Obory rigorózních zkoušek |
![]() |
UČITELSTVÍ MATEMATIKY PRO STŘEDNÍ ŠKOLY
Rigorózní práci lze předkládat jednom z následujících zaměření:
Rigorózní zkoušku uchazeč vykoná z historie matematiky a z jednoho z následujících předmětů (dle vlastní volby):
Uchazeč při zkoušce prokáže v příslušné disciplíně nadhled nad znalostmi požadovanými u státní závěrečné zkoušky. Požadavky k rigorózní zkoušce jsou orientačně vymezeny následující literaturou: Matematická analýza Veselý, J.: Matematická analýza pro učitele I, II, Matfyzpress, Praha 1997 Algebra A.G.Kuroš: Kapitoly z obecné algebry, Academia, Praha 1977 D.S.Dummit, R.M.Foote: Abstract Algebra, John Wiley & Sons, Inc. 2004 (části I a II o grupách a okruzích) Geometrie Zájemce si může zvolit jeden z podoborů: analytická geometrie, diferenciální geometrie, algebraická geometrie. Doporučená literatura je následující: Analytická geometrie Berger, M.: Geometry I, II, Springer, Berlin 2009 Čižmár, J.: Grupy geometrických transformací, Bratislava 1984. Diferenciální geometrie Kolář, I. - Pospíšilová: Diferenciální geometrie křivek a ploch, Elportál MU, Brno 2008, http://is.muni.cz/elportal/?id=800072 Algebraická geometrie Bureš, J., Vanžura, J.: Algebraická geometrie, Praha 1989. Numerické metody Horová I., Zelinka J.: Numerické metody, MU 2008 Teorie množin Balcar, B., Štěpánek, P.: Teorie množin, Academia, Praha 1986, str. 27-199 Teorie čísel IRELAND, Kenneth. - ROSEN, Michael I.: A classical introduction to modern number theory. 2nd ed. New York, Springer 1990. COX, David A.: Primes of the form x + ny : Fermat, class field theory, and complex multiplication, New York, John Wiley & Sons 1989 (kapitoly 1 a 2) 3. COHEN, Henri.: A course in computational algebraic number theory, New York, Springer 2000 (kapitoly 1, 4-10 pro uchazeče se zaměřením na výpočetní teorii čísel) Pravděpodobnost a statistika Hátle, J., Kahounová, J.: Úvod do teorie pravděpodobnosti, SNTL/Alfa, Praha 1987, kapitoly 1-5, 7-9 Hendl, J.: Přehled statistických metod zpracování dat, Portál, Praha 2004, kapitoly 4-9 Kombinatorika a teorie grafů Nešetřil, J.: Kombinatorika, SPN, Praha 1975 Nešetřil, J.: Teorie grafů, SNTL, Praha 1979 Historie matematiky Požadavky zadá předseda rigorózní komise podle zvoleného odborného zaměření uchazeče. UČITELSTVÍ DESKRIPTIVNÍ GEOMETRIE PRO STŘEDNÍ ŠKOLY
Práci lze předkládat a rigorózní zkoušku konat v jednom z následujících zaměření:
V zaměření geometrie je možno podávat práce z oblasti analytické, diferenciální, algebraické a dalších geometrií. Stanovení jednotných požadavků pro všechny uchazeče není možné vzhledem k tomu, že konkrétní specializace může být prakticky z kterékoliv oblasti geometrie a deskriptivní geometrie, která je obsahem vysokoškolského studia učitelské deskriptivní geometrie. Dle zaměření rigorózní práce uchazeč prokáže v příslušné disciplíně nadhled nad znalostmi požadovanými u státní závěrečné zkoušky. K tomu mu předseda rigorózní komise zadá několik kapitol vybraného textu z doporučené literatury. Doporučená literatura: A. Předměty širšího základu: Deskriptivní geometrie: Kadeřávek, F., Klíma, J., Kounovský J.: Deskriptivní geometrie I, II, Praha 1954. Analytická geometrie: Berger, M.: Géométrie, Paris 1977. Čižmár, J.: Grupy geometrických transformací, Bratislava 1984. Diferenciální geometrie křivek a ploch: Bureš, J., Hrubčík, K.: Diferenciální geometrie křivek a ploch,skriptum UK, Praha 1998. Algebraická geometrie: Bureš, J., Vanžura, J.: Algebraická geometrie, Praha 1989. B. Předměty zaměření: dle zaměření práce. ALGEBRA A DISKRÉTNÍ MATEMATIKA
A. Předměty širšího základu: Teorie množin Literatura: Balcar, B., Štěpánek, P.: Teorie množin, Academia, Praha 1986, str. 27-199. Klasická algebra Literatura: Birkhoff, G., MacLane, S.: Algebra, Alfa, Bratislava 1973. Matematická logika Literatura: Mendelson, E.: Vvedenije v matematičeskuju logiku, Nauka, Moskva 1976. B. Předměty zaměření: Teorie čísel Literatura: Borevič, Z. I., Šafarevič, I. R.:Teoria čísel, Nauka, Moskva 1964, kap. I.,III. Teorie kategorií Literatura: MacLane, S.: Categories for the Working Mathematician, Springer-Verlag, New York 1971. Teorie pologrup Literatura: Howie, J. M.: Fundamentals of Semigroup Theory, Clarendon Press, Oxford 1995, str.1-221. Univerzální algebra Literatura: Ježek, J.: Univerzální algebra a teorie modelů, SNTL, Praha 1976. Uspořádané množiny a uspořádané algebraické struktury Literatura: Szász, G.: Einfuhrung in die Verbandstheorie, Akadémiai Kiadó, Budapest 1962. GEOMETRIE
A. Předměty širšího základu: Základy teorie okruhů a těles Literatura: Birkhoff, G., MacLane, S.: Algebra, Alfa, Bratislava 1973, kap. IV., V. Obyčejné diferenciální rovnice Literatura: Kalas, J., Ráb, M.: Obyčejné diferenciální rovnice, Masarykova univerzita, Brno 2001. B. Předměty zaměření: Diferenciální geometrie křivek a ploch v trojrozměrném Euklidovském prostoru Literatura: Bureš, J., Hrubčík, K.: Diferenciální geometrie křivek a ploch,skriptum, Karolinum, Praha 1998. Diferencovatelné variety, základy Riemannovy geometrie Literatura: Kowalski, O.: Úvod do Riemannovy geometrie, skriptum, Karolinum, Praha 1995. Algebraická topologie Literatura: Hatcher, A.: Algebraic Topology, Cambridge University Press, 2002. MATEMATICKÁ ANALÝZA
A. Předměty širšího základu: Funkcionální analýza Literatura: Taylor, A. E.: Úvod do funkcionální analýzy, Academia, Praha 1973. Teorie míry Literatura: Šilov, G. E., Burevič, B. L.: Integrál, Míra, Derivace, I., STNL, Praha 1968. B. Předměty zaměření: Obyčejné diferenciální rovnice Literatura: Hartman, P.: Ordinary Differential Equations, Birkhauser, Boston 1982. Funkce komplexní proměnné Literatura: Lang, S.: Complex Analysis, Springer-Verlag, New York 1993. Teorie regulace Literatura: Alexejev, V. M., Tichomirov, V. M., Fomin, S. V. : Matematická teorie optimálních procesů, Academia, Praha 1991. MATEMATICKÉ MODELOVÁNÍ A NUMERICKÉ METODY
A. Předměty širšího základu: Pravděpodobnost a statistika Literatura: Anděl, J.: Matematická statistika, SNTL, Praha 1976. Deterministické modelování Literatura: Barnes, B., Fulford, G. R.: Mathematical Modelling with Case Studies, CRC Press, Boca Raton, FL, 2009. Numerické metody Literatura: Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, Springer-Verlag, New York 1983. B. Předměty zaměření: Metody matematického programování Literatura: Homola, M.: Nelineárne programovanie, Alfa, Bratislava 1972. Deterministické procesy Literatura: Perko, L.: Differential Equations and Dynamical systems, Springer-Verlag, New York Berlin Heidelberg, 2001. Elaydi S.: An Introduction to Difference Equations, Springer, 2005. Náhodné procesy Literatura: Brockwell, P. J., Davis, R. A.: Introduction to Time Series and Forecasting, Springer-Verlag, New York 2002. Numerické metody Literatura: Rektorys, K.: Variační metody v inženýrských problémech a v problémech matematické fyziky, Academia, Praha 1999. STATISTIKA A ANALÝZA DAT
A. Předměty širšího základu: Pravděpodobnost Literatura: Renyi, A.: Teorie pravděpodobnosti, Academia, Praha 1972. Statistika a analýza dat Literatura: Anděl, J.: Matematická statistika, SNTL, Praha 1976. B. Předměty zaměření: Lineární statistické metody Literatura: Zvára, K.: Regresní analýza, Academia, Praha 1989. Náhodné procesy Literatura: Anděl, J.: Statistická analýza časových řad, SNTL, Praha 1976. MATEMATIKA - EKONOMIE
A. Předměty širšího základu: Statistika a analýza dat Literatura: Anděl, J.: Matematická statistika, SNTL, Praha,1985. B. Předměty zaměření: Časové řady Literatura: Anděl, J.: Statistická analýza časových řad, SNTL, Praha, 1976. Ekonometrie Literatura: Hušek, R. : Ekonometrická analýza, Ekopress, Praha, 1999. MATEMATIKA S INFORMATIKOU
A. Předměty širšího základu: Teoretická informatika: algoritmy,modely počítačů,automaty a jazyky Literatura: Gruska, J.: Foundation of Computing,Int.Thomson Publ.Computer Press,1997. Matematická logika Literatura: Štěpánek, P.: Matematická logika, SPN, Praha 1982. B. Předměty zaměření: Operační systémy a počítačové sítě Literatura: Stallings, W.: Operating Systems, Internal and Design Principles, Prentice Hall, 1998. Funkcionální analýza Literatura: Taylor, A. E.: Úvod do funkcionální analýzy, Academia, Praha 1973. Numerické metody Literatura: Stoer, J., Bulirch, R.: Introduction to Numerical Analysis, Springer-Verlag, New York 1983. |
Aktualizováno Úterý, 04 Srpen 2015 12:39 |