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Abstrakt
Prezentujeme dvě metody pro rozš́ı̌reńı kofibrantně generovaného slabého faktorizačńıho systému (L,R)
v lokálně presentovatelné kategorii na modelovou strukturu (s L jako kofibracemi) tak, že tř́ıda slabých
ekvivalenćı je co nejmenš́ı. Tato modelová struktura je zleva určená ve smyslu Rosický a Tholen [Left-

determined model categories and universal homotopy theories Trans. Amer. Math. Soc. 355 (2003),
no. 9].

Je-li každý objekt kofibrantńı, každý kartézský cylindr (vhodná funktoriálńı faktorizace

X + X
γX //CX

σX //X kodiagonály taková, že γX ∈ L) a každá podmnožina S ⊆ L dávaj́ı modelovou
strukturu, jej́ıž tř́ıda slabé ekvivalence je nejmenš́ı lokalizátor. Naopak, nejmenš́ı lokalizátor (v̊uči L)
který obsahuje množinu morfismů lze źıskat t́ımto zp̊usobem právě tehdy, pokud obsahuje všechny σX

některých kartézských cylindr̊u. Toto rozš́ı̌ŕı odpov́ıdaj́ıćı výsledky Cisinského [Théories homotopiques

dans les topos J. Pure Appl. Algebra 174 (2002) no. 1 ] pro (Grothendieckovy) toposy a monomorfismy
jako kofibrace.

Předpokládejme, že je množina I = {sn : Sn−1 → Bn | n ∈ N} generuj́ıćıch kofibraćı, źıskaných
z morfismů b0

n, b1
n : Bn → Bn+1 (n ∈ N) které splňuj́ı bi

nb
j
n+1 = bi

nbk
n+1 prostřednictv́ım postupných

fibrovaných sum od S-1 = 0 → B0. Je-li relativńı homotopie mezi paralelńımi buňkami (morfismy
x, y : Bn → X s snx = sny) tranzitivńı, a pokud existuje fibrantńı kocylindr (morfismy π0

X , π1
X : ΓX → X

ve R se společnou sekćı), který má ”homotopickou výměnnou vlastnost”, pak existuje modelová struk-
tura, kde slabé ekvivalence jsou morfismy, které maj́ı relativńı homotopickou liftovaćı vlastnost vzhledem
ke všem morfismům v I. Toto zobecňuje výsledky Lafonta, Métayera a Worytkiewicze [A folk model

structure on omega-cat] pro ωCat, t.j., kategorii (striktńı) ω-kategoríı.

Obě konstrukce mohou být indukovány na vhodných reflektivńıch podkategoríıch. Jsou uvedeny

některé př́ıklady.

Abstract
We present two methods for extending a cofibrantly generated weak factorization system (L,R) in
a locally presentable category to a model structure (with L as cofibrations) where the class of weak
equivalences is as small as possible. The model structure is then left determined in the sense of Rosický
and Tholen [Left-determined model categories and universal homotopy theories Trans. Amer. Math.
Soc. 355 (2003), no. 9].

If every object is cofibrant, then any cartesian cylinder (a suitable functorial factorization

X + X
γX //CX

σX //X of codiagonals with γX ∈ L) and any subset S ⊆ L give a set S′ with
S ⊆ S′ ⊆ L and a model structure whose class of weak equivalences is the smallest localizer containing
S′. Conversely, the smallest localizer (with respect to L) containing a set of maps can be obtained in
this way iff it contains all σX of some cartesian cylinder. This extends corresponding results of Cisinski
[Théories homotopiques dans les topos J. Pure Appl. Algebra 174 (2002) no. 1 ] for Grothendieck
toposes and monomorphisms as cofibrations.

Suppose there is a set I = {sn : Sn−1 → Bn | n ∈ N} of generating cofibrations, obtained from
maps b0

n, b1
n : Bn → Bn+1 (n ∈ N) satisfying bi

nb
j
n+1 = bi

nbk
n+1 via successive pushouts starting from

S-1 = 0 → B0. If relative homotopy between parallel cells (maps x, y : Bn → X with snx = sny) is
transitive and if there is a fibrant cocylinder (natural maps π0

X , π1
X : ΓX → X in R with a common

section) that has the ”homotopy exchange property”, then there is a model structure where the weak
equivalences are the maps that have the relative homotopy lifting property w.r.t. all maps in I. This
generalizes results of Lafont, Métayer and Worytkiewicz [A folk model structure on omega-cat] for
ωCat, the category of (strict) ω-categories.

Both constructions can be induced on suitable reflective subcategories. Several examples are provided.

MSC (2010): 18C35, 18G55, 55U35
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Preface

The subject of this thesis is the construction of (closed) Quillen model structures from
a class of maps that can serve as cofibrations, such that the resulting class of weak
equivalences is the smallest possible choice. Model structures where the cofibrations
determine the weak equivalences in this way have been considered by J. Rosický and
W. Tholen [26] under the name ”left determined”.

For Grothendieck toposes such a construction has been given by D.C. Cisinski [4]
with all monomorphisms as cofibrations in spe. His construction also allows to specify
a set of monomorphisms that are meant to become trivial cofibrations. He showed that
the resulting class of weak equivalences is the smallest class of maps that satisfies some
closure conditions and contains a certain set of trivial cofibrations produced by this
construction. Moreover, every such class of maps (a ”smallest localizer”) arises in this
way.

The current work extends Cisinski’s construction and results to locally presentable
categories. It also allows for more general classes of prospective cofibrations than just
monomorphisms.

Recently, Y. Lafont, F. Métayer and K. Worytkiewicz [14] have constructed a left de-
termined model structure on the category of (strict) ω-categories by a different method.
This construction can also be extended to locally presentable categories.

After a short introduction, providing some context and overview, the necessary back-
ground material about model categories is assembled in the first chapter.

The main result on Cisinski’s construction is given in Chapter 2. We describe the con-
struction and show that, under certain assumptions, it produces a cofibrantly generated
model structure. In the original case of monomorphisms in a Grothendieck topos the
assumptions we develop are equivalent to the ones Cisinski uses. We then compare the
weak equivalences of the resulting model structures with smallest localizers and identify
conditions under which a smallest localizer can be obtained through the construction.

Chapter 3 contains an abstract version of the construction given by Lafont, Métayer
and Worytkiewicz, which is suitable for locally presentable categories. We also con-
sider the situation, where both constructions can be applied and give conditions for the
resulting model structures to coincide.

Several examples are given in Chapter 4, where the emphasis is on locally presentable
categories that are not toposes. In order to construct these, we describe methods for
inducing both constructions on certain reflective subcategories. The limitations of both
methods are also discussed. The central ingredient of Cisinski’s construction is the
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notion of a cartesian cylinder for the class of cofibrations in spe, and we characterize
these completely for the case of monomorphisms in module categories.

The main results in Chapters 2 and 4 will appear in Applied Categorical Structures.
For this thesis, I included the new material of Chapter 3 and the results relating the
two constructions. Accordingly, I also rearranged and expanded the presentation in
Chapters 1 and 4, corrected some misprints of the article version and probably introduced
new ones.

The notation is mostly standard. But we write composition in reading order (i.e. from
left to right) and denote identity morphisms by the names of their objects.

I want to thank Professor Jǐŕı Rosický, who introduced me to this interesting area
of research. His mathematical insights, patience and optimism have been an important
help. I am also grateful for the welcoming and friendly atmosphere created by the depart-
ment’s faculty and staff. Last not least the support under GACR grant #201/05/H005
has been vital.

iv



Contents

Introduction 1

1 Model categories 5

1.1 Weak factorization systems and model structures . . . . . . . . . . . . . 5
1.2 Cylinders and homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Locally presentable categories . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Cisinski’s construction 19

2.1 Cartesian cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Left determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Model structures from balls 37

3.1 Balls and relative homotopy lifting . . . . . . . . . . . . . . . . . . . . . 37
3.2 Cocylinders with homotopy exchange . . . . . . . . . . . . . . . . . . . . 41
3.3 The model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 The case of adjoint cylinders . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Examples 55

4.1 New examples from old . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Cartesian closed examples . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 78

List of Symbols 80

Index 82

v



Introduction

Model categories were introduced by Quillen [20] as an abstract framework for homotopy
theory. A model category is a complete and cocomplete category equipped with a model
structure, i.e. three distinguished classes of maps, called cofibrations, fibrations and weak
equivalences, satisfying certain axioms. The axioms are in fact those of a closed model
category, but the adjective ”closed” is usually dropped nowadays.

Given such a model structure on a category, any two of the three classes of maps
involved determine the remaining one and hence the whole model structure. Going one
step further, one can ask for model structures where already one of the classes determines
the other two.

Rosický and Tholen [26] introduced the notion of a left determined model category,
where the class W of weak equivalences is determined by the class C of cofibrations as
the smallest class of maps satisfying some closure conditions. For such a model category,
W is then the smallest possible class of weak equivalences such that C and W yield a
model structure.

Independently, Cisinski [4] considered classes of maps (under the name localizer) that
satisfy (almost) the same closure conditions for the case where the underlying category
is a (Grothendieck) topos and C is the class of monomorphisms.

For this case he gave an explicit construction of model structures from a given set S of
monomorphisms and showed that the resulting class of weak equivalences is the smallest
localizer (with respect to monomorphisms) containing some S ′ ⊇ S. Conversely, given
any set of maps (not necessarily monomorphisms) the smallest localizer containing these
can be realized in this way. In particular, for the empty set, the smallest localizer is part
of a model structure, which is then left determined.

For the construction one starts with a suitable natural cylinder (a functorial fac-
torization of codiagonals) and the associated homotopy relation, specifies a set S of
monomorphisms that are meant to become weak equivalences, identifies the fibrant ob-
jects of the model structure in spe, and with these finally defines the weak equivalences.
The set S ′ ⊇ S is produced during the construction.

We want to extend this construction and the corresponding results to a more general
context, where the class of cofibrations may not be the monomorphisms and where the
underlying category is not necessarily a topos.

To see why such a construction is desirable in general, consider the homotopy category
Ho(K) of a model category K. It can be defined as K[W−1] (i.e. by formally inverting
weak equivalences). But it is also equivalent to the quotient category Kcf/∼ with respect
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Introduction

to some homotopy relation, where Kcf is the full subcategory of cofibrant and fibrant
objects. It turns out that there are several different ways of defining a homotopy relation
in K which all agree on Kcf . Among them is one which uses only knowledge of the
cofibrations. Consequently, the weak equivalences are only needed to identify the fibrant
objects — and whenever Cisinski’s construction is available, this can be done without
having to know all weak equivalences in advance.

For such a generalization to work, one first needs to inspect the conditions of the
original situation and extract those parts that can serve as an axiomatic starting point
in the general case. These fall into three sorts which we now describe:

First there are conditions on the class of cofibrations in spe. We assume that these are
already part of cofibrantly generated weak factorization system and that every object
is cofibrant. Here a weak factorization system (L,R) in a category K consists of two
classes of maps such that K = LR holds and L and R mutually determine each other
via a certain lifting condition in the following sense: write f � g if every solid square

• //

f

��

•

g

��
• //

??

•

(∗)

has a (dotted) diagonal. It is then required that L = �R := {f ∈ K | ∀r ∈ R : f � r}
and R = L� := {g ∈ K | ∀ℓ ∈ L : ℓ � g}. To be cofibrantly generated means that there
is a subset I ⊂ L which already determines R as I� above. Then L = �(I�) and I is
called a set of generating cofibrations.

Weak factorization systems are the building blocks of model structures because the
axioms for a model structure (C,W,F) require in particular that both (C,W ∩ F) and
(C∩W,F) are weak factorization systems. Therefore any class L of possible cofibrations
must already be part of a weak factorization system.

Moreover, in the original case of monomorphisms in a Grothendieck topos, the cor-
responding weak factorization system is cofibrantly generated. Also every map 0 → X
from an initial object is a monomorphism. Therefore we include these properties in our
assumptions for the general case and call such weak factorization system cofibrant for
short.

Then there are general conditions on the underlying category when the restriction
to Grothendieck toposes is to be lifted. We assume, that the underlying category is
locally presentable. Locally presentable categories, first defined by Gabriel and Ulmer [7],
include many categories from everyday mathematics like categories of universal algebra,
Banach spaces with linear contractions, small categories and functors, Grothendieck
abelian categories and Grothendieck toposes. At the same time they still have nice
properties: they are complete and cocomplete (hence suitable as model categories), are
closed under several categorical constructions and allow application of (the dual form
of) Freyd’s Special Adjoint Functor Theorem. Moreover, any set of maps in a locally
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Introduction

presentable category gives rise to a weak factorization system which makes it easier to
assert the existence of certain factorizations of maps.

Finally there are conditions on the cylinder used for the construction. As in the
original case, a cylinder is a functorial factorization of codiagonals X + X → X into
γX : X + X → CX and σX : CX → X, and we require that the γX are cofibrations. The
additional conditions will be discussed later. Among other things, we explicitly require
that the cylinder functor C is a left adjoint, whereas in [4] it is only required that it
preserves colimits. These two conditions are equivalent for locally presentable categories,
but explicit use of the adjointness seems to clarify some arguments. In particular it
explains why the construction of the model structure does not depend on the choice of
the generating set of cofibrations. We call such cylinders cartesian.

Once these conditions are taken care of, almost all steps in Cisinski’s original proof
can be adapted. Given a cofibrant weak factorization system (L,R) and a cartesian
cylinder (C, γ, σ) for (L,R) , the construction produces from any set S ⊆ L a set
S ′ = Λ(C, S) and a cofibrantly generated model structure such that the class of weak
equivalences is the smallest localizer (with respect to L) containing S ′. Moreover, all
the maps σX : CX → X are weak equivalences.

Conversely, given a set of maps, the smallest localizer containing these can be realized
by this construction if and only if it already contains all the σX for some cartesian
cylinder.

In the case of Grothendieck toposes with monomorphisms as cofibrations, such cylin-
ders always exist. In fact there are cartesian cylinders such that the maps σX lie in every
localizer. In more general cases this might not hold.

For the category ωCat of (strict) ω-categories, Lafont, Métayer and Worytkiewicz [14]
have recently constructed a left determined model structure. We briefly sketch the
relevant notions. Let B be the category with objects n ∈ N and morphisms B(n, n) =
{idn}, B(n, n + 1) = {d0

n, d
1
n} and B(m, n) = ∅ for m > n

0
d0
0

//
d1
0 // 1

d0
1

//
d1
1 // 2

d0
2

//
d1
2 // 3

d0
3

//
d1
3 // · · ·

such that di
nd

j
n+1 = di

ndk
n+1 always holds, i.e. the composition of nontrivial maps only

depends on the first map. It then follows that |B(n, m)| = 2 for n < m. An ω-graph,
also known as globular set, is an object of the presheaf category SetB

op

. Given such an
ω-graph X the maps X(d0

n) and X(d1
n), together with their various compositions, give

maps domn,k, codn,k : Xn → Xk for n > k. The elements of Xn are called n-cells. Two
n-cells x, y ∈ Xn are parallel if n = 0 or if domn,n−1(x) = domn,n−1(y) and codn,n−1(x) =
codn,n−1(y). They are k-composable (for n > k) if codn,k(x) = domn,k(y). An ω-category
is an ω-graph X equipped with identity cells and a multiplication of composable cells
such that (together with the above domain and codomain maps) each tripel Xn, Xk, Xl

with n > k > l is a 2-category.
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Introduction

To construct the model structure in [14], the authors start with the free ω-categories
generated by the representable ω-graphs and build the set of generating cofibrations in
ωCat from ∅ → B0 via successive pushouts. They then introduce an equivalence relation
∼ between parallel cells and finally define the weak equivalences via a lifting property
with respect to the generating cofibrations, which is almost the same as the relation �

from above, except that the right lower triangle in (∗) is only required to commute up
to ∼.

As before, we want to extend this construction from ωCat to arbitrary locally pre-
sentable categories. However, extracting suitable ingredients for an abstract version
of this construction is less straightforward than for Cisinski’s construction. The main
obstacle is, that ω-categories have internal structure which is used throughout the con-
structions and proofs in [14], and that this structure is not available for objects of a
category in general. In particular, one needs to describe the construction without men-
tioning the composition.

We now describe the ingredients of the abstract setup for the construction of [14] in
an arbitrary locally presentable category K:

First we need to carry out the construction of the set of generating cofibrations. For
this it is enough to assume the existence of a functor B : B → K, which we call a ”system
of balls”. This assumption also provides an abstract notion of cell: an n-cell of an object
K is just a map from B(n) to K.

The relation of ω-equivalence between parallel cells in [14] is defined via composition
and it is immediately proved that this gives an equivalence relation. It is later proved
that ω-equivalence can equivalently be expressed in terms of a relative homotopy relation
via suitable cylinder objects. Such cylinder objects always exist, so we simply take these
as starting point. However, we need to assume that the resulting homotopy relation
between parallel cells is transitive.

We assume the existence of a cocylinder (a functorial factorization of diagonals) with
certain properties. In [14], such a cocylinder is explicitely constructed, which we cannot
imitate because of lack of composition.

Under these assumption we can then prove that the construction from [14] produces
a left determined model structure on K in which every object is fibrant.

Having two different constructions available, we can then consider situations where
a weak factorization system is obtained from a system of balls and has a cartesian
cylinder. Because the right adjoint of the cylinder can be given a cocylinder structure,
the necessary conditions for the construction of Lafont, Métayer and Worytkiewicz can
be expressed in terms of the cylinder. If Cisinski’s construction can also be applied, we
obtain another condition for both constructions to give the same result.
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1 Model categories

1.1 Weak factorization systems and model structures

We follow Adámek, Herrlich, Rosický, Tholen [1] in introducing model structures via the
notion of a weak factorization system. Beside the original introduction by Quillen [20],
other sources include the article of Beke [3] and the books of Hirschhorn [8] and Hovey [9].
Most definitions do not need the underlying category to be complete and cocomplete
as is usually assumed when working with model structures. For now we tacitly assume
that the relevant limits and colimits exist for the various statements to make sense.

1.1.1 Definition. We say that two maps f and g are in diagonal relation and write
f � g if for every solid square

• //

f

��

•

g

��
• //

??

•

the (dotted) diagonal exists. For a class H of maps we set:

H� = {g ∈ K | ∀h ∈ H : h � g} and �H = {f ∈ K | ∀h ∈ H : f � h}

A weak factorization system in a category K is a pair (L,R) of classes of maps such
that the following two conditions are satisfied:

(1) L = �R and L� = R.

(2) Every map f has a factorization as f = ℓr with ℓ ∈ L and r ∈ R.

The weak factorization system (L,R) is cofibrantly generated if L = �(I�) for some
subset I ⊆ L. It is functorial if there is a functor F : K2 → K together with natural
maps λ : dom → F and ρ : F → cod such that λf ∈ L, ρf ∈ R and f = λfρf for all
f ∈ K2.

1.1.2 Remark. We first list some useful properties of the diagonal relation:

(a) Any class of the form �H is stable under pushouts, retracts in K2 and transfinite
compositions of smooth chains, where a smooth chain is a colimit preserving func-
tor D : α → K from some ordinal and its transfinite composition is the induced
map from D0 to colimβ<α Dβ. The dual results hold for classes of the form H�.
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1.1 Model categories: weak factorization systems

We write cell(H) for the class of those maps that are transfinite compositions
of pushouts of maps from H. Hence the above observation in particular gives
cell(H) ⊆ �(H�).

(b) (The ”retract argument”) Suppose f = xy. If f � y, then by redrawing

• x //

f

��

•

y

��
•

d
??~~~~~~~
•

as
•

f

��

•

x

��

•

f

��
•

d
// •

y
// •

one obtains f as a retract of x. Dually, if x � f then f is a retract of y.

(c) If a pair (L,R) satisfies condition (2) of Definition 1.1.1, then condition (1) can
be replaced by the two conditions

(i) ∀ℓ ∈ L, r ∈ R : ℓ � r.

(ii) Both L and R are closed under retracts in K2.

The inclusions L ⊆ �R and L� ⊇ R follow from (i) and the inclusions L ⊇ �R
and L� ⊆ R are obtained by application of the retract argument.

(d) If F : X ⇄ A : G are functors with F left adjoint to G then for any f ∈ X and
g ∈ A we have F (f) � g ⇐⇒ f � G(g).

Ringel [22] has investigated pairs (L,R) that satisfy only condition (1) of Definition 1.1.1.
The diagonal relation � gives a Galois-connection on classes of maps, i.e. we always
have L ⊆ �R ⇐⇒ L� ⊇ R. Therefore any pair of the form (�(H�),H�) satisfies that
condition. The relevance of the special case where H is a set comes from the result that
under certain smallness assumptions condition (2) is automatically satisfied.

1.1.3 Definition. Given a class H of maps in a cocomplete category K, we call a smooth
chain D : α → K an α-chain in H if for all β < β + 1 ≤ α the map Dβ → Dβ+1 is in H

An object X is λ-small with respect to H if the functor K(X,−) : K → Set pre-
serves colimits of all λ′-chains in H for every regular cardinal λ′ ≥ λ. It is small with
respect to H if it is λ-small for some λ. A set I of maps is small with respect to H
if the domain of each map is.

1.1.4 Lemma (the ”small object argument”). Let I be a set of maps in a cocomplete
category K and suppose that I is small with respect to cell(I). Then every map f can
be factored as f = xy with x ∈ cell(I) and y ∈ I� and this factorization can be made
functorial. In particular (�(I�), I�) is a functorial factorization system. Moreover,
every map in �(I�) is a retract of a map in cell(I).

Proof. See e.g. [9, Theorem 2.1.14], [8, Proposition 10.5.16] or [3, Proposition 1.3].
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1.2 Model categories: cylinders and homotopy

1.1.5 Remark. Remark 1.1.2 and the Lemma imply that for a such a set I the maps
in �(I�) are exactly the retracts of maps in cell(I).

1.1.6 Definition. A model structure (C,W,F) on a category K consists of three
classes of maps C (cofibrations), F (fibrations) and W (weak equivalences) such that the
following conditions are satisfied:

(1) W is closed under retracts in K2 and has the 2-3 property: if in f = gh two of
the maps lie in W then so does the third.

(2) Both (C,W ∩F) and (C ∩W,F) are weak factorization systems.

Observe that (as for weak factorization systems) if (C,W,F) is a model structure on
K, then (F ,W, C) is a model structure on Kop. The classes C ∩ W and W ∩ F are
called trivial cofibrations and trivial fibrations respectively. The model structure
is cofibrantly generated or functorial if the two weak factorization systems in (2)
are. An object X is called cofibrant if the map (0 → X) from the initial object is a
cofibration and fibrant if the map (X → 1) to the terminal object is a fibration. For a
functorial model structure, one obtains the cofibrant replacement functor and the
fibrant replacement functor by restricting the two functorial factorizations to (0↓K)
and (K↓1) respectively.

1.1.7 Remark. Any weak factorization system (L,R) in K gives a model structure
with C = L, F = R and W = K for which Definition 1.1.1 and Definition 1.1.6 produce
the same notions of ”cofibrantly generated” and ”functorial”. Any notion about model
structures in general (like e.g. ”(co)fibrant objects” or ”(co)fibrant replacement functor”
from above) can be applied to weak factorization systems by considering this special
model structure.

1.2 Cylinders and homotopy

1.2.1 Definition. Let (C,W,F) be a model structure on a category K.

(a) A (compatible) cylinder object for X is an object CX together with a fac-

torization of the codiagonal (X|X) : X + X → X as X + X
γX //CX

σX //X with
σX ∈ W. Together with the coproduct inclusions one then obtains maps as in the
diagram below:

X + X

γX

��
X

ι0X
77

γ0
X // CX

σX

��

X

ι1
X

gg

γ1
Xoo

X

(1.2.1)
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1.2 Model categories: cylinders and homotopy

The cylinder object is cofibrant if γ0
X , γ1

X ∈ C. It is called good if γX ∈ C. A
good cylinder object is called final if also σX ∈ C�. Given two cylinder objects
CX and C′X for X, we call C′X finer than CX if there is an f : CX → C′X
making the following diagram commutative:

X + X
γX

��

γ′

X

��
CX

f //

σX **

C′X

σ′

Xtt
X

(b) A (functorial) cylinder (C, γ, σ) for (C,W,F) is a functor C: K → K together
with natural maps γ and σ whose X-components γX and σX make CX into a
compatible cylinder object as in (a). The cylinder is cofibrant, good or final
respectively if all cylinder objects (CX, γX , σX) are. A cylinder (C′, γ′, σ′) is finer
than (C, γ, σ) iff C′X is finer than CX for all X.

(c) Given a cylinder object (CX, γX , σX), two maps f, g : X → Y are homotopic if
the induced map (f |g) : X + X → Y factors through γX : X + X → CX. This will
be written as f ∼ g or f ∼ g (mod CX). Often the cylinder objects will be part of
a cylinder (C, γ, σ) and in this case we write f ∼ g (mod C). A map h : CX → Y
with (f |g) = γXh will be called a homotopy from f to g.

(d) The symmetric transitive closure of ∼ is written as ≈. If the homotopy relation
comes from a cylinder as in (b), then ∼ is reflexive and compatible with com-
position and therefore ≈ is a congruence relation. The quotient category will be
denoted by K/≈. A map f : X → Y is a homotopy equivalence, if its image in
K/≈ is an isomorphism, or equivalently, if there exists a g : Y → X with fg ≈ X
and gf ≈ Y .

(e) A cocylinder object for X is a cylinder object in the opposite category Kop.
Here Kop is equipped with the dual model structure (F ,W, C). In terms of
the original K this means an object ΓX together with a factorization of the di-

agonal (X, X) : X → X × X as X
τX //ΓX

πX //X × X with τX ∈ W. We let
π0

X , π1
X : ΓX → X be the maps induced by the product projections. The defini-

tions in (a)-(c) above are dualized as well, except that we call the cocylinder object
fibrant if π0

X , π1
X ∈ F .

For a weak factorization system (L,R), cylinder objects, functorial cylinders and homo-
topy are defined as those for the trivial model structure (L,K,R).
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1.2 Model categories: cylinders and homotopy

1.2.2 Remark. Our terminology ”good” is borrowed from Dwyer and Spaliński [6,
Definition 4.2]. However, we use ”final” instead of their ”very good”.

(a) Suppose that in diagram (1.2.1) the object X is cofibrant. Then the coproduct
injections ι0X and ι1X are cofibrations, being pushouts of the map (0 → X). Con-
sequently, if γX is a cofibration then γ0

X and γ1
X are also.

(b) For a model structure (C,W,F) the (C,W ∩F)-factorizations of codiagonals pro-
vide enough final cylinder objects and every good cylinder object CX can be
refined to a final one by a (C,W ∩ F)-factorization of σX : CX → X. Also every
final cylinder object is a finest one among the good cylinder objects: if C′X is final
and CX is good, then γX � σ′

X will give a diagonal in

X + X

γX

��

γ′

X // C′X

σ′

X

��
CX σX

//

::ttttttttt

X

so that C′X is finer than CX.

If (C,W,F) is functorial, then one always has enough final cylinders and every good
cylinder (C, γ, σ) can be refined to a final cylinder through a functorial factorization
of σ.

(c) If (C′X, γ′
X , σ′

X) is finer than (CX, γX , σX) then the implication

f ∼ g (mod C′X) =⇒ f ∼ g (mod CX)

holds for any two maps f, g : X → Y . In particular, any two final cylinder objects
determine the same homotopy relation. The same holds for cylinders.

(d) We have built compatibility with the given model structure (C,W,F) on K into the
definition of cylinder objects by insisting on (K,W)-factorizations of codiagonals.
The notion of a cylinder object still makes sense without considering any model
structures, and this can be reproduced within our definition by using the model
structure (K,K, Iso), which exists for any category K and does not impose any
restrictions on cylinder objects. In the absence of coproducts, one can still define
cylinder objects and homotopy by rephrasing Definition 1.2.1 in terms of γ0

X and
γ1

X instead of γX . Similar for functorial cylinders.

Kamps and Porter [12] use this notion of (functorial) cylinder as a starting point
for abstract homotopy.

(e) Given a weak factorization system (L,R), consider a square

K

ℓ
��

// X

r

��
L // Y

9



1.2 Model categories: cylinders and homotopy

with ℓ ∈ L and r ∈ R. Then any two diagonals d, d′ : L → X are homotopic via a
final cylinder object CL

L + L

γL

��

(d|d′) // X

r

��
CL

h

66mmmmmmmmmmmmmmmm

σX

// L // Y

where the homotopy h : CL → X comes from γL � r. This suggests that one may
consider such pairs (d, d′) of common diagonals and define a homotopy relation
as the smallest congruence relation generated by those pairs. Such a definition
does not use cylinder objects and also works when the pair (L,R) satisfies only
condition (1) of Definition 1.1.1. This approach has been developed by Ringel [23].

1.2.3. In the context of model categories, there are two other methods of defining ho-
motopy, which do not use (functorial) cylinders but only cylinder objects and therefore
also work for model structures that are not functorial.

(a) Two maps f, g : X → Y are homotopic if (f |g) factors through some cylinder object
(diagram adapted from [20, p 1.4]):

X + X
(f |g) //

(X|X)

��

c

##H
HHH

HHHHH Y

X Pw
oo

h

OO (1.2.2)

This is known as ”left homotopy” in the literature on model categories. Whether
one insists on good cylinder objects (as e.g. in [20, Definition 4 (p 1.5)], [8, Defini-
tion 7.3.2] or [9, Definition 1.2.4]) or not (as in [20, Definition 3 (p 1.4)]) does not
change the homotopy relation.

(b) One uses Definition 1.2.1(c) for a fixed (possibly nonfunctorial) choice of final
cylinder objects. The existence of certain diagonals then works as a substitute
for the missing naturality. The homotopy relation with respect to such a choice
will always be reflexive, symmetric and compatible with composition. Moreover,
by Remark 1.2.2(c) it does not depend on the choice of cylinder objects. This
approach was introduced by Kurz and Rosický [13].

Since we will only work with functorial model structures, we will usually use functorial
cylinders. However, in showing that the homotopy category Ho(K) of a model category
K is equivalent to the quotient category Kcf/≈ one uses the homotopy relation in (a)
and it is not immediately clear whether the result is the same if our method of defining
homotopy (or the one in (b)) is used instead, because the three methods will in general
produce different homotopy relations on the K(X, Y ).

10



1.2 Model categories: cylinders and homotopy

We recall the construction of Kcf/≈ (for details, see e.g. [9, Section 1.2]): one first
considers the full subcategory Kcf of those objects that are both cofibrant and fibrant.
On this subcategory, left-homotopy from (a) is an equivalence relation which is also
compatible with composition. The homotopy category Ho(K) is then equivalent to
Kcf/∼.

The following Lemma ensures that all three notions of homotopy agree on K(X, Y )
whenever Y is fibrant and therefore Kcf/∼ can be constructed with any of these.

1.2.4 Lemma. Let (CX, γX , σX) be a good cylinder object for a model structure (C,W,F)
and let f, g : X → Y be maps with Y fibrant. Suppose there are maps c : X + X → P
and w : P → X with w ∈ W as in diagram (1.2.2). Then f ∼ g (mod CX).

Proof. First factor w as w = c′r with c′ ∈ C and r ∈ C�. Then w, r ∈ W forces c′ ∈ C∩W
by the 2-3-property. We then have the diagram

X + X
c //

γX

��

P

c′

��

h

  @
@@

@@
@@

@

CX
d //

σX
$$H

HHHHHHHH
•

r

��

k
// Y

X

where d exists because γX � r and k exists because c′ � (Y → 1). The equation
γXdk = ch = (f |g) gives f ∼ g.

We will also need a relative notion of cylinder objects and homotopy.

1.2.5 Definition. Let K be a category with a model structure (C,W,F).

(a) For an object A of K consider the comma category (A↓K) together with the projec-
tion cod: (A↓K) → K which assigns to any s : A → X its codomain X and likewise
for maps.

We say that a map f in (A↓K) is a cofibration, fibration or weak equivalence if its
underlying map cod(f) in K is. To see that this indeed gives a model structure,
one can use Remark 1.1.2(c): factorizations of maps and diagonals for squares in
(A↓K) can be constructed in K and cod preserves retracts, like any functor. This
gives the two weak factorization systems in Definition 1.1.6(2) and the closure of
weak equivalences under retracts. Finally, cod reflects the 2-3 property and hence
the weak equivalences have it.

(b) Let s : A → X be a fixed map. A cylinder object relative to s is a cylinder
object for the object s in the comma-category (A↓K), equipped with the model
structure in (a). In terms of the original K this is the same as an ordinary cylinder
object (CX , γX, σX) for X with the additional requirement of sγ0

X = sγ1
X . In this

11



1.3 Model categories: locally presentable categories

situation γX : X + X → CX factors through the canonical map X +X → X +A X
to the pushout of s with itself (i.e. the coproduct in (A↓K)). We also write
γX for the induced map (γ0

X |Aγ1
X) : X +A X → CX. In particular, one obtains

diagram (1.2.1) with X +A X in place of X + X.

Expanding Definition 1.2.1(c) in (A↓K), one obtains that two maps f, g : X → Y
with sf = sg are homotopic relative to s if the induced map (f |g) : X +A X → Y
factors through γX : X +A X → CX . This will also be written as f ∼ g or some-
times as f

s
∼ g if the map s is not clear from the context.

1.2.6 Remark. The name ”relative homotopy” is suggested by situations where relative
cylinders can be obtained from ordinary ones. Consider the following diagram.

A + A

s+s

��

γA // CA

j

��

σA // A

t

��
X + X

γX $$I
IIIIIIII

// Q
i //

(γX |Cs)

��

X +A X

γ′

X

��
CX

u //

σX
%%KKKKKKKKKK P

σ′

X

��
X

where the squares are pushouts and σ′
X = (σX |s). Suppose that Cs : CA → CX is a

cofibration and that weak equivalences are preserved by taking pushouts along cofibra-
tions. Then σA ∈ W gives u ∈ W. From the 2-3 property we obtain also σ′

X ∈ W, so
that (P, γ′

X , σ′
X) is a cylinder object for (C,W,F) relative to s.

Now consider two f, g : X → Y with sf = gf . Chasing back through the pushout
squares, we see that (f |Ag) : X +A X → Y can be extended along γ′

X iff there is a
h : CX → Y with γXh = (f |g) and (Cs)h = σAt(f |Ag) = σAsf . In other words, f
and g are homotopic relative to s iff they are homotopic relative to A in the ordinary
topological sense.

1.3 Locally presentable categories

We now turn to accessible and locally presentable categories. The main source for this
material is the book of Adámek and Rosický [2].

1.3.1 Definition. Let λ denote a regular cardinal.

(a) an object X in a category K is λ-presentable if the functor K(X,−) : K → Set
preserves λ-directed colimits. It is presentable if it is λ-presentable for some λ.

(b) A category K is λ-accessible if it satisfies the following two conditions:

12



1.3 Model categories: locally presentable categories

(1) K has λ-directed colimits.

(2) there is a set A of λ-presentable objects of K such that every object of K is
a λ-directed colimit of objects from A.

It is accessible if it is λ-accessible for some λ.

(c) A category K is locally λ-presentable if it is λ-accessible and cocomplete. It
then follows that it is also complete, see e.g. [2, Corollary 1.28]. It is locally
presentable if it is locally λ-presentable for some λ.

(d) A functor F : K → L is λ-accessible if both K and L are λ-accessible and F pre-
serves λ-directed colimits. It is accessible if it is λ-accessible for some regular
cardinal λ.

(e) A full subcategory K of L is accessibly embedded if it is closed under λ-directed
colimits for some regular cardinal λ.

1.3.2 Remark. Because every regular cardinal λ′ ≥ λ is in particular λ-directed,
a λ-presentable object is λ-small. More generally, a λ-presentable object is also λ′-
presentable for all regular λ′ ≥ λ.

Also every object K of a locally presentable category K is presentable: suppose K is
locally κ-presentable and write K as a directed colimit K = colimi Ai of κ-presentable
objects. Choose some regular cardinal λ ≥ κ such that the diagram for the colimit
has less than λ morphisms. Then the Ai are also λ-presentable and therefore K is
λ-presentable by [2, Proposition 1.16].

Consequently, every object of a locally presentable category K is a small object and
therefore every set of maps in K permits application of the small object argument of
Lemma 1.1.4.

1.3.3. Let F : A → B be any functor. We write FA for the full image of A under
F , i.e. the full subcategory of B determined by all objects FX (X ∈ A). If K is a full
subcategory of B, we write F -1K for its full preimage under F , i.e. the full subcategory
of A determined by all those objects X ∈ A with FX ∈ K.

1.3.4 Lemma. Let F : A → C be an accessible functor and let K be a full subcategory
of C.

(a) If K is accessible and accessibly embedded in C then F -1K is also accessible and
accessibly embedded in A.

(b) If K is the full image of an accessible functor and also isomorphism-closed in C
then the same holds for F -1K.

Proof. Part (a) is [2, Remark 2.50]. For part (b), let G : B → C be an accessible functor
with K = GB.

13



1.3 Model categories: locally presentable categories

(1) The comma category (F↓G) is accessible and the projection (F↓G) → A is acces-
sible by [2, Theorem 2.43].

(2) We obtain an accessible functor H : (F↓G) → C2 via H(A, B, u : FA → GB) = u.
Since the full subcategory of C2 given by isomorphisms is accessible and acces-
sibly embedded in C2, the same holds for its preimage under H , by part (a).
This preimage is the full subcategory Iso(F, G) of (F↓G) whose objects are those
(A, B, u : FA → GB) for which u is an isomorphism.

(3) F -1(GB) is the full image of the composite Iso(F, G) →֒ (F↓G) → A.

We now turn to weak factorization systems in locally presentable categories. The fol-
lowing theorem should indicate, why these categories are a convenient setting.

1.3.5 Theorem. Let K be a locally presentable category and I a set of maps in K.

(a) Every map f can be factored as f = xy with x ∈ cell(I) and y ∈ I�. Moreover
this factorization can be made functorial. In particular (�(I�), I�) is a functorial
factorization system.

(b) In the situation of (a), the factorization functor K2 → K is accessible.

(c) The full subcategory of K2 given by the homotopy equivalences with respect to a
final cylinder is the full image of an accessible functor.

Proof. Part (a) is a special case of Lemma 1.1.4 by Remark 1.3.2. Part (b) is due to
J.H. Smith; for a published proof see e.g. Rosický [24, Proposition 3.1]. The statements
therein are phrased for model structures but apply to weak factorization systems via
Remark 1.1.7. Part (c) is [25, Proposition 3.8].

Our main tool will be a theorem of Smith which describes conditions under which
two classes C and W of maps in a locally presentable category are part of a cofibrantly
generated model structure.

1.3.6 Definition. A functor F : A → B satisfies

(a) the solution set condition at an object B of B if there is a set of maps
{fi : B → FAi | i ∈ I} such that every map f : B → FA factors as f = fi(Fu) for
some fi and u : Ai → A.

(b) the solution set condition at a class of objects, if it satisfies the solution set
condition at every element of that class.

(c) the solution set condition, if it satisfies the solution set condition at all objects
of B.

A full subcategory K of B satisfies the conditions above if its inclusion functor does.
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1.3 Model categories: locally presentable categories

1.3.7 Lemma. Every accessible functor F : K → L (and hence its full image) satisfies
the solution set condition.

Proof. [2, Corollary 2.45]

1.3.8 Remark. When B has only sets B(B, B′) of maps between objects (as we will
always assume), it is sufficient to specify a set of objects FAi in part (a) of Defini-
tion 1.3.6. For the special case where a class A of maps in a category K is regarded as a
full subcategory of K2, Definition 1.3.6 has a more user friendly description: The class
A satisfies the solution set condition at a map m if there is a set Am ⊆ A of maps (the
solution set), such that every map in K2(m, a) with a ∈ A factors though some u ∈ Am:

•

m

��

))// •

u

��

// •

a

��
• 55// • // •

1.3.9 Theorem (Smith’s Theorem). Let K be a locally presentable category, I a set of
maps and W a class of maps in K. Suppose that the following conditions are satisfied:

(1) W has the 2-3 property and is closed under retracts in K2.

(2) I� ⊆ W

(3) �(I�) ∩W is closed under pushouts and transfinite composition.

(4) W satisfies the solution set condition at I.

Then setting C := �(I�) and F := (C∩W)� gives a cofibrantly generated model structure
(C,W,F) on K.

Proof. ([3, Theorem 1.7]) We only sketch the steps in the proof as far as needed for later
use.

(1) [3, Lemma 1.8] Suppose that J ⊆ �(I�) ∩W is a class of maps such that in the
arrow category K2 any map from an i ∈ I to a w ∈ W factors through some j ∈ J :

•

i
��

))// •

j

��

// •

w

��
• 55// • // •

Then every f ∈ W has a (cell(J), I�)-factorization.
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1.3 Model categories: locally presentable categories

(2) [3, Lemma 1.9] There exists a set J with the property in (1). This J can be
constructed from the solution sets Wi (i ∈ I) in the following way: for each map
(u, v) : i → w with i ∈ I and w ∈ Wi form the diagram

•

i

��

u // X

i′

��

w

##
• //

v

55P
p // Q

q // Y

where the left square is a pushout and pq is a (cell(I), I�)-factorization of (v|w) : P → Q.
Then the composition i′p is the resulting element of J .

Now for any class J as in (1), one has C ∩ W ⊆ �(J�) because for any f ∈ C ∩ W, a
factorization f = xy with x ∈ cell(J) and y ∈ I� will exhibit f as a retract of x. Also
one has �(J�) ⊆ �((C ∩W)�).

If J happens to be a set, every element of �(J�) is a retract of a map in cell(J).
Because C∩W is stable under the operations involved, the last inclusion can be sharpened
to �(J�) ⊆ C ∩W and hence equality.

It remains to check that the resulting cofibrantly generated weak factorization systems
(C, C�) and (C ∩W, (C ∩W)�) satisfy C� = W∩ ((C ∩W)�). The inclusion ”⊆” already
holds by condition (ii). Conversely, assume f ∈ W ∩ ((C ∩W)�). To establish i � f for
i ∈ I, factor any square

•

i

��

// •

f

��
• // •

as
•

i

��

// •

j

��

// •

f

��
• // • //

??

•

and use j � f to obtain a diagonal of the right square.

1.3.10 Corollary (of proof). The class W has solution sets consisting of trivial cofi-
brations.

1.3.11 Remark. Conditions (1)–(3) in the above Theorem are necessary for any cofi-
brantly generated model structure (C,W,F) with I being the set of generating cofibra-
tions. Rosický [25, Theorem 4.3] has recently shown that condition (4) is also necessary.

1.3.12. If K is only assumed to be cocomplete but not necessarily locally presentable,
one has to pay attention to the use of the small object argument in the steps of the
proof.

(a) If I is small w.r.t. cell(I), then all needed (cell(I), I�)-factorizations exist.

(b) Let J be a class as in step (1) of the above proof. If I is small w.r.t. cell(J), then
the construction of the (cell(J), I�)-factorization still works.
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1.3 Model categories: locally presentable categories

(c) The set J provided in step (2) of the above proof satisfies J ⊆ cell(I) and hence
cell(J) ⊆ cell(I). Consequently, the condition in (b) holds whenever the condition
in (a) holds. Moreover, the domains of maps in J are domains of maps from the
solution sets Wi (i ∈ I). Consequently, if all Wi are small w.r.t. cell(I), then all
needed (cell(J), J�)-factorizations exist.

As remarked by Beke [3, Remark 1.11], the solution sets Wi are usually not given
in some canonical way, so that it is best to assume that every object is small, which
holds for locally presentable categories. Nevertheless, the construction in Chapter 3 will
produce such solution sets. Therefore we record the needed requirements in the following
version of Smith’s Theorem.

1.3.13 Theorem (Smith’s Theorem, second variant). Let K be a cocomplete category,
I a set of maps and W a class of maps in K. Suppose that in addition to (1)–(4) of
Theorem 1.3.9, the following conditions are satisfied:

(5) I is small with respect to cell(I).

(6) All Wi (i ∈ I) are small with respect to cell(I).

Then setting C := �(I�) and F := (C∩W)� gives a cofibrantly generated model structure
(C,W,F) on K.

We now look at some of the conditions in Theorem 1.3.9.

1.3.14 Definition. Let C be a fixed class of maps. A class W of maps is a localizer
for C if it satisfies the following conditions:

(i) W has the 2-3 property.

(ii) C� ⊆ W.

(iii) C ∩W is closed under pushouts and transfinite composition.

We say that a localizer W is split if W is also closed under retracts in K2. For a given
class S of maps we write WC(S) and Ws

C(S) for the smallest localizer and the smallest
split localizer respectively that contains S. In particular, WC(∅) is the smallest localizer
for C.

1.3.15 Definition. A model structure (C,W,F) is left determined if W = Ws
C(∅).

1.3.16 Remark. The notion of a localizer was given by Cisinski [4, Définition 3.4] for the
special case where K is a (Grothendieck) topos and C is the class of all monomorphisms.
Definition 1.3.15 was given by Rosický and Tholen [26, Definition 2.1]. We use the
notion of a split localizer in order to state it in a more compact form. The terminology
itself is suggested by the correspondence between retracts and idempotents.
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1.3 Model categories: locally presentable categories

Observe that each condition in Definition 1.3.14 is stable under intersections, i.e. if it is
satisfied by every Wt in some (possibly large) family Wt (t ∈ T ), then it is also satisfied
by their intersection. Therefore the smallest (split) localizer containing a given class
S always exists and the definitions of WC(S) and Ws

C(S) make sense. We always have
WC(S) ⊆ Ws

C(S). Also, if (C,W,F) is a model structure with S ⊆ W then Ws
C(S) ⊆ W.

In particular, whenever C and WC(S) give a model structure then WC(S) = Ws
C(S).
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2 Cisinski’s construction

We now present the construction of a cofibrantly generated model structure from a suit-
able cofibrantly generated weak factorization system and cylinder. As in the original
case, we need additional conditions on the cylinder used. Our conditions in Defini-
tion 2.1.9 are different from those of Cisinski [4, Définition 2.3]. Nevertheless, they are
equivalent in the case of (Mono, Mono�) in a Grothendieck topos. This is discussed in
Section 1. In Section 2 we show that this construction gives a model structure and in
the last section we describe conditions under which the class of weak equivalences of
this model structure is minimal in an appropriate sense. In this chapter all cylinders
are understood to be good cylinders. We sometimes insert the word ”good” just for
emphasis.

2.1 Cartesian cylinders

We first look at one particular ingredient of the construction in a more general setting.

2.1.1 Definition. Let A be a category with pushouts. Given a natural map
α : F → F ′ : X → A and a map f : X → Y let f ⋆ α be the map in the diagram below:

FX
αX //

Ff

��

F ′X

��
F ′f

��

FY //

αY

,,

FY +
FX

F ′X

f⋆α
JJJ

J

$$JJ
JJ

F ′Y

Dually, let X be a category with pullbacks. Given a natural map β : G′ → G : A → X
and a map g : A → B let β ⋆ g be the map in the diagram below:

G′A

G′g

��

β⋆g
III

$$I
II

βA

''
G′B ×

GB
GA //

��

GA

Gg

��
G′B

βB

// GB
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2.1 Cisinski’s construction: cartesian cylinders

For a class I of maps, we write I ⋆ α for {f ⋆ α | f ∈ I} and β ⋆ I for {β ⋆ f | f ∈ I}.

2.1.2. For the next Lemma, recall the notion of a conjugate pair of natural maps between
two adjunctions from e.g. Mac Lane [17, IV-7]: given two adjunctions F : X ⇄ A : G
and F ′ : X ⇄ A : G′, two natural maps α : F → F ′ and β : G′ → G are conjugate if the
diagram

A(F ′X, A)
∼= //

A(αX ,A)
��

X (X, G′A)

X (X,βA)
��

A(FX, A)
∼= // X (X, GA)

commutes for all X ∈ X and A ∈ A.

2.1.3 Lemma. Suppose α : F → F ′ and β : G′ → G are two conjugate natural maps.
Then for all f : X → Y and g : A → B one has

(f ⋆ α) � g ⇐⇒ f � (β ⋆ g)

Proof. We will show the direction ”⇒”. The opposite direction then follows by duality.
So assume (f ⋆ α) � g and consider any diagram

X
u //

f

��

G′A

β⋆g

��

βA

##F
FFFFFFF

Y v
//

vp
""D

DD
DD

DD
D P

p

��

q
// GA

Gg

��
G′B

βB

// GB

where P is the pullback of βB and Gg. We need a diagonal for the left upper square.

Switching via the adjunctions (indicated by (̂ ) in both directions) gives the solid arrows
of the diagram

FX
αX //

Ff

��

F ′X

j

��

bu

!!D
DD

DD
DDD

FY
i //

αY ##F
FF

FF
FF

FF cvq
66Q

f⋆α

��

r // A

g

��
F ′Y

cvp
//

d

==

B

where Q is the pushout of Ff and αX . Now r : Q → A is induced by v̂q and û. Testing
against i and j yields the commutativity of the right lower square (i.e. rg = (f ⋆ α)v̂p),
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2.1 Cisinski’s construction: cartesian cylinders

which therefore has a diagonal d : F ′Y → A. Switching back via the adjunction gives

X
u //

f

��

G′A

β⋆g

��

βA

##F
FFFFFFF

Y v
//

vp
""D

DD
DD

DD
D

bd
<<zzzzzzzz
P

p

��

q
// GA

Gg

��
G′B

βB

// GB

where the equality d̂(β ⋆ g) = v can be verified by testing against p and q. Hence

d̂ : Y → G′A is the desired diagonal.

2.1.4 Corollary. In the situation of the previous Lemma, let I be a class of maps in X
and J be a class of maps in A. Then

I ⋆ α ⊆ J =⇒ (�(I�)) ⋆ α ⊆ �(J�)

Proof.

I ⋆ α ⊆ J =⇒ I ⋆ α ⊆ �(J�)

=⇒ I� ⊇ β ⋆ (J�)

=⇒ (�(I�))� ⊇ β ⋆ (J�)

=⇒ (�(I�)) ⋆ α ⊆ �(J�)

2.1.5 Remark. Corollary 2.1.4 applies to any natural map between left adjoints (assum-
ing that the necessary pushouts and pullbacks exist) because such a map uniquely deter-
mines a conjugate map between the respective right adjoints (see e.g. Mac Lane [17, IV-7,
Theorem 2]).

2.1.6 Definition. Let (L,R) be a cofibrantly generated weak factorization system in
a locally presentable category K. For a functorial cylinder (C, γ, σ), a generating set I
and a subset S ⊆ �(I�) define Λ(C, S, I) via the following construction:

Λ0(C, S, I) := S ∪ (I ⋆ γ0) ∪ (I ⋆ γ1) (2.1.1)

Λn+1(C, S, I) := Λn(C, S, I) ⋆ γ (2.1.2)

Λ(C, S, I) :=
⋃

n≥0

Λn(C, S, I) (2.1.3)

2.1.7 Lemma. Suppose a cylinder functor C for (L,R) is a left adjoint. Then for any
two generating subsets I, J ⊆ L one has

�(Λ(C, S, I)�) = �(Λ(C, S, J)�)
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2.1 Cisinski’s construction: cartesian cylinders

Proof. We will drop C and S from the notation for Λ and show Λn(I) ⊆ �(Λ(J)�) for
all n ≥ 0.

(1) We have J ⋆γk ⊆ Λ(J) (for k = 0, 1). Corollary 2.1.4 then gives L⋆γk ⊆ �(Λ(J)�).
So in particular Λ0(I) ⊆ �(Λ(J)�).

(2) Assume Λn(I) ⊆ �(Λ(J)�). Corollary 2.1.4 then gives

Λn+1(I) = Λn(I) ⋆ γ ⊆ �(Λ(J)�)

2.1.8 Remark. In general one cannot expect Λ(C, S, I) ⊆ L without any further as-
sumptions. However, if C is a left adjoint, Lemma 2.1.7 shows, that this property does
not depend on the choice of the generating subset. This motivates the following defini-
tion.

2.1.9 Definition. Let (L,R) be weak factorization system in a category K. A good
functorial cylinder (C, γ, σ) for (L,R) is cartesian if

(a) The cylinder functor C: K → K is a left adjoint

(b) L ⋆ γ ⊆ L and L ⋆ γk ⊆ L (k = 0, 1)

2.1.10 Remark. Condition (a) allows using Lemma 2.1.3 and Corollary 2.1.4. In par-
ticular, if (L,R) is cofibrantly generated by some subset I ⊆ L, Condition (b) already
holds whenever I ⋆γ0, I ⋆γ1 and I ⋆γ lie in L. Also for any f ∈ L we have Cf = f ′(f ⋆γ0)
where f ′ is a pushout of f , so that Cf is again in L.

We now compare Definition 2.1.9 with [4, Définition 2.3]. Let E be a Grothendieck topos.
Recall the following properties:

(1) Colimits in E are universal: given a colimit cocone xi : Xi → X and a map f : Y → X,
the induced maps f ∗(xi) : f ∗(Xi) → Y obtained from pulling back the xi along f
again form a colimit cocone. This is [10, Lemma 1.51].

(2) E is locally presentable. This follows from [2, Theorem 1.46] together with the
fact that the sheaves with respect to a site form a small orthogonality class (in the
sense of [2, Definition 1.35]) inside the respective presheaf topos.

(3) Whenever one has a diagram

P

a

��

b // B

��
y

��

A //

x
++

Q

x∨y
@@

@

��@
@@

X

(2.1.4)
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2.1 Cisinski’s construction: cartesian cylinders

where x and y are monomorphisms, P is the pullback of x and y, and Q is the
pushout of a and b, then the induced map x ∨ y : Q → X is also a monomorphism.
This follows from [10, Proposition 1.55].

(4) Monomorphisms are closed under transfinite composition. This follows from re-
peated application of [2, Corollary 1.60].

From the last three items above, it follows by [3, Proposition 1.12] that (Mono, Mono�)
is a cofibrantly generated weak factorization system. Now suppose (C, γ, σ) is a cylinder
for (Mono, Mono�) and consider the following conditions:

DH1 The functor C preserves monomorphisms and all colimits.

DH2 If f : X → Y is a monomorphism then

X
γk

X //

f

��

CX

Cf

��
Y

γk
Y

// CY

(2.1.5)

are pullback squares (k = 0, 1).

DH3 If f : X → Y is a monomorphism then

X + X
γX //

f+f

��

CX

Cf

��
Y + Y γY

// CY

(2.1.6)

is a pullback square.

Conditions DH1 and DH2 were introduced by Cisinski [4, Définition 2.3]. We first
observe, that it is enough to restrict attention to DH1:

2.1.11 Lemma. Given a cylinder (C, γ, σ) for (Mono, Mono�), one has the implications
DH1 =⇒ DH2 =⇒ DH3.

Proof. Assume that the cylinder satisfies DH1. For every f : X → Y , the outer rectangle
in the diagram

X
γk

X //

f

��

CX
σX //

Cf

��

X

f

��
Y

γk
Y

// CY σY

// Y
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2.2 Cisinski’s construction: the model structure

is always a pullback. If f is a monomorphism then so is Cf and hence the left square is
also a pullback. So the cylinder satisfies DH2.

Assume that the cylinder satisfies DH2. Given a monomorphism f : X → Y , consider
for k = 0, 1 the diagrams

X

f

��

pk

// P

h
��

g // CX

Cf

��
Y

ιkY

// Y + Y γY

// CY

where the right square is a pullback and pk is induced by the maps fιkY and γk
X. By DH2

the outer rectangle is also pullback and hence the left square is a pullback too. Because
coproducts are universal, the maps p0 and p1 make P into a coproduct of X and X.
The canonical isomorphism u : X + X → P with ιkXu = pk then satisfies uh = f +f and
ug = γX . So the cylinder satisfies DH3.

2.1.12 Corollary. In a Grothendieck topos a good cylinder for (Mono, Mono�) is carte-
sian iff it satisfies DH1 (and hence DH2 and DH3) above.

Proof. Let (C, γ, σ) be a cylinder.
Suppose it is cartesian. Then the left adjoint C preserves all colimits and we already

noted in Remark 2.1.10 that f ∈ Mono implies Cf ∈ Mono. Therefore condition DH1
is satisfied, as well as conditions DH2 and DH3.

Conversely, suppose that condition DH1 is satisfied. Now, any locally presentable
category is cocomplete (by definition), co-wellpowered (by [2, Theorem 1.58]) and has a
(small) generator (by [2, Theorem 1.20]). Therefore it satisfies the dual form of the con-
ditions in Freyd’s Special Adjoint Functor Theorem, and the colimit preserving functor
C is indeed a left adjoint.

To check that Mono is stable under the (−) ⋆ γk and (−) ⋆ γ, match diagram (2.1.4)
above with the diagrams (2.1.5) and (2.1.6). More precisely, for a monomorphism
f : X → Y let a = f , b = γk

X , x = γk
Y , y = Cf in diagram (2.1.4). Then f ⋆ γk co-

incides (up to isomorphism) with x ∨ y and because condition DH2 is satisfied, x ∨ y is
a monomorphism. Similarly, conditions DH3 gives that f ⋆ γ is a monomorphism.

2.2 The model structure

2.2.1 Definition. Let (L,R) be a weak factorization system, cofibrantly generated by
a subset I ⊆ L. Let (C, γ, σ) be a cylinder for (L,R) and S ⊆ L be any subset. Define
W(C, S, I) as the class of all those maps f : X → Y such that for all objects T with
(T → 1) ∈ Λ(C, S, I)� the induced map f ∗ : K(Y, T )/≈ → K(X, T )/≈ is bijective.

2.2.2 Remark. Clearly W(C, S, I) contains all isomorphisms, has the 2-3 property and
is closed under retracts in K2. Furthermore, whenever fg and gf lie in W(C, S, I),
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2.2 Cisinski’s construction: the model structure

then so do f and g. All these properties follow from the corresponding properties of
bijections. Also note, that for f ∼ g, one has f ∈ W(C, S, I) ⇐⇒ g ∈ W(C, S, I)
because the induced maps f ∗, g∗ : K(Y, T )/≈ → K(X, T )/≈ coincide.

Besides being cofibrantly generated, the weak factorization system (Mono, Mono�) in
a Grothendieck topos has the property that each object is cofibrant, i.e. that each map
(0 → X) is in L. For convenience, we combine these two properties into one definition:

2.2.3 Definition. A model structure (weak factorization system) is cofibrant if it is
cofibrantly generated and every object is cofibrant.

2.2.4 Lemma. Let (L,R) be a cofibrant weak factorization system, let (C, γ, σ) be a
cartesian cylinder and let Λ := Λ(C, S, I) as in Definition 2.1.6. Then the natural maps
γ0 and γ1 have their components in �(Λ�).

Proof. Application of Corollary 2.1.4 to I ⋆ γk ⊆ Λ gives L ⋆ γk ⊆ �(Λ�). Because
the left adjoint C must preserve the initial object, γk

X differs from (0 → X) ⋆ γk only
by composition with some isomorphism (due to the choice involved in Definition 2.1.1).
Hence γk

X ∈ �(Λ�).

We are now ready to state the main result of the section.

2.2.5 Theorem. Let K be a locally presentable category and (L,R) a cofibrant weak
factorization system generated by a set I ⊆ L. Let (C, γ, σ) be a cartesian cylinder for
(L,R) and S ⊆ L an arbitrary subset. Then, setting

C := L W := W(C, S, I) F := (C ∩W)� (2.2.1)

gives a cofibrant model structure (C,W,F) on K. Moreover, (C, γ, σ) is also a cylinder
for this model structure.

2.2.6 Remark. Theorem 2.2.5 does not remain valid if ”cofibrant” is weakened to
”cofibrantly generated” in its statement. Let G be a (small) generator in K and consider
the set of codiagonal maps I := {(G|G) : G + G → G | G ∈ G}.

(1) I� is the class Mono of monomorphisms and �(I�) is the class StrEpi of strong
epimorphisms.

(2) The (StrEpi, Mono)-factorization of every codiagonal (X|X) as

X + X
(X|X)// X

X // X

gives a good cylinder (C, γ, σ) where C and σ are the identity and γX = (X|X).
In particular, C is a left adjoint and the homotopy relation is equality.
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2.2 Cisinski’s construction: the model structure

(3) If f : X → Y is a strong epimorphism, then f ⋆ γ0, f ⋆ γ1 and f ⋆ γ are also strong
epimorphisms. This is clear for γ0 and γ1 because they are identity transforma-
tions. In the case of γ, it is enough to observe that f = g(f ⋆ γ), where g is the
pushout of f + f along γX . (Alternatively one can consider the conjugate map γ,
check that γ ⋆ (−) preserves monomorphisms and apply Lemma 2.1.3).

Altogether, (StrEpi, Mono) is cofibrantly generated and (C, γ, σ) is cartesian. Going
through the construction of Λ = Λ(∅, I) in this case, one obtains that Λ0 consists only
of isomorphisms and therefore all Λn consist only of isomorphisms. Consequently, every
object X satisfies (X → 1) ∈ Λ� and W(∅, I) is the class of isomorphisms. In particular
StrEpi� is not included in W(∅, I).

The rest of this section will consist of the proof of Theorem 2.2.5 via Smith’s Theo-
rem 1.3.9. It turns out that almost all steps in the proof of [4, Théorème 2.13] can be
reused with only minor modifications to verify conditions (1)–(3) of Theorem 1.3.9. How-
ever, in verifying condition (4) we will depart from [4] and use Part (c) of Theorem 1.3.5
(i.e. [25, Proposition 3.8]). Condition (1) already already holds by Remark 2.2.2. We
now turn to condition 1.3.9(2).

2.2.7. By Lemma 2.1.7, Λ(C, S, I)� and hence W(C, S, I) do not depend on I. While
they do depend on C and S (it will turn out that S is contained in C ∩ W and the
components of σ lie in W), the particular choices of C and S do not play any role in
the proof. Therefore we will simply write Λ for Λ(C, S, I) and W for W(C, S, I). We
call an object X fibrant if (X → 1) ∈ Λ�. In Lemma 2.2.20 we will show that these
objects coincide with the fibrant objects of the resulting model structure, so that the
terminology is justified.

2.2.8 Definition ([4, Définition 2.15]). A map f : X → Y is a dual strong deforma-
tion retract if there exist maps g : Y → X and h : CX → X such that the following
diagram commutes

X + X
(X|fg) //

γX

��

X

f

��

Y
goo

~~
~~

~~
~~

~~
~~

~~
~~

CX σX

//

h

66llllllllllllllll
X

f
// Y

(2.2.2)

2.2.9 Lemma. Every element of C� is a dual strong deformation retract.

Proof. Let f : X → Y ∈ C�. Because every object is cofibrant, f is a retraction, so there
is a g : Y → X such that the right triangle in diagram (2.2.2) commutes. Because of
(X|fg)f = (f |f) = (X|X)f = γXσXf the left square of that diagram also commutes.
Now γX � f gives the desired diagonal h : CX → X.

2.2.10 Corollary. C� ⊆ W.
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2.2 Cisinski’s construction: the model structure

Proof. By the previous Lemma, it is enough to check that every dual strong deformation
retract is in W. If f and g are as in Diagram (2.2.2), then X ∼ fg and Y = gf . Using
Remark 2.2.2, one obtains that fg and gf are in W and hence f ∈ W.

2.2.11 Remark. In fact, one has C� = (C ∩ W)� ∩W. For the direction not covered
by the Corollary, factor a given f ∈ (C ∩ W)� ∩W as f = ℓr with ℓ ∈ C and r ∈ C�.
Then r ∈ W and hence ℓ ∈ C ∩W. Therefore ℓ � f and f is a retract of r. So in the
language of model structures, the ”trivial fibrations are indeed those fibrations that are
trivial”.

Condition 1.3.9(2) holds by Corollary 2.2.10. Verifying condition 1.3.9(3) will occupy
us until Corollary 2.2.21.

2.2.12 Lemma. Let X and T be objects with T fibrant. Then the homotopy relation ∼
is an equivalence relation on K(X, T ).

Proof. The relation is clearly reflexive. For symmetry and transitivity let u, v, w ∈
K(X, T ) and suppose v ∼ u and v ∼ w via maps h, k : CX → X with γXh = (v|u) and
γXk = (v|w). This gives the solid arrows in the following diagram

X + X
γX //

γ0
X+γ0

X

��

CX
σX //

p

��

C(γ0
X

)

##G
GG

GG
GG

GG
X

v

��

CX + CX //

(h|k) --

Q

t
))SSSSSSSSSSSSSSSSSSS

γ0
X

⋆γ
// CCX

d

""
T

where Q is the pushout of γ0
X + γ0

X and γX and where t is induced by the commuting
outer rectangle. By Lemma 2.2.4 we have γ0

X ∈ �(Λ�). Applying Corollary 2.1.4 to
Λ ⋆ γ ⊆ Λ gives γ0

X ⋆ γ ∈ �(Λ�). Hence (γ0
X ⋆ γ) � (T → 1) and d : CCX → T exists.

Therefore the following diagram commutes

X + X

γX

��

γ1
X+γ1

X

// CX + CX

γCX

��

(h|k)

%%K
KKKKKKKKK

CX
C(γ1

X )
// CCK

d
// T

exhibiting a homotopy from u to w.

2.2.13 Remark. With the previous Lemma, the condition for f : X → Y to be in W
can be rephrased in terms of the homotopy relation instead of its transitive closure: for
any given t : X → T with T fibrant there is a u : Y → T with t ∼ fu and such a u is
determined up to homotopy. In particular one obtains the following description for maps
between fibrant objects:
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2.2 Cisinski’s construction: the model structure

2.2.14 Corollary. Suppose X and Y are fibrant. Then f : X → Y is in W if and only
if there exist a g : Y → X with X ∼ fg and Y ∼ gf .

Proof. One direction is clear. If f : X → Y is in W then using the remark with t =
X : X → X gives a g : Y → X with X ∼ fg. Therefore f ∼ fgf and using the remark
with t = f : X → Y yields gf ∼ Y .

2.2.15 Lemma. �(Λ�) ⊆ W

Proof. Suppose f : X → Y is in �(Λ�) and let t : X → T be a map with T fibrant.

(1) Existence: Because f � (T → 1), there exists a u : Y → T with t = fu, so in
particular t ∼ fu.

(2) Uniqueness: Assume u, v : Y → T with t ∼ fu and t ∼ fv. By Lemma 2.2.12,
fu ∼ fv and there is some h : CX → X with γXh = (fu|fv) = (f + f)(u|v).
Therefore one has the following diagram

X + X
γX //

f+f

��

CX

��
h

��

Y + Y //

(u|v)
,,

Y + Y +
X+X

CX

r
JJ

JJ
J

%%JJ
JJ

J

T

where r is the induced map from the pushout. By Corollary 2.1.4 f ⋆ γ ∈ �(Λ�)
and hence (f ⋆γ) � (T → 1), so that r factors through f ⋆γ via some d : CY → T .
Therefore (u|v) = γY d and u ∼ v.

2.2.16 Corollary. The natural maps γ0 and γ1 have their components in C ∩W. The
natural map σ has its components in W.

Proof. For any object X we have γk
X ∈ �(Λ�) ⊆ C∩W by Lemma 2.2.4 and Lemma 2.2.15.

The 2-3 property of W then implies σX ∈ W.

The two implications obtained in Lemma 2.2.9 and in Corollary 2.2.10 can be strength-
ened to equivalences under some conditions.

2.2.17 Lemma. Suppose f ∈ Λ�. Then

f ∈ C� ⇐⇒ f is a dual strong deformation retract
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Proof. The direction ”⇒” is Lemma 2.2.9. For the direction ”⇐”, assume f : X → Y
to be a strong dual deformation retract with maps g : Y → X and h : CX → X as in
diagram (2.2.2), i.e. gf = X, (X|fg) = γXh and hf = σXf . Any commutative square

K
u //

c

��

X

f

��
L v

// Y

with c ∈ C gives rise to the following diagram

X
γ1

X // CX

h

��2
2
2
2
2
2

2
2
2
2
2

2
2
2
2

K

u
==zzzzzzzz γ1

K //

c

��

CK

p

��

Cu

;;xxxxxxxx

L q
//

γ1
L !!D

DD
DD

DD
D P

x // X
f

  A
AA

AA
AA

CL σL

// L v
// Y

g

OO

Y

where P is the pushout of c and γ1
K and x : P → X is induced by γ1

K(Cu)h = uγ1
Xh =

ufg = cvg. Testing against p and q gives the commutativity of the lower right square in

K
u //

γ0
K

!!D
DD

DD
DD

D

c

��

X
γ0

X // CX
h

((PPPPPPPPPPPPPP

CK p
//

Cu

;;xxxxxxxx

P
x //

c⋆γ1

��

X

f

��
L

γ0
L

// CL σL

//

d

66

L v
// Y

and hence (c⋆γ1) � f gives a diagonal d : CL → X. The outer diagram then shows that
d′ := γ0

Ld : L → Y is the desired diagonal.

2.2.18 Lemma. Suppose f ∈ Λ� with fibrant codomain. Then

f ∈ C� ⇐⇒ f ∈ W

Proof. The direction ”⇒” is Corollary 2.2.10. For the direction ”⇐”, assume f : X → Y ∈
W and Y fibrant. By Lemma 2.2.17, it is sufficient to show that f is a dual strong defor-
mation retract. We will construct g : Y → X and h : CX → X, such that the equations
in diagram (2.2.2) are satisfied.

Because f and (Y → 1) are in Λ�, the same holds for (X → 1). By Corollary 2.2.14
there exists a g : Y → X with X ∼ fg and Y ∼ gf . Let k : CX → X be the homotopy
from X to fg.
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(1) One may assume Y = gf . Consider the following diagram

Y
g //

γ1
Y

��

X

f

��
Y

γ0
Y // CY //

d
==

Y

where the right square comes from Y ∼ gf . The diagonal d : CY → X exists
because γ1

Y ∈ �(Λ�) by Lemma 2.2.4. Let g′ := γ0
Y d. Then g′f = Y and (g′|g) =

γY d. Hence X ∼ fg ∼ fg′ and by Lemma 2.2.12 we have X ∼ fg′ via some
homotopy k′. Now replace g and k by g′ and k′.

(2) There are maps x : CX + CX +
X+X

CX → X and d : CCX → X such that the fol-

lowing diagram commutes:

CX + CX +
X+X

CX x //

γ1
X⋆γX

��

X

f

��
CCX σCX

//

d

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
CX

k
// X

f
// Y

(2.2.3)

The equation

(γ1
X + γ1

X)(k|kfg) = (γ1
Xk|γ1

Xkfg)

= (fg|fgfg)

= (X|X)fg

= γXσXfg

induces x in the following diagram

X + X
γX //

γ1
X

+γ1
X

��

CX
σX //

j

��

X

f

��
CX + CX

i //

(k|kfg) ,,

Q
x

!!C
CC

CC
CC

C Y

g

��
X

where Q is the pushout of γ1
X + γ1

X and γX with coprojections i : CX + CX → Q
and j : CX → Q. The commutativity of the outer rectangle of diagram (2.2.3) now
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follows from the following two equations

ixf = (k|kfg)f

= (kf |kf)

= (CX|CX)kf

= γCXσCXkf

= i(γ1
X ⋆ γX)σCXkf

jxf = σXfgf

= σXγ1
Xkf

= C(γ1
X)σCXkf

= j(γ1
X ⋆ γX)σCXkf

Finally the existence of the diagonal d in diagram (2.2.3) follows from γ1
X ⋆ γX ∈

�(Λ�).

(3) With x and d as in (2), let h := (Cγ0
X)d : CX → X. Then the following diagram

commutes:

X + X
(X|fg) //

γX

��

X

f

��
CX σX

//

h

66llllllllllllllll
X

f
// Y

The lower triangle is the equation

(Cγ0
X)df = (Cγ0

X)σCXkf = σXγ0
Xkf = σXf

The upper triangle is the equation

γX(Cγ0
X)d = (γ0

X + γ0
X)γCXd

= (γ0
X + γ0

X)i(γ1
X ⋆ γX)d

= (γ0
X + γ0

X)ix

= (γ0
X + γ0

X)(k|kfg)

= (γ0
Xk|γ0

Xkfg)

= (X|fg)

Altogether, h and g satisfy the equations in diagram (2.2.2).

2.2.19 Corollary. Let f : X → Y ∈ C with fibrant codomain. Then

f ∈ W ⇐⇒ f ∈ �(Λ�)

31



2.2 Cisinski’s construction: the model structure

Proof. The direction ”⇐” is Lemma 2.2.15. For the direction ”⇒”, suppose f ∈ W.
Factor f as ip with i ∈ �(Λ�) and p ∈ Λ�. Then p satisfies the condition of the previous
Lemma and hence

f ∈ W ⇐⇒ p ∈ W ⇐⇒ p ∈ C�

so that in particular f � p. Therefore f is a retract of i and lies in �(Λ�).

2.2.20 Lemma. Let N = {p ∈ Λ� | p has a fibrant codomain}. Then

(a) C ∩W = C ∩ �N .

(b) N ⊆ (C ∩W)�

(c) (X → 1) ∈ Λ� ⇐⇒ (X → 1) ∈ (C ∩W)�

Proof. First observe that because of �(Λ�) ⊆ C ∩ W (Lemma 2.2.15 together with
condition (b) of Definition 2.1.9) we have Λ� ⊇ (C ∩ W)� and hence the implication
”⇐” in (c) always holds. The implication ”⇒” in (c) follows from (b). Moreover, (a)
implies (b) via C ∩ �N ⊆ �N . So it is enough to show (a). Let c : K → L be any map
in C. Factor (L → 1) through some u : L → L′ with u ∈ �(Λ�) and L′ fibrant. Then in
particular u ∈ C with fibrant codomain and hence u ∈ W by Corollary 2.2.19. Therefore

c ∈ W ⇐⇒ cu ∈ W ⇐⇒ cu ∈ �(Λ�) (∗)

where the second equivalence again results from Corollary 2.2.19.

(1) Suppose c ∈ W. Consider any p ∈ N and maps x : K → X and y : L → Y as in
the following diagram:

K
c //

x

��

L
u //

y

��

L′

d

{{ y′

~~
X p

// Y

Then y′ : L′ → Y exists because u � (Y → 1) and d : L′ → X exists because of the
above (∗). The equations cud = x and udp = uy′ = y then exhibit ud : L → X as
the desired diagonal.

(2) Suppose c ∈ �N . Factor cu as cu = xp with x ∈ �(Λ�) and p ∈ Λ�. Because u has
fibrant codomain, the same holds for p and hence p ∈ N . Because u ∈ �(Λ�) ⊆
�N , also cu ∈ �N . Therefore cu is a retract of p and hence cu ∈ �(Λ�) ⊆ W.
Now by (∗) above, c ∈ W.

2.2.21 Corollary. C ∩W is stable under pushouts, transfinite composition and retracts.

Proof. By part (a) of the previous Lemma, C ∩W can be expressed as the intersection
of two classes, each of which is stable under these operations.
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2.2 Cisinski’s construction: the model structure

It now remains to verify condition 1.3.9(4). We want to express W as the full preimage
(under some accessible functor) of the class of homotopy equivalences with respect to
some final cylinder. Observe that the cylinder used in the construction may not be final.

2.2.22 Lemma. There is a final refinement (C′, γ′, σ′) of (C, γ, σ) such that for any two
maps f, g : X → Y with fibrant codomain we have

f ∼ g (mod C′) ⇐⇒ f ∼ g (mod C)

In particular, the two cylinders agree on the notion of homotopy equivalences between
fibrant objects.

Proof. Let σ = λρ be a functorial (C, C�)-factorization of σ and for each object X set
C′X = cod(λX), γ′

X = γXλX and σ′
X = ρX . Then (C′, γ′, σ′) is a final refinement of

(C, γ, σ) and the direction ”⇒” was already noted in part (c) of Remark 1.2.2.
For the direction ”⇐”, the argument is similar to the one in Lemma 1.2.4. Assume

f ∼ g (mod C) for maps f, g : X → Y with Y fibrant. Let h : CX → Y be a homotopy
from f to g and consider the square:

CX
h //

λX

��

Y

��
C′X // 1

Corollary 2.2.10 gives ρX ∈ C� ⊆ W and Corollary 2.2.16 gives λXρX = σX ∈ W.
Therefore the 2-3 property of W forces λX ∈ W and hence λX ∈ C ∩ W. By part
(c) of Lemma 2.2.20 we have (Y → 1) ∈ (C ∩ W)�. This gives the desired diagonal
d : C′X → Y of the above square, establishing f ∼ g (mod C′).

2.2.23 Corollary. The class W satisfies the solution set condition.

Proof. By Lemma 1.3.7, it is sufficient to exhibit W as the full image of some acces-
sible functor. Let L : K → K be the fibrant replacement functor given by the weak
factorization system (�(Λ�), Λ�), which is accessible by part (b) of Theorem 1.3.5. Via
composition, L induces a functor L∗ : K2 → K2, which is also accessible because colimits
in K2 are calculated pointwise.

Let f : X → Y be any map.

(1) f ∈ W ⇐⇒ Lf ∈ W

Consider the square

X
ℓX //

f

��

LX

Lf

��
Y

ℓY // LY

where ℓX , ℓY ∈ �(Λ�) are given by the functorial factorization. By Lemma 2.2.15
ℓX and ℓX lie in W. Now the 2-3 property of W gives the above equivalence.
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2.3 Cisinski’s construction: left determination

(2) Lf ∈ W ⇐⇒ Lf is a homotopy equivalence (mod C)

By construction, Lf has fibrant domain and codomain. The equivalence now
follows from Corollary 2.2.14.

Let (C′, γ′, σ′) be a final refinement of (C, γ, σ) as in the previous Lemma. Then point
(2) still remains valid with C′ in place of C. Therefore W is the preimage, under the
accessible functor L∗, of the class of homotopy equivalences determined by C′. By
part (c) of Theorem 1.3.5 that class is the full image of an accessible functor. It is also
isomorphism-closed. Hence the same holds for W by Lemma 1.3.4.

Proof of Theorem 2.2.5. By Remark 2.2.2, Corollary 2.2.10, Corollary 2.2.21 and
Lemma 2.2.23, the classes C and W satisfy the conditions of Smith’s Theorem 1.3.9.

2.3 Left determination

The following Lemma and Theorem are adapted from [4, Proposition 3.8] and [4, Théorème 3.9].
They provide the connection between the weak equivalences produced by Cisinski’s con-
struction and the smallest localizers containing a given set of maps.

2.3.1 Lemma. Let (C, C�) be a cofibrant weak factorization system in K, generated by
a subset I ⊆ C. Let (C, γ, σ) be a cartesian cylinder and let S ⊆ C be a set of maps.
Then W(C, S, I) = WC(Λ(C, S, I)).

Proof. We will again write Λ for Λ(C, S, I) and W for W(C, S, I). The inclusion
WC(Λ) ⊆ W holds because Λ ⊆ W by Lemma 2.2.15.

Now given any f : X → Y ∈ W, use (cell(Λ), Λ�)-factorizations of (X → 1) and
(Y → 1) to obtain a diagram

X
ℓX //

f

��

X ′

f ′

��

z

  A
AA

AA
AA

A

Z

y~~}}
}}

}}
}}

Y
ℓY

// Y ′

where ℓX and ℓY are in cell(Λ), X ′ and Y ′ are fibrant, f ′ is induced by this factorization
and f ′ = zy is in turn a factorization with z ∈ cell(Λ) and y ∈ Λ�. In particular ℓX , ℓY

and z are in WC(Λ). Then the 2-3 property gives

f ∈ W =⇒ y ∈ W ⇐⇒ y ∈ C� =⇒ y ∈ WC(Λ) =⇒ f ∈ WC(Λ)

where the equivalence in the middle is given by Lemma 2.2.18
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2.3 Cisinski’s construction: left determination

2.3.2 Theorem. Let (C, C�) be a cofibrant weak factorization system in K and S be an
arbitrary set of maps (not necessarily included in C). Suppose that (C, γ, σ) is a cartesian
cylinder such that all components of σ lie in WC(S). Then, setting W := WC(S) and
F := (C∩W)� gives a cofibrant model structure (C,W,F) on K. Also WC(S) = Ws

C(S).

Proof. First observe, that one may assume S ⊆ C: factor each s ∈ S as s = csrs with
cs ∈ C and rs ∈ C� and consider S ′ := {cs | s ∈ S}. Any given localizer contains S if
and only if it contains S ′, because all the rs lie in it. Therefore WC(S

′) = WC(S).
Now assume S ⊆ C. Let I be some generating subset of C. By the previous Lemma,

it is enough to show WC(Λ(C, S, I)) = WC(S). We will write Λ(S) for Λ(C, S, I).
The inclusion S ⊆ Λ(S) already forces WC(S) ⊆ WC(Λ(S)) and therefore it remains

to show Λ(S) ⊆ WC(S).
By assumption, the components of σ lie in WC(S). Consequently the components of

γ0 and γ1 lie in C ∩WC(S). We will now show Λn(S) ⊆ WC(S) for all n ≥ 0.

(1) We already have S ⊆ WC(S). Let f : X → Y be in C and consider the following
diagram used for the definition of f ⋆ γ0

X

f

��

γ0
X // CX

p

�� Cf

��

Y q
//

γ0
Y ++

Q

f⋆γ0

EE
E

""E
EE

CY

where Q is the pushout of f and γ0
X . Because γ0

X ∈ C∩WC(S) we have q ∈ WC(S).
Together with γ0

Y ∈ WC(S) this gives f ⋆ γ0 ∈ WC(S). In the same way f ⋆ γ1 ∈
WC(S). Hence I ⋆ γ0 and I ⋆ γ1 are contained in WC(S)

(2) Assume Λn(S) ⊆ WC(S) and let f : X → Y be in Λn(S). By assumption f ∈
WC(S) and hence f lies in C ∩WC(S). Then the same holds for f + X and Y + f
(being pushouts of f), as for their composition f + f = (f +X)(Y + f). Moreover
f ∈ C ∩ WC(S) together with γ0

X , γ0
Y ∈ WC(S) force Cf ∈ WC(S) by the 2-3

property. Altogether, in the following diagram used for the definition of f ⋆ γ

X + X

f+f

��

γX // CX

r

�� Cf

��

Y + Y //

γY ,,

Q

f⋆γ
EE

EE

""E
EE

CY

both maps r and Cf lie in WC(S), and hence f ⋆ γ ∈ WC(S).
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2.3 Cisinski’s construction: left determination

In view of Corollary 2.2.16 it is clear that the condition of σ having its components
in WC(S) cannot be omitted from the Theorem. This condition will always be satisfied
(regardless of the WC(S) in question) whenever the cylinder is final, i.e. when σ has its
components in C�.

2.3.3 Corollary. Let (C, C�) be a cofibrant weak factorization system in K and suppose
that there is a final cartesian cylinder for (C, C�). Then C, WC(S) and (C ∩ WC(S))�

form a cofibrantly generated model structure. In particular for S = ∅, the construction
of Theorem 2.2.5 gives a left determined model structure.

2.3.4 Remark. The above results also show, that the construction of the model struc-
ture from (C, C�) and S does not depend on the choice of the cylinder (C, γ, σ) as long
as σX ∈ WC(S) is satisfied. For example, if the underlying category is distributive and if
the class C is stable under pullbacks along product projections, then any factorization of
the codiagonal (1|1) : 2 = 1 + 1 → 1 as a composition of some g : 2 → V and s : V → 1
with g ∈ C and s ∈ C� will provide a final cylinder with C = (−) × V , γ = (−) × g and
σ = (−) × s. If V is exponentiable then C is a left adjoint.

2.3.5 Example. Let ⊤ : 1 → Ω be the subobject classifier of a Grothendieck topos E
and let ⊥ : 1 → Ω be the characteristic map of 0 → 1, which means that ⊥ is the uniquely
determined map in the pullback:

0

��

// 1

⊤
��

1
⊥

// Ω

Then the induced map (⊥|⊤) : 1 + 1 → Ω is a monomorphism (this is just another in-
stance of Diagram (2.1.4)). Since Ω is injective, this gives a (Mono, Mono�)-factorization
of the codiagonal (1|1) : 1 + 1 → 1. Therefore (−)×Ω gives a final cylinder and the nat-
ural map γ is given as (−) × (⊥,⊤).

Because E is cartesian closed, (−) × Ω is a left adjoint and it clearly preserves mono-
morphisms. By Corollary 2.1.12, the resulting cylinder is cartesian.
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3 Model structures from balls

In this chapter we present an abstract version of the construction given by Lafont,
Métayer and Worytkiewicz [14] as outlined in the introduction. The generating cofi-
brations and the weak equivalences in spe are introduced in Section 1, together with
properties that hold without any further assumptions. In Section 2 we describe the
conditions on cocylinders that are needed for the proof that these classes indeed form a
model structure. The proof itself is carried out in Section 3. Finally, we reconnect this
model structure with Cisinski’s construction in Section 4.

Familiarity with ω-categories is not necessary to understand the contents of this chap-
ter, but some pointers to the corresponding notions in [14]1 are provided.

3.1 Balls and relative homotopy lifting

The following Definition is modelled after [14, Section 4, Introduction].

3.1.1 Definition. A system of balls is a family of objects Bn (n ∈ N) and maps
b0
n, b1

n : Bn → Bn+1 satisfying the relations bi
nbj

n+1 = bi
nb

k
n+1. Given such a system, we in-

ductively define a family of spheres Sn−1 together with maps sn : Sn−1 → Bn satisfying
snb

0
n = snb1

n:

(i) For n = −1, set S-1 = 0 and let sn : 0 → B0 be the unique map from the initial
object. Then s0b

0
0 = s0b

1
0 holds.

(ii) Assume that sn is constructed and satisfies snb
0
n = snb1

n. Let Sn be the pushout of
sn with itself and let sn+1 be the map (b0

n|b
1
n) : Sn → Bn+1 induced by b0

n and b1
n.

In the diagram

Sn−1
sn //

sn

��

Bn

ι1n
��

b1n

$$H
HHHHHHHH

Bn
ι0n //

b0n $$H
HH

HHH
HH

H Sn

sn+1

��

sn+1 // Bn+1

b1n+1

��
Bn+1

b0n+1

// Bn+2

1at the time of writing (10/2009) [14] is still in preprint form, so the exact locations may be subject
to change.
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3.1 Model structures from balls: relative homotopy lifting

the commutativity of the lower right square can be checked against the pushout
injections ι0n and ι1n. So again sn+1b

0
n+1 = sn+1b

1
n+1.

A map x : Bn → X is also called an n-cell of X. Two cells x, y : Bn → X are said to be
parallel (written as x | y) if snx = sny. Observe that any two 0-cells are parallel. By
construction of Sn, such a pair corresponds to the induced map (x|y) : Sn → X which
we also call a parallel pair of cells.

We now assume that a system of balls is given such that all balls Bn are small with
respect to cell(I), where I = {sn : Sn−1 → Bn | n ≥ 0} (observe that this is automatically
satisfied in a locally presentable category). We will call such a system a system of
small balls for short. It then follows that the Sn are also small with respect to cell(I).
Therefore setting C = �(I�) gives a cofibrantly generated weak factorization system
(C, C�) in which moreover all balls and spheres are cofibrant.

For each n ≥ 0, we can chose some (P n, γn, σn) as final cylinder object for Bn relative
to sn : Sn−1 → Bn as described in Definition 1.2.5. By Remark 1.2.2(a) these cylinder
objects are also cofibrant. Also note, that by Remark 1.2.2(c) the resulting relative
homotopy relation between parallel cells does not depend on the choice of the cylinder
objects.

For lighter notation we will often drop subscripts from the maps sn, bi
n, γn and σn.

3.1.2 Remark. There is an automorphism tn : Sn → Sn that interchanges the pushout
injections ι0n and ι1n and hence satisfies t(Bn|Bn) = (Bn|Bn) and t(x|y) = (y|x) for
parallel cells x and y. Consequently, the homotopy relation is also symmetric.

3.1.3 Lemma. For a commutative square

Sn−1 u //

s

��

X

f

��
Bn

v
// Y

(3.1.1)

the following conditions are equivalent

(1) There is a map d : Bn → X that extends u along s such that df ∼ v:

Sn−1 u //

s

��

X

f

��
Bn

v
//

d

<<yyyyyyyy

Y
∼

(3.1.2)

(2) There is a map d : Bn → X that extends u along s and a map h : P n → Y that
extends (df |v) : Sn → Y along γ : Sn → P n:

Sn−1 u //

s

��

X

Bn

d

<<yyyyyyyy

Sn
(df |v) //

γ

��

Y

P n

h

77ppppppppppppp

(3.1.3)
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3.1 Model structures from balls: relative homotopy lifting

(3) There are maps d : Bn → X and h : P n → Y such that the following diagram com-
mutes

Sn−1

s

��

s
//
u

**
Bn

d
//

γ0

��

X

f

��
Bn

γ1

//

v

44P n h // Y

(3.1.4)

In this case the square (3.1.1) is said to have a relative homotopy lifting.

Proof. Conditions (1) and (2) differ only in that the homotopy h is explicitly mentioned
in (2). Condition (3) is an encoding of the two diagrams of (2) into one diagram.

3.1.4 Remark. Dugger and Isaksen [5, Definition 3.1] have introduced this notion of
relative homotopy lifting for simplicial sets. There is also a version of Lemma 3.1.3 for
the transitive closure ≈ of ∼. For k ≥ 1, let Dk be the set {0, . . . , 2k} equipped with
the order relation d < d′ ⇐⇒ (2|d ∧ |d − d′| = 1):

0

��<
<<

<<
<<

< 2

����
��

��
��

· · · 2k − 2

%%KK
KKK

KK
KK

K 2k

{{ww
ww

ww
ww

w

1 · · · 2k − 1

(3.1.5)

For n ≥ 0 let F : Dk → K and G : Dk → K be the functors with

F (d) =

{
Bn , if d is even

Sn , if d is odd
G(d) =

{
Bn , if d is even

P n , if d is odd

on objects and

F (d, d + 1) = ι0 G(d, d + 1) = γ0

F (d + 1, d) = ι1 G(d + 1, d) = γ1

on morphisms. Set Sn(k) = colim F and P n(k) = colim G. Let ϕ : F → G be the natural
map with ϕd = Bn for even d and ϕd = γ for odd d and define γ(k) : Sn(k) → P n(k) as
the map induced between the colimits.

Then one can show that maps from Sn(k) to X correspond to sequences x0| . . . |xk

of k + 1 parallel n-cells of X, that maps from P n(k) to X correspond to sequences
x0 ∼ . . . ∼ xk of k + 1 parallel n-cells of X such that consecutive cells are homotopic,
and that for two parallel n-cells x, x′ : Bn → X we have x ≈ y iff there is some sequence
(x| . . . |x′) : Sn(k) → X that factors through γ(k) : Sn(k) → P n(k).

Conditions (2) and (3) in Lemma 3.1.3 can then be rephrased with γ(k) in place of γ,
where γ1 and γ0 are replaced by the leftmost and rightmost injections from Bn into the
colimit P n(k).
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3.1 Model structures from balls: relative homotopy lifting

3.1.5 Definition. We say that a map f : X → Y has the relative homotopy lifting
property with respect to s : Sn−1 → Bn if the above square (3.1.1) has a relative ho-
motopy lifting for every choice of u, v. We let W be the class of those maps that have
the relative homotopy lifting property with respect to all maps in I = {sn : Sn−1 → Bn |
n ≥ 0}.

3.1.6 Remark. In [14], the class W in the above definition is introduced via a different
method: first, the notion of ω-equivalence of parallel cells is defined [14, Subsection 4.2,
Definition 6]. The resulting relation ∼ is then used to define W as in part (1) of
Lemma 3.1.3 [14, Subsection 4.2, Definition 8]. Only later it is proved that this relation
coincides with relative homotopy given by final relative cylinder objects [14, Subsec-
tion 4.7, Lemma 18]. The relative homotopy lifting property then appears in [14, Sub-
section 4.2, Proposition 8].

3.1.7 Lemma. Let f : X → Y and g : Y → Z be maps and suppose g ∈ C�. Then
fg ∈ W ⇐⇒ f ∈ W

Proof. For the direction ”⇒”, consider diagram (3.1.1) in Lemma 3.1.3. Because of
fg ∈ W there is an extension d : Bn → X of u along s, such that dfg ∼ vg via some
map h : P n → Z as in diagram (3.1.3) (with fg and vg in place of f and v respectively).
The resulting square

Sn
(df |v) //

γ

��

X

g

��
P n

h
// Z

has a diagonal and hence df ∼ v.
For the direction ”⇐” the maps v′ and d in the diagram

Sn−1 u //

s

��

X

f

��
Bn

v
""E

EE
EE

EE
EE v′

//

d

<<yyyyyyyy

Y

g

��

∼

Z

are obtained by first lifting v through g, using s � g, and then applying f ∈ W to the
resulting square (3.1.1). Because homotopy is preserved by postcomposition, df ∼ v′

gives dfg ∼ v′g = v.

3.1.8 Corollary. The maps γ0, γ1 : Bn → P n lie in C ∩W.
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3.2 Cocylinders with homotopy exchange

We keep I = {sn : Sn−1 → Bn | n ≥ 0}, C = �(I�) and W from the previous section. The
following definitions are modelled after [14, Subsection 4.4] where a fibrant cocylinder
for (C, C�) is constructed for ωCat. The notion of homotopy exchange is taken from
[14, Subsection 4.4, Lemma 13].

3.2.1 Definition. Let (Γ, π, τ) be a cocylinder. A map g : Z → ΓX is called trivial if
it factors through τX : X → ΓX. A cell g : Bn → ΓX is called degenerate if both b0g
and b1g are trivial or equivalently, if sg is trivial. More general, given a c ∈ C with
codomain Z, a map g : Z → ΓX is called trivial on c if cg is trivial.

3.2.2 Definition. A cocylinder (Γ, π, τ) has the homotopy exchange property at
X if it satisfies the following condition:

Let {i, j} = {0, 1} and suppose that there are maps g : Bn → ΓX and x : Bn → X
with gπj

X ∼ x. Then there exists a g′ : Bn → ΓX which is parallel to g and satisfies
gπi

X = g′πi
X and g′πj

X = x.
A cocylinder has the homotopy exchange property if it satisfies the above condi-

tion at each object X.

3.2.3 Remark. Whether a cocylinder has the homotopy exchange property does not
depend on the choice of the final cylinder objects by Remark 1.2.2(c).

In terms of the homotopy relations given by Γ and the P n, the homotopy exchange
property (at X) means that for any three parallel n-cells x, y, z : Bn → X the implica-
tions

(x ∼ y mod Γ) ∧ (y
s
∼ z mod P n) =⇒ (x ∼ z mod Γ)

(y ∼ x mod Γ) ∧ (z
s
∼ y mod P n) =⇒ (z ∼ x mod Γ)

hold, with the additional requirement that the homotopy between x and z can be taken
to be parallel to the one between x and y.

3.2.4 Lemma. Suppose a fibrant cocylinder (Γ, π, τ) for (C, C�) has the homotopy ex-
change property. Then for any two parallel cells x, y : Bn → ΓX the following are equiv-
alent:

(1) There is a degenerate g : Bn → ΓX with x = gπ0
X and y = gπ1

X.

(2) x ≈ y.

Proof. For the direction ”(1)⇒(2)”, observe that by Lemma 3.1.7 the map τ : X → ΓX
lies in W. This gives the map d : Bn → X in

Sn−1 //

s

��

X

τX

��
Bn

g
//

d

;;wwwwwwwww
ΓX

∼
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3.2 Model structures from balls: cocylinders with homotopy exchange

and hence x = gπ0
X ∼ dτπ0

X = d = dτπ1
X ∼ gπ1

X = y.
For the direction ”(2)⇐(1)” we proceed by induction on the length of a chain

x = x1 ∼ · · · ∼ xk = y.
For k = 1, the trivial cell xτX : Bn → ΓX will do. For k > 1, let g : Bn → ΓX be de-

generate with gπ0
X = x and gπ1

X = xk−1. Then homotopy exchange gives a g′ : Bn → ΓX
with g′π0

X = x and g′π1
X = xk. Because g and g′ are parallel, g′ is also degenerate.

3.2.5 Definition ([14, Subsection 4.5, Definition 13]). Let (Γ, π, τ) be a cocylinder. For
a given f : X → Y consider the following diagram

ΓX

(Γf,π0
X

)
��

π0
X

��
X

f

��

f̃ //

τX

77

Π(f)

f ′

��

πf // X

f

��
Y

EE
EE

EE
EE

E

EE
EE

EE
EE

E

τY // ΓY

π1
Y

��

π0
Y // Y

Y

(3.2.1)

where Π(f) is the pullback of π0
Y and f and where f̃ = (fτY , X) is induced by the

equation f = fτXπ0
X . Let f̂ = f ′π1

Y and define the gluing factorization as f = f̃ f̂ .

For a given map f we will always use f ′, f̃ and f̂ as in diagram (3.2.1).

3.2.6 Lemma ([14, Subsection 4.5, Proposition 7]). Suppose that the cocylinder (Γ, π, τ)
is fibrant and has the homotopy exchange property. Then, in the factorization f = f̃ f̂
we have f ∈ W ⇐⇒ f̂ ∈ C�.

Proof. For the direction ”⇐”, observe that in diagram (3.2.1) the map πf is in C� and

hence by Lemma 3.1.7 the map f̃ is in W. Consequently, f̂ ∈ C� gives f ∈ W, again by
Lemma 3.1.7.

For the direction ”⇒”, assume f ∈ W. We need to show s � f̂ for the maps
s : Sn−1 → Bn.

Let u : Sn−1 → Π(f) and y : Bn → Y be maps with sy = uf̂ as in the diagram

Sn−1

s

��

u // Π(f)

f ′

��

πf // X

f

��
Bn

y
$$I

IIIIIIII

g // ΓY

π1
Y

��

π0
Y // Y

Y
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3.2 Model structures from balls: cocylinders with homotopy exchange

where g : Bn → ΓY is obtained from s � π1
Y . By assumption there is a d : Bn → X with

uπf = sd and df ∼ gπ0
y. By homotopy exchange, the g in the above diagram can be

replaced with a g′ : Bn → ΓY such that g′π1
Y = y and g′π0

Y = df . The latter equation
induces a map d′ : Bn → Π(f) to the pullback

Sn−1

s

��

u // Π(f)

f ′

��

πf // X

f

��
Bn

y
$$I

IIIIIIII

g′ //

d′
;;vvvvvvvvv
ΓY

π1
Y

��

π0
Y // Y

Y

which gives the desired diagonal.

3.2.7 Corollary. Given a commuting square

C

c

��

x // X

f

��
D y

// Y

with c ∈ C and f ∈ W, there is an extension d : D → X of x along c and a h : D → ΓY
with hπ0

Y = df and hπ1
Y = y. Moreover, h is trivial on c.

Proof. The previous Lemma gives the diagonal d′ : D → Π(f) in the diagram

C
x //

c

��

X
τX // ΓX

u // Π(f)

f ′

��

πf // X

f

��
ΓY

π1
Y

��

π0
Y // Y

D

d′

88qqqqqqqqqqqqqqqqqqqqqqqqqq

y
// Y

where u = (Γf, π0
X). Now set d = d′πf and h = d′f ′.

3.2.8 Corollary. Suppose that ∼ is transitive and let f : X → Y be a map in W. Then
xf ∼ yf =⇒ x ∼ y for any two parallel cells x, y : Bn → X.

Proof. Consider the square

Sn
(x|y) //

γ

��

X

f

��
P n // Y

and use the previous corollary.
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3.3 Model structures from balls: the model structure

A map h : X → ΓY is a homotopy with respect to the cocylinder (Γ, π, τ) and if h is
degenerate on c : A → X then h is a relative homotopy. This gives two ways of describing
homotopy between parallel cells, which are related via Lemma 3.2.4 in case of fibrant
cocylinders with homotopy exchange. Likewise one can extend Definition 3.1.5.

3.2.9 Definition. Given maps c : C → D and f : X → Y , we say that f has the relative
homotopy lifting property with respect to c if for any given square

C
u //

c

��

X

f

��
D v

// Y

there is a d : D → X with u = cd and a homotopy h : D → ΓY from df to v (i.e. dπ0
Y = df

and dπ1
Y = v) which is trivial on c.

3.2.10 Remark. By Lemma 3.2.4 the two definitions Definitions 3.1.5 and 3.2.9 agree
in the special case of c = s : Sn−1 → Bn whenever the relative final homotopy relation ∼
is transitive. Corollary 3.2.7 then says that the maps in W have the relative homotopy
lifting property with respect to all maps in C, not just those from I.

3.3 The model structure

3.3.1 Theorem. Let {Bn | n ≥ 0} be a system of small balls in a complete and cocom-
plete category K with sphere maps I = {sn : Sn−1 → Bn | n ≥ 0}. Suppose that the final
relative homotopy relation between parallel cells is transitive and that (�(I�), I�) has a
fibrant cocylinder (Γ, π, τ) with the homotopy exchange property.

Then there is a cofibrantly generated model structure (C,W,F) where C = �(I�) and
W is the class of those maps that have the relative homotopy lifting property with respect
to all maps in I. This model structure has the following properties:

(a) every object is fibrant.

(b) the trivial cofibrations are generated by the set J = {γ0
n : Bn → P n | n ≥ 0}.

obtained from final cylinder objects (P n, γn, σn) for Bn relative to sn.

(c) W = WC(∅). In particular, (C,W,F) is left determined.

3.3.2 Remark. It is necessary to assume that homotopy between parallel cells is
transitive: two such cells x, y : Bn → X can be seen as maps from sn : Sn−1 → Bn to
snx = sny : Sn−1 → X in (Sn−1↓K) equipped with the model structures from Defini-
tion 1.2.5(a). By Lemma 1.2.4 the homotopy via (P n, γn, σn) agrees with the usual left
homotopy on (Sn−1↓K)(sn, snx) because snx is fibrant. Because sn is cofibrant, left
homotopy is transitive on (Sn−1↓K)(sn, snx) (see e.g. [9, Proposition 1.2.5(iii)]).
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3.3 Model structures from balls: the model structure

For the proof we will verify the conditions in Smith’s Theorem 1.3.9 and 1.3.13.
The smallness condition 1.3.13(5) was already built into the assumptions. Part (1) in

Lemma 3.1.3 immediately gives condition 1.3.9(2).

3.3.3 Lemma. C� ⊆ W

The solution set condition 1.3.9(4) together with condition 1.3.13(6) is provided by
the following lemma.

3.3.4 Lemma. For any sn : Sn−1 → Bn, the singleton set Wsn
= {γ0

n : Bn → P n} is a
solution set at sn. The set J = {γ0

n : Bn → P n | n ≥ 0} generates the trivial cofibrations.

Proof. We already remarked that the Sn−1 are small with respect to cell(I). By Corol-
lary 3.1.8 the maps γ0

n lie in C∩W. Satisfaction of the solution set condition as expressed
in Remark 1.3.8 is given by condition (3) of Lemma 3.1.3. That �(J�) = C ∩W holds,
was already noted in the proof of Theorem 1.3.9.

The following two Lemmas give condition 1.3.9(1).

3.3.5 Lemma. The class W is closed under retracts in the arrow category K2

Proof. Let g ∈ W and consider a diagram

Sn−1

s

��

x // X

f

��

i // U

g

��

p // X

f

��
Bn

y
// Y

j
// V q

// Y

where ip = X and jq = Y . Let d : Bn → U be a map such that xi = sd and dg ∼ yj.
Then dp : Bn → X satisfies x = sdp and dpf = dgq ∼ y.

3.3.6 Lemma. The class W has the 2-3 property.

Proof. Let f : X → Y and g : Y → Z be two maps.
We first show that in case of g ∈ W the equivalence fg ∈ W ⇐⇒ f ∈ W holds.

The arguments are similar to those in the proof of Lemma 3.1.7. Consider the following
diagram:

Sn−1 u //

s

��

X

f

��
Bn

v
""E

EE
EE

EE
EE v′

//

d

<<yyyyyyyy

Y

g

��
Z

For the direction ”⇒” assume that only u and v′ are given and let v = v′g. The map
d with sd = u and dfg ∼ v′g exists because fg ∈ W. By Corollary 3.2.8 one obtains
df ∼ v′.
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3.3 Model structures from balls: the model structure

For the direction ”⇐” assume that only u and v are given. The map v′ with sv′ = uf
and v′g ∼ v is obtained from g ∈ W. Applying f ∈ W to the resulting upper square
gives the map d with sd = u and df ∼ v′. Together we have dfg ∼ v′g ∼ v.

It remains to show the implication f, fg ∈ W =⇒ g ∈ W. Given a square

Sn−1
y //

s

��

Y

g

��
Bn

z
// Z

first observe that, because Sn−1 is cofibrant, Corollary 3.2.7 gives a map x : Sn−1 → X
such that xf ∼ y via some homotopy t : Sn−1 → ΓY . This gives the following diagram

X
τX // ΓX

(Γ(fg),π0
X )

��

π0
X

��
Sn−1 //

x

;;vvvvvvvvv

t

##F
FFFFFFFF

s

��

Π(f) //

��

Π(fg) πfg

//

��

X

f

��
ΓY //

Γg $$I
II

II
II

II
I

Π(g) πg

//

��

Y

g

��
ΓZ

π0
Z

//

π1
Z

��

Z

Bn
z

// Z

where the three squares are pullbacks and Sn−1 → Π(f) is induced by t and (xτXΓ(fg), x).
Observe that t(Γg) is trivial. From that diagram we extract the square

Sn−1 //

s

��

Π(fg)

cfg

��
Bn

z
// Z

which has a diagonal p : Bn → Π(fg) because s � f̂ g by Lemma 3.2.6. Set u =
p(fg)′ : Bn → ΓZ. Because t(Γg) is trivial, u is trivial on s, so that uπ0

Z ∼ uπ1
Z = z.

Now consider the diagram

Sn−1

s

��

t // ΓY

π0
Y

��
Bn

p
//

v

33hhhhhhhhhhhhhhhhhhhhhhhhhhhh

uπ0
Z --

Π(fg)
πfg // X

f // Y

g

��
Z
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3.3 Model structures from balls: the model structure

where the diagonal comes from s � π0
Y . Again, v(Γg) is trivial on s and therefore

v(Γg)π0
Z ∼ v(Γg)π1

Z . Set d = vπ1
Y : Bn → Y . Then we have sd = svπ1

Y = tπ1
Y = y. Also

dg = vπ1
Y g = v(Γg)π1

Z ∼ v(Γg)π0
Z = vπ0

Y g = uπ0
Z ∼ uπ1

Z = z

and hence dg ∼ z.

It remains to verify condition 1.3.9(3). For this we introduce a useful class of maps
between C ∩W and W.

3.3.7 Definition ([14, Subsection 4.6, Definition 14]). A map f : X → Y is called an
immersion if the square

X

f

��

X

f

��
Y

>>

Y
∼

has a relative homotopy lifting. This means that there are maps g : Y → X and h : Y → ΓY
with

(i) fg = X.

(ii) hπ0
Y = gf and hπ1

Y = Y .

(iii) fh = fτY .

Here the last equation stems from the observation that if fh factors through τY then it
must necessarily factor via f . We write Z for the class of all immersions.

3.3.8 Lemma ([14, Subsection 4.6, Lemma 15]). A map f : X → Y is an immersion iff
the square

X
f̃ //

f

��

Π(f)

f̂

��
Y

<<

Y

(3.3.1)

has a diagonal.

Proof. First assume that the above square has a diagonal k : Y → Π(f). Then g =
kπf : Y → X and h = kf ′ : Y → ΓY establish f ∈ Z.

Conversely, assume f ∈ Z via maps g : Y → X and h : Y → ΓY . Then hπ0
Y = gf

gives a map k = (h, g) : Y → Π(f) to the pullback. Consequently (h, g)f̂ = hπ1
Y = Y

and
f(h, g) = (fh, X) = (fτY , X) = f̃

so that k is the desired diagonal.
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3.3 Model structures from balls: the model structure

3.3.9 Corollary ([14, Subsection 4.6, Corollary 4, Lemma 16]). C ∩W ⊆ Z ⊆ W.

Proof. The inclusion C ∩W ⊆ Z is a special case of Corollary 3.2.7.
Now assume f ∈ Z. Given the leftmost square in the diagram

Sn−1 u //

s

��

X

f

��

f̃ // Π(f)

f ′

��

πf // X

f

��
Bn

y
// Y

EE
EE

EE
EE

E

EE
EE

EE
EE

E

k

<<zzzzzzzz
ΓY

π0
Y

//

π1
Y

��

Y

Y

set d = ykπf : Bn → X and h = ykf ′ : Bn → ΓY where k is a diagonal of the square (3.3.1).
Then sd = u, hπ0

Y = df and hπ1
Y = y. Moreover, sh = uf̃f ′ = ufτY is trivial.

3.3.10 Lemma. C ∩W is closed under pushouts.

Proof. Because of Corollary 3.3.9 it is enough to show that Z is closed under pushouts.
Let f : X → Y be in Z with g : Y → X and h : Y → ΓY as in Definition 3.3.7 and

consider a pushout diagram

X

f

��

u // Z

j

��
Y

i
// Q

where we want to show j ∈ Z.
Define the maps p = (gu|Z) : Q → Z and k = (hΓi|jτQ) : Q → ΓQ from the pushout.

Then p and k exhibit j as an immersion: jp = Z and jk = jτQ are immediate from the
definition and moreover we have kπǫ

Q = (h(Γi)πǫ
Q|j) = (hπǫ

Y i|j) and therefore
kπ0

Q = (gfi|j) = (guj|j) = pj and kπ1
Q = (i|j) = Q.

3.3.11 Lemma. C ∩W is closed under transfinite composition.

Proof. Let X : λ → K be a smooth chain starting at X = X0, with transition maps
fα,β : Xα → Xβ, its colimit Y = colimβ<λ Xβ, and maps fα : Xα → Y to the colimit.
Suppose that all maps fα,α+1 are in C ∩ W. The map f0 = f : X → Y is already in C.
It is therefore enough to construct a diagonal for the square

X

f

��

f̃ // Π(f)

f̂

��
Y Y

because Lemma 3.3.8 then yields f ∈ Z ⊆ W, where the inclusion is given by Corol-
lary 3.3.9.
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3.3 Model structures from balls: the model structure

Fix notation according to the following diagram (for all α ≤ β < λ)

X
τX // ΓX

u0,α//

Γf0,α ##G
GG

GG
GG

GG
G

Π(f0,α)
uα,β //

f ′

0,α

��

Π(f0,β)
uβ //

f ′

0,β

��

Π(f)
πf //

��

X

f0,α

��
ΓXα

//

Γfα,β %%KKKKKKKKKK

π1
Xα

��

Π(fα,β) //

f ′

α,β

��

Π(fα)
πfα //

��

Xα

fα,β

��
Xα

fα,β %%KKKKKKKKKKK
ΓXβ

//

Γfβ $$J
JJJJJJJJJ

π1
Xβ

��

Π(fβ)
πfβ //

f ′

β

��

Xβ

fβ

��
Xβ

fβ %%KKKKKKKKKKK ΓY
π0

Y

//

π1
Y

��

Y

Y

where the squares are pullbacks and the horizontal compositions ΓZ → Z are the pro-
jections π0

Z . Observe that Π(f0,0) = ΓX and also f̃ = τXu0,αuα and f̃0,α = τXu0,α.
We will first construct a sequence of maps cβ : Xβ → Π(f0,β) such that

Xα
cα //

fα,β

��

Π(f0,α)
uα,β // Π(f0,β)

f̂0,β

��
Xβ

cβ

55jjjjjjjjjjjjjjjjjjjj
Xβ

(3.3.2)

commutes for all α ≤ β < λ.

(i) At β = 0 set c0 = τX : X → ΓX.

(ii) At a successor step from β to β + 1, first observe that diagram (3.3.2) with α = 0
already establishes f0,β ∈ Z by Lemma 3.3.8. Because of f0,β ∈ C, we have

f0,β ∈ C ∩W and hence f0,β+1 = f0,βfβ,β+1 ∈ C ∩W. In particular f̂0,β+1 ∈ C� and
therefore the square

Xβ

cβ //

fβ,β+1

��

Π(f0,β)
uβ,β+1// Π(f0,β+1)

f̂0,β+1

��
Xβ+1

cβ+1

44iiiiiiiiiiiiiiiiiii
Xβ+1

has a diagonal which we can take as cβ+1.

(iii) At a limit ordinal β < λ define cβ : Xβ → Π(f0,β) as the map induced by the cocone
cαuα,β : Xα → Π(f0,β) for α < β.
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3.4 Model structures from balls: the case of adjoint cylinders

Now set dα = cαuα : Xα → Π(f) for all α < λ. By diagram (3.3.2) these maps form a
cocone and therefore induce a map d : Y → Π(f) from the colimit which satisfies fd = f̃
and df̂ = Y .

Proof of Theorem 3.3.1. The conditions of Theorem 1.3.9 and Theorem 1.3.13 are given
by the Lemmas 3.3.5, 3.3.6, 3.3.3, 3.3.10, 3.3.11 and 3.3.4.

By Corollary 3.3.9, every map in C ∩ W is an immersion and hence in particular a
split monomorphism. Therefore every object is fibrant.

It remains to check that W is contained in the smallest localizer WC(∅). Suppose
f : X → Y lies in W and consider the glueing factorization f = f̃ f̂ from Definition 3.2.5.
In diagram (3.2.1) we have f̃πf = X and πf ∈ C� ⊆ W(∅). Therefore f̃ ∈ WC(∅). By

Lemma 3.2.6 we also have f̂ ∈ WC(∅). Hence f ∈ WC(∅).

3.4 The case of adjoint cylinders

In the previous sections we initially used (relative) homotopy only between parallel cells
and introduced homotopy between general parallel maps through cocylinders. Now we
consider the situation where already a cylinder (C, γ, σ) for (�(I�), I�) is available and
C has a right adjoint Γ.

We first describe how to extend Γ to a cocylinder (Γ, π, τ) and rephrase properties of
(Γ, π, τ) in terms of (C, γ, σ). This works in general and does not require any particular
assumptions about the weak factorization system for which (C, γ, σ) is a cylinder.

3.4.1 Lemma. Let (C, γ, σ) be a cylinder for a weak factorization system and suppose
that C has a right adjoint Γ. Let π and τ be the natural maps conjugate to γ and σ
respectively.

Then (Γ, π, τ) is a cocylinder and the following holds:

(a) f ∼ g (mod C) ⇐⇒ f ∼ g (mod Γ) for any maps f, g : X → Y . In this equiva-
lence, homotopies h : CX → Y correspond by adjointness to homotopies ĥ : X → ΓY .

(b) In the situation of (a), the map ĥ : X → ΓY is trivial on u : A → X iff (Cu)h
factors through σA : CA → A.

(c) Let h, k : CX → Y be two maps with adjoints ĥ, k̂ : X → ΓY and consider a map
u : A → X. Then ĥ and k̂ are u-parallel (i.e. uĥ = uk̂) iff (Cu)h = (Cu)k.

(d) A map f : X → Y is an immersion iff there exist maps g : Y → X and h : CY → Y
with

(i) fg = X.

(ii) ι0Y h = gf and ι1Y h = Y .

(iii) (Cf)h = σXf .
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3.4 Model structures from balls: the case of adjoint cylinders

Proof. Write (−) for the identity functor, 2(−) for the copower functor that takes f
to f + f , and (−)2 for the squaring functor that takes f to f × f . Then 2(−) is left
adjoint to (−)2 and under this adjointness, maps (f |g) : X + X → Y correspond to maps
(f, g) : X → Y × Y . Therefore the natural coproduct inclusions ι0, ι1 : (−) → 2(−) have
the natural product projections p0, p1 : (−)2 → (−) as conjugates. We then have the two
corresponding diagrams

2(−)

γ

��
(−)

ι0
88

γ0

// C

σ

��

(−)

ι1
ff

γ1

oo

(−)

and

(−)2

p0

��

p1

��
(−) Γ

π0
oo π1

//

π

OO

(−)

(−)

τ

OO

where the left one states that (C, γ, σ) is a cylinder and the right one is obtained from
conjugation. Hence (Γ, π, τ) is a cocylinder.

(a) We have the correspondence between

X + X

γX

��

(f |g) // Y

CX
h

;;wwwwwwwww

and

X

ĥ
��

(f,g) // Y × Y

ΓY

πY

::uuuuuuuuu

where the left diagram means f ∼ g (mod C) and the right diagram means f ∼ g
(mod Γ).

(b) This follows from the correspondence between

A
d //

u

��

Y

τY

��
X

ĥ

// ΓY

and

CA
σA //

Cu
��

A

d
��

CX
h

// Y

(c) This already follows from adjointness.

(d) To check that conditions (i)–(iii) correspond to conditions (i)–(iii) in Definition 3.3.7,
use the corresponding diagrams

Y

g

��

ι0
Y // CY

h
��

Y
ι1
Yoo

X
f

// Y

{{{{{{{{

{{{{{{{{

and

X

f

��

Y
goo

ĥ
�� CC

CC
CC

CC

CC
CC

CC
CC

Y ΓY
π0

Y

oo
π1

Y

// Y
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3.4 Model structures from balls: the case of adjoint cylinders

for condition (ii) and use the corresponding diagrams

CX
σX //

Cf

��

X

f

��
CY

h
// Y

and

Xf
r //

f

��

Y

τY

��
Y

ĥ

// ΓY

for condition (iii).

3.4.2 Remark. The conditions in 3.4.1(d) are those for a strong deformation retract in
[4, Définition 2.15], the dual of which we already used in Definition 2.2.8 (for the last
equation observe that σXf = (Cf)σY ).

We now return to the special case where I = {sn : Sn−1 → Bn | n ≥ 0} and a system of
final cylinder objects (P n, γn, σn) for Bn relative to sn is given. The following definition
is a translation of Definition 3.2.2 via Lemma 3.4.1.

3.4.3 Definition. A cylinder (C, γ, σ) has the homotopy exchange property at X
if it satisfies the following condition:

Let {i, j} = {0, 1} and suppose that there are maps h : CBn → X and x : Bn → X
with ιjCBnh ∼ x. Then there exists a h′ : CBn → X with (Csn)h = (Csn)h that satisfies
ιiCBnh = ιiCBnh′ and ιjCBnh′ = x.

A cylinder has homotopy exchange property if it satisfies the above condition at
each object X.

3.4.4 Remark. Remark 3.2.3 applies here as well: in terms of the homotopy relations
given by C and the P n, the homotopy exchange property (at X) means that for any
three parallel n-cells x, y, z : Bn → X the implications

(x ∼ y mod C) ∧ (y
s
∼ z mod P n) =⇒ (x ∼ z mod C)

(y ∼ x mod C) ∧ (z
s
∼ y mod P n) =⇒ (z ∼ x mod C)

hold, with the additional requirement that the homotopy between x and z can be taken
to be parallel to the one between x and y.

If C has a right adjoint Γ and (Γ, π, τ) is constructed as in Lemma 3.4.1, then (C, γ, σ)
has the homotopy exchange property iff (Γ, π, τ) has it.

Now we have a translation of Theorem 3.3.1 for cylinders.

3.4.5 Theorem (3.3.1 for cylinders). Let {Bn | n ≥ 0} be a system of small balls in a
complete and cocomplete category K with sphere maps I = {sn : Sn−1 → Bn | n ≥ 0}.
Suppose that (�(I�), I�) has a cylinder (C, γ, σ) with the homotopy exchange property
such that C has a right adjoint.

If the final relative homotopy relation between parallel cells is transitive and every
object X satisfies (X → 1) ∈ Λ0(C, ∅, I)�, then there is a cofibrantly generated model
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3.4 Model structures from balls: the case of adjoint cylinders

structure (C,W,F) where C = �(I�) and W is the class of those maps that have the
relative homotopy lifting property with respect to all maps in I. This model structure
has the following properties:

(a) every object is fibrant.

(b) the trivial cofibrations are generated by the set J = {γ0
n : Bn → P n | n ≥ 0}.

obtained from final cylinder objects (P n, γn, σn) for Bn relative to sn.

(c) W = WC(∅). In particular, (C,W,F) is left determined.

Proof. By Lemma 3.4.1 the right adjoint can be made into a cocylinder (Γ, π, τ) which
also has the homotopy exchange property. It remains to verify that the cocylinder is final,
i.e. that the components of π0 and π1 lie in I�. First observe that, up to isomorphism,
π0 ⋆ (X → 1) is equal to π0

X : ΓX → X. Therefore Lemma 2.1.3 gives

(sn ⋆ γ0) � (X → 1) ⇐⇒ sn � (π0 ⋆ (X → 1)) ⇐⇒ sn � π0
X

for all n ≥ 0. By assumption (X → 1) ∈ (I ⋆ γ0)� and therefore π0
X ∈ I�. The same

calculation gives π1
X ∈ I�.

3.4.6 Corollary. Let I and (C, γ, σ) be as in Theorem 3.4.5 and set C = �(I�). Suppose
that (C, C�) is cofibrant and that (C, γ, σ) is cartesian and has the homotopy exchange
property. Then the following conditions are equivalent:

(1) All maps in W(C, ∅, I) have the relative homotopy lifting property with respect to
all maps in C.

(2) Every object X is fibrant in the model structure given by C and W(C, ∅, I), i.e.
(X → 1) ∈ Λ(C, ∅, I)�.

Under these conditions the models structures given by Theorem 3.4.5 and Theorem 2.2.5
coincide and W(C, ∅, I) = WC(∅). In particular Cisinski’s construction produces a left
determined model structure.

Proof. If condition (1) holds, then every map in C∩W(C, ∅, I) must have the relative ho-
motopy lifting property with respect to itself, and hence must be a split monomorphism.
Therefore every object is fibrant. This shows (1) ⇒ (2).

Conversely assume that condition (2) holds. We already observed in Remark 3.3.2
that two parallel cells x, y ∈ K(Bn, X) can be viewed as maps in (Sn−1↓K)(sn, snx) and
that the relative homotopy relation must be transitive whenever X is fibrant. Therefore
condition (2) ensures that Theorem 3.4.5 is applicable and provides a model structure
with WC(∅) as the class of weak equivalences. By Corollary 3.2.7, every map in WC(∅)
has the relative homotopy lifting property with respect to all maps in C, so it is enough
to show W(C, ∅, I) ⊆ WC(∅).

53



3.4 Model structures from balls: the case of adjoint cylinders

Let f : X → Y be in W(C, ∅, I). If f is not in C, factor f as f = cr with c ∈ C and
r ∈ C�. Then c ∈ C ∩W(C, ∅, I) and r ∈ WC(∅), so that it suffices to show c ∈ WC(∅).

We may therefore assume f ∈ C. Then there is a g : Y → X with fg = X because X
is fibrant. The equation

(f + f)(gf |Y ) = (f |f) = (X|X)f

gives the solid arrows in the diagram

X + X
γX //

f+f

��

CX

Cf

��

σX // X

f

��

Y + Y
γY //

(gf |Y ) ,,

CY
h

!!
Y

and h : CY → Y exists because Y is fibrant. Together g and h exhibit f as an immersion
by Lemma 3.4.1(d). By Corollary 3.3.9, f is in WC(∅).
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4 Examples

4.1 New examples from old

There are quite a few category theoretic constructions by which new model categories
can be obtained from old ones. One can form products of model categories ([8, Proposi-
tion 7.1.7]) and given a model category K, one can put model structures on its dual Kop

([8, Proposition 7.1.9]), on slices (K↓K) and coslices (K↓K) ([8, Theorem 7.6.5]), which
we already used. If the original K is locally presentable, then all the above constructions,
except dualizing, will also give locally presentable categories again.

If K is cofibrantly generated and A is a small category, then KA can also be given
a (cofibrantly generated) model structure ([8, Theorem 11.6.1]). We describe this
construction for the special case where K is locally presentable. Recall that cocom-
pleteness of K ensures that for any objects K : 1 → K and a : 1 → A the left Kan ex-
tension Lana(K) : A → K of K along a exists and can be computed via the formula

Lana(K)c = colim((a↓c) → A
K
−→ K) (see e.g. [17, X-3, Theorem 1]), where we use

lower case letters for the objects of A. Then Lana : K → KA is left adjoint to the evalu-
ation functor eva : KA → K. Instead of eva(ϕ) we will often write ϕa in the following.

4.1.1 Lemma. Let A be small and K be a locally presentable category. Suppose that K
has a set I and a class W of maps such that the conditions of Smith’s Theorem 1.3.9
are satisfied. Then

Ĩ = {Lana(i) | i ∈ I, a ∈ A} and W̃ =
⋂

a∈A

ev-1
a (W) = {ϕ | ∀a ∈ A : ϕa ∈ W}

again satisfy the conditions of Smith’s Theorem. In particular KA has a cofibrantly
generated model structure with generating cofibrations Ĩ, where a map ϕ : X → Y is a
weak equivalence iff ϕa : Xa → Ya is a weak equivalence in K for every object a ∈ A.

Proof. First observe that for objects a, c ∈ A the comma category (a↓c) is just the set
A(a, c) and hence the above colimit formula gives

Lana(K)c =
∐

A(a,c)

K and Lana(f)c =
∐

A(a,c)

f (4.1.1)

on objects and maps respectively. We now go through the conditions of Theorem 1.3.9:
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4.1 Examples: new examples from old

(1) Each ev-1
a (W) has the 2-3 property and is closed under retracts. Therefore the

same holds for their intersection W̃ .

(2) Let f : K → L in K and ϕ : X → Y in KA. For any a ∈ A we have the equivalence

Lana(f) � ϕ ⇐⇒ f � ϕa

which gives

ϕ ∈ Ĩ� ⇐⇒ ∀a ∈ A : ϕa ∈ I� =⇒ ∀a ∈ A : ϕa ∈ W

and hence Ĩ� ⊆ W̃ .

(3) From (4.1.1) we obtain in particular Lana(i)c ∈ �(I�) for all i ∈ I and a, c ∈ A.
Therefore all maps in Ĩ have their components in �(I�). Because colimits in KA

are computed pointwise, the same holds for maps in cell(Ĩ). Consequently, every
map in �(Ĩ�) has its components in �(I�) because it is a retract of some map in
cell(Ĩ).

Therefore every map in �(Ĩ�)∩W̃ has its components in �(I�)∩W and, again be-
cause colimits are computed pointwise, the same holds for pushouts and transfinite
compositions of such maps.

(4) We want to verify that W̃ satisfies the solution set condition at every Lana(i) (for
a ∈ A and i ∈ I). Suppose ϕ : X → Y is in W and consider the following diagram:

Lana(K)
α //

Lana(i)
��

X

ϕ

��
Lana(L)

β // Y

Switch via the adjunction and factor the resulting square

K

i

��

α̂
**

u
// U

j

��

x
// Xa

ϕa

��
L

β̂

44
v // V

y // Ya

with j ∈ Wi where Wi is the solution set for W at i. Switch back via the adjunction
to obtain the following factorization:

Lana(K)

Lana(i)
��

α

++
Lana(u)

// Lana(U)

Lana(j)
��

x̂
// X

ϕ

��
Lana(L)

β

33
Lana(v)// Lana(V )

ŷ // Y
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By Corollary 1.3.10 we may assume Wi ⊆ �(I�) ∩W. Therefore Lana(j) has its

components in �(I�)∩W and hence Lana(j) ∈ W̃ . Consequently, the set Lana(Wi)

is a solution set for W̃ at Lana(i).

At the end of the next section we will present a class of examples where the model
structure on K is given by Cisinski’s construction but the model structure on KA can-
not be constructed in this way. This is again related to the cofibrancy condition in
Theorem 2.2.5.

In contrast, the following Lemma provides a method where new model structures are
build by transporting Cisinski’s construction itself from K to a reflexive subcategory.
We will usually assume that full reflective subcategories are isomorphism closed.

4.1.2 Lemma. Let K be a locally presentable category with a cofibrant weak factorization
system generated by a set I, a cylinder (C, γ, σ) and a reflection R : K → A onto a full
subcategory A which is also locally presentable. Then the restriction of RC: K → A to
A provides a cylinder (RC, Rγ, Rσ) for the cofibrant weak factorization system generated
by RI in A. Moreover, the following holds:

(a) The two cylinders (C, γ, σ) and (RC, Rγ, Rσ) determine the same homotopy rela-
tion on A.

(b) For any S ⊆ �(I�) one has Λ(RC, RS, RI) = RΛ(C, S, I). Therefore
Λ(RC, RS, RI) and Λ(C, S, I) determine the same fibrant objects in A.

(c) Suppose that (C, γ, σ) is cartesian and that the right adjoint of C leaves A invari-
ant. Then the cylinder (RC, Rγ, Rσ) is also cartesian.

(d) Given S ⊆ �(I�), if in the situation of (c) every object of A is fibrant w.r.t. Λ(C, S, I)
then W(RC, RS, RI) = A∩W(C, S, I).

Proof. First observe that by part (a) of Theorem 1.3.5 the set RI indeed generates a
weak factorization system in A, which is cofibrant because A is full. We will repeatedly
use the equivalence

Rf � g ⇐⇒ f � g for all f ∈ K, g ∈ A (∗)

which holds by Remark 1.1.2(d). Given any object A ∈ A, its coproduct with itself in
A is R(A+A) and also RA ∼= A. Application of R to diagram (1.2.1) in Definition 1.2.1
therefore shows that RCA is indeed a cylinder object for A.

(a) Consider any two maps f, g : A → B in A and the induced map (f |g) : A + A → B

from the coproduct in K. Then (̂f |g) : R(A + A) → B is the induced map from
the coproduct in A. The equivalence f ∼ g (mod C) ⇐⇒ f ∼ g (mod RC) now
follows with (∗).
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4.1 Examples: new examples from old

(b) Because R preserves pushouts, we have Rf⋆Rγ = R(f⋆γ) and Rf⋆Rγk = R(f⋆γk)
(for k = 0, 1), which gives the equality Λ(RC, RS, RI) = RΛ(C, S, I). By (∗) we
have

RΛ(C, S, I) � (A → 1) ⇐⇒ Λ(C, S, I) � (A → 1)

and hence Λ(C, S, I) and Λ(RC, RS, RI) determine the same class of fibrant ob-
jects.

(c) Let G : K → K be a right adjoint of C with GA ⊆ A. The isomorphisms (natural
in A, B ∈ A)

A(RCA, B) ∼= K(CA, B) ∼= K(A, GB) ∼= A(A, GB)

exhibit the cylinder functor as a left adjoint. The second condition in Defini-
tion 2.1.9 holds because of (b).

(d) By Corollary 2.2.14 and part (a) above, both W(RC, RS, RI) and A∩W(C, S, I)
coincide with the class of homotopy equivalences in A.

4.1.3 Question. Does Lemma 4.1.2 work for other adjunctions?
More specifically, can it be modified to include reflective subcategories that are not

full? Of particular interest would be the case of suitable monads on K. This question is
also related to the condition on objects to be cofibrant, because fullness of the inclusion
A →֒ K ensured that the induced weak factorization system on A is cofibrant if the
original one on K is.

4.1.4 Corollary. Let K be a locally λ-presentable category with A the set of λ-presentable
objects as in Definition 1.3.1, regarded as a full subcategory of K. Suppose that K is
cartesian closed. Then the cofibrant model structure on SetA

op

of Example 2.3.5 induces
a model structure on the full reflective subcategory K.

Proof. Let E : K → SetA
op

be the functor defined by E(K)A = K(A, K) (so in particular
E(A) = A(−, A) for A ∈ A). By [2, Proposition 1.26(i) and Proposition 1.27] this
functor is full, faithful and has a left adjoint. Hence we can regard K as a full reflective
subcategory of SetA

op

. In order to distinguish between the cartesian closed structures
on SetA

op

and K we use [L, K] instead of KL for the latter.
We already know that a final cartesian cartesian cylinder for (Mono, Mono�) in SetA

op

is given by C = (−)×Ω. So it remains to verify KΩ ∈ K for any object K ∈ K. We will
do so by showing KΩ ∼= [RΩ, K], where R : SetA

op

→ K is the reflection. Fix K ∈ K.

(1) For all L ∈ K and A ∈ A we have

SetA
op

(L, KA) ∼= SetA
op

(L×A, K) ∼= K(L×A, K) ∼= K(L, [A, K]) ∼= SetA
op

(L, [A, K])

where we use that limits are the same in K and SetA
op

.
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4.1 Examples: new examples from old

(2) Write Ω ∈ SetA
op

as a colimit Ω = colimi Ai of representable functors. Then
RΩ = R(colimi Ai) is the colimit of the Ai taken in K.

Because exponentiation with a fixed base takes colimits into limits, we obtain
KΩ = limi K

Ai and [RΩ, K] = limi[Ai, K].

(3) Combining (1) with (2) we obtain

SetA
op

(L, KΩ) ∼= SetA
op

(L, lim
i

KAi)

∼= lim
i

SetA
op

(L, KAi)

∼= lim
i

SetA
op

(L, [Ai, K])

∼= SetA
op

(L, lim
i

[Ai, K])

∼= SetA
op

(L, [RΩ, K])

for all L ∈ K. But because A is dense in SetA
op

, this gives also

SetA
op

(X, KΩ) ∼= SetA
op

(X, [RΩ, K])

for all X ∈ SetA
op

. Therefore KΩ ∼= [RΩ, K].

4.1.5 Remark. In the above proof we used that K contains the dense subcategory A
of SetA

op

. In general a cartesian closed category may have a full reflective subcategory
that is not invariant under exponentiation but still cartesian closed in its own right (see
e.g. Wyler [27, 9.4-9.8]).

Moreover, the proof also shows that K is invariant under (−)X for all objects X in
SetA

op

, not just invariant under (−)Ω. This suggest the following question.

4.1.6 Question. Does Corollary 4.1.4 still work for categories that are not
cartesian closed?

4.1.7. In the situation of Lemma 4.1.2 one cannot expect in general that a final cylinder
on K will induce a final cylinder on the subcategory A or that W(RC, ∅, I) is a smallest
localizer. Therefore the induced model structure may fail to be left determined even if
the original one was. Whenever we use Lemma 4.1.2 in the following section, one can
check directly that the induced cylinders are final and hence the induced model structures
are left determined. The situation is nicer in the special case where the original model
structure comes from a system of balls as in Theorem 3.3.1.

4.1.8 Lemma. Let K be a locally presentable category with a weak factorization system
generated by sphere maps I = {sn : Sn−1 → Bn | n ≥ 0} and a reflection R : K → A
onto a full subcategory which is also locally presentable.

Suppose that (�(I�), I�) has a cocylinder (Γ, π, τ) such that Γ leaves A invariant.
Then the restriction of (Γ, π, τ) to A gives a cocylinder (Γ|A, π, τ) for (�(RI�), RI�).
Moreover the following holds:
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(a) For any object X in A we have π0
X , π1

X ∈ RI� ⇐⇒ π0
X , π1

X ∈ I�. In particular,
if (Γ, π, τ) is fibrant at each object of A then (Γ|A, π, τ) is a fibrant cocylinder.

(b) If (Γ, π, τ) has the homotopy exchange property at each object of A, then the same
holds for (Γ|A, π, τ).

(c) Suppose that (Γ, π, τ) is fibrant at all objects of A and has the homotopy exchange
property at all objects of A, and that the relative final homotopy relation between
parallel cells in A is transitive. Then C = �(RI�) and WC(∅) give a left determined
model structure on A.

Proof. From the system of balls {b0
n, b1

n : Bn → Bn+1 | n ≥ 0} in K we obtain a system of
balls {R(b0

n), R(b1
n) : RBn → RBn+1 | n ≥ 0} in A. Also RI = {R(sn) : RSn−1 → RBn |

n ≥ 0} is its system of sphere maps as in Definition 3.1.1 because the left adjoint
R : K → A preserves colimits. For any two cells x, y : RBn → X in A and corresponding
cells x̂, ŷ : Bn → X in K, we have (Rsn)x = (Rsn)y ⇐⇒ snx̂ = snŷ and also the
following equivalence:

x ∼ y (mod Γ|A) ⇐⇒ x̂ ∼ ŷ (mod Γ)

We will show (a) and (b). Part (c) then follows via Theorem 3.3.1.

(a) By Remark 1.1.2(d) we have g ∈ RI� ⇐⇒ g ∈ I� for all g ∈ A.

(b) We will use the description in Remark 3.2.3. Let x, y, z : RBn → X be three paral-
lel cells in A and let x̂, ŷ, ẑ : Bn → X be the corresponding cells in K. To describe
relative final homotopy between parallel n-cells in A we may take a final relative
cylinder object (P n, γn, σn) for Sn in K, apply R to obtain a good relative cylinder
object (RP n, Rγn, Rσn) for RSn in A, and then use a (C, C�)-factorization of σn

into λn : RP n → Qn and ρn : Qn → RBn to obtain a final relative cylinder object

(Qn, γnλn, ρn). Now suppose x ∼ y (mod Γ|A) and y
R(sn)
∼ z (mod Qn):

RBn

x

||yy
yyy

yy
y

g

��

y

""E
EE

EEE
EE

X ΓX
π0

X

oo
π1

X

// X

RSn

Rγn

��

(y|z)

((QQQQQQQQQQQQQQQQ

RP n
λn

// Qn // X

Switching via adjointness gives the diagrams

Bn

x̂

}}{{
{{

{{
{{

ĝ

��

ŷ

!!C
CC

CC
CC

C

X ΓX
π0

X

oo
π1

X

// X

Sn

γn

��

(ŷ|ẑ)

!!B
BB

BB
BB

B

P n // X

and homotopy exchange for Γ gives x̂ ∼ ẑ (mod Γ) via a homotopy parallel to ĝ.
This homotopy corresponds via adjointness to a homotopy from x to z which is
parallel to g.
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4.1.9 Corollary. Suppose that in Lemma 4.1.2 the cofibrant weak factorization system is
generated by sphere maps I = {sn : Sn−1 → Bn | n ≥ 0} and that the cartesian cylinder
(C, γ, σ) has the homotopy exchange property at all objects of A.

Suppose further that the right adjoint of C leaves A invariant and that every object of
A is fibrant with respect to Λ(C, ∅, I).

Then W(RC, ∅, RI) = WC(∅) where C = �((RI)�. In particular the model structure
induced from K on A is left determined.

Proof. First construct (Γ, π, τ) as in Lemma 3.4.1. By part (b) of Lemma 4.1.8, the
cocylinder (Γ|A, π, τ) also has the homotopy exchange property. Consequently, its left
adjoint (RC, Rγ, Rσ) then also has the homotopy exchange property, as we already
noted in Remark 3.4.4. By part (b) of Lemma 4.1.2, every object of A is fibrant with
respect to Λ(RC, ∅, RI).

Therefore C = �(RI�) and W(RC, ∅, RI) satisfy the conditions in Corollary 3.4.6.

4.2 Cartesian closed examples

In this section, our main focus is on examples, where the underlying categories are locally
presentable, but not toposes. However, they are still cartesian closed and cylinders
can be obtained from suitable factorizations of the codiagonals 2 → 1 as indicated in
Remark 2.3.4.

Moreover, the homotopy relation is already determined by C(1) in the sense that two
maps f, g : X → Y are homotopic if and only if their exponential adjoints f̂ , ĝ : 1 → Y X

are homotopic. This latter condition often has a direct description in terms of the
structure of Y X , so that it is sufficient to know when two elements x, y : 1 → X are
homotopic.

The first example also provides an instance of the second line of generalization, in
that the class of cofibrations is not the class of monomorphisms.

4.2.1 Example. Consider K = Cat, the category of small categories and functors. It
has a model structure, the so called ”folk model structure”, where the cofibrations are
those functors that are injective on objects, and the weak equivalences are the usual
categorical equivalences. This model structure has been known for some time (hence
the name), the first published source seems to be Joyal and Tierney [11]. It has also
been later reproved and described in detail by Rezk [21]. We will show that this model
structure is left determined by rebuilding it from a generating set of cofibrations and a
final cartesian cylinder.

Recall that for any set S one has the discrete category on its elements (written also as
S) and the indiscrete category (i.e. the connected groupoid with trivial object groups)
on its elements, which we will write as S. These two constructions give functors in
the obvious way to provide left and right adjoints for the underlying object functor
Ob: Cat → Set. In particular we write 2 and 2 for the discrete and the indiscrete
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category on two objects. Moreover, we write 2 for the linearly ordered set {0, 1} and S1

for the ”parallel pair”, i.e. the pushout of the inclusion 2 →֒ 2 with itself.
Consider I = {(0 →֒ 1), (2 →֒ 2), s : S1 → 2}, where the last functor maps both

nontrivial arrows of S1 to the nontrivial arrow of 2.

(1) We first check that I is a set of generating cofibrations. Clearly I� consists of all
those functors, which are full, faithful and surjective on objects. Moreover, for any
map f one has

f ∈ �(I�) ⇐⇒ Ob(f) is a monomorphism

For the direction ”⇒”, observe that the functor (2 → 1) is in I� and that f �

(2 → 1) forces Ob(f) � (2 → 1) in Set.

Conversely, consider a square

A

i
��

f // X

p

��
B g

// Y

where p ∈ I� and i is injective on objects. Define h : B → X on objects by
h(i(a)) = f(a) and h(b) ∈ p-1(g(b)) for b /∈ i(A). This can be done because
Ob(i) is injective and Ob(p) is surjective. For a morphism u : b → b′ in B, define
h(u) : h(b) → h(b′) to be the unique element of X(h(b), h(b′)) ∩ p-1(g(u)). This
works because p is full and faithful. Then h is the desired diagonal.

(2) The cylinder functor C = (−)×2 is obtained from the factorization 2 →֒ 2 → 1 and
γX : X × 2 → X × 2 is the usual inclusion. Because (2 → 1) is in I�, the resulting
cylinder is final. Two objects x, y : 1 → X of a category X are homotopic iff they
are isomorphic. Therefore two functors f, g : X → Y are homotopic iff they are
naturally isomorphic.

(3) It remains to check condition (b) of Definition 2.1.9, i.e. stability of I under (−)⋆γ
and (−) ⋆ γk.

For the case of γ, consider a diagram

X + X
γX //

f+f

��

CX

��

Cf

��
Y + Y

γY

44
q // Q

f⋆γ // CY

where Q is a pushout of f +f and γX . The maps Ob(γX) and Ob(γY ) are bijective.
Because the functor Ob preserves pushouts, the map Ob(q) is also bijective and
hence Ob(f ⋆ γ) is bijective.
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For the case of γ0 and γ1 one can calculate directly that the following two diagrams

2
γk
2 //

γ1

��

2 × 2

γ1×2
��

2
γk
2

// 2 × 2

S1
γk

S1 //

s

��

S1 × 2

s×2
��

2
γk
2

// 2 × 2

are pushout squares and hence (2 →֒ 2)⋆γk and p⋆γi are isomorphisms. Moreover,
(0 → 1) ⋆ γk = γk

1 .

(4) Now for the computation of Λ(∅, I). By (3) above, Λ0(∅, I) consists of isomor-
phisms and the two inclusions γ0

1 , γ
1
1 : 1 → 2. A direct computation gives that

1 + 1
γ1 //

γk
1 +γk

1

��

1 × 2

γk
1×2

��
2 + 2 γ

2

// 2 × 2

is a pushout square and hence γk
1 ⋆ γ is an isomorphism. Therefore Λ(∅, I)� =

Λ0(∅, I)� = {γ0
1 , γ

1
1}

� and every object of Cat is fibrant.

(5) From Corollary 2.2.14 we obtain that W = W(∅, I) consists of the categorical
equivalences, which completes the construction.

4.2.2 Remark. The set I of generating cofibrations in Examples 4.2.1 can be obtained
as sphere maps of a system of balls as in Definition 3.1.1.

(1) Set B0 = 1 and Bn = 2 for n ≥ 1. As b0
0, b

1
0 : 1 → 2 we take the two inclusions and

let all other bk
n be identity maps. Then S0 = 2, S1 is indeed the parallel pair as

introduced in the example, Sn = Bn for all n ≥ 2, and we have I = {s0, s1, s2}.
All higher sn are isomorphisms and can therefore be omitted. As to be expected,
0-cells are objects, 1-cells are arrows and two 1-cells are parallel if they have the
same domain and codomain. The n-cells for n ≥ 2 also correspond to arrows, but
the parallel relation is equality.

(2) For the relative final cylinder objects we can use P 0 = 2, P 1 = 2 and P n = Bn for
n ≥ 2. Two parallel 0-cells are homotopic iff they are isomorphic and for n ≥ 1
homotopy between parallel n-cells is equality.

(3) Now we check that the cylinder (C, γ, σ) in Example 4.2.1 has the homotopy ex-
change property.

Let x, y, z be parallel n-cells and suppose x ∼ y (mod C) via some homotopy h
and y

s
∼ z (mod P n). We want to show x ∼ z (mod C) via some homotopy k
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parallel to h For n ≥ 1 we already noted that homotopy (mod P n) is equality.
Therefore y = z and we can take k = h. For n = 0 relative homotopy coincides
with ordinary homotopy because any two 0-cells (and also homotopies between
them) are parallel. Moreover C(S0) = P 0. The above condition therefore reduces
to the requirement that homotopy between 0-cells is transitive, which we verified
in Example 4.2.1. The other condition in Remark 3.4.4 is checked in the same way.

Because every object of Cat is fibrant with respect to Λ(C, ∅, I), the conditions in
Corollary 3.4.6 are satisfied. We obtain J = {γ0 : 1 → 2} as a set of generating trivial
cofibrations.

The next three examples are applications of Lemma 4.1.2. In view of the above
Remark one can also regard them as applications of Lemma 4.1.8.

4.2.3 Example. Let K = Cat and A = PrOrd, the category of preordered sets (i.e.
sets with a reflexive and transitive relation) and monotone maps. PrOrd has a model
structure where the cofibrations are the monomorphisms and the weak equivalences are
the categorical equivalences. We will obtain it from the previous one on Cat.

The reflection R : Cat → PrOrd is bijective on objects and identifies parallel arrows.
We will keep the notation from Example 4.2.1. Discarding the isomorphism Rs from
RI, we obtain the generating set I ′ = RI \ {Rs} = {(0 → 1), (2 →֒ 2)}. One has
�(I ′�) = Mono, which is obtained exactly as in Example 4.2.1, keeping in mind that
functors between preorders are always faithful and that the monomorphisms in PrOrd
are exactly the functors that are injective on objects. The right adjoint to (−) × 2 is
(−)2 which leaves PrOrd invariant. Every object is fibrant and therefore W ′ = W(∅, I ′)
consists of the categorical equivalences.

4.2.4 Example. Let K = PrOrd and A = Ord, the category of ordered sets (i.e. sets
with a reflexive, transitive and antisymmetric relation) and monotone maps. Ord has a
model structure where the cofibrations are all maps and the weak equivalences are the
isomorphisms. We will obtain it from the previous one on PrOrd.

The reflection R : PrOrd → Ord assigns to every preordered set X the quotient X/∼
obtained from identifying homotopic elements. The generating set I ′ = {(0 → 1), (2 →֒
2)} is already contained in Ord and hence I ′ = RI ′. Because a full surjective functor
between ordered sets must be an isomorphism, the class I� consists of all isomorphisms
and consequently �(I�) = Ord. For any ordered set P one has P 2 = P . Therefore Ord
is invariant under (−)2. Every object is fibrant and therefore W ′ = W(∅, I ′) is the class
of isomorphisms.

4.2.5 Example. Let K = PrOrd and A = Set. Here we identify Set with the full
subcategory of indiscrete preordered sets. It has a model structure where the cofibrations
are the monomorphisms and the weak equivalences are the maps between nonempty sets
together with the identity map of the empty set. This (almost trivial) model structure
is also mentioned in [4, Exemple 3.7] and [26, Section 3]. It can be constructed with the
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cylinder in Example 2.3.5, with the set of generating cofibrations given by the proof in
[3, Proposition 1.12]. Instead we will obtain it from the one on PrOrd in Example 4.2.3.

The reflection R : PrOrd → Set assigns to every preordered set the indiscrete pre-
order on its elements. Let I ′ be as in Example 4.2.3. Discarding the identity map 2
from RI ′, we obtain the generating set I ′′ = {(0 → 1)} in Set. Then I ′′� is the class of
surjective maps and �(I ′′�) = Mono. For any indiscrete preorder X, the preorder X2

is again indiscrete. Therefore Set is invariant under (−)2. Every object is fibrant and
therefore W ′′ = W(∅, I ′′) consists of the identity map of the empty set and of all maps
with nonempty domain.

In the previous examples, all objects were fibrant and consequently the homotopy rela-
tion already determined the weak equivalences via Corollary 2.2.14. Here is an example
where this does not happen.

4.2.6 Example. Let K = rsRel, the category of plain undirected graphs (i.e. sets with
a reflexive and symmetric relation together with maps preserving such relations). We
will construct a left determined model structure on rsRel where the cofibrations are
the monomorphisms and the weak equivalences are those maps that induce bijections
between path components. It can be seen as the one-dimensional version of the left
determined model structure on simplicial complexes as described in [26, Remark 3.7].

We will write n for the discrete graph on n vertices, Kn for the indiscrete (i.e. complete)
graph on n vertices and K−

n for the graph obtained from Kn by deleting one edge.
Consider the set I = {(0 → 1), (2 →֒ K2)}, where the second map is the usual inclusion.

(1) We first check that I is a set of generating cofibrations. The class I� con-
sists of those maps f : (X, α) → (Y, β) that are surjective and full (i.e. satisfy
f(x)βf(x′) =⇒ xαx′).

Moreover one has �(I�) = Mono. This follows by the same argument as in the
case of categories (step (1) in Example 4.2.1) with K2 in place of 2.

(2) The cylinder functor C = (−)×K2 is obtained from the factorization 2 →֒ K2 → 1
and γX : X × 2 → X × K2 is the usual inclusion. Because (K2 → 1) is in I�, the
resulting cylinder is final. Two vertices x, y : 1 → X of a graph are homotopic iff
they are joined by an edge in X. Therefore, for two maps f, g : (X, α) → (Y, β)
one has

f ∼ g ⇐⇒ ∀x, x′ ∈ X : (xαx′ =⇒ f(x)βg(x′))

because Y X is rsRel(X, Y ) equipped with the relation βα defined by the condition
on the right side of the above equivalence. In particular the homotopy relation
is not transitive in general. The homotopy relation on rsRel(X, Y ) is transitive
whenever Y (i.e. its relation) is transitive. Moreover, if Y is discrete then homotopy
coincides with equality.
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(3) For a partial description of Λ = Λ(∅, I) first observe, that the forgetful functor
rsRel → Set preserves pushouts. In particular, in a pushout diagram

A × 2
γA //

f×2

��

A × K2

��
B × 2 // Q

one can assume that the underlying set of Q is B×2, that the horizontal underlying
maps are identity maps and that the two vertical underlying maps coincide. Now
suppose that A is nonempty and B is indiscrete.

Then Q is path connected: given any b, b′ ∈ B and i, j ∈ 2, take some a ∈ A with

b f(a) b′ . Then

(i) (b, i) (f(a), i) in B × 2

(ii) (a, i) (a, j) in A × K2

(iii) (f(a), j) (b′, j) in B × 2

and passing to Q gives a path (b, i) (f(a), i) (f(a), j) (b′, j) in Q.
Hence, if f : A → B is an inclusion then f ⋆ γ is the inclusion of the (nonempty)
path connected Q into the indiscrete B × K2.

As in Example 4.2.1 we have (0 → 1) ⋆ γk = γk
1 : 1 → K2. From the inclusion

γ1 : 2 → K2 we obtain the following diagram

2
γ0
2 //

γ1

��

2 × K2

�� γ1×K2

��

K2
//

γ0
K2

,,

K−
4

γ1⋆γ0

LL
LL

&&LL
LL

K2 × K2

where (according to the notation introduced) K−
4 is the graph

•

@@
@@

@@
@

@@
@@

@@
@

@@
@@

@@
@ •

•

~~~~~~~

~~~~~~~

~~~~~~~
•

and γ1 ⋆ γ0 is the inclusion of K−
4 into K4 = K2 × K2. Up to a permutation of

vertices, the same inclusion is obtained as γ1 ⋆ γ1.

Hence each map in Λ0 is the inclusion of a nonempty path connected subgraph of
some suitable Kn Applying the above observation gives (via induction) that each
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Λn consists only of maps of this type. Except for the two inclusions γ0
1 and γ1

1 , the
included subgraph of Kn is wide, i.e. it has the maximal number of vertices.

Consequently, every transitive graph T is fibrant: given some inclusion P →֒ Kn

with P path connected and |P | = n, any map f : P → T can be extended to
h : Kn → T by h(x) := f(x).

Conversely, assume that X is fibrant. Observe that K−
3 →֒ K3 is in �(Λ�) because

it can be obtained from K−
4 →֒ K4 as a pushout

K−
4
_�

��

p // K−
3
_�

��
K4

// K3

where p is the surjection that collapses the two vertices of degree 3. Therefore,
every map f : K−

3 → X can be extended to a map f ′ : K3 → X, which is precisely
the definition of transitivity.

In summary, the fibrant graphs are exactly the transitive graphs.

(4) For a graph (X, α), a path component is an equivalence class of the transitive
closure α∗ of the relation α. We write [x] for the equivalence class of any x ∈ X
and π0X for the discrete graph on the set {[x] | x ∈ X}. Setting π0f([x]) := [f(x)]
for any f : X → Y makes π0 into a functor and the canonical map rX : X → π0X
with r(x) = [x] gives a reflection into the subcategory of discrete graphs. For two
maps f, g : (X, α) → (Y, β) one has:

π0f = π0g ⇐⇒ ∀x, x′ ∈ X : (xα∗x′ =⇒ f(x)β∗g(x′))

Comparing this with the homotopy condition

f ∼ g ⇐⇒ ∀x, x′ ∈ X : (xαx′ =⇒ f(x)βg(x′))

one obtains that always f ∼ g =⇒ π0f = π0g and that the converse implication
π0f = π0g =⇒ f ∼ g holds whenever β is already transitive. In the general case
of a map f : X → Y one has:

f ∈ W ⇐⇒ π0f is an isomorphism

For the direction ”⇒” assume f ∈ W. Remark 2.2.13 with t = rX and T = π0X
gives a map u : X → π0X such that in the diagram

X

rX

��

f // Y

rY

��u{{ww
ww

ww
ww

w

π0X π0f
// π0Y
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we have rX ∼ fu. Then also frY = rX(π0f) ∼ fu(π0f) and by Remark 2.2.13 with
t = rX(π0f) and T = π0Y this forces rY ∼ u(π0f). But for discrete codomains, ho-
motopy means equality and hence the above diagram strictly commutes. Applying
the functor π0 to that diagram exhibits π0u as the two-sided inverse of π0f .

For the direction ”⇐” assume that π0f is an isomorphism and let t : X → T be
a map to a transitive graph T . Uniqueness up to homotopy follows from the
equivalence

fh ∼ fh′ ⇐⇒ (π0f)(π0h) = (π0f)(π0h
′)

⇐⇒ π0h = π0h
′ ⇐⇒ h ∼ h′

for any h, h′ : Y → T because T is transitive.

For existence, let s : π0T → T be a section of rT with π0s = π0T (i.e. a choice of
representatives of the path components) and define h : Y → T as the composite
h = rY (π0f)-1(π0t)s. Then π0(fh) = π0t and hence fh ∼ t.

4.2.7 Remark. Example 4.2.6 illustrates how the constructions in Section 3.1 can be
carried out without producing a class of weak equivalences. We first build the set of
generating cofibrations from a system of balls: Set B0 = 1 and Bn = K2 for n ≥ 1. As
b0
0, b

1
0 : 1 → K2 we take the two inclusions and let all other bk

n be identity maps. Then
S0 = 2 and Sn = K2 = Bn for all n ≥ 1. We obtain I = {s0, s1} because all higher
sn are isomorphisms. The 0-cells of a graph are its vertices. For n ≥ 1, the n-cells
correspond to pairs of related vertices and the parallel relation is equality.

For the relative final cylinder objects we can use P n = K2 for all n ≥ 0. Two 0-cells
are homotopic iff they are connected by an edge, and for n ≥ 1 any two parallel n-cells
are homotopic (because they are equal). In particular, homotopy between parallel cells
of a graph X is transitive iff the graph X is transitive.

A map f : (X, α) → (Y, β) has the relative homotopy lifting property w.r.t. I iff it
is full and surjective up to homotopy. The latter means that it satisfies the following
condition:

∀y ∈ Y : ∃x ∈ X : f(x)αy

Let W be the class of all these maps.
To see that W is not related to the class W(C, ∅, I) of weak equivalences, consider

for example the graph 3 = K−
3 : 0 1 2. The inclusion of {0} into 3 is a weak

equivalence but is not in W, and the inclusion of (the discrete graph) {0, 2} into 3 is in
W but is not a weak equivalence.

The cylinder (C, γ, σ) has the homotopy exchange property at a graph X iff X is
transitive. Therefore Corollary 4.1.9 can also be applied to the next example to ensure
that the induced model structure is left determined.

4.2.8 Example. Keep the notation of the Example 4.2.6 and consider the full reflective
subcategory eqRel of transitive graphs, i.e. sets equipped with an equivalence relation.
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It has a model structure where the cofibrations are the monomorphisms and the weak
equivalences are those maps that induce bijections between equivalence classes. This
model structure has been described in detail by Lárusson [15]. We will obtain it via
Lemma 4.1.2 from the previous one on rsRel.

The reflection R : rsRel → eqRel assigns to every graph (X, α) its transitive closure
(X, α∗). Because the graphs 0, 1, 2 and K2 are already transitive, one obtains RI = I
and also �(RI�) = Mono∩eqRel as in step (1) above. Moreover, if X is transitive then
so is XK2 and we already noted in step (3) that all transitive graphs are fibrant. From
Lemma 4.1.2 we now obtain that W ′ = W(∅, I) consists of those maps f where π0f is an
isomorphism, i.e. those maps that induce a bijection between equivalence classes. Finally
observe, that R preserves full surjections. Therefore the induced cylinder is again final
and the induced model structure is left determined. By the above remark one can also
obtain this model structure via Lemma 4.1.8. In particular, this gives the set {1 →֒ K2}
of generating trivial cofibrations from [15].

4.2.9 Question. Can fibrant objects be characterized by homotopy alone?
By Lemma 2.2.12, the homotopy relation on K(X, Y ) is transitive whenever Y is

fibrant. Can this property be used as a characterization of fibrant objects?
Of course this cannot work in general because, as introduced in 2.2.7, the class of

fibrant objects depends on Λ(C, S, I) and this depends on the choice of the set S in
Definition 2.1.6. So one should restrict attention to the special case S = ∅ which gives
the largest possible class of fibrant objects. So far the only nontrivial example (i.e. where
not all objects are fibrant) is Example 4.2.6, where indeed the fibrant objects are exactly
the transitive graphs.

4.2.10 Remark. We already noted in Remark 2.2.6 that the condition that all objects
are cofibrant cannot simply be dropped from Theorem 2.2.5. A closer look at its proof
shows that the assumption that objects are cofibrant enters at three different points:

(a) Whenever we use that γ0
X and γ1

X and hence γ0
X +γ1

X are in C. This happens e.g. in
Lemma 2.2.12 (the homotopy relation is transitive on K(X, Y ) for fibrant Y ).

(b) Whenever we use (0 → X)⋆γ ∈ �(Λ�). This happens in Lemma 2.2.4 (the natural
maps γ0 and γ1 have their components in �(Λ�)) and indirectly in Corollary 2.2.16
and Lemma 2.2.22.

(c) Whenever we use that every map in C� is a retraction. This happens in Lemma 2.2.9
(every map in C� is a dual strong deformation retract).

The first two points could be repaired: introduce the assumption of X cofibrant,
whenever a usage of type (a) appears, and restrict Λ(C, S, I) to the case where all maps
in I and S have cofibrant domains and codomains.

The serious obstacle is posed by (c) because, if every map in C� is a retraction then
every map (0 → X) is in �(C�) = C, i.e. that every object is cofibrant. This is also
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exploited in the next example, where Cisinski’s construction cannot be used even for
presheaf toposes and when each generating cofibration is a monomorphism with cofibrant
domain and codomain.

A dual situation occurs in the proof of Theorem 3.3.1. By Corollary 3.3.9, every map
in C ∩W is a split monomorphism and therefore every map (X → 1) is in (C ∩W)�, i.e
every object is fibrant.

4.2.11 Example. Let K = Set and recall the model structure from Example 4.2.5
where I = {0 → 1} is the set of generating cofibrations and the weak equivalences are
the maps with nonempty domain together with the identity on the empty set. Let A be
a small category A. Then Lemma 4.1.1 gives a cofibrantly generated model structure
on SetA

op

with generating cofibrations Ĩ = {Lana(0 → 1) | a ∈ A}.
Because each Lana is a left adjoint, we must have Lana(0) = 0 and the formula (4.1.1)

with Aop in place of A, gives Lana(1) = A(−, a). Therefore Ĩ = {0 → A(−, a) |
a ∈ A} and Ĩ� consists of those (natural) maps with surjective components, i.e. the
epimorphisms in SetA

op

.
Now, if �(Ĩ�) and W(C, S, Ĩ) are to form a model structure for a suitable choice of

C and S, then in particular Ĩ� ⊆ W(C, S, Ĩ) must hold. This means in particular that
whenever the map X → 1 is an epimorphism (and hence X fibrant), SetA

op

(1, X) must
not be empty. We now give two popular choices for A so that this condition fails:

(a) Let A = S1, where S1 is the ’parallel pair’ from Example 4.2.1. Then SetS1op

is
the category of directed graphs (with multiple edges and loops allowed). Let X be
any graph with an edge but no loop.

(b) Let A = G for some nontrivial group G. Then SetGop

is the category of G-sets,
i.e. sets equipped with an action of G. Let X be any nonempty G-set without
fixpoints.

The model structure on G-sets can be constructed from balls as follows. The construction
works also when G is only a monoid.

Set B0 = G and Bn = G + G for n ≥ 1, where G acts on itself via left-multiplication.
For b0

0, b
1
0 : G → G + G we take the two coproduct inclusions and let bk

n be identity maps
for n ≥ 1. Then Sn = G + G for n ≥ 0 and I = {∅ →֒ G} is the set of generating
cofibrations because all other sphere maps are isomorphisms.

We can take P n = G + G, and any two parallel cells are homotopic. The trivial
cocylinder (Γ, π, τ) with ΓX = X × X, π = X × X and τX = (X, X) is fibrant and has
the homotopy exchange property. In the resulting model structure, a map f : X → Y is
a weak equivalence iff it satisfies the condition X = ∅ =⇒ Y = ∅. This is indeed the
condition in the description of W̃ in Lemma 4.1.1.
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4.3 Modules

We now turn from ”space-like” to ”linear” examples.

4.3.1 Lemma. Let K be an abelian category.

(a) For maps m : A → B and f : X → Y the following are equivalent

(i) m � f .

(ii) m � (ker(f) → 0) and for any given square

A
v //

m

��

X

f

��
B g

// Y

(4.3.1)

the map g can be lifted through f by a map h : B → X.

(b) Mono� consists of all epimorphisms with injective kernel.

(c) �Epi consists of all monomorphisms with projective cokernel.

Proof. Note that (c) is just (b) interpreted in the opposite category Kop. It is therefore
sufficient to prove (a) and (b). The calculations are as in [1, Example 1.8(i)]).

(a) Suppose m � f . Then any diagonal of the square (4.3.1) will in particular be a
lifting of g through f . Let k : ker(f) → X be the kernel inclusion and consider
any map u : A → ker(f). We obtain the following diagram

A
u //

m

��

ker(f)
k // X

f

��
B

t
<<xxxxxxxxx

d

55lllllllllllllllllll

0
// Y

where d exists because m � f and where t is the factorization of d through k
induced by df = 0. The remaining equation mt = u follows from mtk = md = uk
because k is monic.

Conversely suppose that the conditions in (ii) are satisfied and consider dia-
gram (4.3.1). Let h : B → X be a map with hf = g. Then (v−mh)f = vf−mg = 0
and therefore v−mh factors through k : ker(f) → X via some u : A → ker(f). Let
t : B → ker(f) be a map with mt = u and set d = h + tk. Then df = hf = g and
md = mh + uk = mh + (v − mh) = v show that d is the desired diagonal.
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(b) Any epimorphism f with injective kernel is a split epimorphism and satisfies
ker(f) → 0 ∈ Mono�. Therefore condition (ii) of part (a) holds with respect
to every m ∈ Mono.

Conversely, if f : X → Y is in Mono� then ker(f) is injective by part (a) and f
must be a (split) epimorphism because of (0 → Y ) � f .

Let R be a ring and let K = RMod, the category of left R-modules. We also write
ModR and RModR for the categories of right and two-sided R-modules respectively.

4.3.2 Corollary. In K = RMod the pairs (�Epi, Epi) and (Mono, Mono�) are cofi-
brantly generated weak factorization systems. The singleton set {0 → R} generates
(�Epi, Epi), and the set I = {a →֒ R | a E R} of all inclusions of left ideals generates
(Mono, Mono�).

Proof. Clearly {0 → R}� = Epi and Mono� ⊆ I�. It remains to verify I� ⊆ Mono�.
Suppose f ∈ I�. With m = (0 → R) in condition (ii) of Lemma 4.3.1(a) we obtain
that f is an epimorphism. Condition (ii) also gives (ker(f) → 0) ∈ I�. By Baer’s
criterion this implies (ker(f) → 0) ∈ Mono�. Therefore f ∈ Mono� by part (b) of the
Lemma.

We will only consider model structures on K = RMod constructed from the weak
factorization systems of the above Corollary. The following example concerns (�Epi, Epi)
and illustrates that there is only the trivial result.

4.3.3 Example. The model structure (�Epi, RMod, Epi) on RMod is left determined.
We construct it via Theorem 3.3.1.

(1) Set B0 = R and Bn = R + R for n ≥ 1. Take the two coproduct inclusions
ι0, ι1 : R → R + R as b0

0 and b1
0, and let all other bk

n be identity maps.

Then Sn = R + R for all n ≥ 0 and the sn : Sn−1 → Bn are isomorphisms for
n ≥ 1. This leaves s0 = (0 → R) as the only relevant generating cofibration. The
0-cells of a module are its elements, its n-cells for n ≥ 1 are pairs of elements and
any two n-cells are parallel.

(2) For the relative final cylinder objects we can use P n = R + R = Sn for all n ≥ 0.
Any two parallel n-cells are homotopic.

(3) Let (Γ, π, τ) be the trivial cylinder with ΓM = M + M = M × M , πM = M + M
and τM = (M, M). Then (Γ, π, τ) is fibrant. For two (parallel) n-cells of M , the
induced n-cell of the product M × M gives a homotopy between them. Therefore
(Γ, π, τ) has the homotopy exchange property.

Therefore Theorem 3.3.1 can be applied. Because every map has the relative homotopy
lifting property with respect to (0 → R), the resulting model structure has W = RMod.
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We now consider the case of (Mono, Mono�). For this it remains to find cartesian
cylinders.

In order to find possible examples, we first characterize cartesian cylinders for the
weak factorization system (Mono, Mono�) in K. Recall that a map f : U → V of right
modules is pure (or equivalently that f(U) is a pure submodule of V ) if for every (finitely
generated) left module M , the map f ⊗R M : U ⊗R M → V ⊗R M is a monomorphism.
We use another characterization of pure submodules: U ⊆ V is pure iff every finite
system of equations

uj =
∑

i

xirij (uj ∈ U, rij ∈ R)

which has a solution with xi ∈ V also has a solution with xi ∈ U . For a direct proof,
which can easily be adapted to the non-commutative setting, see e.g. Matsumura [18,
Theorem 7.13].

4.3.4 Proposition. Suppose V is a two-sided R-module together with a map v : R → V
in RModR and let Cv : K → K be the functor with Cv(M) = (R + V ) ⊗R M = M +
V ⊗R M . Let γ0

R : R → R + V be the coproduct injection, σR : R + V → R be the product
projection and γ1

R = (R, v) : R → R + V . Set σ = σR ⊗R (−) and γ = (γ0
R|γ

1
R) ⊗R (−).

Then (Cv, γ, σ) is a cylinder. For any two maps f, g : M → N we have

f ∼ g (mod Cv) ⇐⇒ g − f : M → N factors through v ⊗R M : M → V ⊗R M

Moreover the following holds:

(a) Every left adjoint cylinder (C, γ, σ) arises as (Cv, γ, σ) for some v : R → ker(σR).

(b) (Cv, γ, σ) is good ⇐⇒ v : R → V is a pure monomorphism (in ModR).

(c) Suppose that (Cv, γ, σ) is a good cylinder. Then we have:

(Cv, γ, σ) is cartesian ⇐⇒ V is a flat right module

(d) Suppose that (Cv, γ, σ) is a good cylinder. Then we have:

(Cv, γ, σ) is final ⇐⇒ V ⊗R M is injective for every M

Proof. We use familiar matrix notation for maps between (co)products and omit the
object names for identities and zero maps. Then the maps introduced above can be
written as γ0

R = ( 1 0 ), γ1
R = ( 1 v ), γR =

(
1 0
1 v

)
and σR =

(
1
0

)
. Abbreviating v ⊗R M as

vM and V ⊗ f as fV , we can also write γM =
(

1 0
1 vM

)
and Cf =

(
f 0
0 fV

)
.

Because of
(

1 0
1 vM

)(
1
0

)
=

(
1
1

)
the maps γM and σM clearly factor the codiagonal and

(Cv, γ, σ) is a cylinder.
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Given two maps f, g : M → N , the map
(

f
g

)
: M + M → N can be extended along

γM : M + M → M + V ⊗R M iff the equation

(
1 0
1 vM

)(
h1

h2

)
=

(
f
g

)

can be solved with some h1 : M → N and h2 : V ⊗R M → N . This is equivalent to the
condition that g − f : M → N extends along vM : M → V ⊗R M .

(a) Let (C, γ, σ) be a cylinder such that C has a right adjoint G.

Application of C to the right translations ρr : R → R for each r ∈ R gives a
right action of R on CR which makes CR into a two-sided module such that the
isomorphisms

K(CR, M) ∼= K(R, G(M)) ∼= G(M)

are isomorphisms of left modules and hence C ∼= C(R) ⊗R (−). Moreover, the
diagrams

R
γk

R //

ρr

��

CR
σR //

C(ρr)
��

R

ρr

��
R

γk
R // CR

σR // R

show that σR and the γk
R are maps of two-sided modules. Therefore the decomposi-

tion CR = γ0
R(R)+ker(σR) is indeed a decomposition as two-sided modules. With

respect to this decomposition, we obtain γ0
R = ( 1 0 ), and σR =

(
1
0

)
. Moreover,

γ1
R = ( 1 v ) for some v : R → ker(σR). Application of naturality of γ and σ to an

m : R → M then gives γM = γR ⊗R M and σM = σR ⊗R M .

(b) From γM =
(

1 0
1 vM

)
we obtain that γM is a monomorphism iff vM is a monomorph-

ism.

(c) Let i : M → N be a monomorphism.

The pushout of i and γ0
M is N + V ⊗R M and i ⋆ γ0 is the map(

1 0
0 iV

)
: N + V ⊗R M → N + V ⊗R N . Therefore i ⋆ γ0 is a monomorphism iff iV

is a monomorphism. In particular, flatness of V is necessary for (Cv, γ, σ) to be
cartesian.

Now suppose V is flat. As seen above, i ⋆ γ0 is a monomorphism. Because of
( 1 vM ) = ( 1 0 )

(
1 vM
0 1

)
the maps γ0

M and γ1
M differ only by an automorphism of

their codomain. Moreover, for any f : M → N one has vMfV = v⊗R f = fvN and
hence

(
1 vM
0 1

)(
f 0
0 fV

)
=

(
f 0
0 fV

)(
1 vN
0 1

)
. Therefore these automorphisms are part of a

natural automorphism on the cylinder functor. Consequently i ⋆ γ1 is the pushout
of i ⋆ γ0 along an isomorphism and hence i ⋆ γ1 is also a monomorphism.

74



4.3 Examples: modules

For i ⋆ γ, it is enough to consider the special case where i is the inclusion a →֒ R
of a left ideal. Let j : V ⊗R a → V be the map with j(w ⊗ a) = wa. The pushout
Q of i and γM can be calculated as the cokernel in the exact row below

0 // a + a
k // R + R + a + V ⊗R a

//

h

��

Q //

i⋆γvvnnnnnnnnnnnnnn 0

R + V

where

k =

(
−i 0 1 0
0 −i 1 va

)
and h =

(
1 1 i 0
0 v 0 j

)⊤

and i ⋆ γ is induced by h because im(k) ⊆ ker(h). To show that i ⋆ γ is a mono-
morphism, it remains to verify ker(h) ⊆ im(k).

Assume (x, y, a, w) ∈ ker(h) for some x, y ∈ R, a ∈ a and w =
∑

n wn⊗bn ∈ V ⊗Ra.
This corresponds to equations x + y + a = 0 and −vy =

∑
n wnbn. Because vR

is a pure submodule of V , there are rn ∈ R with −vy =
∑

n vrnbn. Since v is a
monomorphism, we have y = −

∑
n rnbn ∈ a and x ∈ a.

Therefore (x, y, a, w) = (−x,−y)
(
−i 0 1 0
0 −i 1 va

)
∈ im(k).

(d) Tensoring the split exact sequence

0 // V
( 0 1 ) // R + V

(
1
0

)
// R // 0

with M , we obtain ker(σM) = V ⊗R M from which the equivalence follows.

Observe that in the situation of 4.3.4(d), two maps f, g : M → N are homotopic iff
g − f : M → N factors through some injective module. This relation is known as stable
equivalence (see e.g. [13, Section 4] or [9, Definition 2.2.2]) and the homotopy equiva-
lences are then also called stable equivalences.

4.3.5 Corollary. Let (C, γ, σ) be a final cartesian cylinder in RMod and suppose that
the ring R is injective. Then each map in Λ = Λ(C, ∅, I) has injective domain and
codomain. In particular, every object is fibrant and W = W(C, ∅, I) is the class of stable
equivalences.

Proof. By part (a) of Proposition 4.3.4 one can assume C = Cv for some v : R → V .
Moreover, Cv preserves injective objects by part (d). We prove by induction that each
map in Λn has injective domain and codomain.

For the inclusion of a left ideal i : a → R we already noted in the proof of part (c),
that the two maps i ⋆ γ0 and i ⋆ γ1 have isomorphic domains. We also calculated
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i ⋆ γ0 : R + V ⊗R a → R + V ⊗R R. Therefore every map in Λ0 has injective domain
and codomain.

Now assume that the claim holds for Λn and let f : M → N be a map in Λn. Then
the codomain of f ⋆ γ is N + V ⊗R N , which is injective. Its domain Q is the cokernel
of a split exact sequence

0 // M + M // N + N + M + V ⊗R M // Q // 0

and is therefore also injective.

4.3.6 Example. Let H be a finite dimensional Hopf algebra over a field k, i.e. a (finite
dimensional) k-algebra together with algebra maps ∆: H → H ⊗k H (comultiplication)
and ε : H → k (counit), and an anti-algebra map S : H → H (antipode) satisfying cer-
tain conditions (for details see e.g. Montgomery [19]). HMod has a model structure
where the weak equivalences are the stable equivalences [9, Theorem 2.2.12 and Propo-
sition 4.2.15] We will show that this model structure is left determined by verifying the
conditions of Proposition 4.3.4 and Corollary 4.3.5.

(1) Due to results of Larson and Sweedler [16, Theorem 2 (p79) and Proposition 2
(p83)] on finite dimensional Hopf algebras over a field, H satisfies the following
conditions:

(a) the antipode S : H → H is invertible.

(b) there exists a nonzero d ∈ H with hd = ε(h)d for all h ∈ H . Giving k a
left H-module structure via ε : H → k, such a d corresponds to a (nonzero)
H-linear map d : k → H .

(c) a left H-module is injective iff it is projective

(2) Let M and N be two H-modules. Then M ⊗k N has an H ⊗k H-module structure
with (c ⊗ c′)(m ⊗ n) = cm ⊗ c′n. Via the map ∆: H → H ⊗k H this induces an
H-module structure on M ⊗k N . Observe that with this definition k⊗k M ∼= M ∼=
M ⊗k k and for a two sided module V also M ⊗k (V ⊗H N) ∼= (M ⊗k V )⊗H N as
H-modules.

Let Hom(M, N) be the group of all k-linear maps from M to N . Then Hom(M, N)
has a H ⊗k Hop-module structure with ((c ⊗ c′)f)m = c(f(c′m)). From this one
obtains two different H-module structures on Hom(M, N):

The first one is induced via H
∆ //H ⊗k H

H⊗S //H ⊗k Hop . We write Homr(M, N)
for this module structure.

The second one is induced via H
∆ //H ⊗k H

tw //H ⊗k H
H⊗S-1

//H ⊗k Hop , where

tw is defined by tw(c⊗c′) = c′⊗c. We write Homl(M, N) for this module structure.
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Then one can verify that this gives bifunctors on HMod and that for any given
M , the k-linear evaluation maps

eN : Homr(M, N) ⊗k M → N and e′N : M ⊗k Homl(M, N) → N

defined by eN(f, m) = fm = e′N(m, f) are indeed H-linear and provide counits of
two adjunctions (−) ⊗k M ⊣ Homr(M,−) and M ⊗k (−) ⊣ Homl(M,−).

(3) We fix some d : k → H as in (1b) above. Set V = H ⊗k H . Then V is a two

sided H-module. Define v : H → V by the composition H ∼= k ⊗k H
d⊗H //H ⊗k H .

Then this gives a map of two sided H-modules.

(4) Tensoring over the field k with a fixed module preserves monomorphisms. In
particular the above v : H → V is a monomorphism. Moreover the natural iso-
morphisms v ⊗H (−) ∼= d⊗k (−) and V ⊗H (−) ∼= H ⊗k (−) yield that v : H → V
is pure and V is flat.

(5) For a fixed module M , both Homl(M,−) and Homr(M,−) preserve epimorphisms.
Therefore their left adjoints M⊗k(−) and (−)⊗kM preserve projective H-modules.
In particular, V ⊗H M ∼= H ⊗k M is projective and therefore injective.

We end with a question which, thanks to Proposition 4.3.4, is of purely ring-theoretical
nature:

4.3.7 Question. For which rings R does RMod have a final cartesian cylinder
for (Mono, Mono�)?
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