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Abstract

The emphasis of this dissertation lies on mathematical methods for modelling
of cancer patient data. First chapter gives an introduction to cancer epidemiol-
ogy and definition of basic terms needed in following chapters. Moreover, some
key issues for the population-based cancer data assessment are discussed. Chap-
ter 2 is a methodical chapter on mathematical methods used for cancer survival
assessment. Some basic survival analysis methods are recalled and the concept
of relative survival is introduced. Then, Cox proportional hazards model is de-
fined as the most popular model for cancer survival modelling, and the estima-
tion principles of regression coefficients using the partial log likelihood together
with the methods for regression diagnostics are given. Furthermore, frailty mod-
els which can be considered as an extension of the Cox model are introduced as
well as mixture cure fraction models for the modelling of relative survival. In
Chapter 3, the emphasis lies on the estimation of prevalence of patients requir-
ing active anti-tumour therapy that is accessible from population-based cancer
registry data. The model is further applied on colorectal cancer data from the
Czech National Cancer Registry to model the number of potentially treated pa-
tients with colorectal carcinoma in the Czech Republic in 2011. Chapter 4 presents
the survival benchmarks for Czech cancer patients, and provides an overview of
the survival rates achieved since 1990. Moreover, a comparison is provided be-
tween the Czech and global data concerning the five-year relative survival rates
in selected cancer diagnoses. Finally, Chapter 5 presents a Cox regression model
for the achievement of the complete cytogenetic or major molecular response to a
modern targeted therapy in Czech and Slovak patients in chronic phase of chronic
myeloid leukemia.



Abstrakt

Tato práce je věnována problematice modelovánı́ dat pacientů s malignı́m one-
mocněnı́m pomocı́ matematických metod. V prvnı́ části práce jsou definovány
hlavnı́ epidemiologické charakteristiky použı́vané v dalšı́ch kapitolách. Dále jsou
v úvodnı́ kapitole uvedeny některé klı́čové prvky hodnocenı́ populačnı́ch onko-
logických dat. Kapitola 2 je věnována matematickým metodám pro hodnocenı́
přežitı́ onkologických pacientů. Vedle základnı́ch metod analýzy přežitı́ je zave-
den pojem relativnı́ přežitı́ a jsou definovány metody jeho odhadu. Je definován
tak Coxův model proporcionálnı́ch rizik spolu s metodou odhadu regresnı́ch
koeficientů a metodami regresnı́ diagnostiky. Dále je v kapitole 2 uvažováno
rozšı́řenı́ Coxova modelu ve formě tzv. frailty modelů, a tzv. mixture cure frac-
tion model pro modelovánı́ relativnı́ho přežitı́. Kapitola 3 představuje model
pro odhad počtu onkologických pacientů potenciálně léčených protinádorovou
léčbou, který je aplikován na data českého Národnı́ho onkologického registru s
cı́lem odhadnout počet protinádorově léčených pacientů s kolorektálnı́m karci-
nomem v ČR v roce 2011. Kapitola 4 prezentuje referenčnı́ hodnoty přežitı́ pro
hodnocenı́ výsledků léčebné péče o onkologické pacienty v ČR a zpřehledňuje
vývoj dosahovaných hodnot přežitı́ od roku 1990. U vybraných onkologických
diagnóz kapitola nabı́zı́ srovnánı́ přežitı́ dosahovaného v ČR s mezinárodnı́mi
daty. Nakonec, kapitola 5 je věnována modelovánı́ doby do dosaženı́ kompletnı́
cytogenetické nebo významné molekulárnı́ odpovědi na léčbu modernı́ farmako-
terapiı́ u pacientů v chronické fázi chronické myeloidnı́ leukémie pomocı́ Coxova
modelu proporcionálnı́ch rizik.
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Introduction to cancer
epidemiology 1
Cancer is without any question one of the major health issues worldwide even
though the clinicians and scientists has been fighting against it for decades. More-
over, besides that fact that cancer represents a significant burden of disease, it also
represents an important socioeconomic factor affecting the society. The number
of newly diagnosed patients is increasing in both the developed and the devel-
oping world due to increased life expectancy, urbanization, environmental pol-
lution and adoption of unhealthy lifestyle. Although progress has been achieved
in western countries with prevention programmes and improvements in cancer
detection and medical care, the burden of cancer is supposed to grow also in the
future, mainly due to population ageing.

The Czech Republic is no exception in this respect as it ranks among countries
with the highest cancer load worldwide with tens of thousands of new cancer
patients being newly diagnosed every year [87]. Moreover, there are hundreds of
thousands of cancer patients who were diagnosed and treated in previous years,
constituting a indispensable burden of the Czech health care system. From the
financial perspective, cancer is associated with the economic cost represented
with expenditures on cancer prevention programmes, screening and treatment,
the economic cost represented with time and effort spent by patients and their
relatives and the economic cost represented with lost productivity due to cancer-
related disability and premature death.

Cancer epidemiology can be defined as the study of the distribution and de-
terminants of cancer in specified populations, and the application of this study to
control of health problems [26]. From the biostatistician’s perspective, the prin-
cipal aim of cancer epidemiology should be to analyse population-based data to
enable for drawing conclusions about the time trends and the risk levels associ-
ated with different groups of individuals. The key idea that we have to be able
to distinguish between statistically significant trends and random fluctuations is
especially true in analysis of epidemiological trends. As already mentioned, can-
cer epidemiology is focused on populations rather than on separate individuals;
thus the typical questions which the epidemiologists can ask considering cancer
can be as follows:

• How does the number of newly diagnosed patients change over time?
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• How much does the number of new patients vary from place to place?

• How are the patients likely to survive 5 years being diagnosed with cancer?

• How many patients ever diagnosed with cancer will be alive next year?

Population-based assessment of cancer epidemiology is vital for functional
monitoring of health care system in the widest sense, i.e. for the evaluation of all
of its components. However, the main goals in the fight against cancer to which
the analyses of epidemiological characteristics should contribute can be stated as
follows:

• Lowering number of new cancer patients and increasing their chance not to
die of cancer.

• Improving quality of life of cancer patients.

• Making the best use of available resources for cancer diagnosis and treat-
ment.

Fortunately, monitoring of health care quality has become an integral part of
Czech cancer care where data are collected and analysed using the population-
based registries or clinical studies. Decisions in health care management, how-
ever, must be based on carefully selected parameters and analyses wherein the
value of information and the precision of interpretation are incontestable. This
requires objective and well defined measures of risk in order to make relevant
comparisons between two conditions of interest. These measures might take the
form of the probability of being diagnosed with cancer or of dying from it, or
they might consist of the survival rate or the probability of cancer recurrence. In
all cases, these measures are most often calculated as a ratio between the number
of observed events and the number of individuals at risk within a given period
of time.

1.1 Measures of cancer occurrence

There are two main measures of cancer frequency, called incidence and preva-
lence, commonly introduced in epidemiology literature. First of them, cancer
incidence, refers to new cancer cases occurring among whole population of in-
dividuals that are at risk. It can be expressed as the overall number of newly
diagnosed patients, however, usually it is expressed as the number of cancers
per 100,000 people at risk [14]. Main reason for expressing the cancer incidence
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per 100,000 people is the comparability over different populations. Thus we can
formulate the cancer incidence as follows

Incidence rate =
New cancers
Population

× 100, 000. (1.1)

The number of newly diagnosed cancer patients, represented by the numer-
ator, may include multiple primary cancers occurring in one patient because,
obviously, each patient can suffer from more than one type of cancer. On the
other hand, the incidence rate would not in general include cancer recurrences,
i.e. return of the cancer in the same place where the cancer first originated. Most
frequently, the annual incidence rates are calculated, referring to the number of
cancer cases newly diagnosed during the particular calendar year. Cancer inci-
dence is the main characteristic of cancer dynamics in a given population as it
can flexibly reflect improvements in cancer care and prevention, namely in pre-
vention programmes, organized screening programmes, and improvements in
diagnostic methods.

Cancer prevalence is defined as the proportion of patients with present or
past diagnosis of cancer alive in a population at a specified time point. More
specifically, this definition should be denoted as point prevalence for the numer-
ator of the proportion comprises all patients who are alive and have the disease
at that instant, irrespective of whether it was diagnosed recently or many years
ago. Thus, cancer prevalence includes both newly diagnosed patients (cancer in-
cidence) and patients diagnosed in the past, i.e. prevalence is a function of both
past incidence and survival. In epidemiology, however, also the so-called period
prevalence is defined, referring to the proportion of the population with cancer
over a specific time period. For example, 2007 cancer prevalence can be calcu-
lated as the number of individual patients in a population that had a cancer in
2007. Like the incidence rate, also the prevalence can be alternatively expressed
as the overall count or as the number of patients per 100,000 people alive in a
population at a specified point in time. Cancer prevalence cannot be easily nor
directly used for cancer dynamics assessment like the incidence rate, however,
prevalence is fully representative of the overall cancer burden in a population of
interest.

When talking about cancer prevalence, the epidemiologists mainly think of
the so-called complete prevalence representing all patients ever diagnosed with
cancer and alive at a given time point. However, complete prevalence is often
not available from population-based data as the registration of cancer cases has
not been working long enough yet. In this case, we are restricted to the so-called
limited-duration prevalence that represents the number of patients alive at a spec-
ified time point diagnosed with cancer within the past x years. Limited-duration
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prevalence is easily estimable from population-based data, e.g. by the counting
method [14], and can be further adjusted for missing cancer cases using com-
pleteness indices [15].

Another epidemiology characteristic inherently associated with cancer is the
mortality rate which represents the number of deaths, with cancer recorded as the
cause of death, occurring in a population within a time period of interest, again
usually expressed as the number of patients deceased due to cancer per 100,000
people at risk. We can then formulate the cancer mortality as follows

Mortality rate =
Death due to cancer

Population
× 100, 000. (1.2)

Characteristic closely related to cancer mortality is cancer patient survival
which is often used as a measure of cancer patient care. Patient survival rates
represent a key parameter in oncology, and are routinely used both in the assess-
ment of clinical experiments and in the analysis of cancer burden in the popu-
lation [6, 18]. There are two main reasons for the estimation of cancer survival
rates:

(i) We want to describe the outcome of patients diagnosed with cancer to assess
the associated mortality. Such information can be further used for propos-
ing and monitoring public health priorities. Moreover, the results can also
be used for providing prognostic information for a newly diagnosed cancer
patients.

(ii) We want to study mortality of different groups of cancer patients, i.e. we
want to identify prognostic factors associated with varying survival of can-
cer patients.

However, the survival analysis on population level can lead from various rea-
sons to spurious results. Therefore, the obtained results must be assessed very
carefully, as survival rates are indicators of very complex population relations
and trends, and improvements in patient survival do not necessarily result from
a more effective treatment. On population level, higher survival rates may be
associated with better diagnostic methods which make it possible to detect less
advanced stages and to achieve better treatment results [98, 25].

1.2 Key issues in cancer epidemiology

There are several issues crucial for the population-based cancer data assessment,
not solely associated with the statistical methods, that should be addressed prior
to the definition of the methodological background.

12
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1.2.1 Relative survival

Observed survival (overall survival in clinical studies) is the most basic mea-
sure of the survival experience of subjects under the study. However, its use
in population-based studies can be misleading for the observed survival inte-
grates all causes of death irrespective of the association with the disease of inter-
est. Therefore, when the aim is to quantify the mortality due to the cancer under
study, an approach with adjustment for the other causes need to be adopted.
There are two standard methods applied for estimating the survival associated
with one particular cause of failure in the population-based analyses, the method
of cause-specific survival and the method of relative survival. The estimation
of cause-specific survival proportions requires that reliably coded information on
cause of death is available in data which is often problematic in population-based
registries, because even if the record on cause of death is available, it can be diffi-
cult to determine whether or not cancer was the primary cause of death. The cal-
culation of relative survival does not require precise information on the cause of
death and can be easily obtained using population life-tables. It is for this reason
that relative survival became a standard method for population-based survival
analysis.

1.2.2 Calculation of specific rates

An important issue associated with the identification of the measures mentioned
above is the calculation of the so-called specific rates. Obviously, as cancer rates
vary widely with respect to many clinical and demographic factors, comparison
of raw results could be misleading and standardisation for possible confounders
is essential for making inference about any identified pattern. Above all, extent
of disease, age, sex and time period of diagnosis are the most influential clinical
and demographic variables that are needed to be accounted for in the population-
based analyses. The extent of disease, expressed in oncology dominantly in form
of the clinical stage, is mentioned first for the clinical stage is by means of pa-
tients life-expectation and anticipated financial budget impact of treatment the
most influencing factor, even more influencing than age at diagnosis. An exam-
ple of clinical stage influencing patient survival can be seen on Figure 1.1 which
shows five-year observed and relative cancer survival rates in the Czech Republic
in 2003–2005 period according to clinical stage in selected malignant neoplasms
(MN). Age is another example of factor that is greatly influential with respect to
the epidemiological characteristics mentioned above. In general, an age-adjusted
rate is a weighted average of the age-specific rates, where the weights are the
proportions of persons in the corresponding age groups of a standard popula-
tion. The potential confounding effect of age is thus reduced when comparing
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age-adjusted rates computed using the same standard population.

1.2.3 Data quality

Complete and relevant data are a keystone of every statistical model or analy-
sis, but this is twice as true in epidemiology research. Obviously, the better the
quality of data of a cancer or clinical registry, the better the possibilities for ef-
fective use of these data in planning and research. However, sometimes data
completeness and relevancy are not enough for proper population-based analy-
sis. In epidemiology studies in general, sufficiently long time series are required
for the indication from epidemiological data, i.e. representative long-term pro-
files of newly diagnosed cancer cases, prevalence and mortality and a very good
awareness of most important risk factors in population dynamics.

The Czech Republic disposes of a database of cancer patients which was es-
tablished in 1976 and has been regularly updated and maintained since then
(the Czech National Cancer Registry, CNCR). Data from the Reports on Malig-
nant Neoplasms are assigned to unique birth certificate numbers of individual
cancer patients, and are subsequently completed with records from the Follow-
up Reports on Malignant Neoplasms. Keeping records on cancer cases within
the CNCR has become an indispensable part of comprehensive cancer care; the
CNCR has become a nationwide registry with 100% coverage of the Czech popu-
lation, containing over 1.5 million records from the period 1976-2007. The CNCR
contains patient data, data about the tumour and its clinical diagnostics, data on
patient treatment and data about the patient after such treatment.

1.2.4 Different approaches to population-based survival rate es-
timation

Assessment of the survival rates is always performed retrospectively after a re-
quired follow-up period is reached; several different methods of time selection
of patients can be found in the literature [9, 25, 80]. Logically, different meth-
ods lead to more or less different survival rates; therefore, the method of choice
must be carefully considered. The so-called cohort analysis is considered to be
the standard method, having been used in many comparative studies on cancer
patients’ survival in Europe, such as the EUROCARE [6]. The estimate of x-year
survival rate in this method is based on the analysis of patients’ records whose
x-year follow-up after diagnosis ended, i.e. who had been diagnosed at least x
years before the population-based database was closed. For example, in order
to estimate the five-year survival for the period 2000–2005 by the cohort analy-
sis, one would have to work with the cohort of patients diagnosed in 1995–2000

14
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Figure 1.1: Five-year observed and relative survival rates in treated Czech cancer patients
(selected diagnoses, 2003-2005 period analysis).
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Figure 1.2: Methodical scheme for assessing the five-year survival rates, the period 1995-
2005 being taken as an example.

(Figure 1.2). In this case, however, survival assessment for 2005 would be re-
ported from the real situation in 1995–2000, which probably does not correspond
to more recent results. For this reason, methods involving more recent data have
been developed.

The complete analysis is an example of a method that takes into account more
recent data [80]. Considering the example above, the complete analysis would
involve all patients diagnosed in the period 1995–2005, regardless of the length of
their follow-up. The survival estimate is derived from all patients recorded in the
monitored period (Figure 1.2). The period analysis is another example [9]; this
method also takes into account all patients diagnosed in the period 1995–2005,
but the analysis only includes patients whose follow-up ended recently (the so-
called “left-truncation”). This ensures that the survival estimate will be based on
the most recent information on survival: patients diagnosed in the period 1999–
2005 provide information on one-year survival rate, those diagnosed between
1998–2004 provide information on the two-year survival rate, etc. (Figure 1.2). A
certain disadvantage of this method could be in overestimation of the survival
rate, particularly in diagnoses where the actual trends in diagnostics cause also a
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positive shift in proportional representation of the clinical stages [11].

1.2.5 Introduction of the next chapters: Outline of the thesis

The main aim of this dissertation is to present mathematical methods that can be
used for modelling of cancer patient survival and demonstrate the usability of
these methods on different real data sets, considering both population-based and
individual cancer patient data.

The mathematical methods used for cancer survival assessment are intro-
duced in Chapter 2. Some basic survival analysis methods are recalled and the
concept of relative survival is presented. Then, Cox proportional hazards model
is defined as the most popular model for cancer survival modelling together with
the estimation principles of regression coefficients using the partial log likelihood.
Special attention is given to methods for testing the proportional hazards as-
sumption and methods of regression diagnostics appropriate for the Cox model.
Furthermore, frailty models which can be considered as an extension of the Cox
model are introduced as well as mixture cure fraction model for the modelling of
relative survival.

In Chapter 3, a new model for the estimation of prevalence of patients requir-
ing active anti-tumour therapy that is accessible from population-based cancer
registry data is presented. The new model is an extension of a model already
published in [27, 28] and [75]. Unlike the methods published so far, the new
model has been designed with respect to the extent of cancer, because for many
types of cancer the clinical stage is by means of patients’ life-expectation and an-
ticipated financial budget impact of the treatment even more influencing than
age at diagnosis. The model is further applied on colorectal cancer data from
the Czech National Cancer Registry to model the number of potentially treated
patients with colorectal carcinoma in the Czech Republic in 2011.

Chapter 4 presents the survival benchmarks for Czech cancer patients with re-
spect to stage at diagnosis and administration of anti-tumour treatment that has
been published in [74]. Moreover, this chapter provides an overview of the ob-
served and relative survival rates achieved since 1990. Moreover, a comparison is
provided between the Czech and European data concerning the five-year relative
survival rates in selected cancer diagnoses.

Finally, Chapter 5 presents a Cox regression model for the achievement of the
complete cytogenetic or major molecular response to a modern targeted therapy
in Czech and Slovak patients in chronic phase of chronic myeloid leukemia. The
objective of this chapter is the identification of CML patient characteristics asso-
ciated with prolonged time to complete cytogenetic response or major molecular
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response to imatinib therapy, which could further indicate the increased risk of
disease progression.
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Mathematical methods for
cancer survival assessment 2
This chapter presents mathematical methods that can be used for survival assess-
ment of oncology patients. Some basic survival analysis methods are recalled and
the concept of relative survival is introduced. Cox proportional hazards model
is also addressed, and the estimation principles of regression coefficients using
the partial log likelihood together with the methods for regression diagnostics
are given. Furthermore, frailty models which can be considered as an extension
of the Cox model are introduced as well as mixture cure fraction model for the
modelling of relative survival.

2.1 The basics of survival analysis

In general, survival analysis refers to the collection of statistical methods used to
study the time interval from a defined start of the follow-up to the moment at
which the event of interest occurs [65]. When assessing cancer care, these events
can vary in their definition; in population studies, the date of diagnosis is rou-
tinely considered as the starting point. The event of interest might be the patients
death or, alternatively, disease recurrence or progression.

Let T be the positive real valued time variable with a continuous probability
distribution and finite expectation. Considering T be the time to occurrence of
some event in a population, we can define several interpretable functions that
characterize the distribution of T :

• The probability density of T : f(t), t ≥ 0.

• The survival function: S(t) = P(T > t) =
∫∞
t
f(x)dx = 1 − F (t), where

F (t) is the cumulative distribution function. Survival function describes
the probability of surviving beyond a specified time t.

• The hazard function: h(t) = f(t)/S(t) = limu→0
P{t<T≤t+u}/P{T>t}

u
= −d lnS(t)

dt
.

Hazard function at time t is defined as the ratio of the probability density
function, f(t), and the survival function, S(t), and can be thought of as an
instantaneous rate of a failure at time t.
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• The cumulative hazard function: H(t) =
∫ t

0
h(x)dx. Cumulative hazard

function refers to the “accumulation” of the hazard over time and can be
used to estimate the survival function: S(t) = exp(−H(t)).

Obviously, the event of interest does not have to occur in all individuals dur-
ing the follow-up period. The time of survival is then referred to as censored,
which means that the follow-up ended before the event of interest occurred. Cen-
soring always brings about certain degree of information loss, [60], therefore, the
proportion of censored patients becomes a certain qualitative measure of the in-
put data. It is also important to note that censoring and the occurrence of the
event of interest are assumed to be mutually independent, which means that the
event of interest in censored patients is neither more nor less likely than in other
patients. Thus, the censoring mechanism is assumed to be noninformative.

The methodology of population-based cancer survival analysis is principally
similar as the methodology for survival analysis in other experimental areas.
However, its purpose lies more in the description of patient survival in a de-
mographically representative way [24]. This does not mean that we cannot make
comparisons and inference in the population-based cancer survival analysis as
a relevant prognostic factors such as clinical stage, localization, and histologic
type are also available, but the primary goal of population-based analyses is the
generalisation of results on the entire population of cancer patients. It follows
immediately that such analyses require the analysed group to be representative
enough of the general population.

2.1.1 Estimators of the survival function

Even if many parametric approaches have been formulated for the survival func-
tion estimation, the non-parametric methods are much more often applied in life
and health sciences. Probably the best known non-parametric estimator of the
survival function is the Kaplan-Meier (KM) estimator [58] that can be written as
a product limit estimator of the following form:

Ŝ(t) =
∏
ti≤t

(
1− di

Ri

)
. (2.1)

where (ti, di) represents data of ith individual, i = 1, . . . , n. Time ti is the observed
follow-up time, i.e. either the time of failure or the censoring time, whereas di is
the indicator variable with values di = 1, if failure has occurred, and di = 0, if
censoring has been reported. Ri denotes the number of subjects at risk at time
ti, i.e. the number of subjects without failure and uncensored just before time ti.
KM estimator provides a point estimate which should be always accompanied
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with confidence interval (CI) to describe the variability of this estimate. The vari-
ance of KM estimator needed for computation of CI can be estimated using the
Greenwood’s formula [43], which is given by

v̂ar(Ŝ(t)) = Ŝ(t)2
∑
ti≤t

di
Ri(Ri − di)

. (2.2)

In the population-based survival analysis, the survival rates are often calcu-
lated using life table method which is due to frequent inconsistencies in data
quality and standard length of time interval for population-based survival anal-
ysis being one year. Let dj denote the number of failures during the jth time
interval, j = 1, . . . , J , Rj be the number of individuals at risk at the start of in-
terval j and cj be the number of individuals whose survival time was censored
during the jth time interval. Then the probability that a subject survives from
beginning of the follow-up until the end of the Jth interval, known as the cumu-
lative survival proportion and denoted here as Ŝ(J), is given by

Ŝ(J) =
J∏
j=1

p(j) =
J∏
j=1

(
1− dj

Rj − cj/2

)
. (2.3)

Alternatively to the KM estimator, survival function can be derived using the
cumulative hazard function which can be estimated in a non-parametric manner
by the formula due to Nelson [68] and Aalen [1]:

Ĥ(t) =
∑
ti≤t

di
Ri

. (2.4)

The standard estimate of variance for Nelson-Aalen estimator of H(t) was origi-
nally proposed by Aalen [1] and is of the form:

v̂ar(Ĥ(t)) =
∑
ti≤t

di
R2
i

. (2.5)

Let’s consider data of the ith individual to be represented by (ti, di), then because
the observations are assumed to be independent, the likelihood function can be
written as

L =
n∏
i=1

P{ti, di} =
n∏
i=1

S(ti)
1−dif(ti)

di . (2.6)
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2.2 Relative survival

Relative survival is calculated as the ratio of observed survival to the so-called
expected survival rate (expressing mortality in the general population which cor-
responds to the monitored group of patients in terms of age and sex). The relative
survival is a weighted equivalent of the observed survival, the weight being sur-
vival of the general population. The biggest advantage of relative survival is the
fact that detailed records on causes of death in individual patients are not needed
in order to calculate it [24].

Let h∗(t) and S∗(t) be the expected hazard function and the expected survival
function of the general population, respectively, and similarly, let h(t) and S(t) be
the observed hazard and survival function, respectively. Then the relative hazard
function, denoted as hR(t), can be calculated as:

hR(t) = h(t)− h∗(t), (2.7)

and the relative survival function, denoted as SR(t), is given by:

SR(t) =
S(t)

S∗(t)
. (2.8)

It should be noted that the term relative survival proportion is not precise
because in fact, it is not a proportion nor a rate but a ratio of two proportions.
With respect to [23], the ratio can be defined as the result of dividing one quantity
by another. On the other hand, a proportion can be defined as a type of ratio in
which the numerator is included in the denominator, while a rate is a measure of
change in one quantity per unit of another quantity on which the first quantity
depends. The relative survival proportion, SR(t) = S(t)/S∗(t), is thus a ratio of
two proportions.

2.2.1 Methods for estimation of expected survival

The principle of expected survival estimation is the calculation of survival pro-
portion for a comparable group from the general population that can be regarded
as practically free of the disease of interest. The expected survival proportion es-
timates are based on population life-tables or, more specifically, on annual proba-
bilities of death in the general population, that are matched to the subjects under
study according to age, sex, and calendar time. The calculation of the expected
survival proportion for a group of cancer patients involves calculating the ex-
pected survival probability for each individual cancer patient. Two methods are
commonly utilised for the estimation of expected survival, both having different
advantages and purpose of use.
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I. The Ederer II method

Let S∗(J) be the cumulative expected survival proportion of the whole group
up to the end of the Jth interval, and S∗i (J) be the same for the ith individual.
Similarly, define p∗(j) as the interval-specific expected survival proportion of the
group for the jth interval and p∗i (j) as the same quantity for the ith individual.
Then S∗(J) can be calculated according to Ederer and Heise [31] by

S∗(J) =
J∏
j=1

p∗(j), (2.9)

where

p∗(j) =

Rj∑
i=1

p∗i (j)/Rj (2.10)

is the average of the annual expected survival probabilities p∗i (j) of the patients at
risk at the start of the jth interval. The Ederer II estimates of the interval-specific
expected survival proportions are thus based on only those patients at risk at the
start of the interval, that means, this method allows for heterogeneous observed
follow-up times. However, Hakulinen has shown in [45] that the cumulative
expected survival proportion is then dependent on the observed mortality, which
leads to biased estimates (usually underestimates) of the relative survival ratio.

II. The Hakulinen method

An alternative method for the expected survival estimation was proposed by
Hakulinen [45] which has become a standard for the estimation of cumulative
expected survival for the purpose of estimating relative survival ratios in popu-
lation analysis till then. This method adjusts the estimates for potentially hetero-
geneous follow-up times among the subjects making the estimates independent
of the observed mortality of the patients. The adjustment is performed through
the use of the so-called potential follow-up time that should be specified for each
individual. Fact that the potential follow-up times are required for all individu-
als can be problematic within studies where individuals have different last days
of contact, especially for deceased patients. Fortunately, this is not a problem
in studies evaluating population-based cancer registry data for the population-
based registries usually have a common closing date.

The calculation of the Hakulinen expected survival estimates is performed as
follows. Let kj denote the number of patients with a potential follow-up time
extending beyond the start of the jth time interval. Let kj = kj,a + kj,b, where
kj,a is the number of patients with a potential follow-up time extending beyond
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the end of the jth time interval and kj,b is the number of potential withdrawals
during the jth time interval. It follows that k1 = R1, and kj+1 = kj,a. With Kj ,
Kj,a, and Kj,b representing the set of kj , kj,a, and kj,b patients, respectively, then
the expected number of patients alive and under the risk at the beginning of the
jth time interval can be written as:

R∗j =

{∑
i∈Kj

S∗i (j − 1) for j ≥ 2

R1 for j = 1
(2.11)

We further assume that each of the kj,b patients with the follow-up time ending
during the jth time interval is at risk for the half of the interval, implying that
the expected probability of dying in the jth time interval is 1−

√
p∗i (j). Thus, the

number of patients censored alive in the jth time interval is given by:

c∗j =

{∑
i∈Kj,b

S∗i (j − 1)
√
p∗i (j) for j ≥ 2∑

i∈K1,b

√
p∗i (1) for j = 1

(2.12)

The rest of the kj,b patients are assumed to die during the jth interval, so the ex-
pected number of patients dying in the jth time interval, among potential with-
drawals during the jth interval, is estimated as:

δ∗j =


∑

i∈Kj,b
S∗i (j − 1)

[
1−

√
p∗i (j)

]
for j ≥ 2∑

i∈K1,b

[
1−

√
p∗i (1)

]
for j = 1

(2.13)

The δ∗j quantity is then added to the expected number of patients dying among
the kj,a patients, resulting in the expected total number of patients dying in the
jth interval given by:

d∗j =

{
{
∑

i∈Kj,a
S∗i (j − 1)[1− p∗i (j)]}+ δ∗j for j ≥ 2

{
∑

i∈K1,a
[1− p∗i (1)]}+ δ∗1 for j = 1

(2.14)

Then the interval-specific expected survival proportion of the group in the jth
interval is estimated by:

p̂∗(j) = 1−
d∗j

R∗j − c∗j/2
, (2.15)

and the cumulative expected survival proportion of the whole group from the
follow-up start up to the end of the Jth interval is given by

Ŝ∗(J) =
J∏
j=1

p̂∗(j). (2.16)
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It should be noted that the principal assumption of the Hakulinen’s method is
that information on potential follow-up times are available for all patients. Thus,
the Hakulinen method can be smoothly used in population-based cancer registry
data analyses for the potential follow-up time can be easily calculated based on
one follow-up closing date common for all patients. However, the use of Hakuli-
nen’s method may be limited in clinical or cohort studies when there are individ-
ual dates of last contact.

2.2.2 Confidence intervals for relative survival

The relative survival estimates should be always accompanied with confidence
intervals as it is a standard method for presenting the amount of random error
in an estimate. As the variance of the expected survival proportion can be as-
sumed negligible compared to the variance of the observed survival proportion,
the expected survival proportion is assumed to be a constant value [23]. Then the
variance of the relative survival ratio (both interval-specific and cumulative) can
be expressed as follows

var
(
SR(t)

)
= var

(
S(t)

S∗(t)

)
=

var(S(t))

S∗(t)2
=
SE(S(t))2

S∗(t)2
. (2.17)

A 95% CI can be then constructed for the relative survival estimate, ŜR(t), as
ŜR(t) ± u0.975 × ŜE(ŜR(t)) with ŜE(Ŝ(t)) in (2.17) estimated using the Green-
wood’s formula [43] given by (2.2), and u0.975 being the 0.975 quantile of the stan-
dard normal distribution.

2.2.3 Age standardisation

The calculation of relative survival itself does not guarantee that these estimates
would be comparable among the different populations of cancer patients, par-
ticularly if they differ in their age structures. In this case, age-specific relative
survival must be calculated; this is the calculation of relative survival in several
age categories and a subsequent weighting of these partial estimates with the
weights of corresponding age groups [10]. When describing a given population,
weights corresponding to individual age groups are most frequently specified
with respect to the relative proportion of that particular age group in standard
population of cancer patients. Given that Wk is the weight of the kth age group
andRk is the age-specific relative survival of that age group, the age-standardized
relative survival (ASRS) is calculated as a weighted average according to the fol-
lowing formula [19]:
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ASRS =

∑
kWkRk∑
kWk

. (2.18)

It is obvious that the definition of age groups and corresponding weights is
a key step which might significantly affect the results of the calculation. In com-
parative analyses, equal weights must be used for age standardisation of groups
under comparison [6, 18, 19].

2.3 Cox proportional hazards model

The Cox proportional hazards model is the most popular model for the analysis
of time to event data in medicine as it allows the survival probability to depend
not only on time, but also on the vector of covariates x = (x1, x2, . . . , xp)

′, as in
common regression analysis while having nice interpretational properties. The
hazard function for patient indexed with i can be written as follows

h(t, xi) = h0(t) exp(xi1β1 + xi2β2 + . . .+ xipβp), (2.19)

where h0(t) is the so-called baseline hazard function and β = (β1, β2, . . . , βp)
′ is

the vector of regression coefficients corresponding to the vector of covariates x =

(x1, x2, . . . , xp)
′. The model can be seen as a modification of a parametric model

based on exponential distribution, however, unlike the exponential model the
Cox model leaves the baseline hazard function h0(t) unspecified, and thus it is
not a fully parametric model. In this setting, it can be seen that the hazards for
two groups of patients are proportional in a following way

h(t, xi)
h(t, xj)

=
h0(t) exp(x′iβ)

h0(t) exp(x′jβ)
= exp((xi − xj)′β), (2.20)

i.e. the proportion of hazards of two individuals is constant in time. This is both
the basic assumption of the Cox model as well as the principle for presentation
of results and their interpretation. The most frequently used output of Cox mod-
elling are the estimates of excess hazards associated with variables of interest.

2.3.1 Estimation of the regression parameters

Derivation of an estimator of β cannot be based on an ordinary likelihood func-
tion since h0(t) is not specified parametrically in the Cox model. Instead, the
so-called partial likelihood has been proposed by Cox [20] for the estimation of re-
gression parameters which is a function depending on β only. Consider a sample
of n subjects with a total of k failures (k ≤ n). Furthermore, let t1 < t2 < . . . < tk
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be the k distinct ordered failure times observed and Ri be the set of individuals
at risk of failing just before failure time ti. Considering that the vector of covari-
ates xi of the ith individual is constant in time, the conditional probability that
individual i is observed to fail at ti, given that only one failure occurs at ti, is

h(ti, xi)∑
j∈Ri

h(ti, xj)
=

h0(ti) exp(x′iβ)∑
j∈Ri

h0(ti) exp(x′jβ)
=

exp(x′iβ)∑
j∈Ri

exp(x′jβ)
. (2.21)

Assuming that these conditional probabilities are conditionally independent
across the different failure times, the partial likelihood function covering the fail-
ure pattern of the whole set of n subjects with a total of k failures can be computed
as the product over k observed failure times:

L(β) =
k∏
i=1

exp(x′iβ)∑
j∈Ri

exp(x′jβ)
. (2.22)

The regression coefficients β are estimated with β̂ that maximize the partial like-
lihood, L(β), or its logarithm, logL(β), where notation log stands for the natural
logarithm (as well as in the rest of the thesis). The partial log likelihood takes the
following form [65]

logL(β) =
k∑
i=1

{
x′iβ − log

[∑
j∈Ri

exp(x′jβ)

]}
=

k∑
i=1

li. (2.23)

The estimates of β = (β1, β2, . . . , βp)
′ are then derived by equating the p first

derivatives of logL(β) to zero (with respect to βm,m = 1, . . . , p) and solving this
system of equations with an iterative method, e.g. the Newton-Raphson algo-
rithm. The derivatives of the contribution li will be also further utilised for the
formulation of tests about the vector of regression coefficients, β. Let xi be the
vector of covariates of the subject experiencing the failure at time ti, and xim be
its mth component. Then the first derivative of the contribution li with respect to
βm is

∂li
∂βm

= xim −
∑

j∈Ri
xjm exp(x′jβ)∑

j∈Ri
exp(x′jβ)

, (2.24)

whereas the second derivative of li with respect to βm can be written as

∂2li
∂β2

m

=

−∑j∈Ri
x2
jm exp(x′jβ)∑

j∈Ri
exp(x′jβ)

−

(∑
j∈Ri

xjm exp(x′jβ)∑
j∈Ri

exp(x′jβ)

)2
 , (2.25)

The first derivative is the difference between the value of the mth covariate of the
individual failing at ti, and the weighted average of the mth covariate taken over
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the subjects at risk at ti, namely over the set Ri. The sum of the first derivatives
over all failure times is usually denoted as Um(β), i.e. Um(β) =

∑k
i=1 ∂li/∂βm, and

together with the remaining m − 1 components form the score vector U(β), i.e.
U(β) = (U1(β), U2(β), . . . , Um(β), . . . , Up(β))′. It is evident that E(Um) = 0. The
second derivative of the log likelihood contribution given by equation (2.25) has
the form of variance and its negative value is the (im)th element of the observed
information matrix, so

I(β) =

∣∣∣∣∣∣∣∣
∂l1
∂β1

. . . ∂l1
∂βp

... ∂li
∂βm

...
∂lk
∂β1

. . . ∂lk
∂βp

∣∣∣∣∣∣∣∣ (2.26)

The inverse of the information matrix, evaluated at β̂, can be used as the estimator
of the covariance matrix of β̂, i.e.

v̂ar(β̂) = I−1(β̂). (2.27)

In general, the interpretation of a Cox model involves examining the regres-
sion coefficients for each individual variable. A positive regression coefficient
for an variable means that the hazard is higher, and thus the survival prognosis
worse, for higher values of that variable. On the contrary, a negative regression
coefficient implies a better prognosis for individuals with higher values of that
variable. Moreover, the interpretation of the hazard ratio depends on the char-
acter of considered clinical variable. In case of dichotomous variable, the inter-
pretation of resulting excess hazard is very simple for it is readily attributable to
the risk category. On the other hand, when considering continuous variable, the
resulting value of hazard rate stands for excess hazard attributable to one unit
increase in that variable.

Having the estimate of β, we also need an estimate of the baseline hazard
function to be able to obtain fitted hazards and survival functions for any value
of x. An estimator for the baseline hazard function,H0(t), which is highly referred
to and used, was originally proposed by Breslow [13], and is given by

Ĥ0(t) =
∑
ti≤t

ĥ0(ti) =
∑
ti≤t

di∑
j∈Ri

exp(x′jβ̂)
, (2.28)

where di is the number of failures at ti which can be greater than 1 if there are ties
in the observed failure times.
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2.3.2 Handling tied failure times

The regression coefficients derivation process in the Cox model implicitly as-
sumes that exact failure or censoring time is known for each subject, i.e. none
two observed failure times are the same. However, the real data sets often con-
tain tied failures that introduce complications to partial likelihood computation.
Two computationally feasible approximation algorithms were previously pro-
posed for partial likelihood derivation in case of tied failure times:

• Breslow’s approximation. When the number of tied failure times is not
large, Breslow’s approximation [53, 90] of the log likelihood function can
be used. It is given by logL(β) =

∑k
i=1{s′iβ − di log[

∑
j∈Ri

exp(x′jβ)], where
si =

∑
j∈Di

xj , Di is the set of individuals failing at time ti, and di is the
number of failures at ti.

• Efron’s approximation. Efron derived another approximation of the partial
log likelihood which provides a better approximation to the exact likelihood
than the Breslow’s approximation [53]. It is given by logL(β) =

∑k
i=1{s′iβ−∑di

l=1 log[
∑

j∈Ri
exp(x′jβ)− l−1

di

∑
j∈Di

exp(x′jβ)].

The exact partial likelihood can also be derived for failure time data with ties.
The idea of its computation is that for each failure time ti the number of failures
di can be ordered in (di)! different ways, with the average value over this set of
permutations taken as the final value of the partial likelihood. It follows that if
the number of ties is large computation of the exact partial likelihood becomes
computationally intensive. More details can be found in [56].

2.3.3 Wald, score and likelihood ratio tests

There are three asymptotic tests standardly defined for the statistical inference on
β = (β1, β2, . . . , βp)

′: the partial likelihood ratio test, the Wald test and the score
test [90]. Let us say we want to test the hypothesis that r components of the β
vector are null, in which case they could be dropped out of the model. Obviously,
we can assume that the r coefficients to be tested are the first r coefficients in the
vector β without loss of generality. Then the hypothesis to be tested is

H0 = β1 = 0, . . . , βr = 0. (2.29)

Then the vector β can be rearranged as follows: β = (β∗,β∗∗). The mentioned
tests are all closely related to the partial likelihood function [65] and can be de-
fined as follows:
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• The likelihood ratio test: this test can be defined as twice the difference in
the log partial likelihood at the actual estimate of (β̂

∗
, β̂
∗∗

) corresponding
to the observed data and at the vector (0, β̃

∗∗
) corresponding to the null

hypothesis. The test statistic can be then written as

QLR = 2(logL(β̂
∗
, β̂
∗∗

)− logL(0, β̃
∗∗

)), (2.30)

and is asymptotically distributed as χ2 with r degrees of freedom.

• The Wald test: this test is based on the maximum likelihood estimate of β∗

under the full model. The test statistic of the Wald test is given by

QW = (β̂
∗
− 0)′(I−1

r×r(β̂
∗
, β̂
∗∗

))−1(β̂
∗
− 0), (2.31)

where I−1
r×r(β̂

∗
, β̂
∗∗

) is a submatrix of dimension r × r of the entire variance
matrix corresponding to (β̂

∗
, β̂
∗∗

) estimated under the full model. The test
statistic of the Wald test is also distributed as χ2 with r degrees of freedom.

• Rao’s score test: this test is based on the log likelihood evaluated at the max-
imum likelihood estimate of β∗∗ under the restricted model. More specifi-
cally, it is based on the gradient of the log likelihood function at β∗ = 0, i.e.
on the r × r score vector:

UH0 = U(0, β̃
∗∗

) =

[
∂ logL(β∗,β∗∗)

∂β1

, . . . ,
∂ logL(β∗,β∗∗)

∂βr

]′
β∗=0,β∗∗=β̃

∗∗

(2.32)
evaluated at β∗ = 0 and β∗∗ = β̃

∗∗
. The test statistic of the Rao’s score test

can be written as

QR = U′H0
I−1
r×r(0, β̃

∗∗
)UH0 , (2.33)

where I−1
r×r(0, β̃

∗∗
) is a submatrix of dimension r × r of the inverse of the

observed information matrix evaluated at (0, β̃
∗∗

). Under the null hypoth-
esis, the Rao’s score test statistic follows a χ2 distribution with r degrees of
freedom.

2.3.4 Assessment of the proportional hazards assumption

Proportionality of hazards associated with individual model variables is the cru-
cial assumption of the Cox model. This necessary condition is often appropriate
for survival data but every time the model is used this assumption should be
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verified. As already mentioned, the effect of the predictors in the Cox model is
assumed to be the same at all times t, i.e. the log hazard function is of the form

log h(t, x) = log h0(t) + x′β. (2.34)

As an example, let’s consider that the model include one dichotomous covariate,
coded as 0 or 1, respectively. Then a plot of the log hazard function would con-
tain two curves, log h0(t) for x = 0 and log h0(t) + β for x = 1, i.e. regardless
of how complicated the baseline function, h0(t), is, the difference between these
two curves is β for any t. As for continuous covariates, consider age as a single
variable in the model and assume we are interested in two log hazard functions
for age a and a+ 10. Then, if the coefficient, β, is positive, the difference between
these two curves is 10β for any t.

The rationale behind the verification of proportional hazards assumption is
to assess the extent to which the log hazard functions are equidistant from each
other in time. Various methods have been proposed for testing the proportion-
ality assumption, three of them commonly used in survival analysis will be de-
scribed here in more detail:

• Graphical check of the proportional hazards

• Test based on time-dependent covariates

• Test based on scaled Schoenfeld residuals

1. Graphical check of the proportional hazards

A simple graphical check of the proportional hazards can be performed using the
above mentioned principle of two equidistant log hazard functions that can be
equivalently expressed using the following consideration: The survival function
with respect to cth covariate satisfies under the Cox model

Sc(t) = exp(−H0(t) exp(xcβc)), c = 1, . . . , p, (2.35)

and therefore also

log[− log(Sc(t))] = logH0(t) + xcβc, (2.36)

so if the assumption is correct the log cumulative hazards, log[− log(Sc(t))], for
the levels of covariate c should appear to be approximately parallel.
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2. Test based on time-dependent variables

Cox in his original paper proposed also a simple test for proportional hazards
assumption based on defined time-dependent covariates [20]. Let’s consider a
dichotomous covariate xc to be tested for proportional hazards and the vector of
p − 1 remaining covariates x−c. Then we can define a time-dependent covariate
xc(t) = xcg(t) which is clearly a transformation of xc. The time-dependent func-
tion, g(t), is usually chosen as the identity function, g(t) = t, or the logarithmic
function, g(t) = log t.

This notation leads to the hazard ratio of two subjects with values xc = 1

and xc = 0 and the same covariates x−c of the form exp(xcβc + xc(t)γ) instead of
exp(xcβc) assumed in (2.20). The test on the proportional hazards is then equiv-
alent with testing for a non-zero value of γ which would imply that the hazard
ratio associated with xc changes in time.

3. Test based on scaled Schoenfeld residuals

In 1994 Grambsch & Therneau [40] proposed a test on proportional hazards based
on scaling of residuals first introduced by Schoenfeld [81]. Let t1 < t2 < . . . < tk
be the k distinct ordered failure times, and let x1, . . . , xk and R1, . . . , Rk be the
corresponding vector of covariates and risk set. The Schoenfeld’s residuals can
then be defined as:

r̂Si = xi −
∑

j∈Ri
xj exp(x′jβ̂)∑

j∈Ri
exp(x′jβ̂)

= xi − ˆ̄xwi
, (2.37)

where β̂ is the maximum likelihood estimate ofβ, derived by maximising of (2.23).
Let the approximate estimate of the variance matrix of the vector of Schoenfeld
residuals be denoted as v̂ar(r̂Si ). Then, for the ith uncensored individual (the es-
timator is missing for censored subjects), the elements in this matrix are

v̂ar(r̂Si )lm = v̂ilm =
∑

j∈R(ti)

ŵij(xjl − ˆ̄xwil)(xjm − ˆ̄xwim), (2.38)

where ŵij = exp(x′jβ̂)/
∑

m∈R(ti)
x′mβ̂, and ˆ̄xwil is the lth element corresponding to

the lth covariate of vector ˆ̄xwi
defined in (2.37). Having the r̂Si variance estimator,

the scaled Schoenfeld residuals can be defined as

r̂S∗i =
[
v̂ar(r̂Si )

]−1

r̂Si . (2.39)

Grambsch & Therneau considered an alternative to Cox proportional hazards
model, a model with time-varying coefficients, βl(t) = βl + gl(t)γl, where gl(t)
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is an unknown function of time which vary about zero, and γl is a regression
coefficient. Next, they showed that the mean of the scaled Schoenfeld residuals
at time ti can be, for the lth covariate, approximated as follows:

E(r̂S∗il ) ≈ gl(ti)γl, (2.40)

Therefore, the function gl(t), for covariate l, can be estimated by a smoothed plot
of the lth component of r̂S∗i against ti. A formal test was also proposed by Gramb-
sch & Therneau [90], considering a standard linear model for the r̂S∗il values. The
test statistic for the lth covariate can be written as

T (gl) =
(
∑k

i=1{gj(ti)− ḡj(t)}r̂Sil)2∑k
i=1 v̂

i
ll(gj(ti)− ḡj(t))2 − (

∑k
i=1{gj(ti)− ḡj(t)}v̂ill)2/

∑k
i=1 v̂

i
ll

, (2.41)

where n is the overall number of individuals, k is the total number of failures,
di is the indicator variable of failure, and ḡj(t) is the mean of the gj(ti)s. This
test statistic is asymptotically distributed as a χ2 with 1 degree of freedom. More
details can be found in [40].

2.3.5 Stratification

Stratification can be regarded as an extension of model given by (2.19) that allows
to adjust for a factor showing nonproportional hazards without estimating its
effect [65]. Let us consider a factor with J levels, then the stratified Cox model
according to this factor is given by

hj(t, x) = h0j(t) exp(x′β), (2.42)

where j denotes the particular stratum (j = 1, . . . , J). Under the stratified model,
it can be seen that individuals within the jth stratum share the same baseline
hazard function, h0j(t), which implies that the proportional hazards for two indi-
viduals in the same stratum still holds:

hj(t, x1)

hj(t, x2)
= exp((x1 − x2)′β). (2.43)

On the other hand, individuals from different groups can have nonpropor-
tional hazards as their baseline hazards functions may differ. Computationally,
the stratified Cox model is a generalisation of (2.23) in a way that the overall log
likelihood becomes a sum of J log likelihoods incident to individual strata, i.e.
the overall log likelihood is given by

33



DISSERTATION CHAPTER2

logL(β) =
J∑
j=1

logLj(β). (2.44)

2.3.6 Assessment of a model fit

Model validation is an important step in the model building process, and is usu-
ally performed using model residuals that represent the differences between the
responses observed at each combination of the explanatory variables and the cor-
responding prediction of the response computed using the estimated regression
function. However, the residuals in Cox regression model are not as useful for
global model fit assessment as are residuals in linear models or another types of
parametric models [90]. On the other hand, the residuals defined for Cox model
can be used for specific purposes, e.g. for identification of poorly predicted indi-
viduals or influential observations.

There are three highly used residuals besides the Schoenfeld’s defined above
in the Cox model: the martingale, deviance and score residuals. Martingale resid-
uals can be used for overall test of the goodness-of-fit of a Cox model [73] whereas
deviance residuals, which can be derived from martingale residuals, can be used
for detection of poorly predicted individuals. Score residuals can be, on the other
hand, useful for determination of influential observations.

Considering only time-fixed covariates for simplicity, a martingale residual is
defined for each individual as

r̂Mi = Ni − Êi = Ni − exp(x′iβ̂)Ĥ0(β̂, ti) (2.45)

where Ni is the number of failures of the ith individual at time ti (Ni is either
0 or 1 for the single-event survival data), Êi stands for the expected number of
failures based on the estimated vector of regression coefficients, β̂, and Ĥ0(β̂, ti)

is the Breslow’s estimator of the baseline cumulative hazard function [13]. It can
be seen that the martingale residual represents for each individual the observed
number of events minus the number predicted by the fitted model and given the
follow-up time ti, i.e. it measures the contrast between the prediction and the
reality.

To perform an overall test of the goodness-of-fit of a Cox model, Parzen &
Lipsitz [73] considered a partition of the subjects intoK groups according to their
risk of failure expressed by exp(x′iβ̂), and proposed an alternative Cox model us-
ing this kind of information. Furthermore, they proposed the score statistic the
goodness-of-fit, and showed that this statistic is actually a function of the mar-
tingale residuals within each group. They conclude that for sufficiently large sam-
ple sizes (the criteria for sufficiently large sample sizes is similar to those of Pear-
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son’s chi-square statistic for contingency tables) the statistic has approximately
chi-square distribution with K − 1 degrees of freedom.

As the martingale residuals are skewed, some authors prefer to use other
residuals for the lack of fit assessment [60]. The deviance residuals, r̂Di , which can
be considered as a normalizing transformation of the martingale residuals [90],
can be used this way, for example. It can be shown with a one-term Taylor expan-
sion that

r̂Di =
Ni − Êi√

Êi
. (2.46)

A good fit of the Cox model can be anticipated when the plotted deviance resid-
uals are scattered around zero. Residuals which are far from zero belong to indi-
viduals with a poor prediction. However, there is no definite value to be used as
a threshold for specifying poorly predicted individuals as the deviance residuals
have no reference probability distribution [90].

Another residuals that can be defined using the martingale residuals are the
score residuals [53] expressing each individual’s contribution to the score vector,
U(β). The score residuals of the ith individual can be expressed as

rCi =
n∑
j=1

(
xi − x̄wj

)
drMi (tj) (2.47)

where x̄wj
is the average covariate vector over individuals at risk in time tj de-

fined in equation (2.37). The expression drMi (tj) stands for the change in the mar-
tingale residuals for the ith subject at time tj , and can be expressed as

drMi (tj) = dNi(tj)− Yi(tj)h0(tj) exp(x′iβ), (2.48)

where dNi(tj) is the change in the count function of the ith individual at time tj .
It is always zero for censored individuals, whereas for uncensored individuals,
it is equal to zero except at the observed time of failure, when dNi(ti) = 1. The
function Yi(tj) represents the at risk process of the ith individual and is given by

Yi(tj) =

{
1 if ti ≥ tj

0 if ti < tj
. (2.49)

Finally, the function h0(tj) represents an increment of the Breslow’s estimator of
H0(t) evaluated at tj . The estimate of score residuals can be written with respect
to (2.48) as

r̂Ci = di(xi − ˆ̄xwj
)−

n∑
j=1

(xi − ˆ̄xwj
)Yi(tj)ĥ0(tj) exp(x′iβ̂). (2.50)
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Obviously, the score residuals of ith individual form a row vector of length pwith
components r̂Cij , j = 1, . . . , p, that is r̂Ci =

(
r̂Ci1, r̂

C
i2, . . . , r̂

C
ip

)′. However, a scaled
version of the score residuals is used as a measure of influence of an individual
observation on a maximum partial likelihood estimate of a regression coefficient.
The scaled score residuals are defined as

r̂C∗i = v̂ar(β̂)r̂Ci , (2.51)

where v̂ar(β̂) is the estimate of the variance matrix of the regression coefficient
estimates introduced in (2.27).

It should be noted that the martingale and the deviance residuals are subject-
specific by focusing at precision of model prediction for each individual. On the
other hand, score and Schoenfeld residuals are rather covariate-specific as they
primarily focus on the difference between covariate vectors.

2.3.7 Competing risks in Cox regression

In many clinical experiments, with cancer studies being no exception, failures can
be divided into two or more groups according to several distinct causes. These
different causes of failure should be considered as competing events, where oc-
currence of any one of the events causes failure and precludes the occurrence of
the other events. Such situation introduces the so-called competing risks that can
be represented with the so-called cause-specific hazard functions. Consider C be
the observed cause of failure, and let us say that there are J different competing
causes of failure, then the hazard function specific for the jth cause of failure can
be defined as

hj(t) = lim
u→0

P{t < T ≤ t+ u,C = j}/P{T > t}
u

, for j = 1, . . . , J. (2.52)

The hj(t) function can be interpreted as the instantaneous failure rate of cause j
at time t. As a rate, the value of a cause specific hazard function has the unit of
probability per time unit. A Cox proportional hazards model can be considered
for the cause-specific hazard function, i.e., given the p × 1 vector of covariates
x, the hazard function specific for the jth cause can be modelled as hj(t, x) =

h0j(t) exp(x′β).
If one is interested only in one failure cause and the censoring is indepen-

dent, then the methodology of partial likelihood can be used for analysing the
competing risks data, fitting a Cox model for the failure type of interest and treat-
ing the other causes of failure as censored observations [56]. However, if we are
interested in the comparison of parameter estimates corresponding to different
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causes of failure, and in estimation of the ratio between pairs of baseline hazard
functions, an alternative approach need to be adopted.

Lunn & McNeil [63] published a method for fitting Cox regression model
that can cope with competing risks by augmenting the data using a duplication
method. The idea behind their method is that the hazard functions of different
failure types are assumed to be additive, and thus the overall hazard function
for all failure types is the sum of the particular risk processes. When failure of a
specific type is reported, the observed failure time corresponds to the minimum
of the failure times associated with these processes, with the particular risk pro-
cess being uncensored, and the rest of them being censored. Their approach can
be best demonstrated on an example. Suppose, for simplicity, that there are only
two types of failure, say I and II, denoted with an indicator, say c, which means
that c = 0 for type I, and c = 1 for type II, respectively. Then an individual i with
failure time ti, vector of covariates xi, and failure type ci should be represented in
data with the following entries:

ID Time Failure status Failure type Covariates
i ti 1 ci xi, cixi

i (replicate) ti 0 1− ci xi, (1− ci)xi

The Cox model is then applied on the duplicated covariates, with failure type,
c, being included in the model as an explanatory variable together with the co-
variates (x, 0) or (x, x), respectively. The duplication of data makes it possible to
study possible interactions between covariates and failure types. If there are no
ties present in data, then the Cox partial likelihood based on k failures is given by

L(β) =
k∏
i=1

exp(ciβ0 + x′iβ1 + cix′iβ2)∑
j∈Ri

exp(cjβ0 + x′jβ1 + cjx′jβ2)
. (2.53)

Considering a person with covariate vector x, it can be seen that the hazard func-
tion for failure type I is h01(t) exp(x′β1), whereas the hazard function for failure
type II is h01(t) exp(β0 + x′β1 + x′β2) = h02(t) exp(x′β1 + x′β2). Obviously, if
x = 0 the ratio of the baseline hazards functions of the two failure types equals
to exp(β0). However, this is no longer true when covariate vector x 6= 0 is consid-
ered.

2.4 Frailty models

Frailty models can be considered as an extension of the proportional hazards
models as they allow for addition of random effects to this kind of models [90]. In
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addition to standard observed explaining variables, frailty represents a unobserv-
able multiplicative effect on the hazard function. The idea behind frailty models
is that individuals have different frailties, and that those who are most frail will
experience the failure earlier than the others.

Two categories of frailty models can be considered. The first class of frailty
models, called the univariate frailty models, can be used to model heterogeneity
among individuals, i.e in terms of omitted variables, a univariate frailty model
can be used when we assume the lack of measurements that vary within the
group. The second class of frailty models, called the shared frailty models, takes
into account correlated survival times and is used with multivariate survival data
where the unobserved heterogeneity is shared among groups of individuals [44].

2.4.1 Univariate frailty models

It is no wonder that individuals are dissimilar in health sciences. At least for
survival data, the sources of variability can be split into two groups: measurable
risk factors and unknown covariates. Under the univariate frailty model, the
heterogeneity represented by the missing information can be accounted for using
the unobservable random variable, denoted as Z. Letting zi be the frailty for the
ith individual, then the hazard function at time t for individual i with vector of
covariates xi, i = 1, . . . , n, is given by h(t, zi, xi) = zih(t, xi), which is in the case of
Cox model, equal to:

h(t, zi, xi) = zih0(t) exp(x′iβ). (2.54)

The identifiability property [32] implies that the frailty variable, Z, is assumed
to have mean one and variance θ. In this way, h(t, xi) can be seen as an average
hazard rate of an individual i with vector of covariates xi [1]. It follows immedi-
ately, that individuals with zi > 1 will have an increased risk of failure whereas
individuals with zi < 1 are less frail and will survive longer given a certain co-
variate pattern. The univariate frailty model can be also formulated in terms of
the conditional survival function which is, however, not observable:

S(t, z, x) = exp

(
−z
∫ t

0

h(u, x)du

)
= exp(−zH(t, x)). (2.55)

When considering that the individual survival function conditional in the
frailty can be written as S(t, z, x) = [S(t, x)]z, then the population survival func-
tion can be estimated by integrating over z. That is, if the frailty term has a prob-
ability density function f(z), we can write the population survival function as:

Sθ(t, x) =

∫ ∞
0

[S(t, x)]zf(z)dz. (2.56)
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The subscript θ is used to denote the dependence of the population survival func-
tion on the frailty variance θ. When considering the probability distribution of
the unknown risks between individuals, Z, it comes reasonable to think that this
is similar to the distribution of known risks. There are several probability dis-
tributions applied in frailty models but the following two are used most often:
the gamma distribution and the log-normal distribution [90]. Considering the
gamma distribution with mean one and variance θ, the density function of Z can
be written as

f(z, θ) =
z1/θ−1 exp(−z/θ)

Γ(1/θ)θ1/θ
. (2.57)

To estimate the nuisance parameter θ, we need to derive the likelihood func-
tion. If the frailties were observed, then the log likelihood based on the observed
data would be:

logL(β) =
n∑
i=1

di log(h0(ti) exp(x′iβ))−H0(ti)zi exp(x′iβ) + di log(zi)

+
1

θ
log

(
1

θ

)
+

(
1

θ
− 1

)
log(zi)−

zi
θ
− log

(
Γ

(
1

θ

)) (2.58)

This likelihood can be maximized using an EM algorithm according to [4],
which was originally proposed in [70]. During first step, the value of θ is consid-
ered to be fixed, which enables us to ignore the last five terms of (2.58) in the first
place. Initial estimates of regression coefficients vector, β, and the cumulative
baseline hazard function, H0(t), are obtained from the standard Cox model and
Breslow’s estimate, respectively.

Having the initial estimates of β and H0(t), then the following steps are iter-
ated until convergence:
1. The E step: For univariate gamma frailty model, the expectation to be calcu-
lated is

E(zi|ti, di, xi) =
1 + θdi

1 + θĤ0(ti) exp(x′iβ̂)
, (2.59)

where Ĥ0(ti) and β̂ are the actual estimates of H0(t) and β, respectively.
2. The M step: During the M step we maximize

logL(β) =
n∑
i=1

di log(h0(ti) exp(x′iβ))−H0(ti)zi exp(x′iβ) (2.60)

using the standard Cox’s partial likelihood with the expectation term E(zi|ti, di, xi)
as an offset. The final estimates denoted as Ĥ0θ and β̂θ are substituted into the
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marginal log likelihood, logLM , after integrating out the frailties, i.e. into the
following formula

logLM(θ|Ĥ0θ, β̂θ) =
n∑
i=1

di log(ĥ0θ(ti) exp(x′iβ̂θ))

−
(

1

θ
+ di

)
log(1 + Ĥ0θ(ti)θ exp(x′iβ̂θ)),

(2.61)

where ĥ0θ is estimated using the increments of Ĥ0θ. The final estimate of θ is then
derived numerically by maximizing (2.61).

2.4.2 Shared frailty models

There is often a situation, especially in medical data analysis, that data are clus-
tered or correlated in some way, i.e. we assume unobserved heterogeneity shared
by clusters of subjects. For example, this situation may arise in multicentric clini-
cal studies or when we study failure times for samples consisting of natural fam-
ilies of individuals. In this model, all subjects within each group share a common
frailty, each subject belongs to exactly one group, and frailties of different groups
are independent. Difference between shared and univariate frailty models is in
the assumption of how the frailty is distributed among the individuals.

Let the data of the ith individual, who is a member of the jth of J groups, fol-
low a proportional hazards shared frailty model, then the hazard can be written
as

h(t, zj(i), xi) = zj(i)h0(t) exp(x′iβ). (2.62)

where j(i) denotes that the subject i is a member of the jth group, and zj(i) = zj is
the frailty for jth group. The individual z’s are assumed to be independent and
identically distributed according to some positive scale distribution with density
function f(z, θ), having due to identifiability properties mean 1 and variance θ as
already mentioned.

The estimation problem under this model can also be addressed using the EM
algorithm [92, 59], with general framework proposed by Parner [72]. However,
in 2000 Therneau, Grambsch & Pankratz have shown in [91] that the estimation
under the gamma shared frailty model can be done using a penalized partial log
likelihood, whose solution coincides with the solution given by the EM algorithm
for any fixed value of θ. Moreover, they show that the Gaussian frailty models
are also closely related to penalized models. Their findings were subsequently
published also in [92].
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The formulation of the shared frailty model as the penalized regression model
is most easily derived using an alternative version of the frailty term

zj(i) = exp(ωj(i)). (2.63)

Let us define a matrix of q indicator variables, V, such that vij = 1 when subject
i is a member of family j and 0 otherwise. Then the hazard function of the ith
individual can be specified in another way:

h(t, zj(i), xi) = h0(t) exp(x′iβ + v′iω), (2.64)

where vi is the column of V corresponding to the ith individual. Each subject
is assumed to be a member of only one family. Then the penalized partial log
likelihood can be written as

PPL = logL(β,ω)− g(ω; θ) (2.65)

where g is a penalty function which gives large values to “bad” values of ω, the
parameter θ is a tuning constant, and logL(β,ω) is the standard Cox partial log
likelihood of the form

n∑
i=1

di

{
(x′iβ + v′iω)− log

[∑
k∈Ri

exp(x′kβ + v′kω)

]}
. (2.66)

The score equations, ∂PPL/∂β and ∂PPL/∂ω, need to be solved for the esti-
mation of β andω. As β is not included in the penalty function, then ∂PPL/∂β =

∂ logL(β,ω)/∂β, which implies that the score equations for β are equal to the
score equations of a Cox model with v′ω as an offset term. Furthermore, we can
define

v̄j(β,ω, t) =

∑
i∈Rt

vij exp(x′iβ + v′iω)∑
i∈Rt

exp(x′iβ + v′iω)
. (2.67)

Then the differential of PPL according to ωj can be written as

∂PPL

∂ωj
=

n∑
i=1

di(vij − v̄j(β,ω, t))−
∂g(ω; θ)

∂ωj
. (2.68)

And the score equation for ωj (j = 1, . . . , J) can be written with the use of Bres-
low’s estimator of the baseline hazard as

∂PPL

∂ωj
=

n∑
i=1

(vijdi − vijĤ0(t) exp(x′iβ + v′iω))− ∂g(ω; θ)

∂ωj
= 0. (2.69)

The advantage of the penalized likelihood approach is that it can be fit using
the Newton-Raphson algorithm.
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2.5 Mixture cure model

Mixture survival models are useful when considering more than one paramet-
ric probability density to correctly describe the heterogeneity of data. Mixture
survival models can be adopted to, for instance:

• Study diseases with a multiple stages, where time to failure in each stage is
modelled with a different parametric distribution.

• Analyse several competing risks.

• Estimate a proportion of patients recovering after the treatment of the dis-
ease.

Last point is especially appealing in modelling population-based cancer data
where patients can be (at least artificially) split into two groups: cured and un-
cured. Although clinically defined cure from cancer is never completely certain in
an individual patient, mixture cure models are very useful for modelling the pro-
portion of long term survivors among cancer patients on the population basis.
Moreover, mixture models allow for incorporating and correcting for the back-
ground mortality, represented with the expected survival function, which is also
of a great importance in analysing population-based cancer data [62].

Let us denote h∗(t) and S∗(t) the hazard function and the survival function of
the general population, respectively; similarly, denote hR(t) and SR(t) the relative
equivalents associated with the disease of interest; and finally, denote hU(t) and
SU(t) the hazard function and the survival function of the uncured individuals,
respectively. Moreover, let us consider π be the proportion of cured cases with
respect to the specific cause of death and 1 − π be the proportion of fatal cases
that are bound to die of the specific cause of death. Then the mixture cure fraction
model can be formulated as follows

S(t) = S∗(t)SR(t) = S∗(t)(π + (1− π)SU(t)), (2.70)

with the excess mortality rate being in a form

hR(t) =
(1− π)fU(t)

π + (1− π)SU(t)
. (2.71)

2.5.1 Modelling the cure fraction

The aim of the mixture cure fraction model is often not only the estimation of π
but also its modelling through covariates x. There are two link functions mostly
used in the cure fraction model [84]:
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(i) The identity link function: π(x) = x′β. This link function causes the covariate
effects to have relatively easy interpretation as they are represented in units
of the cure fraction. However, use of the identity link function may cause
problems in the boundary regions, i.e. for low or high cure fractions.

(ii) The logistic link function: log(π(x)/(1 − π(x))) = x′β. Covariate effects are
expressed as (log) odds ratios, and thus covariate effects have a similar in-
terpretation to those in logistic regression.

Various probability distributions can be applied in the mixture cure models. For
practical purposes, the Weibull, lognormal, and gamma distributions are mostly
used. When considering a vector of covariates x, the survival function of the
uncured individuals, SU(t, x), can be written as

• SU(t, x) = exp(λ(x)tγ(x)) for the Weibull distribution, where λ and γ are a
scale and a shape parameters, respectively.

• SU(t, x) = 1− Φ( log t−µ
σ

) for the lognormal distribution, where Φ is the stan-
dard Normal distribution function.

• SU(t, x) = 1 − Γt(a)
Γ(a)

for the gamma distribution, where Γ(a) is the gamma
function and Γt(a) is the incomplete gamma function, defined as Γt(a) =

∫ t0 xa−1e−xdx.

All parameters of the mixture model can be estimated using the maximum
likelihood approach. With (ti, di) representing survival data of ith individual, the
log likelihood function can be formulated as

logL(β) =
n∑
i=1

di log

[
h∗(ti) +

(1− π)fU(ti, xi)
π + (1− π)SU(ti, xi)

]
+ logS∗(ti) + log{π + (1− π)SU(ti, xi)}.

(2.72)

The expected survival, S∗(t), does not depend on the model parameters and can
be, thus, removed from the likelihood. However, the likelihood depends on the
mortality rates of the general population through the expected hazard function,
h∗(t), which need to be estimated from the population mortality tables at either
failure or censoring time of each individual [22]. Thus, the likelihood can be
defined for any standard parametric distribution based on the probability density
function fU(t) and survival function SU(t) characterising the uncured group. As
in the Cox model, the inverse of the information matrix represents an asymptotic
estimate of the covariance matrix of the parameter estimates.
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Estimating number of patients
potentially treated with
anti-tumour therapy using
population-based cancer registry
data 3
The objective of this chapter is to present a new model for estimation of preva-
lence of patients requiring active anti-tumour therapy that should be accessible
from population-based cancer registry data. The new model is an extension of a
model already published in [27, 28] and [75]. The extension involves the way how
the number of patients with terminal and non-terminal cancer is estimated. The
proposed method has been designed with respect to the extent of cancer because,
for many types of cancer the clinical stage is by means of patients’ life-expectation
and anticipated financial budget impact of the treatment even more influencing
than age at diagnosis. To document its applicability, the model has been applied
on colorectal cancer data from the CNCR to model the number of potentially
treated patients with colorectal carcinoma in the Czech Republic in 2011.

3.1 Introduction

Modern therapy introduces significant improvement in survival of cancer pa-
tients. However, the increasing cancer incidence and prevalence rates together
with the cost of targeted anticancer therapy introduces the essential need for
monitoring and prospective planning of number of patients eligible for targeted
therapy, as necessary financial resources need to be allocated. Estimation of can-
cer incidence and prevalence can be seen as the first step in the process focused
on the potentially treated patients as the prevalence estimates need to be further
adequately adjusted for patients untreated from whatever reason (cure for can-
cer, treatment contraindication, very high age, patient’s refusal to treatment, ad-
vanced stage of disease). However, irrespective of treatment applied, the cancer
prevalence estimation is not an easy task. Since our primary interest is to estimate
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the time interval prevalence, defined as the proportion (or number) of cancer pa-
tients ever diagnosed with cancer alive in the year of interest, it cannot be esti-
mated directly from the population-based data due to time limited registration of
the cancer cases, and has to be modelled. Several methods have been proposed
for future cancer burden estimation based on different modelling strategies of
which the back-calculation method combining parametric estimates of incidence
and survival is most used [35, 76, 94, 88]. Other approaches include the calcu-
lation of individual log likelihoods of living with cancer [51], the application of
Markov model [61] or the application of Bayesian model [5]. The generalization
of completeness index method first introduced by Capocaccia & De Angelis [15]
has also been applied [82].

3.2 Methodical concept of the model

The model comes from the model of period prevalence defined as the proportion
of patients with present or past diagnosis of cancer alive in a population in a cer-
tain year. The modelling process has two steps. In the first step, overall number
of living cancer patients irrespective of the anti-tumour therapy applied is iden-
tified. The prediction combines the number of newly diagnosed patients and the
number of patients who were diagnosed previously and lived at the year of in-
terest. In the second step, number of patients probably treated in a given year
due to a primary disease or due to a recurrence of the primary malignant disease
is estimated. As mentioned previously, the model is derived in a stage-specific
manner as this stratification is necessary in a case of financial planning since the
treatment costs and other resources needed are highly associated with the cancer
stage.

3.2.1 Step I

Cancer prevalence is most frequently estimated using the cohort-specific exact
age prevalence [94, 82] which denotes the probability that an individual with
past or present history of cancer is alive at calendar time y and in the age range
[a, a + 1). However, the exact age structure of prevalent individuals at time y is
not always necessary from the financial budget impact point of view as the need
for anti-tumour treatment should be judged rather by the presence or absence
of cancer than by patient’s age. In our model, we adopted an approach based
on age-drift model emphasizing the period effects on cancer prevalence. It can be
justified by the fact that the short-term predictions, which we focus here, are more
likely to be influenced by period effects, such as cancer screening programmes or
new treatment modalities, than by cohort effects. This is especially true in the
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recent years when effects of cancer screening programmes and new treatment
modalities on both cancer incidence and survival were reported for several can-
cers [7].

Considering the extent of cancer, s, as the main stratification factor for the
estimation of cancer prevalence, let us categorise it into three groups according
to clinical stages defined by the TNM classification system: s = I+II for clinical
stages I and II (representing localised disease); s = III for clinical stage III (repre-
senting regionally advanced disease); and s = IV for clinical stage IV (representing
metastasized disease). The stage-specific prevalence, Ps(y), can be then expressed
as follows:

Ps(y) =
m∑
a=1

Ps,a(y), (3.1)

where a is a categorical age cohort variable of m categories and Ps,a(y) denotes
the prevalence of patients ever diagnosed at ath age category and stage category
s alive in calendar year y. The elements of (3.1) can be further formulated as the
convolution of incidence and survival functions:

Ps,a(y) =
n∑
i=0

Is(y − i, a)Ss(i, a), (3.2)

where Is(y−i, a) and Ss(i, a) are the age and stage-specific incidence and survival
functions, respectively, and n is the number of annual incidence figures available
for computation.

3.2.2 Step II

The purpose of the second step is to quantify the number of patients requiring
active anti-tumour therapy on the basis of patients prevalent in the year of inter-
est. Equation (3.2) can be easily split into two terms (assuming newly diagnosed
patients being prevalent in the year of interest and thus making Ss(0, a) = 1) as
follows:

Ps,a(y) =
n∑
i=0

Is(y − i, a)Ss(i, a) = Is(y, a) +
n∑
i=1

Is(y − i, a)Ss(i, a). (3.3)

First term on the right-hand side of (3.3) represents the newly diagnosed patients
whereas the second one stands for the patients diagnosed in the past and alive
in the given year. Correcting the first term of (3.3) for the probability of being
untreated with anti-tumour treatment due to poor health condition or other ob-
jective reasons (e.g. patient’s refusal) and simultaneously correcting the second
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term of (3.3) in a way that only patients with the recurrence of the disease in
a good health condition allowing the anti-tumour treatment are considered, the
prevalence of patients receiving active anti-tumour therapy, denoted as P ∗s,a(y),
can be derived as follows:

P ∗s,a(y) = Is(y, a)δs(y, a) +
n∑
i=1

Is(y − i, a)Ss(i, a)Rs(i, a)δs(y, a), (3.4)

where δs(y, a) is the stage- and age-specific probability of being treated with an
anti-tumour treatment in the year of interest and Rs(i, a) is a function that de-
scribes the risk of suffering from cancer recurrence after surviving i years from
diagnosis.

In a simplified way, the Rs(i, a) can be further specified in the stage-specific
manner using the following consideration: Each patient diagnosed in stage s can
suffer in time from two forms of cancer recurrence, either non-terminal (actually
not leading to death; denoted as R1

s(i, a)) or terminal (leading to death in the year
of interest; denoted as R2

s(i, a)), which further determine the way of patient’s
treatment. In the former case the patient is assumed to be treated in a similar
way as in the time of primary diagnosis which implies the patient stays in the
pool of patients prevalent in particular stage s. In the second case the patient is
assumed to be treated with generalized disease which implies the patient moves
from the prevalence of stage s (I+II or III) to prevalence of stage IV. Schematically,
the Rs(i, a) can be expressed as:

Rs(i, a) = R1
s(i, a) +R2

s(i, a); s = I+II, III, IV, (3.5)

where R1
s(i, a) and R2

s(i, a) reflects the age and stage-specific probabilities of non-
terminal and terminal cancer recurrence, respectively, conditional on being alive
i years from diagnosis.

The simplifying assumption of only two forms of cancer recurrence has again
the motivation in financial aspects of cancer care. The separation of patients with
terminal cancer recurrence is needed for the treatment of generalized disease is
much more costly than the treatment of non-terminal disease, especially when
considering the contemporary improvements in targeted anti-tumour therapy.
However, the remaining clinical stages (I+II and III) can be with respect to finan-
cial burden perceived as much more similar.

Expanding (3.4) in a way given above, i.e. splitting the Rs(i, a) term accord-
ing to (3.5) and moving the patients suffering from terminal cancer recurrence
to prevalence of stage IV, lead to final formulation of the age- and stage-specific
prevalence of patients requiring active anti-tumour therapy as follows:
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P ∗s,a(y) = Is(y, a)δs(y, a) +
n∑
i=1

Is(y − i, a)Ss(i, a)R1
s(i, a)δs(y, a); s = I+II, III,

P ∗IV,a(y) = IIV(y, a)δIV(y, a) +
n∑
i=1

IIV(y − i, a)SIV(i, a)(R1
IV(i, a) +R2

IV(i, a))δIV(y, a)

+
∑

s=I+II,III

n∑
i=1

Is(y − i, a)Ss(i, a)R2
s(i, a)δs(y, a).

(3.6)

The components of (3.6) are further specified in detail in the following sections.

3.2.3 Model for cancer incidence

Extrapolation of past incidence trends is a standard way how to obtain future
incidence rates in cancer prevalence modelling [30]. The cancer incidence model
needed for specification of (3.6) is based on the age, period and cohort model [52]
which is clearly the most often applied model for cancer incidence [8]. In the
proposed model, the age-drift Poisson regression models are used employing two
different link functions. Different models for increasing and decreasing incidence
trends are utilised to prevent explosive exponential growth for increasing trends
and negative values for decreasing trends [29]. It has been shown previously that
the age-drift Poisson regression model is easy to implement and gives reasonably
accurate predictions [66]. Stage-specific models can be fit as follows:

log(E(Is(y, a)/ny,a)) = αs,a + βsy, (3.7)

where y denotes the calendar year of interest, a is the age category and ny,a is the
number of person-years at ath age category and yth calendar year. The use of ny,a
introduces adjustment for the changing demographic structure of the considered
population. Subsequently, overall slope of the stage-specific model (drift param-
eter βs) is assessed and, in case of increasing overall trend in number of cancer
cases, the model using identity link is employed:

E(Is(y, a)/ny,a) = αs,a + βsy. (3.8)

In case of different slopes in individual age categories (as assessed by the like-
lihood ratio test), models with age-specific drift parameter are utilised. Model
with log link function is used for fitting of the decreasing overall trend:

log(E(Is(y, a)/ny,a)) = αs,a + βs,ay, (3.9)
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whereas model with identity link function is used for fitting of the increasing
overall trend:

E(Is(y, a)/ny,a) = αs,a + βs,ay. (3.10)

It is also possible to supplement point projections with prediction intervals using
standard methodology [47].

3.2.4 Survival estimates

Second component needed for computation of (3.6) are the age- and stage-specific
survival rates. Unlike other models for cancer prevalence [94, 82], the proposed
model is not based on birth cohort specific prevalence and thus the effect of gen-
eral mortality is not implied in (3.2). Thus, we have to calculate and apply the
estimates of standard cumulative observed survival rates. The life-table method
is employed as a standard method to estimate observed survival rates using data
from population-based registries [6, 18]; this method processes one-year periods,
and its accuracy is therefore not very much affected by detailed quality of records
within the registry. Considering the fact that significant changes regarding sur-
vival rates of cancer patients can be observed in time, the estimates of x-year
survival rates are derived using the principle of the so-called moving window
that will be further described in detail.

In this methodology, the x-year survival rates are estimated successively, us-
ing the cohort analysis of patients diagnosed in a five-year time intervals (e.g.
cohorts of patients diagnosed in years 2003–2007, 2002–2006, etc.). Each of these
cohorts provides information on one-year survival rate to x-year survival rate,
where x is the number of years from the start of the time interval to the last avail-
able date reported in the population-based registry; 31. 12. 2007 may serve as
an example. Then, for example, the cohort of patients diagnosed between 1995
and 1999 provides information needed to calculate the 1-year, 2-year, ... 13-year
survival rates (x = 13, which is the number of one-year periods between 1.1.1995
and 31.12.2007, as explained above).

However, cohorts of patients diagnosed many years ago are not used to es-
timate short-term survival rates (such as 1-year, 2-year etc.), as the resulting es-
timates should be obviously biased downwards. For this reason, calculation of
x-year survival rates is only performed on patient cohorts in which x-year sur-
vival rate can be reliably estimated, and which were diagnosed as recently as
possible. In other words, patients diagnosed in 2003–2007 will contribute to the
estimate of 1-year to 5-year survival rates, patients diagnosed in 2002–2006 will
contribute to the estimate of 2-year to 6-year survival rates, etc. The width of in-
terval defining one patient cohort was set to five years, as this is a standard width
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used in population-based survival analyses [6]. The estimate of Ss(i, a), needed
for calculation of (3.6), can be then expressed as follows:

Ŝs(i, a) = median(ŜY−i+1
s (i, a); ŜY−i+2

s (i, a); ŜY−i+3
s (i, a); ŜY−i+4

s (i, a); ŜY−i+5
s (i, a))

(3.11)
where Y is the maximum year of follow-up of the population-based registry,
Y − i + l(l = 1, ..., 5) are the years defining the upper limit of the 5-year time
period for the patient cohort selection and ŜY−i+ls (i, a) is the corresponding age-
and stage-specific estimate of i-year survival rate calculated on that cohort. For
example, there is only one available cohort providing information on 1-year sur-
vival rate and that is the cohort of patients diagnosed in 2003–2007, whereas for
2-year survival rate two cohorts of patients, 2003–2007 and 2002–2006, provide
relevant information. Another example could be the estimation of 7-year sur-
vival rate which would be based on cohorts of patient diagnosed in 2001–2005,
2000–2004, 1999–2003, 1998–2002 and 1997–2001.

3.2.5 Non-terminal cancer recurrence rates

Since the precise information on time of cancer recurrence is barely available in
population-based cancer registries, the rationale behind the estimation of R1

s(i, a)

andR2
s(i, a) functions is to use surrogate parameters with direct association to the

probability of cancer recurrence. Considering non-terminal cancer recurrence as
the first case, R1

s(i, a) is estimated using the information on the patient’s health
status and non-symptomatic anti-tumour therapy applied during the follow-up
period which ensues the time of diagnosis, i.e. which ensues the year of diagnosis
when the patient is a part of cancer incidence. This approach simply assumes that
record on other than symptomatic therapy in a particular year after diagnosis in-
dicates that the patient is treated due to objective reason, i.e. due to the return of
cancer. However, as theR1

s(i, a) function refers to non-terminal cancer recurrence,
there is an additional condition needed and that is the patients have to survive up
to the end of the particular year of interest, i.e. the cancer recurrence should not
be terminal in that year. As the date of cancer patient’s health status and treat-
ment assessment, respectively, in the follow-up period cannot be measured with
required precision, we need to adopt for R1

s(i, a) function estimation a method
working with grouped lifetime data, i.e. utilising the life-table principle. More
specifically, we suggest a nonparametric smoothing technique to be used for an
initial hazard estimate provided by the life-table method. Let p be the number of
knots chosen for the smoothing and hs(j, a) represent the life-table hazard esti-
mate for the jth time interval. Then, generally, the hazard rate estimate is of the
form
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R̂1
s(i, a) =

p∑
j=1

cj(i)ĥs(j, a), (3.12)

where
∑p

j=1 cj(i) = 1 for each time i. The values cj(i) thus represent weights
specified by the smoothing method, the resulting hazard estimate at time i is a
weighted average of the hazard rates given by the life-table method. The choice
of a particular smoothing technique is limited by the quality of cancer registry
data and the number of follow-up time points at which the information on patient
is recorded but, in general, for the estimation based on grouped data, the locally
weighted least squares method is recommended [97].

Since all smoothing techniques have problems with proper estimation in the
boundary regions, which in case of R1

s(i, a) function could have lead to under-
estimation of the hazard in the first time interval, we suggest the probability of
non-terminal cancer recurrence in first year after diagnosis, i.e. R̂1

s(1, a), to be
fixed at the value of the life-table hazard estimate for the first time interval, i.e.
ĥs(1, a).

As the purpose of R1
s(i, a) is to cover the risk of first non-terminal cancer re-

currence after primary diagnosis, the information on anti-tumour therapy used
for its identification is derived only from the first time interval at which the non-
symptomatic therapy is recorded even if the patient can have recorded the ther-
apy at several consecutive time intervals.

3.2.6 Terminal cancer recurrence rates

As for the terminal cancer recurrence, theR2
s(i, a) function can be estimated using

the information on cancer as the cause of death recorded in the population-based
registry. The approach we have adopted is based on the assumption that nobody
can die from cancer without passing through the phase of generalized disease,
i.e. even the patient diagnosed primarily in stage I or II can be thought as treated
with distant disease in the future when cancer is recorded as his cause of death.
The R2

s(i) function thus represents the excess mortality of the cancer and can be
thus specified using the relative survival function or, more specifically, using the
underlying excess hazard rate. Both these quantities are derived using the mix-
ture cure survival model adjusted for background mortality [22] as it allows for
incorporating covariates. With s representing the stage of disease and a repre-
senting the ath age category, the mixture cure survival model is given by

Ss(i, a) = S∗(i, a)SRs (i, a) = S∗(i, a){πs(a) + (1− πs(a))SUs (i, a)}, (3.13)
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where S∗(i, a) is the expected survival for age class a easily accessible from the
national mortality statistics, SRs (i, a) is the stage-specific relative survival function
of the whole cohort of patients, πs(a) is the stage-specific proportion of patients
cured from cancer and SUs (i, a) is the stage-specific relative survival function of
the uncured patients. The latter can be specified parametrically using standard
distribution functions, e.g. Weibull or lognormal, the parameters of which can be
further modelled considering various covariates as the age at diagnosis or period
of diagnosis. Letting fRs (i, a) and fUs (i, a), respectively, be the probability density
function associated with SRs (i, a) and SUs (i, a), respectively, the excess hazard rate
of the whole cohort of patients is given by

hRs (i, a) =
fRs (i, a)

SRs (i, a)
=

(1− πs(a))fUs (i, a)

πs(a) + (1− πs(a))SUs (i, a)
. (3.14)

It should be noted that the mixture cure survival model-based estimates of
hRs (i, a) cannot be immediately applied with respect to index i for the R2

s(i) func-
tion approximation as they refer to instantaneous risk of cancer recurrence whilst
we need to estimate the risk integrated over one year time period. However, the
estimate of R2

s(i) can be easily calculated using the elementary formula

R̂2
s(i, a) =

∫ i+1

i

ĥRs (t, a)dt = − log(ŜRs (i+ 1, a)) + log(ŜRs (i, a)). (3.15)

3.2.7 Modelling proportion of patients treated with anti-tumour
therapy

Estimates of the proportions of patients treated with anti-tumour therapy are also
needed for calculation of (3.6) as they represent correcting factors reflecting the
patients’ health status and influence the probability of anti-tumour therapy ad-
ministration. The estimated proportions of treated patients in time can be derived
from the population-based registry and further extrapolated back and forward in
time using simple logistic regression model:

logit(E(δs(y, a))) = α(s, a) + βsy. (3.16)

There is a strong association between age, stage and patients’ health status sug-
gesting that separate logistic models should be fit for individual clinical stages
giving us age- and stage-specific estimates of proportion of patients to be treated
in the years to come.

It should be noted that we assume in (3.6) that the probability of treatment for
patients diagnosed in the past is the same during the follow-up as in the time of
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diagnosis. That means we assume the probability of treatment for cancer recur-
rence to be age-specific with respect to age at diagnosis instead of age at cancer re-
currence. However, since the risk of cancer recurrence is mostly apparent during
first few years following the diagnosis, the bias introduced with this assumption
should be rather small.

3.3 Modelling the colorectal cancer in the Czech Re-
public

3.3.1 Data source

Proper prevalence estimates can be only calculated if high-quality data from reg-
istries with long-standing registration and sufficient follow-up are used [94, 33].
The Czech Republic disposes of representative population-based data that con-
stitutes a high-quality basis for such analyses [67]. The Czech National Cancer
Registry (CNCR) covers whole population of the Czech Republic since 1977 and
its 100 % coverage means that this database is fully covering of the Czech popu-
lation. Until December 2007, there was over 1.5 million cancer cases recorded in
the CNCR.

3.3.2 Results

To demonstrate the applicability of the presented model and its potential use-
fulness in financial budget impact analyses, data on 123,562 primary colorectal
cancer cases (ICD-10 codes C18–C20) diagnosed and staged in 1982–2007 were
used to estimate the number of patients requiring active anti-tumour therapy in
the Czech Republic in 2011. Data on cases diagnosed in 1977–1981 were omitted
due to the lack of classification system of clinical stages. All patients diagnosed by
death certificate only (DCO) or at autopsy were excluded from the analysis. All
estimates have been derived in age- and stage- specific manner considering four
age categories: 15–49 years, 50–64 years, 65–79 years and 80+ years; and three cat-
egories representing clinical stages: stage I+II, stage III and stage IV. In survival
modelling utilised for risk of terminal cancer recurrence estimation, the effect of
time period of diagnosis was considered and following time periods were used:
1982–1989, 1990–1994 and 1995–2007. These periods were chosen to reflect the
main developmental stages of the Czech health care system and TNM classifica-
tion system. All computations were performed using STATA 10.0 software [85].

As a very first part of the estimation process, an incidence model was set up.
We have decided to use a prediction base of 10-year length since the models based
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on shorter prediction base seem to perform better because they don’t include out-
dated information when estimating the drift component [66]. To obtain as long
time series of incidence figures as possible, two prediction directions were in-
cluded in the analysis. Recent data corresponding to observation period 1998–
2007 were employed to predict incidence rates for the period 2008–2011, while
older data, corresponding to observation period 1982–1991, were used to project
incidence trends to the past, covering the time period 1970–1981. Colorectal can-
cer incidence rates per 100,000 people available for 2007 from CNCR and projec-
tions of colorectal cancer incidence rates per 100,000 people in the Czech Republic
for 2008–2011 according to the clinical stage of primary tumour are given in Ta-
ble 3.1. The point estimates are accompanied with 95% confidence and prediction
intervals, respectively, using standard methodology [47]. In absolute numbers,
this corresponds to 2,909 newly diagnosed patients with stage I or II colorectal
cancer in 2011 in the Czech Republic, 1,742 newly diagnosed patients with stage
III, and 1,595 newly diagnosed patients with generalised disease.

Table 3.1: Colorectal cancer incidence rates per 100,000 people for 2007 (last available
year from the CNCR) and estimated colorectal cancer incidence rates per 100,000 people
for 2008–2011 according to the clinical stage of primary tumour.

Cancer stage 2007 2008 2009 2010 2011
Stage I+II 25.8 (24.8–26.8) 27.3 (26.1–28.5) 27.3 (26.0–28.6) 27.3 (26.0–28.7) 27.5 (26.1–28.9)
Stage III 14.0 (13.3–14.7) 14.9 (13.7–16.0) 15.4 (14.2–16.6) 15.9 (14.6–17.2) 16.5 (15.1–17.8)
Stage IV 14.6 (13.9–15.4) 14.9 (14.1–15.7) 15.0 (14.1–15.8) 15.0 (14.1–15.8) 15.1 (14.2–16.0)
Total 54.4 (53.0–55.8) 57.1 (55.6–58.5) 57.6 (56.2–59.1) 58.2 (56.7–59.6) 59.1 (57.6–60.6)

To complete the 2011 cancer prevalence estimates, the cumulative survival
rates were derived by the moving window cohort analysis for individual age-
and stage- specific categories. However, the follow-up of the colorectal cancer
patients is limited to 1982–2007 time series and thus the CNCR data provide only
the information on 1-year, 2-year, ... 26-year survival probabilities. Since the
cancer incidence has been projected back to 1970, there was a need for projecting
the survival rates to get also the 27-year, 28-year, 29-year, ... 41-year survival rates.
The missing survival rates have been extrapolated from the observed survival
rates using the exponential survival model. The observed as well as the projected
survival rates are given in Table 3.2. There can be easily seen a quick decrease in
survival probabilities in older cancer patients with higher extent of the disease.
The long term survival is above 10 % only for patients diagnosed in younger age
and lower clinical stage.

However, it has to be stressed out that the usability of the survival rates cal-
culated by the moving window cohort analysis is limited only to the proposed
model as the rates are not standardized for background mortality and as such are
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not usable for comparison with other populations or evaluation of time trends.

Table 3.2: Age- and stage- specific survival rates derived by the moving window cohort
analysis.

Clinical stage I + II Clinical stage III Clinical stage IV
15-49 50-64 65-79 80+ 15-49 50-64 65-79 80+ 15-49 50-64 65-79 80+
years years years years years years years years years years years years

1-year 97% 93% 85% 68% 91% 90% 79% 59% 60% 51% 37% 18%
5-year 81% 76% 60% 34% 57% 52% 38% 22% 15% 11% 8% 4%
10-year 70% 55% 34% 11% 37% 32% 19% 8% 8% 5% 3% 1%
15-year 51% 37% 15% 4% 29% 20% 11% 2% 5% 4% 2% 1%
20-year 44% 25% 6% 1% 24% 14% 4% 0% 3% 2% 1% 0%
30-year 30% 12% 1% 0% 13% 5% 1% 0% 1% 0% 0% 0%
40-year 20% 5% 0% 0% 7% 2% 0% 0% 1% 0% 0% 0%

Figure 3.1 shows the observed values and the predicted value of colorectal
cancer interval prevalence per 100,000 people in the Czech Republic according
to clinical stage of primary tumour. The point estimate is accompanied with the
95% confidence intervals calculated according to [17]. There can be seen a good
agreement of the predicted value of the 2011 interval prevalence and the observed
values up to year 2007 in all considered stage groups. In 2011, colorectal cancer
prevalence is estimated to be 280.4 cases per 100,000 people for patients primarily
diagnosed in stage I or II (ranging between 277.4 and 283.6 per 100,000), 95.3 cases
per 100,000 people for patients diagnosed in stage III (ranging between 93.5 and
97.2 per 100,000) and 37.2 cases per 100,000 people for patients diagnosed in stage
IV (ranging between 36.0 and 38.3 per 100,000). In total, 412.9 staged colorectal
cancer patients per 100,000 people are to be prevalent in 2011 which introduces
more than 17 % increase with respect to year 2007. Represented as an absolute
number, more than 43,000 patients with completed tumour diagnostics are likely
to be prevalent with colorectal cancer in 2011 in the Czech Republic.

To proceed from cancer prevalence estimates to number of patients that are
likely to require active anti-tumour therapy in the future, the rates of cancer re-
currence were estimated.

The non-terminal cancer recurrence rates were derived with respect to clin-
ical stage, age and period of diagnosis from the CNCR Follow-up Reports on
Malignant Neoplasms by the life-table method based on one-year time intervals
and smoothed afterwards using kernel-weighted polynomial regression [97]. As
a smoothing function we used quadratic polynomial with Gaussian kernel for
weighting. These estimates in a standard way refer to the conditional probability
of suffering from cancer recurrence in a particular year y after diagnosis given
that a patient has survived up to the beginning of the year y and, in addition, also
that a patient has survived up to the end of the year y, i.e. the cancer recurrence
was not terminal in the year y.
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Figure 3.1: Observed and predicted values of colorectal cancer prevalence in the Czech
Republic per 100,000 people according to clinical stage of primary tumour.

The terminal cancer recurrence rates were derived using the stage-specific
mixture cure relative survival model considering age category and period of di-
agnosis as covariates. The model fit was assessed visually according to compari-
son with standard Hakulinen relative survival estimates [45]. Finally, the Weibull
distribution was used to model the survival distribution of the uncured patients
in stage IV cancer whereas the mixture of two Weibull distributions were used in
stage I+II and stage III cancer.

Figure 3.2 shows the estimated rates of non-terminal and terminal cancer re-
currence, respectively, with respect to clinical stage and age category in ten years
after the first completed year from diagnosis; the estimates correspond to the
most recent time period, 1995-2007. The risk of non-terminal cancer recurrence
is most noticeable in four years after the first completed year from diagnosis and
then gradually decreases towards zero in all stages. However, still there can be
seen remarkable differences among the clinical stages with stage I+II being the
category with the lowest risk of non-terminal cancer recurrence and stage IV be-
ing the category with the highest risk of non-terminal cancer recurrence. The pat-
tern of terminal cancer recurrence rates vary greatly with clinical stage; in stage
I+II, we can see the recurrence rates being below 5 % all the time giving the evi-
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dence of good perspectives of patients diagnosed with less advanced disease. In
stage III, the terminal recurrence rates show a stable level in three years after the
first completed year from diagnosis with a slow decrease afterwards. The only
difference is the oldest age group showing higher risk of dying from colorectal
cancer after first year from diagnosis and steeper decrease of the recurrence rate
afterwards. In contrast, the terminal recurrence rate of stage IV show very high
risk of dying from colorectal cancer even after first completed year from diagno-
sis reaching initially 50 % in all age groups. The subsequent decrease in this rate
is rather slow and age-dependent resulting in an appreciable risk even after sev-
eral years from diagnosis. It should be noted that the cancer recurrence rates of
the oldest age group are almost in all cases lower than the rates of remaining age
groups. This can be explained with much higher mortality of the oldest patients
during the first year after diagnosis (see Table 3.2) which causes only the fittest
of this age group to survive and thus remain at-risk also after the first year from
diagnosis.

Last component needed for the estimation of number of patients requiring ac-
tive anti-tumour therapy are the age- and stage-specific proportions of patients
treated with an anti-tumour therapy in 2011. Time trend analysis of the CNCR
data has shown similar increasing pattern of these proportions in all age groups,
whereas with respect to stage the analysis has shown stable proportion in stages
I and II, slight time-dependent increase in stage III and sharp increase in anti-
tumour therapy of generalized disease. Following portions of treated patients
were predicted for 2011: 97.3 %, 98.0 %, 96.4 %, and 88.0 % of patients, respec-
tively, diagnosed with stage I or II in the considered age groups: 15-49 years, 50-64
years, 65-79 years, and 80+ years, respectively. Similar figures were observed in
patients diagnosed with stage III: 99.5 %, 99.2 %, 98.3 %, and 94.7 %, respectively.
Fewer patients with stage IV colorectal cancer may benefit from anti-tumour ther-
apy due to poor health condition, particularly in the oldest age group, meaning
that only 92.3 %, 88.9 %, 80.3 % and 57.9 % of patients, respectively, will be prob-
ably treated for metastatic colorectal cancer in 2011.

The estimated numbers of patients requiring active anti-tumour therapy for
colorectal cancer in the Czech Republic in 2011 are presented in Table 3.3 and are
accompanied with 95% confidence intervals calculated according to [17]. The re-
sults are given in two ways: Firstly, the numbers of potentially treated patients
with respect to clinical stage at the time of diagnosis are shown in the upper part
of Table 3.3. These numbers reflect the anticipated cancer burden generated by
original clinical stages in three considered levels, i.e. newly diagnosed patients
never before treated for cancer, patients assumed to be treated for non-terminal
cancer recurrence and patients assumed to be treated with terminal disease recur-
rence. Secondly, in the lower part of Table 3.3 the numbers of patients potentially
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Figure 3.2: Stage- and age-specific estimates of non-terminal and terminal cancer recur-
rence rates in first ten years after diagnosis; the estimates correspond to the more recent
time period, 1995-2007.
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Table 3.3: Estimated numbers of patients requiring active anti-tumour therapy for col-
orectal cancer in the Czech Republic in 2011 according to clinical stage at diagnosis and
putative stage in 2011 indicating actual extent of the disease.

Stage Patients potentially treated in 2011 according to stage at diagnosis
at diagnosis Newly diagnosed Non-terminal cancer Terminal cancer Total number of

patients recurrence recurrence patients
Stage I+II 2778 (2676-2883) 1058 (995-1124) 386 (348-426) 4222 (4096-4351)
Stage III 1709 (1629-1792) 620 (572-671) 464 (423-508) 2793 (2690-2899)
Stage IV 1281 (1212-1353) 232 (203-263) 469 (428-513) 1982 (1896-2071)
All stages 5768 (5620-5919) 1910 (1825-1998) 1319 (1249-1392) 8997 (8812-9185)
Putative Patients potentially treated in 2011 according to putative extent of disease
stage in 2011 Newly diagnosed Non-terminal cancer Terminal cancer Total number of

patients recurrence recurrence patients
Stage I+II 2778 (2676-2883) 1058 (995-1124) - 3836 (3716-3959)
Stage III 1709 (1629-1792) 620 (572-671) - 2329 (2235-2426)
Stage IV 1281 (1212-1353) 232 (203-263) 1319 (1249-1392) 2832 (2729-2938)
All stages 5768 (5620-5919) 1910 (1825-1998) 1319 (1249-1392) 8997 (8812-9185)

treated with the anti-tumour therapy are shown according to the expected dis-
ease extent of these patients in 2011. These values reflect the actual staging of
potentially treated patients that should be accounted for in financial planning for
oncology care. It can be seen that the main difference between the upper and
lower parts of Table 3.3 is in the number of patients treated for terminal cancer
recurrence. As mentioned before, we assume that nobody can die from cancer
without passing through the phase of generalized disease, i.e. if the patient is to
be treated for terminal cancer recurrence, he is assumed to be treated in stage IV.

In total, almost 9,000 colorectal cancer patients in different stages of the dis-
ease are predicted for anti-tumour therapy administration in the Czech Republic
in 2011. This number constitutes indispensable financial burden that need to be
accounted for in financial planning in health care. Moreover, almost one third
of these patients are predicted as treated in stage IV which represents the worst
condition from both health and financial perspectives.

3.4 Discussion

When considering the financial aspects of present-day anti-tumour therapy, spe-
cific estimate of the prevalence of patients requiring active anti-tumour treatment
can be of interest besides the standard estimates of cancer incidence and preva-
lence. In this chapter, a statistical method was proposed that may provide such
estimates utilizing the population-based cancer registry data. The estimation pro-
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cess respecting the extent of patient’s disease is divided in two subsequent steps.
In the first step, the amount of patients ever diagnosed with cancer and alive in
given time interval in the population of interest is quantified, i.e. time interval
prevalence of cancer patients is estimated. Then, in the second step, the preva-
lence estimate is corrected for patients not treated with anti-tumour therapy from
whatever reason (cure for cancer, treatment contraindication, very high age, pa-
tient’s refusal to treatment, advanced disease).

All estimates are derived solely from population based data using the back-
calculation procedure that combines the observed and modelled cancer incidence,
survival and hazard estimates. For practical purposes, the model was proposed
in discrete time fashion assuming one calendar year as time unit. The patient is
thus assumed to be prevalent in the year of interest even if that patient dies dur-
ing the one-year period for he should be regarded as potential for the anti-tumour
therapy administration. This assumption is motivated by the financial planning
process in health care which is mainly based on one-year time periods. Moreover,
the proposed model was formulated with respect to the extent of disease as well
as the age at diagnosis. The effort to estimate the stage-specific cancer prevalence
is a challenging task with little evidence on this subject being found in the litera-
ture [42]. However, in contrast to other cancer prevalence models [94, 82], the age
structure of patients prevalent in the year of interest cannot be estimated with this
model for it is not formulated on the basis of birth cohorts. An argument can be
that the age structure of individuals prevalent in specific year is not of main inter-
est of the health care payers and providers as the need for anti-tumour treatment
should be judged mainly by the presence or absence of cancer and not merely by
patient’s age.

Observed stage-specific colorectal cancer incidence was utilised for extrapo-
lation using classic Poisson regression model. Simple age-drift model was used
to prevent overfitting of observed time series, which might be introduced by in-
cluding complex terms in the model. To obtain maximum coverage of prevalent
cancer cases, backward prediction of cancer rates in pre-registration period was
used beyond the standard prediction of future rates. The observed survival rates
needed for the estimation process are derived using a moving window princi-
ple defining cohorts of patients having similar year of diagnosis that are further
used for the calculation of survival rates. Unlike the well-known period analysis
which is standard in population survival analyses, this method does not provide
up-to-date estimates of survival rates relevant only for newly diagnosed patients
but provide survival rates relevant for modelling short-term cancer prevalence.

The issue of stage-specific cancer prevalence estimation can be considered
controversial due to nontrivial association between the stage at diagnosis and
the gradual progress of cancer during the follow-up period. Cancer recurrence
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rates of patients diagnosed in the past and living in the year of interest are thus
by all means the most appealing and most arguable components of the model, es-
pecially when considering its estimation from population-based cancer registry
data. The cancer patient’s status is often monitored in the pre-defined time in-
tervals, but the precise information on time of cancer recurrence can be rarely
available. However, this component cannot be omitted and has to be estimated.
Moreover, the estimate coming from other than population-based databases can
also lead to biased results due to non-representativeness of the underlying set of
patients.

There are two types of cancer recurrence considered in the model, terminal
rates and non-terminal rates, each of them being estimated differently. The non-
terminal recurrence rates are estimated from the records on other than symp-
tomatic therapy during follow-up after the diagnosis indicating objective reason
for anti-tumour treatment administration. The terminal recurrence rates are de-
rived using mixture cure fraction survival model [22] accounting for background
mortality representing causes of death other than cancer. This model assumes
the set of patients to be a mixture of fatal and cured patients and even if this as-
sumption of being cured of cancer at the date of diagnosis is not plausible from
the biological perspective, this model has been shown to be relevant for mod-
elling cancer survival and hazard functions [62, 84]. Possible confusion, however,
may be introduced to the estimation of non-terminal recurrence rates as the pro-
posed model consider only the first time the anti-tumour therapy administration
is recorded after completion of one year from diagnosis. The recurring cancer
relapses and progressions cannot be exactly monitored using population-based
data for the insufficient detail of clinical information available from these data.
Elaborate analysis of clinical data of hospital-based nature should be processed
to get complete insight into cancer recurrence in time.

To document the applicability of the proposed model, it has been applied on
colorectal cancer data coming from the CNCR to predict the number of patients
requiring active anti-tumour therapy for colorectal carcinoma in the Czech Re-
public in 2011. A good fit was obtained from models for future cancer incidence
prediction of the considered stage groups: I+II, III, IV. Age specific incidence
slopes were included in model of disease of clinical stages I+II (significant de-
crease at age under 80 years, non-significant increase over 80 years) and III (sig-
nificant increase at age over 50 years, non-significant increase in youngest age
group). Significant decreasing trend common for all age groups was observed in
clinical stage IV. Significant extra-Poisson variation was observed only in stage
III model (estimated dispersion factor 1.60).

The age-standardized incidence rate of colorectal cancer in the Czech Republic
is among the highest in Europe [34]. Due to unfavourable development in demo-
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graphic structure, the number of colorectal cancer cases is increasing, no matter
the mentioned decrease in most of age-stage-specific rates. Recent increase in
number of colorectal cancer cases has been observed in other Central and Eastern
Europe cancer registries [71]. Increase in colorectal cancer incidence was also pre-
dicted in Italian study [41]. The smooth trends in colorectal cancer incidence rates
could be disturbed by cancer control programmes, including primary prevention
campaigns or colorectal cancer screening programme. Colorectal cancer screen-
ing programme is able to affect incidence of the disease [64]. Extent of overesti-
mating the future rates might therefore be used for evaluation of success of such
programmes [46]. However, low compliance to available screening regimen has
been precluding impact on colorectal cancer incidence in the Czech Republic so
far. No special factors regarding cancer prevention and screening were therefore
included in the model.

The observed survival rates estimated by moving window based method show
poor long-term survival for advanced stages of colorectal cancer (see Table 3.2),
especially in older patients, that is consistent with previously published popula-
tion estimates for the Czech Republic [21]. This phenomenon can be seen also in
other European countries [38, 96] and still introduces a great challenge for new
treatment modalities. This problem is even more pressing in the Czech Republic,
as a large proportion of colorectal carcinomas are primarily detected in metastatic
form [21].

There is no comparative evidence on stage-specific colorectal cancer recur-
rence rates based on the analysis of population-based data. The only data on
cancer recurrence rates have been published for all stages combined [16, 36], and,
in addition, without the consideration of the phase of cancer treatment. The rates
associated with the risk of cancer recurrence in time proposed in this paper for
Czech colorectal cancer patients, both non-terminal and terminal, show reason-
able estimates validated by the leading clinicians of the Czech Society for On-
cology. However, future verification on population-based or hospital-based level
would be of a great value.

The total number of patients potentially requiring active anti-tumour therapy
in the Czech Republic in 2011 represents almost 9,000 patients of which approx-
imately one third is predicted for the most compelling treatment of the gener-
alised disease. Considering the anticipated impact on financial budget associated
with the predicted numbers, it is obvious that the principal strategy of the fight
against colorectal cancer in the Czech Republic should focus predominantly on
the prevention of colorectal cancer, which may be accomplished via prevention
programmes, organised screening programmes, and further improvements in di-
agnostic methods.
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Five-Year Survival Rates of
Cancer Patients in the Czech
Republic 4
This chapter aims to document the applicability of population-based methods
for survival assessment on the data of the Czech National Cancer Registry. The
chapter also presents the survival benchmarks for Czech cancer patients which
can be readily used for health care assessment, and provides an overview of the
survival rates achieved since 1990. In addition, a comparison is provided between
the Czech and European data concerning the five-year relative survival rates in
selected cancer diagnoses.

The survival analysis on population level is not simple from the methodical
point of view, and is still the subject of ongoing research. For this reason, the
obtained results must be assessed very carefully, as survival rates represent a pa-
rameter that integrates many factors; and these factors, at the time of death, might
not be necessarily related to the treatment of the original malignant tumour. Sur-
vival rates are indicators of very complex population relations and trends, and
improvements in patient survival do not necessarily result from a more effective
treatment. In the short-term, this might be the consequence of better diagnostic
methods which make it possible to detect less advanced stages and to achieve
better treatment results [98, 25].

4.1 Reference data set and the time period for assess-
ing population-based survival

The CNCR database was introduced in chapter 1 as a solid background for the
assessment of achieved survival rates. The Czech population-based data have
been processed in two ways, each of them having different interpretation:

• Analyses involving all patients with non-zero survival. This data set also
involves patients who have not undergone treatment for various objective
reasons (early death, treatment contraindication, patient’s refusal to treat-
ment, etc.). Only the DCO records and records of tumours found at autopsy
are dropped from the entire population-based registry. Those records with
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zero survival are also dropped in international studies [6, 18], as not being
relevant for survival analyses. The analysis of such a widely defined data
set provides a representative epidemiological picture of cancer survival in
the Czech Republic; however, this result has only limited information value
for the analysis of cancer care results. Moreover, the clinical stage is not de-
termined for an objective reason in many untreated patients, which means
that the stratification of survival with respect to the disease stage is impos-
sible.

• Analyses based on data of treated patients only. This data set includes
all records bearing witness to health care results in facilities involved in
the care of cancer patients. Some records are dropped, such as the records
on patients who died early and their treatment was not started, as well
as records on patients who have not been treated for other objective and
known reasons (refusal to treatment, treatment not applied due to very high
age or poor health condition, etc.). The analysis performed in this manner
shows the survival experience of really treated patients and can be consid-
ered to be a benchmark for health care quality and the results. The princi-
ples setting the definition of such set of population data can be summarized
as follows:

– Selection of treated patients with complete (verified) diagnosis and
clinical stage.

– Records involved in the analysis must have non-zero survival time.

– Survival is calculated separately for individual clinical stages; this im-
plies that record on clinical stage is obligatory in this reference data
set.

– The analyses are performed on the most recent period for which the
population-based data are available (in this case, 1995-2005).

All survival data presented in this chapter were acquired from the records of
patients older than 14 years. From the perspective of this chapter, childhood tu-
mours cannot be regarded as compatible with adulthood tumours; for this reason,
the reference data set was reduced in accordance with the international studies
EUROCARE-4 and CONCORD. Figure 4.1 shows the division of all population-
based data from the Czech National Cancer Registry (CNCR). It is obvious that
data in three layers have been processed, each of them allowing analysis with
different interpretation value:

(i) The data set A can be considered to be epidemiologically representative of
the Czech population of cancer patients. Survival rates calculated in this
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group of patients correspond to the overall situation within the population,
but without link to the cancer care results of health care facilities, as a rela-
tively large proportion of records apply to de facto untreated patients.

(ii) The data set B meets the condition of complete diagnosis of malignant neo-
plasm; it includes both treated as well as untreated patients for objective
reasons (treatment contraindication, very high age, refusal to treatment, ex-
tremely advanced disease, etc.). The survival achieved in this group of pa-
tients provides a realistic picture of the overall management of malignant
tumours, particularly the ability of the health care system to ensure early
diagnosis of cancer.

(iii) The data set C includes only treated patients and thus allows us to estimate
reference survival rates which are actually achieved in patients treated with
anticancer therapy. These estimates give evidence on the health care results
in specific cancer care facilities, and can be actually used as benchmarks.

Figure 4.1 also points out that the Czech population-based data cannot be
used for the survival assessment in some diagnoses (e.g. haemato-oncology diag-
noses and malignant tumours of the central nervous system, CNS). This is due to
insufficient diagnostic identification of these cancer groups in the minimal CNCR
record. As for CNS tumours, information on their grades is not available, whereas
in leukemias, the acute and chronic types cannot be credibly stratified. The only
solution for these diagnoses is to collect more detailed records in separate clinical
registries.

Figure 4.1 documents that the Czech population-based data are robust enough
even for a detailed survival analysis, which is further confirmed by the data pro-
vided in Table 4.1. It is obvious that the numbers of patients in individual di-
agnostic groups are sufficient, as they are available in the order of thousands.
There are also some less frequent diagnoses (in the order of hundreds), such as
malignant neoplasms (MN) of the oesophagus (C15), MN of the liver and intra-
hepatic bile ducts (C22), MN of the pancreas (C25) and MN of the vulva and
vagina (C51-C52). The data set size is also acceptable after stratification into clin-
ical stages, hundreds to thousands of records being available in most diagnostic
groups. Categories with less than 100 records are rare, such as MN of the pharynx
(C09-C14) in clinical stage I, MN of the oesophagus (C15) in clinical stage I, MN
of the liver and intrahepatic bile ducts (C22) in clinical stages I, II and III, MN of
the pancreas (C25) in clinical stage II, and MN of the vulva and vagina (C51-C52)
in clinical stage IV.
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Figure 4.1: Definition of reference data set from the CNCR for the purpose of population-
based survival analyses (1995 2005).
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Apart from the data set size, the age structure of cancer patient population is
also important for reference survival outcomes, as the weights for the calculation
of age-standardized survival rate estimate are derived from the age structure. The
Czech data have been age-standardized in accordance with the method applied
to international studies EUROCARE-4 and CONCORD (age groups: 15-44 , 45-
54, 55-64, 65-74, and 75+ years). The weights have been calculated separately for
individual diagnoses according to the age structure of Czech cancer patients.

It must be taken into account, however, that weights calculated on the Czech
population are only meaningful when comparing the survival within the Czech
Republic, and are not suitable for comparison with other populations. For the
purpose of international analyses, weights common to the compared data sets
must be defined; weights defined for the population of European cancer pa-
tients [19] might serve as an example.

4.2 Survival benchmarks for Czech cancer patients

The five-year survival rates of Czech cancer patients are assessed on the basis
of comprehensively representative population-based data, this section presents
and comments on the results acquired by analysis of the so-called C data set
(treated patients), as defined in Figure 4.1 and in Table 4.1. The outcomes of
the five-year relative and observed survival in treated Czech cancer patients are
provided in Table 4.2, the five-year relative survival rates also shown in Figure
4.2. The relative survival rates, which are presented in Table 4.2, are further
supplemented with survival estimates corresponding to individual stages (Table
4.3). The relative survival rates clearly separate diagnoses with generally better
prognosis, such as the malignant neoplasm (MN) of thyroid gland (C73), MN of
testis (C62), MN of the breast (C50) and MN of the skin (C43), from others. On
the contrary, diagnoses with lower probability of long-term survival include ma-
lignant neoplasms of the digestive tract, such as MN of the pancreas (C25), MN
of the liver and intrahepatic bile ducts (C22), MN of the oesophagus (C15), MN
of the gallbladder and biliary tract (C23-C24), as well as MN of the bronchus and
lung (C34). However, it is necessary to give several comments in order to avoid
possible misinterpretation of these survival rates:

• All values of five-year survival rates, which are presented without strat-
ification to clinical stages, cannot be simply compared among individual
diagnoses, as they are significantly influenced by the proportional repre-
sentation of clinical stages. Examples include the bladder carcinoma (C67)
and prostate carcinoma (C61) which have reached almost the same values of
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five-year relative survival (Table 4.2). However, this fact is explained in Ta-
ble 4.3 and Figure 4.2 showing that better survival rates are achieved in all
clinical stages in prostate carcinoma than in bladder carcinoma, if the clini-
cal stages are assessed separately. The coincidence of relative survival rates
without stage stratification in these different types of cancer (i.e., survival
rates for prostate cancer appear to be as low as survival rates for bladder
cancer) has been due to the significantly higher proportional representation
of stages III and IV in prostate carcinoma (Table 4.1).

• Each point estimate of the five-year survival rate is supplemented with a
95% confidence interval. The variability of the estimate is affected by the
number of patients and, obviously, by the heterogeneity of survival within
the assessed group. In the Czech population-based data, a relatively high
variability in survival estimates has only been observed in less frequent neo-
plasms, such as the MN of vulva and vagina (C51-C52), and MN of the liver
and intrahepatic bile ducts (C22).

• In some less serious diagnoses which are detected at an early stage, the rela-
tive survival rate can approach or even exceed 100 %, for example as a result
of more intensive medical care, self-control, and a more healthy lifestyle in
these patients. In this case, the five-year observed survival becomes impor-
tant, providing information on the overall mortality of these patients.

The comparison between relative and observed survival rates provides indi-
rect information on the age structure of patients within a given diagnosis group.
In diagnoses typical of younger age groups (such as MN of testis), both values are
almost equal. On the contrary, in diagnoses typical of older patients (e.g. MN of
prostate), the relative survival is visibly higher than the observed survival, which
can be easily explained: the relative survival is related to the survival probability
in a generally older population.

4.3 Survival rates achieved in all Czech cancer patients

The previous chapter presented survival estimates calculated solely on a refer-
ence set of patients, marked as data set C in Figure 4.1, i.e. from the records
of treated cancer patients. These calculations have been performed as a result
of an effort to provide such reference survival rates which could be used in the
assessment of health care results in clinical practice. The calculation of five-year
survival rate, however, is not limited to treated patients only; routine population-
based estimates take into account a more widely defined group of patients. Sur-
vival estimates, frequently without stratification into clinical stages, are typical

69



DISSERTATION CHAPTER4

Figure 4.2: Comparison of five-year relative survival rates in treated Czech cancer pa-
tients diagnosed in different clinical stages (period analysis: 2003-2005).

for international studies, as the contents and quality of cancer registries in many
countries do not allow the conductance of detailed analyses. The population-
based estimates which take into account de facto all patients included in CNCR
who have non-zero survival has been also prepared (Figure 4.1; data set A).

Table 4.4 provides a comparison of the five-year relative survival rates of can-
cer patients calculated on three different data sets. Logically, the largest difference
in the resulting survival rates can be anticipated when comparing data set A with
data set C. The difference is particularly significant in diagnoses where there is
a problem with early diagnosis of less advanced clinical stages. The comparison
between survival rates in all patients and in treated patients shows that worse
survival of the former group can be attributed to the following factors:

(i) The proportion of patients diagnosed in clinical stage IV and, generally,
the proportion of patients with very advanced disease, resulting in non-
treatment and early death. This influence is particularly significant in ma-
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lignant neoplasms of the digestive tract, and leads to lower survival rates
observed over the whole population of patients, if compared to survival
rates in patients diagnosed in less advanced stages. On the contrary, there
is a low percentage of patients with untreated malignant melanoma (MN)
of the skin (C43), MN of the breast (C50), MN of testis (C62), and MN of
thyroid gland (C73).

(ii) The proportion of records with wrongly recorded or unfoundedly incom-
plete diagnosis of malignant tumour in the CNCR. These records have
faults pursuant to errors in the population-based registry and cannot be
included in stratified analysis according to the clinical stage, or they even
challenge the cancer diagnosis. These records are, therefore, also omitted
from calculations resulting in clinical reference survival rates. The propor-
tion of faulty records does not correlate with the seriousness of the disease;
in particular, higher error rate can be observed for prostate carcinoma (C61)
and bladder carcinoma (C67).

4.4 Time trends in population-based survival of Czech
cancer patients

The assessment of time trends in population-based survival brings forward plenty
of useful information, although it is rather demanding from the methodical point
of view. Its importance is obvious: the five-year relative survival is a benchmark
of the health care results and its development over time provides valuable in-
formation [69, 23, 25]. Its interpretation is, however, complicated by a number
of various factors over time, such as prevention programmes, development in
diagnostic methods or the anti-cancer therapy itself [25, 98].

Similar to the comparison of different population of patients, survival rates in
different periods of time must be also age-standardized [19, 54]. Changes in the
age structure of patients can occur due to many factors, demographic develop-
ments or organized screening programmes playing the most important role. The
impact of screening on five-year relative survival rates has been reported many
times, e.g. in [25, 6, 95], particularly in connection with the so-called “overdiag-
nosis bias”. Overdiagnosis refers to cases where a cancer screening programme
reveals a tumour (often with a very good prognosis) which, however, would not
show any symptoms during the patient’s life, because the patient would die ear-
lier due to another condition. These overdiagnosed tumours markedly improve
the survival assessment, even though there is no benefit to the patients them-
selves. The overdiagnosis bias is an extreme case of the so-called ”length bias”
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which is partiality stemming from the fact that screening programmes primarily
detect slowly-growing tumours, which have better prognosis. Detection of can-
cer by screening programmes also introduces the so-called ”lead time bias”, as
screening programmes, by definition, detect asymptomatic tumours, shifting the
time of diagnosis. In other words, improvements in survival rates do not neces-
sarily mean that an early diagnosis has a beneficial effect on the disease fatality,
and does not have to reflect improvements in health care at all. These problems
with interpretation can be avoided if survival assessments are done for treated
patients only, and separately for different clinical stages.

The Czech population-based data contain sufficiently long time series of the
Czech National Cancer Registry (CNCR, standardized data collection since 1977),
making it possible to compare the survival rates over time. This chapter provides
an example of such analyses, performed solely on clinically relevant records of
patients in which the diagnosis of malignant tumour was completed and verified,
and who were treated. The five-year relative survival rates are assessed on sets
of patients defined as follows:

• 2003-2005 period analysis - reference survival rates (or benchmarks)

• 2000-2002 period analysis

• Cohort analysis of patients diagnosed in 1995-1999

• Cohort analysis of patients diagnosed in 1990-1994

In order to be comparable, the calculated values are age-standardized in rela-
tion to the age structure of cancer patients corresponding to the 2003-2005 period.

Table 4.5 summarizes the development of five-year relative survival rates over
time, diagnoses being sorted according to the importance of change in survival
rates over time in the periods 1990-1994 and 1995-1999. The most important
shift has occurred after the period 1990-1994, although improvements have been
recorded in a number of diagnostic groups also after year 2000. However, the
changes in five-year relative survival rates over time vary considerably among
diagnoses. Significant improvements have been observed in prostate carcinoma
(C61), breast carcinoma (C50) and skin melanoma (C43). Unfortunately, there are
several diagnoses which show relatively high mortality and in which changes in
survival rates are negligible, such as the carcinoma of pancreas (C25), carcinoma
of stomach (C16), malignant neoplasm of gallbladder and biliary tract (C23-C24)
or lung cancer (C34).

Obviously, the interpretation of data in Table 4.5 is limited by all factors men-
tioned above, namely the ongoing screening programmes, improvements in di-
agnostic methods, as well as modifications in TNM classification. For this reason,
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comparison of the survival rates over time has been supplemented with analysis
for individual clinical stages (Figure 4.3). This analysis also confirms improve-
ment in five-year relative survival rates, particularly in malignant neoplasms
diagnosed with clinical stages I and II. These data unambiguously document a
positive development in the Czech cancer care over the last 10-15 years. There
have also been improvements in survival rates for clinical stages III, with the ex-
ception of lung cancer (C34) and MN of the kidney and other structures of the
urinary tract (C64-C66, C68).

As regards malignant tumours diagnosed primarily at clinical stage IV, visi-
ble improvements in treatment results are very rare over 10-15 years. The only
statistically significant improvement has been observed in breast cancer (C50)
which correlates with rapid development of treatment modalities in metastatic
breast cancer after the year 2000. Results in other diagnoses have confirmed that
the treatment of tumours in clinical stage IV continues to present a formidable
challenge. This problem is even more pressing in the Czech Republic, as a large
proportion of malignant tumours is primarily detected in metastatic form (Ta-
ble 4.1). The principal strategy of the fight against cancer in the Czech Republic,
therefore, consists in the prevention of advanced stages of malignant neoplasms,
which may be accomplished via prevention programmes, organized screening
programmes, and further improvements in diagnostic methods.

4.5 Comparison of five-year relative survival rates of
Czech cancer patients with international data

A number of international projects have been making efforts to interconnect and
centralize the European data; several international organisations have been es-
tablished with the aim to assess the health care quality and performance, and
a number of journals dealing with this issue have surfaced. It is not about the
so-called ”scientific marketing” of own results; these comparisons provide very
important methodical and clinical conclusions which contribute to improvements
in health care in each individual country.

The Czech Republic cannot stay out of the growing international cooperation,
and there is no reason for it either, as the Czech oncology is very well equipped
with population-based data, and has adequate methodical background in data
collection and assessment. It is very important, however, to pay attention to cor-
rect interpretation of the data and the results being compared. In the case of
survival data on Czech cancer patients, estimates of the relative survival rates
conducted on all cancer patients (with a non-zero survival in CNRC) can be read-
ily used for the purpose of international comparison. This is due to the fact that
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Figure 4.3: Comparison of five-year relative survival rates in treated cancer patients -
selected diagnoses sorted by clinical stages.
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international data do not provide population-based comparisons which would
respect the clinical stage of malignant tumours, nor do they provide assessment
focused on treated patients. Population-based data containing such details are
not even available in many developed countries. For this reason, a comparison of
the population-based survival rates is most frequently encountered, which ren-
ders a picture of the overall epidemiological situation, but fails to mention any-
thing about the cancer care results in specific health care facilities.

The Czech data can be surely compared with data from the EUROCARE-4
study which is excellent from the statistical point of view. More specifically, the
Czech data might be compared with the main part of the EUROCARE-4 study,
containing survival analysis of patient cohort diagnosed in 1995-1999, and with
the part focused on 2000-2002 period analysis. Furthermore, the Czech results can
be compared with the outcomes of studies published on the population-based
data of individual European countries or regions, or even globally. In brief, inter-
national data selected for the assessment of survival rates in the Czech Republic
can be summarized as follows:

(i) EUROCARE is an international activity connecting data from population-
based cancer registries of selected European countries, with the aim to get
an overview of the achieved survival rates. Considering the diversity of
approaches in data registration in various countries, many of which do not
fully comply with representative registries, this is a very demanding task.
This has also been confirmed by the fact that the final assessment of the
EUROCARE-4 study [6] does not involve all European countries (data from
23 countries are presented, including 83 population-based cancer registries).
The EUROCARE-4 study deals with the comparison of survival rates calcu-
lated using the cohort analysis over 1995-1999, and outputs calculated using
the 2000-2002 period analysis are also available [95].

(ii) Apart from the EUROCARE-4 study, there are other recent studies deal-
ing with the presentation of relative survival rates in individual countries
across Europe and worldwide, see for example [89, 12, 38, 55, 18, 79]. How-
ever, not all such data can be actually used for comparison with five-year
relative survival rates in Czech cancer patients, as these studies differ in
methodology or the assessed time periods.

Figures 4.4 and 4.5 and Table 4.6 present the comparison of five-year rela-
tive survival rates estimated for Czech cancer patients with the results published
in the EUROCARE-4 study. Figure 4.4 is dedicated to comparison of the five-
year relative survival rates based on patient cohort diagnosed in 1995-1999, i.e.
comparison with the main part of the EUROCARE-4 study, whereas Figure 4.5
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Figure 4.4: Comparison of five-year relative survival rates in Czech cancer patients with
rates published in the EUROCARE-4 study (cohort analysis of patients diagnosed in
1995-1999).

compares the five-year relative survival rates estimated using the 2000-2002 pe-
riod analysis. As regards the 1995-1999 cohort analysis results, the pooled data,
collected by the European cancer registries, show higher five-year relative sur-
vival rates than the data of all patients within CNCR with defined survival for
all presented diagnoses except for malignant neoplasms (MN) of the ovary (C56)
and MN of the bronchi and lungs (C34). Considering the more recent results rep-
resented by the 2000-2002 period analysis, similar differences can be observed in
the five-year relative survival rates between the pooled European data and CNCR
data of all patients with defined survival for diagnoses analysed in both parts of
the EUROCARE-4 study. On the other hand, consistency in the five-year relative
survival rates between the pooled European data and CNCR data can be seen in
the diagnoses included only in the EUROCARE-4 period analysis (see Figure 4.5
and Table 4.6), namely for MN of cervix uteri (C53), MN of uterus (C54), MN
of kidney and other structures of the urinary tract (C64-C66, C68), and MN of
thyroid gland (C73).

There is no easy interpretation of the differences in population-based survival
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Figure 4.5: Comparison of five-year relative survival rates in Czech cancer patients with
rates published in the EUROCARE-4 study (2000-2002 period analysis).

rates between two or more populations without proper stratification to possible
confounding factors of which clinical stage and anticancer therapy are the best
examples. It has to be stressed that the final results are often affected by demo-
graphic differences as well as differences in the age structure of patients, which
can always be found between the populations being compared. The primary goal
of the EUROCARE study is to make comparable data from registries which de-
scribe population with different demographic structures. This must be, therefore,
reflected in the methodology of standardisation.

• The assessed period itself has tremendous impact on the calculation of sur-
vival rates. Fortunately, the available EUROCARE-4 data allows for com-
parison with the Czech data collected over the same periods. When inter-
preting the comparison of survival rates, one does have to bear in mind that
there have been improvements in survival rates of the Czech cancer patients
over time, and that the comparison of older data sets does not correspond
to the more recent treatment results.
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• The methodology of survival estimate is another factor impacting the fi-
nal survival rates. The Czech Society for Oncology has been processing
population-based data in the same manner as international studies, and the
results are fully compatible from the methodical point of view.

• The applied age standardisation can also affect survival rates. Reference
five-year relative survival rates suggested for the Czech Republic have been
standardized with regard to proportional representation of individual age
groups (15-44, 45-54, 55-64, 65-74 and 75-99 years), taking into account solely
Czech patients. First of all, survival rate was calculated for each of the de-
fined groups; and subsequently, a weighted average was calculated, corre-
sponding to the structure of the Czech data. Authors of the EUROCARE-4
study used weights derived from the age structure of the population of Eu-
ropean cancer patients form the EUROCARE-2 study [19]. This weighing,
however, partially disadvantages populations with a different (particularly
younger) age structure compared to the structure of European cancer pa-
tients. In many diagnoses, this also applies to the Czech population.

• The representation of clinical stages within the populations being compared
is another factor which is frequently dismissed, but strongly affects survival
rates. Outcomes that do not analyse survival rates with respect to clinical
stages are merely a benchmark of the epidemiological situation in individ-
ual countries, and cannot serve as a benchmark of treatment results in can-
cer care facilities.

• The previous point is closely related to stratification of patients depending
on whether they have or have not undergone anticancer treatment (and if
not, then why?). If we want to compare the treatment results in individual
countries in a consistent manner, we have to confine our assessments to
those patients who have been admitted to a health care facility and who
have been provided treatment.

To conclude this chapter, it is important to highlight that the differences be-
tween five-year relative survival rates in Czech patients and in the EUROCARE-
4 study, which have been observed particularly in diagnoses such as MN of
colon (C18-C21), MN of breast (C50), malignant melanoma of skin (C43), MN
of prostate (C61), and MN of testis (62), cannot be unequivocally attributed to a
poorer health care provided to Czech cancer patients. One possible explanation
for this difference is a high proportion of patients diagnosed at stage IV, which
is a consequence of a poor education of patients about early symptoms of the
disease and the non-existence of organized screening programmes in the 1990s,
rather than a poor quality of health care. Furthermore, a significant improvement
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in survival rates has been observed in many diagnoses since the 1990s, and the
comparison of retrospective values does not therefore correspond to the current
situation in Czech cancer care. Last but not least, the assessment of health care
results should be based on the comparison of survival rates in patients who have
undergone anticancer treatment. Only results from a set of treated patients can
actually bear witness to the quality of health care, as such set does not involve
patients who have not been treated for objective reasons (treatment contraindica-
tion, very high age, patient’s refusal to treatment, very advanced stage of disease),
or patients with incomplete diagnosis.
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Regression model for cytogenetic
or molecular response in patients
with chronic myeloid leukemia 5
The aim of this chapter is to present a Cox regression model for the achievement
of the complete cytogenetic or molecular response to a modern targeted therapy
in patients in chronic phase of chronic myeloid leukemia (CML). The model is
based on data coming from a population study involving approximately half of
Czech and all Slovak CML patients treated since 2000.

5.1 Definition of the primary objective

Chronic myeloid leukemia is one of the myeloproliferative diseases, a clonal dis-
order characterized by a distinctive cytogenetic abnormality, the Philadelphia
chromosome (Ph1). This abnormality, associated with the so-called BCR-ABL fu-
sion gene is present in more than 95 % of CML patients [37]. Therapy of CML was
more or less unsatisfactory for a long time as the only patient’s option for a long
term survival was to undergo a stem cell transplantation which is, on the other
hand, also accompanied with high mortality from various reasons. However, the
treatment of CML underwent a breakthrough in 1998 as the BCR-ABL tyrosine
kinase inhibitor imatinib was introduced [2]. Although imatinib clearly provides
a higher likelihood of achieving complete cytogenetic remissions, i.e. achieving
of an undetectable form of the disease, than any other regular therapy, it cannot
be regarded as a curative treatment.

The magnitude of reduction in CML burden is a key prognostic indicator
for patients treated for CML with imatinib. It was shown in [77] that delayed
achievement of cytogenetic and molecular response is associated with increased
risk of progression among patients in chronic phase CML treated with imatinib.
Thus, the objective of this study was to identify characteristics of CML patients
associated with prolonged time to complete cytogenetic response (CCgR) or ma-
jor molecular response (MMR) to imatinib therapy, which could further indicate
the increased risk of disease progression. Strictly speaking, the time from start
of the imatinib therapy to development of the CCgR or the MMR was chosen
as the primary endpoint of this study. Patients, who left the imatinib therapy
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due to death, stem cell transplantation, intolerance or due to the development of
resistance to imatinib, were censored.

5.2 Data

As already mentioned in Chapter 4, the Czech population-based data cannot
be used for the survival assessment in hemato-oncology diagnoses due to in-
sufficient diagnostic identification of these cancer groups in the minimal CNCR
record. As for leukemias, the acute and chronic types cannot be credibly strat-
ified. Therefore, the data analysed in this chapter come from an international
registry Camelia that has been founded by the Czech and the Slovak Societies of
Hematology in 2004.

5.2.1 Camelia project

Camelia is an international, multicentre clinical registry for monitoring of inci-
dence, treatment and treatment response in patients with CML in the Czech Re-
public and Slovakia. This non-interventional observational registry is organized
by the Leukemia Section of the Czech Hematology Society, and provides the back-
ground for a study coordinated by the Masaryk University. At present, 10 Czech
and Slovak clinical centres and one non-clinical centre are involved. The project
aims to establish a highly representative database containing valuable data for
clinical research, and to contribute to a better awareness of achieved treatment
results. Analyses of epidemiological and clinical data allow the results of vari-
ous therapeutic approaches to be regularly discussed; based on these discussion,
centres may cooperate to develop generally applicable therapy guidelines.

In addition to basic characteristics identifying the patient and his disease the
patient’s record includes variables corresponding to disease development and
individual phases of medical care. In general, patient record consists of the fol-
lowing components:

• Patient identification, CML confirmation examination

• Input clinical characteristics, Sokal and Hasford prognostic scores

• Blood count, blood differential, bone marrow examination

• Cytogenetics, clonal chromosome abnormalities

• Treatment modalities and their side-effects

• Dosing, response to therapy, disease progression
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• Bone marrow stem cell transplantation.

Several variables including treatment dosing, concomitant treatment, develop-
ment of clonal chromosome abnormalities, and side-effects can be recorded re-
peatedly during the follow-up period whereas the rest of the parameters can be
recorded only once, at the time of diagnosis.

5.2.2 Patients included in the analysis

In total, 658 CML patients diagnosed in years 2000–2008 with extended data
record were entered into the database. However, the set of 658 patients repre-
sents a mixture of patients treated with various treatment modalities in all phases
of CML defined above. Therefore, only 330 CML patients treated with first-line
imatinib were primarily considered for the analysis. The term first-line refers to
the fact that these patients were given imatinib as the initial treatment, mean-
ing that they had no regular CML therapy prior to imatinib. This step ensures a
certain degree of consistency among the patients for the treatment response can
be easily attributable to the effect of imatinib and not to any therapy adminis-
tered before imatinib. Another advantage of selecting patients with imatinib in
the first-line treatment is in the usability of characteristics measured at the time
of diagnosis. Their effect can be attributable to the start of the imatinib therapy
as the date of diagnosis is close to the date of initiation of imatinib therapy in the
first-line patients. However, two more filters should be adopted to select the final
set of patients:

(i) Filter for the length of follow-up. Patients with follow-up less than 12
months from the start of imatinib therapy were not considered in the anal-
ysis. The reason is the equal chance of achieving the CCgR or the MMR to
imatinib therapy for all patients, i.e., according to the European Leukemi-
aNet guidelines [3], the patients should have been followed-up for at least
12 months from the start of imatinib therapy to make it possible for the
CCgR or the MMR to occur.

(ii) Filter for the key data missing. Patients with missing values of key char-
acteristics were not considered in the analysis. The key characteristics were
defined as follows: date of birth, sex, date of diagnosis, date of initiation of
imatinib therapy, Sokal and Hasford prognostic scores, blood count (used
for definition of anemic patients), and imatinib dosing at the treatment start.

Moreover, a pilot analysis has revealed a strong association between the time
to the CCgR or the MMR and the period of diagnosis represented by two time in-
tervals 2000–2004 and 2005–2008, respectively, which is, however, very unlikely
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Figure 5.1: Cumulative proportion of patients with follow-up examination in first 12
months after imatinib therapy initiation.

to be true from the clinical perspective. As these two time periods correspond
with the retrospective part (time period 2000–2004) and the prospective part (time
period 2005–2008) of the Camelia project, respectively, it is more likely that this
phenomenon is much more related to frequency and especially availability of
clinical and cytogenetic follow-up examinations during the first 12 months after
the start of the imatinib therapy, which is higher in the latter time period as can
be seen in Figure 5.1. This explanation is also supported with the fact that, in
total, the overall proportion of patients, who achieved the CCgR or the MMR, is
similar in time periods 2000–2004 (73.2 %) and 2005–2008 (77.6 %). The difference
in the quality of patient follow-up between the two time periods has led to selec-
tion of the latter time period (2005–2008) for the modelling. An overall scheme
summarizing the selection of patients is given in Figure 5.2.

Finally, the set of N=197 patients was considered for the analysis. Their basic
characteristics are summarised in Table 5.1.
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All patients in Camelia project 
with first-line imatinib therapy

for chronic phase CML after 2000

Patients with follow-up at 
least 12 months from the 
start of imatinib therapy

N = 272

Patients with follow-up less 
than 12 months from the 
start of imatinib therapy

N = 58

N = 330

Patients with complete 
key characteristics 

N = 264

Patients with incomplete 
key characteristics 

N = 8

Patients with imatinib
therapy initiation in 

2005 – 2008

N = 197

Patients with imatinib
therapy initiation in 

2000 – 2004   

N = 67

Figure 5.2: Definition of the final set of patients from Camelia project for Cox regression
survival model.

5.3 Modelling the primary endpoint

A Cox proportional hazards model [20] was used to study the association be-
tween the time to the CCgR or the MMR to imatinib therapy and explanatory
variables recorded in the Camelia project. Both fixed effects and random effects,
the latter represented by the frailty term, were considered.

It should be noted that, with respect to achievement of the CCgR or the MMR
as a primary endpoint of this study, there may occur competing events prevent-
ing the occurrence of the event of interest during the follow-up of the patient.
Obviously, first of the competing events is death which causes the CCgR or the
MMR not to occur any more. As a second competing event, a termination of the
imatinib therapy can be regarded. Of course, the termination can have various
reasons, of which undergoing stem cell transplantation, imatinib-related adverse
events, and resistance to imatinib treatment are the best examples. However, the
quantification of risk associated with the covariates with respect to these alter-
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Table 5.1: Basic characteristics of patients with chronic myeloid leukemia considered in
the analysis (N=197).

Characteristic Level N %
Age in years <50 years 96 48.7

50+ years 101 51.3
Sex Female 84 42.6

Male 113 57.4
Sokal score Low risk 78 39.6

Intermediate risk 73 37.1
High risk 46 23.4

Hasford score Low risk 85 43.1
Intermediate risk 86 43.7
High risk 26 13.2

Achievement of CCgR or MMR Yes 155 78.7
No 42 21.3

native events was not of primary interest here, so the patients with competing
events were treated as censored observations. A justification for this step was
outlined in Section 2.3.7.

The multivariate exploratory analysis was performed using Statistica 9 [86]
due to its visualization possibilities, whereas Cox regression model was fit with R
software for statistical computing [78], using the survival package programmed
by Terry Therneau.

5.3.1 Primary variable selection

Prior to Cox model construction, the continuous explanatory variables eligible for
the modelling were analysed using a multivariate exploratory techniques, clus-
ter analysis and principal component analysis [65], to identify highly correlated
prognostic factors and, therefore, to avoid multicollinearity in the Cox model.
Discrete explanatory variables were not considered for the clustering and their
further inclusion to Cox regression model was judged individually. Moreover,
some continuous variables were also dropped out from the list of variables fea-
sible for the clustering procedure for high percentage of missing values due to
objective reasons (e.g. variables recently added to parametric structure of the
study, special examinations available only in part of the patient set). Continuous
variables not distributed according to normal distribution, i.e. in particular the
blood counts, were log transformed before the multivariate exploratory analysis
was carried out.
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There were four distinct clusters and two separate clinical variables identi-
fied with the multivariate techniques. The first cluster including hemoglobin is
a cluster corresponding to red blood cells count and part of the blood differen-
tial. The second cluster represents patient’s bone marrow status, i.e. the cluster
corresponds to the bone marrow involvement with the disease. The third cluster
containing age and prognostic scores is associated with overall health status of
patients with respect to the CML burden. Finally, the fourth cluster constitutes
of cytogenetic examinations mirroring the CML burden on the molecular level.
The two clinical variables separated alone are MCV (mean cell volume, a measure
of the average red blood cell volume), and leukocytes, i.e. the number of white
blood cells, respectively.

Every time a Cox model was built up, only one member from each of the iden-
tified groups of prognostic factors was used as a covariate. In addition, following
categorical variables were also considered for the modelling:

• Patient’s sex. The inclusion of sex is due to the fact that sex was previously
shown as a potential factor that may play role in a response to targeted ther-
apy of non-small cell lung cancer. Male gender was taken as a risk category.

• Imatinib dosage. Dosage is a key point of almost every pharmacotherapy;
four different dosing regimens were considered for imatinib in this study:
400 mg/day refers to a standard dose, >400 mg/day refers to an escalated
dose, <400 mg/day refers to a reduced dose, and 0 mg/day refers to a tem-
porary discontinued imatinib therapy, which is mainly due to mild side ef-
fects.

• Clonal chromosomal abnormalities in the Ph+ cells. The occurrence of clonal
chromosomal abnormalities in the cells bearing the Philadelphia chromo-
some in time is known as a risk factor for development of a resistance to
imatinib therapy and subsequent disease progression. Thus, the chromoso-
mal abnormalities in Ph+ cells were also considered as a potential risk factor
according to achievement of the CCgR or the MMR.

• Clonal chromosomal abnormalities in the Ph- cells. The clonal chromosomal ab-
normalities can occur also in other cell lines than those bearing the Philadel-
phia chromosome. Although these disorders are rather rare, they were also
included in the model.

The variables mentioned so far were incorporated in the modelling process as
fixed effects, however, two random effects were also considered to explain part
of the variability present in the CML data. First, an univariate frailty model with
each individual patient having his or her own frailty was fit to the data, whereas,
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as the second model, a shared frailty model with each clinical centre having its
own centre-specific frailty term was used.

5.3.2 Construction of the final model

Variables representing the clusters identified by multivariate methods were con-
sidered as time-fixed effects in the Cox model whereas imatinib dosage and clonal
chromosomal abnormalities in the Ph+ and Ph- cells, respectively, were incorpo-
rated as time-varying effects. However, to fit a Cox model with time-varying co-
variates using the survival package requires the patient’s data to be prepared
in a requisite form, i.e. one row for each period of observation with a certain (non-
missing) value of time-varying covariate. In this study, the length of one period
was set to 1 month for monthly intervals are sufficient for CML monitoring. Since
tied survival times were present in the observed data, Efron’s approximation of
partial log likelihood was used for estimation of the regression coefficients.

Table 5.2: Hazard ratios identified with Model 1 according to achievement of cytogenetic
or molecular response to imatinib therapy in chronic CML patients treated with imatinib
in first-line after 2004 (N=197).

Risk factor Risk category / Basal category Hazard ratio 95 % CI p-value
Sex Male / Female 1.63 1.15–2.32 0.006
Hemoglobin Hb < 110 g/l / Hb 110 g/l and more 1.53 1.00–2.33 0.051
MCV MCV > 100 fl / MCV 100 fl and less 2.19 1.24–3.86 0.007
Sokal score Medium risk / Low risk 1.33 0.92–1.92 0.130
Sokal score High risk / Low risk 2.29 1.36–3.87 0.002
Imatinib dosage Lower dose / Standard or higher dose 7.53 2.64–21.51 <0.001
Clinical centre* - - - <0.001

* Included as a random effect

Since some of the factors were known a priori to play role in CML progression,
the backward selection of variables was used to fit the Cox model. As sufficient
statistical information need to be conveyed in the data for survival modelling [65],
a rule of thumb, that there should be at least 10 times as many events as there are
candidate covariates in the sample, was met with respect to the full model [49].
Furthermore, as a model fit can be highly influenced by specification errors in
functional form of individual covariates [48], the correct functional form of con-
tinuous covariates was checked using spline approximation of individual covari-
ates during the modelling process (the survival package allows for the testing
of the nonlinear effect of a spline-smoothed covariate). On the other hand, the
continuous covariates can be also categorised as there are threshold values with
a clear clinical interpretation for some of the clinical characteristics, particularly
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Figure 5.3: Plots of scaled score residuals according to covariates included in Model 1;
the x-axis corresponds to individual patients (N=197).
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blood count variables. For example, this is the case of hemoglobin and MCV, re-
spectively. In the former case, value of 110 g/l was used to split the patients into
those with and without anemia, whereas in the latter case, value of 100 fl was
used to distinguish patients with macrocytic red blood cells (MCV>100 fl).

Reduction of the full model was performed gradually with the use of likeli-
hood ratio test. As a result, model denoted as Model 1 was fit including following
covariates: sex, categorised hemoglobin, categorised MCV, Sokal score, and ima-
tinib dosage. The resulting hazard ratios associated with the set of covariates
included in Model 1 are shown in Table 5.2 as well as their 95 % confidence inter-
vals and corresponding p-values. No relevant interactions between the consid-
ered variables were identified. As a random effect, only the centre-specific frailty
was identified as statistically significant, however, the choice of either gamma or
inverse Gaussian frailty distribution had a negligible effect on the results.

Regression diagnostic was performed to find out whether Model 1 adequately
describes the data. First, the set of variables was tested for the proportionality of
hazards using a test based on weighted Schoenfeld residuals according to [40],
and the proportionality of hazards was not rejected for any of the covariates as
well as for the model as a whole. Second, scaled score residuals (also denoted as
dfbeta residuals) were used to identify influential observations according to indi-
vidual covariates, the resulting plots can be seen on Figure 5.3. Considering the
magnitude of the regression coefficients, two highly influential observations can
be seen on Figure 5.3, one for MCV, and one for imatinib dosage (both marked
with “x”s). Omitting these two observations from data yielded a model with the
regression coefficient for MCV being slightly shrink towards zero, the regression
coefficient for imatinib dosage being strongly shrink towards zero, while the rest
of the coefficients being approximately the same (results not shown here). More-
over, examination of the scaled score residuals once again revealed three highly
influential observations, again associated with MCV and imatinib dosage. Fit-
ting a new model without the three influential observations resulted in a model
showing no statistical significance for MCV and imatinib dosage any more. Based
on this fact, model denoted as Model 2 was fit including only sex, categorised
hemoglobin, Sokal score, and clinical centre as a random effect, in the model for-
mula.

Summary of Model 2 is shown in Table 5.3 showing the estimated hazard
ratios and their 95 % confidence intervals. Regression diagnostic was also per-
formed for Model 2. First, there is no evidence of non-proportional hazards both
globally and individually for all four included variables. Second, none of the
observations is heavily influential individually with respect to the magnitudes
of the regression coefficients, see Figure 5.4. Third, a fairly good fit of Model
2 is indicated by a plot of deviance residuals, see Figure 5.5, that are scattered
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Figure 5.4: Plots of scaled score residuals according to covariates included in Model 2;
the x-axis corresponds to individual patients (N=192).
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Table 5.3: Hazard ratios identified with Model 2 according to achievement of cytogenetic
or molecular response to imatinib therapy in chronic CML patients treated with imatinib
in first-line after 2004 (N=192).

Risk factor Risk category / Basal category Hazard ratio 95 % CI p-value
Sex Male / Female 1.88 1.33–2.66 <0.001
Hemoglobin Hb < 110 g/l / Hb 110 g/l and more 1.89 1.23–2.87 0.004
Sokal score Medium risk / Low risk 1.34 0.93–1.93 0.120
Sokal score High risk / Low risk 2.43 1.45–4.08 <0.001
Clinical centre* - - - <0.001

* Included as a random effect

about zero with no observations being far from a hypothetical horizontal line at
zero [93]. This finding was also supported with a test of overall goodness-of-fit
proposed by Parzen and Lipsitz for the Cox model [73]. The value of their score
statistic based on eight risk categories was 3.66 with p = 0.183 (df = 7). Thus, the
hypothesis of model fit cannot be rejected, at a significance level of 0.05.

5.4 Discussion

In this chapter, a Cox regression model was built up for chronic phase CML pa-
tients treated with imatinib in first-line, that aimed to identify the potential risk
factors associated with prolonged time to achievement of the CCgR or the MMR
to imatinib therapy. The model was based on patients coming from the Camelia
project which is an observational study of 10 Czech and Slovak clinical centres.
Due to consistency of patient data, total of N=197 prospective patients adminis-
tered to imatinib therapy in 2005–2008 were considered for the modelling.

The issue of multicollinearity was addressed with reduction of the set of con-
tinuous explanatory variables using the cluster analysis and principal component
analysis. The so-called univariate screening method was not used as this method
does not account for the joint nature of the problem. The multivariate methods
identified several clinically relevant clusters, each of which was further repre-
sented in the Cox model with one variable. In addition, four fixed effects corre-
sponding to sex, imatinib dosage, Ph+ and Ph- clonal chromosome abnormalities,
respectively, and one random effect corresponding either to individual hetero-
geneity or centre-specific heterogeneity were considered in the full model. The
backward selection of covariates was used to fit the Cox model with likelihood
ratio test serving as a tool for eliminating of insignificant variables. Moreover,
regression diagnostic techniques were applied to check for the model adequacy.

Model with sex, hemoglobin, Sokal score as fixed effects, and clinical centre as
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Figure 5.5: Deviance residuals for Model 2 plotted against individual patients (N=192).

random effect was chosen as the final model for the achievement of the CCgR or
the MMR to imatinib therapy. The statistical significance of shared frailty term
representing the individual clinical centres is not surprising for shared frailty
models have been commonly used for survival assessment in multi-centre stud-
ies, especially in those where some centres contain only several patients [99]. The
prognostic potential of the Sokal score, which seems to be still valid, is also not
surprising, even if Sokal score [83] was derived in time, when imatinib was not
yet in clinical use. It should be also noted that substitution of Sokal score with
Hasford score leads only to minor changes is parameter estimates. However, the
insignificant difference in hazard profiles between low risk and intermediate risk
indicates that there is a space for a new prognostic score to be developed for the
era of imatinib therapy, or more precisely for the era of targeted therapy. Anemia has
been known for long as one of the symptoms of CML as well as one of the factors
associated with worse prognosis [57], therefore the association between anemia
and an elevated risk of delayed or no achievement of the CCgR or the MMR to
imatinib therapy is clinically plausible. On the other hand, such a difference in the
achievement of the CCgR and the MMR to imatinib therapy between males and
females has not been published in CML so far, which raises a question whether it
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could be explained with some kind of administrative issues as in case of period of
diagnosis described above. Another possible explanation of this association may
be different compliance of both sexes to imatinib therapy. As the introduction of
imatinib has revolutionized the treatment of CML, and many patients may have
almost negligible CML burden, patient compliance to imatinib therapy may play
a role in the achievement of the CCgR or the MMR.

The lack of statistical significance of clonal chromosome abnormalities, which
are known as risk factors for CML progression, can be explained with insufficient
statistical information for there is only a small number of patients who developed
Ph+ or Ph- clonal chromosome alterations. The same can be also true for the ima-
tinib dosage which was eliminated from the final model after omitting two in-
fluential observations, both with long response-free period and reduced imatinib
dose at the same time. It is obvious from the clinical perspective that lower than
standard dose of imatinib should be associated with limited response, however,
more observations with reduced imatinib dose would be needed to support this
hypothesis statistically.

It should be noted that even if the covariates in Cox regression are statistically
significant and regression diagnostic tools show no problem with the fit of the
observed data, the predictive power of the model can be limited at the individual
level, i.e. with respect to individual patient. Obviously, this is even more likely to
be true if the number of observed failures is not sufficiently large, and the model
is not stable enough according to covariates included in the model. Therefore,
considering Model 2 presented in Table 5.3, its potential in identification of pa-
tients, who are more likely to have problems with proper treatment response to
imatinib therapy, should be emphasized rather than its potential in prediction of
precise time to achievement of the CCgR or the MMR.
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Conclusion 6
In this dissertation, methods for the assessment and modelling in the field of
cancer epidemiology and their applications on real data sets were focused. A
new model for the estimation of prevalence of patients requiring active anti-
tumour therapy was presented. First advantage of this model is that it utilizes
only population-based cancer registry data. Second advantage is that, unlike the
methods published so far, the new model allows the prevalence to be estimated
with respect to the extent of cancer which is for many types of cancer more impor-
tant than age at diagnosis. The applicability of the model was shown on colorectal
cancer data from the Czech National Cancer Registry to model the number of po-
tentially treated patients with colorectal carcinoma in the Czech Republic in 2011.
Moreover, the survival benchmarks for the Czech cancer patients in the form of
five-year relative survival rates were presented. These estimates can be readily
used for health care assessment on the population level. Also an overview of the
five-year relative survival rates achieved since 1990 was provided as well as a
comparison between the Czech and European five-year relative survival rates in
selected cancer diagnoses. Finally, the applicability of survival regression tech-
niques on the data from an international registry for monitoring of incidence,
treatment and treatment response in patients with chronic myeloid leukemia in
the Czech Republic and Slovakia was shown. A Cox regression model was built
up for patients in chronic phase of chronic myeloid leukemia treated with ima-
tinib in first-line, that aimed to identify the potential risk factors associated with
prolonged time to achievement of the complete cytogenetic or the major molecu-
lar response to modern targeted therapy.
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