to one another.

4.2.3 Concept based on best identifiable signal

In this section we investigate which deterministic signal, s, can be identified from

the transfer function, R(s), with greater precision. As a general measure of signal

optimality from the point of view of its identification we propose to use Fisher

information. Fisher information has become a common tool in computational

neuroscience, see [65, 14, 24, 27, 68, 10, 69, 28, 6, 25, 26, 43, 44, 3, 70]. Now we

see the conditional distribution of the response for a specific signal, appearing in

the previous section, as a probability density function belonging to a parametric

family g(r; s), where s is an unknown parameter which should be identified from

the observation of responses r.

Recalling Definition 3 on page 13, Fisher information with respect to parame-

ter s is defined by equation

J(s) =

∫
1

g(r; s)

(
∂ g(r; s)

∂ s

)2

dr . (4.10)

The use of Fisher information as a tool to locate the optimal signal for informa-

tion transfer is theoretically motivated by Cramér-Rao inequality. It says that

the variance of an unbiased estimate of the signal cannot be smaller than the in-

verse of Fisher information, Var(ŝ) ≥ J(s)−1, see [18]. In other words, the largest

the Fisher information, the best the estimate of s can be achieved. This conclusion

is important to know how well one can expect to identify the signal.

Criterion (4.10) requires a complete knowledge of the distribution g(r; s), but

an approximation of the Fisher information can also be used. It is a lower bound

of J based on the first two moments of the random variable R(s),

J2(s) =
1

Var(R(s))

(
∂ E(R(s))

∂ s

)2

, (4.11)

see Definition 7 on page 16 and [43] for details. This is of exceptional importance

in an experimental context. It is common to measure (estimate) the moments

(mean and variance) of the responses, but their complete distribution is rarely

evaluated. In addition, for a large class of distributions there is an equality J2 = J

(see Theorem 11 on page 19 and [43]), and obviously J2 is computationally much

simpler to obtain as it requires only the first two moments but not the complete

probability distribution.
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4.3 Results

4.3.1 Statistical model

The model is characterized by response function (4.1) and the chosen distribution

of the noise. For the normal distribution of the response we have

g(r|s) =
1

σ(s)
√

2π
exp

{

−(r −m(s))2

2σ2(s)

}

. (4.12)

For Beta distribution, an analogous formula can be written. Assuming the sig-

nal to be a random variable, S, with the probability distribution f(s) and having

the conditional distribution of the response, g(r|s), the unconditional distribu-

tion g(r) of the response can be calculated by (4.7). It is shown in Figure 4.3

for both the uniform as well as Gaussian distribution of the signal. The shapes

of g(r) for the Gaussian distribution of the responses are similar (Figure 4.3A);

they differ only quantitatively. The distribution is bimodal, that means without

knowledge about realization of the signal, s, there is a high probability to observe

the response near 0 as well as near 1. For the Beta distribution (Figure 4.3B), g(r)

becomes asymmetric.

Now all the quantities required to evaluate the signal yielding maximal infor-

mation based on measures I1 (4.8) and I2 (4.9) are available and their profiles can

be calculated, see Figure 4.4. It shows that the most informative signals are those

which are extreme, only the speed at which these values are achieved is different.

The only exception is illustrated in Figure 4.4B, where there is a local maximum

in the center of the coding range. The results are not qualitatively different for

the Beta distribution, only the shapes are not symmetrical.

For determining the best identifiable signal we return to the criteria based on

Fisher information. For the model with variance (4.3), the optimality criterion J2

is evaluated directly from (4.11),

J2(s) =
ec s2+2s

σ2
0 (1 + es)4

, (4.13)

and the criterion J is calculated directly from (4.10),

J(s) = 2c2s2 +
ec s2+2s

σ2
0 (1 + es)4 . (4.14)

For the model with variance given by (4.4), we can derive

J2(s) =
(1 + ec s)2 e2s−c s

4σ2
0 (1 + es)4 , (4.15)
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Figure 4.3: Examples of probability density functions g(r) of response distributions un-
der the condition of uniform distribution of the signal (solid lines) and under the con-
dition of Gaussian distribution of the signal (dashed lines). (A) Model with Gaussian
distribution of the response with slowly decreasing noise – equation (4.4). In model
with quickly decreasing noise – equation (4.3) – the distribution behaves qualitatively
in the same way. (B) Model with Beta distribution of the response – equation (4.5). Pa-
rameters are the same as in Figure 4.1, σ2

0 = 0.01, c = 0.5 and β = 14.15.

the criterion J is evaluated numerically. In model (4.5) with Beta distributed noise

we obtain

J2(s) =
(1 + es)β + 1

(1 + es)2 es , (4.16)

the criterion J is evaluated numerically. The results are illustrated in Figure 4.5

which shows that the type of noise entirely determines the position of the best de-

tectable signal. For Gaussian distributed response with quickly decreasing noise

the best identifiable signal is located at low as well as high stimulus intensities.

For that one with slowly decreasing noise it is located around s = 0. In the case of

Beta distributed noise the best identifiable signal is at high stimulus intensities.

4.3.2 Empirical model

The criteria summarized above were also applied to data on olfactory receptor

neurons presented by Tomaru and Kurahashi [66] where the transfer function (fir-

ing frequency) and its standard deviation are plotted against the injected current.

It gives evidence that the noise is not symmetrically distributed along the stim-

ulus axis. This example, which is taken from a study on the olfactory receptor
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Figure 4.4: Examples of information cri-
teria I1(R|s) for uniformly (dashed lines)
and Gaussian (solid lines) distributed sig-
nal and I2(R|s) for uniformly distributed
signal (dotted lines), as functions of
the signal, s. Criterion I2(R|s) for Gaus-
sian distributed signal is equal to that one
for uniformly distributed signal but verti-
cally shifted in a fixed distance. Parame-
ters are the same as in Figure 4.1.
(A) Model with Gaussian distribution of
the response and quickly decreasing noise
– equation (4.4).
(B) Model with Gaussian distribution of
the response and slowly decreasing noise
– equation (4.4).
(C) Model with Beta distribution of the re-
sponse – equation (4.5).
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Figure 4.5: Examples of Fisher informa-
tion criterion J(s) (solid lines) and its ap-
proximation J2(s) (dashed lines), as func-
tions of the signal, s. Parameters are
the same as in Figure 4.1.
(A) Model with Gaussian distribution of
the response and quickly decreasing noise
– equation (4.4). The best detectable signal
is located at low and high intensities.
(B) Model with Gaussian distribution of
the response and slowly decreasing noise
– equation (4.4). The optimal signal is lo-
cated around zero.
(C) Model with Beta distribution of the re-
sponse – equation (4.5). The best de-
tectable signal is located at high intensities.

neuron, has its parallel in the visual system. Figure 8 of [16] illustrates the rela-

tionship between the firing rate (mean and standard deviation) and the injected

current. The author concludes that it should be fairly common for the firing-rate

variance to saturate at high stimulus intensity, possibly showing a plateau or even

a decrease.

The data from Figure 2 of [66] has been reconstructed and used as a model for

establishing the optimum signal. The properties of the experimental data anal-

ogous to the theoretical models illustrated in Figure 4.1 are given in Figure 4.6.

Comparing these two figures shows that the empirical data cover only the left

part of the transfer function and the rest has to be hypothesized. Furthermore,

the response in Figure 4.6 is not normalized, in contrast to Figure 4.1.
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Figure 4.6: Empirical data – neuron firing frequency [Hz] as a function of logarithm
of injected current (originally [pA]) – from [66] and their properties. Original data are
marked as small discs. (A) Mean response function m(s) and (B) standard deviation
SD(R(s)) are plotted as functions of injected current, s. Dashed parts of curves denote
theoretical continuation of the dependencies on the signal. Arrows denote the position
of the inflection point of the mean response function m(s) at s = 3.5.

The theoretical mean response function is

m(s) =
49.5

1 + exp{3.5− s} (4.17)

with inflection point at s = 3.5. Thus from the deterministic point of view, signal

at this level is the optimal one. The standard deviation was fitted by function

SD(R(s)) = 8.75 exp

{

−
(

s− 6.5

4.8

)2
}

+ 29.9 exp

{

−
(

s− 6.1

1.1

)2
}

. (4.18)

Knowing the mean and the standard deviation, one can evaluate J2 but to ob-

tain the other measures, the distributions of the responses and stimuli have to

be assumed. We investigated two of them, Gaussian and Beta, as in the theoret-

ical models. There is no obvious difference between the distribution of response

here and in the theoretical models (see Figure 4.2). The shapes of the conditional,

g(s|r), and unconditional, g(r) , probability density functions of the response for

both the Gaussian and Beta distribution are plotted in Figure 4.7 and Figure 4.8.

The results for the criteria based on Fisher information are shown in Fig-

ure 4.9. For both models the Fisher information behaves practically in the same

way, except in the rightmost part where the Beta distribution creates a differ-

ent pattern. The optimal signal is shifted to the left with respect to that derived
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Figure 4.7: Conditional probability density functions of the response for empirical data
shown in Figure 4.6: s = 1.386 (dotted lines; corresponds to injected current 4 pA),
s = 3.401 (solid lines; 30 pA), s = 4.382 (dashed lines; 80 pA), (A) for Gaussian distri-
bution, (B) for Beta distribution. Note, that the for values of signal, s, in the center of
range of used current the shapes of probability density function for both Gaussian and
Beta distribution are almost identical, whereas for low or high current the shapes differ.
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Figure 4.8: Unconditional probability density functions of the response for empirical
data shown in Figure 4.6, (A) for Gaussian distribution, (B) for Beta distribution. The
theoretical most probable firing frequency has value around 5 Hz (see A) or 4 Hz (see B).
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Figure 4.9: Fisher information results for empirical data shown in Figure 4.6. Fisher
information J(s) for Gaussian distributed response (solid line), for Beta distributed re-
sponse (dashed line) and their lower bound J2(s) (dotted line) are plotted as functions of
the injected current, s. The arrow denotes the position of the inflection point of the mean
response curve m(s) at s = 3.5.

from the deterministic model. The optimal current has value around 17 pA (cor-

responds to s ≈ 2.833 in Figure 4.9). Further, as mentioned, for application of

information measures a prior distribution of signals must be assumed. We take

a uniform distribution on the interval (ln 2, ln 100), which is the interval of the ap-

plied stimuli. The information measures are given in Figure 4.10. The criterion

I1 is almost the same for both models, with high values for low intensity signals

and with lowest values for signals between 2 and 3. The local maximum of I1

which appears for Gaussian distribution of the response near s = 4 vanishes for

Beta distributed response. In both models, the criterion I1 is decreasing function

of the signal.

4.3.3 Biophysical model

For illustrating the proposed measures of signal optimality on a realistic model

of the responses we study olfactory receptor neurons located in the nasal olfac-

tory epithelium. When stimulated during, say, one second, odorant molecules

interact with receptor proteins embedded at the membrane surface of these neu-

rons. Binding of odorants to receptors triggers biochemical events that result in

the opening of ionic channels. The ensuing current generates a locally spreading

receptor potential, which in turn initiates a spike train. The relations between
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Figure 4.10: Information criteria I1(R|s) (solid line) and I2(R|s) (dashed line) for empir-
ical data shown in Figure 4.6, (A) for Gaussian distribution of the response, (B) for Beta
distribution of the response.

the concentration s of odorant molecules and the density of activated receptors,

or the neuron depolarization, or its firing rates, are examples of transfer func-

tions. We investigated a stochastic variant of a model describing odorant trans-

port through the mucus, enzymatic deactivation of odorant molecules in the mu-

cus, and receptor binding then activation (see [30, 31, 32, 42, 37, 60, 61, 63]) with

parameter values given in [32]. The originally deterministic model was random-

ized by adding two types of noise (Gaussian and Beta) to the number of occupied

and activated receptors. The properties of the steady-state distribution was esti-

mated from repeated simulations of the model.

The statistical properties of the model are given in Figure 4.11. The mean num-

ber of activated receptors is saturated at value 0.24 µM for the odorant log-con-

centration equal to −6.88 (corresponds to odorant concentration 0.001 03 µM).

The standard deviation of the number of activated receptors is increasing. The

position on horizontal scale depends on the flux constant, kI = 29 000 s−1. De-

creasing kI would result in a shift of the curves to higher concentrations. Note

the similarity between Figure 4.11 and Figure 4.6.

Results for the criteria based on Fisher information of the best identifiable

stimulus – Figure 4.13 – show that the model behaves similarly whatever the type

of noise (see Figure 4.12). The optimal signal can be found in the range of odorant

concentrations where a peak occurs. In the range (−9.5,−6.88) Fisher informa-

tion J(s) is rather flat with a Gaussian noise and presents a peak with a Beta

noise. The lower bound J2 shows only a peak at relatively high odorant con-
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Figure 4.11: Biophysical model – concentration of activated receptors [µM] as a function
of odorant log-concentration – and its properties. Mean response function m(s) (solid
line) and standard deviation SD(R(s)) (dashed line) are plotted as functions of the natural
logarithm, s, of the odorant concentration.
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Figure 4.12: Conditional probability density functions of the response concentra-
tion [µM] for the biophysical model characterized in Figure 4.11 and s = −7 (corresponds
to odorant concentration 0.000 91 µM) for Gaussian (solid line) and Beta distribution
(dashed line).

59



4. Classification of stimuli 4.3. Results

-9.5 -9.0 -8.5 -8.0 -7.5 -7.0
0

1

2

3

4

5

s

J
H
s
L
,
J
2
H
s
L

Figure 4.13: Fisher information results for the biophysical model characterized in Fig-
ure 4.11. Fisher information J(s) for Gaussian distributed response (solid line), for Beta
distributed response (dashed line) and their lower bound J2(s) (dotted line) are plotted
as functions of the natural logarithm, s, of the odorant concentration.

centration. The Fisher information criteria give high value also for extremely

low odorant concentrations. One possible explanation of this phenomenon lies

in incorrectness of used continuous stochastic process for extremely low odorant

concentrations. In such case the concentration changes in relatively small steps

rather than continuously.

For application of information measures we have to assume a prior distribu-

tion of signal. The information measures are given in Figure 4.14 for a uniformly

distributed signal on interval (−9.5,−6.88). The criterion I1(R|s) forms qualita-

tively the same pattern for both models. It has a local minimum approximately

in the center of studied range of the signals. In both models, the criterion I2(R|s)
is decreasing function of the signal.
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Figure 4.14: Information criteria I1(R|s) (solid line) and I2(R|s) (dashed line) for Gaus-
sian distributed response of the biophysical model characterized in Figure 4.11 are plot-
ted as functions of the natural logarithm, s, of the odorant concentration. For Beta dis-
tributed response both criteria behave qualitatively in the same way.
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Conclusions 5
Three theoretical models of the concentration detector and one of the flux detector

were searched for the optimal signal as defined by the application of the Fisher

information measure and its approximations. The result for the model of basic in-

teraction coincides with the optimum obtained via maximum slope of the input-

output function, which is located at its inflexion point. In models of the concen-

tration detector with activation stage (simple activation or double-step interac-

tion), the statistically determined optimal signal differs from the inflexion point.

In the flux detector model both the deterministic and stochastic approach give

the same result, too. In general, models with separated binding and activation

yield the variances of count of activated receptors which can change the position

of the optimal odorant concentration.

Further, criteria based on measures of transferred information was computed

for a theoretical model with different types of added noise and for two realistic

models. Adding noise to the transfer function has significant consequences. In

the studied models, the variances are similar, except that they decrease faster

one case or slower in the other. The optimal values of the signal are different.

The shapes of the measures in dependency on the signal are not only different,

but also the values are reached with different speeds. This fact is important for

identifying the dynamical range.

The CD-ROM which is a supplement of this dissertation includes few M-files

for Matlab. These scripts provide functions for numerical computation of steady-

-state probability distribution of the number of activated receptors C(s),

DS1.m in double-step interaction (3.22),

FD1.m , FD2.m in flux detector model (3.26),

K1.m , K2.m in biophysical model (see Section 4.3.3).

Other group of scripts provide functions for simulation of progress of the number

of activated receptors Ct(s) in time,

sB1.m in basic interaction (3.1),

sB2.m in basic interaction with multiple types of receptors,

sFD.m in flux detector model (3.26).
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