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Jiřı́ VÍTOVEC

THEORY OF REGULARLY AND
RAPIDLY VARYING FUNCTIONS

ON TIME SCALES

AND ITS APPLICATION TO

DYNAMIC EQUATIONS

Dissertation Thesis

MASARYK UNIVERSITY
Faculty of Science

Department of Mathematics and Statistics

Supervisor : Doc. Mgr. Pavel Řehák, PhD. Brno 2010
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a jejı́ aplikace v dynamických rovnicı́ch

Study programme Mathematics

Study field Mathematics analysis

Supervisor Doc. Mgr. Pavel Řehák, PhD.
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Introduction 1
The aims of this thesis are two. First, to establish the theory of regular and rapid

variation on time scales, which would naturally supplement and extend the exis-

ting theory of regular and rapid variation from the continuous and discrete case.

Second, to apply the obtained theory in a study of asymptotic behavior of solu-

tions to linear and half-linear second order dynamic equations on time scales.

The theory of regular and rapid variation was studied at the first time for func-

tions of real variable. It was initiated by Jovan Karamata in 1930, see [21], hence

it is sometimes called Karamata theory. Nowadays, it is a very extensive theory,

useful in many fields of mathematics; beside classic uses in asymptotic theory

of functions, it is also used in, e.g., Tauberian theory, analytic number theory and

theory of probability. A similar theory of regularly and rapidly varying sequences

was initiated also by Karamata as a counterpart of the continuous case. However,

in 1973, J. Galambos and E. Seneta, see [16], introduced an alternative theory for

sequences based on a purely sequential conception. Their approach shows a new

(alternative) way in the theory of regular and rapid variation, useful not only

in this discrete case but convenient in our considerations. Finally, note that the

theory of regular and rapid variation is a very good tool, which helps us to get

precise information about asymptotic properties of solutions of differential and

difference equations.

The theory of time scales was introduced by Stephan Hilger in his dissertation

thesis in 1988, see [19], in order to unify the continuous and discrete calculus. Be-

fore, the theory of differential and difference equations was studied “separately”.

The theory of dynamic equations allows us to prove certain results for these two

cases simultaneously and moreover for any arbitrary general time scale.

This thesis is divided into six chapters. Each chapter is furthermore divided

into a few sections with the exception of Chapter 1 and Chapter 6 - these two are

devoted to introduction and conclusion of this thesis. In Chapter 2 we recall basic

notations and state all basic statements that we will need later. The main part of

the thesis are Chapter 3 and Chapter 4. In Chapter 3 we establish the theory of

regular and rapid variation on general time scales with graininess µ(t) = o(t) (ex-

ceptionally, in some special cases the graininess µ(t) = O(t) “is allowed ”). Note

that for “bigger ” graininess (as we show on examples later) it is impossible to
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1. Introduction

establish any reasonable theory for general time scales. As an application of our

theory, we study the asymptotic properties of solutions to linear and half-linear

second order dynamic equations on time scales. In Chapter 4 we establish cor-

responding theory and applications for the important time scale T = qN0 , q > 1,

which has the graininess µ(t) = (q − 1)t, and hence it cannot be studied within

previous (more general) case. Chapter 3 is based on the papers [P3], [P4], [P5]

and Chapter 4 contains results of the papers [P2] and [P1]. In Chapter 5, oscilla-

tory results from paper [P6] are attached. These results are not connected with

the theory of regular (resp. rapid) variation. However, half-linear dynamic equa-

tion and studies of its oscillation is a strong point of connection with previous

chapters.
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Preliminaries 2
In this chapter we recall basic notations and state all basic statements that we will

need later.

2.1 Continuous and discrete theory of regular and

rapid variation

At first, recall the basic facts about regular variation. A measurable function f ,

f : [a,∞) → (0,∞), is said to be regularly varying of index ϑ, ϑ ∈ R, if it satisfies

lim
x→∞

f(λx)

f(x)
= λϑ for all λ > 0; (2.1)

we write f ∈ RVR(ϑ). If ϑ = 0, then f is said to be slowly varying. Fundamental

properties of regularly varying functions are that relation (2.1) holds uniformly

on each compact λ-set in (0,∞) and f ∈ RVR(ϑ) if and only if it may be written

in the form f(x) = ϕ(x)xϑ exp
{∫ x

a
η(s)/s ds

}
, where ϕ and η are measurable with

ϕ(x) → C ∈ (0,∞) and η(x) → 0 as x → ∞. For further reading on the continuous

case we refer, e.g., [4, 17, 20, 21, 22, 23, 26, 27, 37].

In the basic theory of regularly varying sequences two main approaches are

known. First, the approach by Karamata [21], based on a counterpart of the con-

tinuous definition: A positive sequence {fk}, k ∈ {a, a+ 1, . . . } ⊂ Z, is said to be

regularly varying of index ϑ, ϑ ∈ R, if

lim
k→∞

f[λk]

fk
= λϑ for all λ > 0, (2.2)

where [u] denotes the integer part of u. Second, the approach by Galambos and

Seneta [16], based on a purely sequential definition: A positive sequence {fk}
is said to be regularly varying of index ϑ if there exists a positive sequence {ωk}
satisfying

fk ∼ Cωk and lim
k→∞

k

(
1 − ωk−1

ωk

)
= ϑ, (2.3)

C being a positive constant. In [8], it was shown that these two definitions

are equivalent. In [29], the second condition in (2.3) was suggested to replace
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2. Preliminaries

(equivalently) in the latter definition by limk→∞ k∆ωk/ωk = ϑ. A regularly vary-

ing sequence can be represented as fk = ϕkk
ϑ
∏k−1

j=a (1 + ψj/j) , see [29], or as

fk = ϕkk
ϑ exp

{∑k−1
j=a ψj/j

}
, where ϕk → C ∈ (0,∞) and ψk → 0 as k → ∞, see

[8, 16]. For further reading on the discrete case we refer, e.g., to [11].

Recall that the theory of regular variation can be viewed as the study of re-

lations similar to (2.1) or (2.2), together with their wide applications, see, e.g.,

[4, 17, 20, 26, 27, 29, 30, 37]. There is a very practical way how regularly vary-

ing functions can be understood: Extension in a logical and useful manner of

the class of functions whose asymptotic behavior is that of a power function, to

functions where asymptotic behavior is that of a power function multiplied by

a factor which varies “more slowly” than a power function. In [8, 16], see also

[40], the so-called embedding theorem was established (and the converse result

holds as well): If {yk} is a regularly varying sequence, then the function R (of a

real variable), defined by R(x) = y[x], is regularly varying. Such a result makes

it then possible to apply the continuous theory to the theory of regularly varying

sequences. However, the development of a discrete theory, analogous to the con-

tinuous one, is not generally close, and sometimes far from a simple imitation of

arguments for regularly varying functions, as noticed and demonstrated in [8].

Simply, the embedding theorem is just one of powerful tools, but sometimes it

is not immediate that from a continuous results its discrete counterpart is eas-

ily obtained thanks to the embedding; sometimes it is even not possible to use

this tool and the discrete theory requires a specific approach, different from the

continuous one.

Now, recall the concept of rapid variation. A measurable function of real vari-

able f : [a,∞) → (0,∞) is said to be rapidly varying of index ∞ if it satisfies

lim
x→∞

f(λx)

f(x)
=

{
∞ for λ > 1

0 for 0 < λ < 1;
(2.4)

we write f ∈ RPVR(∞). If

lim
x→∞

f(λx)

f(x)
=

{
0 for λ > 1

∞ for 0 < λ < 1,
(2.5)

then f is said to be rapidly varying of index −∞; we write f ∈ RPVR(−∞). Note

that it is easy to show that in relations (2.4) and (2.5) it is not necessary to include

both cases λ > 1 and 0 < λ < 1; more precisely,

lim
x→∞

f(λx)

f(x)
= ∞ (resp. 0) ∀ λ > 1 ⇔ lim

x→∞

f(λx)

f(x)
= 0 (resp. ∞) ∀ λ ∈ (0, 1).

For more information about rapid variation on R, see for example [4, 21, 22, 27]

and references therein.
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2. Preliminaries

In [28], the concept of rapidly varying sequences was introduced in the fol-

lowing way. Let [u] denote the integer part of u. A positive sequence {fk},

k ∈ {a, a+ 1, . . .} ⊂ Z, is said to be rapidly varying of index ∞, if it satisfies

lim
k→∞

f[λk]

fk
=

{
∞ for λ > 1

0 for 0 < λ < 1;
(2.6)

we write f ∈ RPVZ(∞). A positive sequence {fk}, k ∈ {a, a+ 1, . . . } ⊂ Z, is said

to be rapidly varying of index −∞, if it satisfies

lim
k→∞

f[λk]

fk
=

{
0 for λ > 1

∞ for 0 < λ < 1;
(2.7)

we write f ∈ RPVZ(−∞). Note that the concept of rapidly varying sequence of

index ∞ was introduced in [10] as limk→∞ f[λk]/fk = 0 for λ ∈ (0, 1). Similarly, as

in previous case, in [10], it was shown that

lim
k→∞

f[λk]

fk
= ∞ (resp. 0) ∀ λ > 1 ⇔ lim

k→∞

f[λk]

fk
= 0 (resp. ∞) ∀ λ ∈ (0, 1).

It is easy to see that the function f(t) = at (resp. sequence fk = ak) with a > 1

is a typical representant of the class RPVR(∞) (resp. RPVZ(∞)), while the func-

tion f(t) = at (resp. sequence fk = ak) with a ∈ (0, 1) is a typical representant

of the class RPVR(−∞) (resp. RPVZ(−∞)). Of course, these classes are much

wider. In continuous case (for sequences, it is analogical), the extension is possi-

ble of previous examples to the class of functions where asymptotic behavior is

that of an exponential function multiplied by a factor which varies “more slowly”

than an exponential function, e.g., to the functions in the form of f(t) = g(t)ah(t),

where g ∈ RVR(ϑ) or g is bounded both above and below by the positive con-

stants, h ∈ RVR(ϑ) with ϑ > 0 and a ∈ (0, 1) ∪ (1,∞). The case a ∈ (0, 1) stands

for f ∈ RPVR(−∞), while the case a ∈ (1,∞) stands for f ∈ RPVR(∞).

As can we see, the forms of definitions of rapidly varying functions (2.4), (2.5)

and rapidly varying sequences (2.6), (2.7), which include a parameter λ, corre-

spond to the classic Karamata type definitions of regularly varying functions (2.1)

and regularly varying sequences (2.2). In [27], it was shown that for any rapidly

varying function f of index −∞ for which f ′(t) increases one has

lim
t→∞

tf ′(t)

f(t)
= −∞. (2.8)

Conversely, if a continuously differentiable function f satisfies (2.8), then it is

rapidly varying of index −∞. In [28], it was similarly shown that if a positive

sequence {fk} has the property ∆fk increases, then f ∈ RPVZ(−∞) if and only if

lim
k→∞

k∆fk
fk

= −∞. (2.9)
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2. Preliminaries

This results show us that under certain conditions there exists an alternative (in

some cases – e.g. when studying asymptotic properties of differential or differ-

ence equations – more practical) possibility, how rapidly varying functions (resp.

sequences) can be defined. For further reading of rapid variation in discrete case

we refer to, e.g., [10, 11, 28, 30] and references therein.

2.2 Essentials on time scales

In this section we recall basic information concerning the caculus on time scales

that are needed for further considerations.

Definition 2.1. Time scale T is an arbitrary nonempty closed subset of R.

We suppose that T has inherited standard (Euclidean) topology on the real

numbers R. This is a (typical) example of time scale:

R, Z, N, N0, [a, b], [a,∞),

hZ := {hk : k ∈ Z}, qN0 := {qn : n ∈ N0}, q > 1.

Note that calculus on hZ is called h-calculus, while calculus on qN0 is called q-

calculus.

Definition 2.2. Let T be a time scale. Define the forward jump operator σ for all

t ∈ T such that t < sup T, by

σ(t) := inf{τ > t : τ ∈ T},

and the backward jump operator for all t ∈ T such that t > inf T, by

ρ(t) := sup{τ < t : τ ∈ T}.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-

scattered. If σ(t) = t, we say that t is right-dense, while if ρ(t) = t, we say that t

is left-dense. If ρ(t) < t < σ(t), we say that t is isolated, while if ρ(t) = t = σ(t),

we say that t is dense. If T has a left-scattered maximum tmax, then we define

Tκ = T \ {tmax}, otherwise Tκ = T. If Tκ has a right-scattered minimum tmin,

then we define Tι,κ = Tκ \ {tmin}, otherwise Tι,κ = Tκ. Finally, we also define

µ(t) := σ(t) − t which is called the graininess function.

We will use the notation fσ(t) = f(σ(t)), i.e., fσ = f ◦ σ. From the definition

of the set T is evident that σ(t), ρ(t) ∈ T. If sup T < ∞, we define σ(sup T) =

sup T. Similarly, if inf T > −∞, we define ρ(inf T) = inf T. (In our case always

sup T = ∞ and inf T = a > −∞.) Finally, if every point t ∈ T is dense, we say

that time scale T is continuous, while if every point t ∈ Tι,κ is isolated, we say that

time scale T is discrete.

11



2. Preliminaries

Remark 2.1. (i) In this thesis, by an interval [a, b], where a, b ∈ T, we will mean

the set {t ∈ T : a ≤ t ≤ b}. A symbol Ia, where a ∈ T, we will use for an infinite

time scale interval {t ∈ T : a ≤ t <∞}, i.e., for T with sup T = ∞.

(ii) Let us remind that µ(t) = o(t) means that limt→∞(µ(t)/t) = 0, while µ(t) =

O(t) means that there exists c > 0 such that µ(t)/t ≤ c for each t ∈ T.

Definition 2.3. The function f : T → R is called ∆-differentiable at t ∈ Tκ with

∆-derivative f∆(t) ∈ R, if for any ε > 0 there is a neighborhood U of t (i.e., U =

(t− δ, t+ δ) ∩ T for some δ > 0) such that

∣∣[fσ(t) − f(s)] − f∆(t)[σ(t) − s]
∣∣ ≤ ε|σ(t) − s| for all s ∈ U.

We say that f is ∆-differentiable on Tκ provided f∆(t) exists for all t ∈ Tκ.

The following lemma shows some important properties of ∆-derivative.

Lemma 2.1 ([6, 19]). Let f, g : T → R be two functions, and let t ∈ Tκ. Then we have

(i) If f∆(t) exists, then f is continuous at t.

(ii) If f is continuous at t ∈ T and t is right-scattered, then

f∆(t) =
fσ(t) − f(t)

σ(t) − t
.

(iii) If t ∈ T is right-dense, then f∆(t) exists if and only if

f∆(t) = f ′(t) = lim
s→t

f(t) − f(s)

t− s
.

(iv) If f∆(t) exists, then

fσ(t) = f(t) + µ(t)f∆(t). (2.10)

(v) If f∆(t) and g∆(t) exist, then fg is ∆-differentiable at t with

(fg)∆(t) = fσ(t)g∆(t) + f∆(t)g(t) = f(t)g∆(t) + f∆(t)gσ(t).

(vi) Let f, g be such that g(t)gσ(t) 6= 0 and f∆(t), g∆(t) exist. Then f/g is ∆-differen-

tiable at t with
f

g
(t) =

f∆(t)g(t) − f(t)g∆(t)

g(t)gσ(t)
.

Remark 2.2.

f∆(t) =





f ′(t) for T = R,

∆f(t) for T = Z,
fσ(t)−f(t)

µ(t)
for a discrete T.
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2. Preliminaries

Definition 2.4. Let f : T → R be a function. We say that f is rd-continuous if

it is continuous at each right-dense point in T and lims→t− f(s) exists as a finite

number for all left-dense points t ∈ T. We write f ∈ Crd(T). If f is ∆-differentiable

on a set Tκ with f∆(t) ∈ Crd(T
κ), we write f ∈ C1

rd(T). If f is piecewise rd-

continuously ∆-differentiable on T, we write f ∈ C1
prd(T).

Definition 2.5. Let f, F : T → R be two functions and f ∈ Crd(T). If F∆(t) = f(t)

holds for all t ∈ Tκ, then F is said to be antiderivative of function f and we define

the ∆-integral of f on [a, b] ∩ T with a, b ∈ T by

∫ b

a

f(t)∆t = F (b) − F (a)

and the ∆-integral of f on [a,∞] ∩ T by

∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

Note that the function F from Definition 2.5 always exists and is determined

unambiguously. The following lemma shows some important properties of ∆-in-

tegral.

Lemma 2.2 ([6, 19]). Let f, g ∈ Crd(T) and a, b, c ∈ T with a ≤ b ≤ c. Then

(i)
∫ σ(t)

t
f(s)∆s = µ(t)f(t) for t ∈ Tκ.

(ii)
∫ a
a
f(t)∆t = 0.

(iii)
∫ c
a
f(t)∆t =

∫ b
a
f(t)∆t+

∫ c
b
f(t)∆t.

(iv)
∫ b
a
f(t)g∆(t)∆t = [f(t)g(t)]ba −

∫ b
a
f∆(t)gσ(t)∆t (integration by parts).

Remark 2.3.

∫ ∞

a

f(s) ∆s =





∫∞
a
f(s) ds for T = R,

∑∞
t=a f(t) for T = Z,

∑
t∈[a,∞)∩T

µ(t)f(t) for a discrete T.

Definition 2.6. We say that a function f : T → R is regressive, resp. positive

regressive provided 1 + µ(t)f(t) 6= 0, resp. 1 + µ(t)f(t) > 0. If f is regressive

and rd-continuous, we write f ∈ R(T), while if f is positive regressive and rd-

continuous, we write f ∈ R+(T).

Definition 2.7. We say that a function ef (t, s) is the generalized exponential function

if ef(·, t0) is the unique solution of the initial value problem y∆ = f(t)y, y(t0) = 1,

where f ∈ R(T).

13



2. Preliminaries

Here are some useful properties of generalized exponential function.

Lemma 2.3 ([6, 19]). Let f, g ∈ R(T) and ef(t, s), eg(t, s) be two generalized exponen-

tial functions. Then we have

(i) e0(t, s) ≡ 1 and ef(t, t) ≡ 1 for all s, t ∈ T.

(ii) ef(t, s) = 1/ef(s, t) for all s, t ∈ T.

(iii) ef(t, τ)ef (τ, s) = ef (t, s) for all s, t, τ ∈ T.

(iv) ef(t, s)eg(t, s) = ef+g+µ(t)fg(t, s) for all s, t ∈ T.

(v) If f ∈ R+(T), then ef(t, s) > 0 for all s, t ∈ T.

(vi) If f ≡ c ∈ R, then ec(t, s) = exp{c(t− s)} when T = R and s, t ∈ R.

(vii) If f ≡ c ∈ R, then ec(t, s) = (1 + c)(t−s) when T = Z and s, t ∈ Z.

For further results on the calculus on time scales, see, for example [6, 19] and

the references therein.

2.3 Dynamic equations on time scales

In this section, we recall some basic information about second order dynamic

equations. We start with half-linear dynamic equation

[r(t)Φ(y∆)]∆ + p(t)Φ(yσ) = 0 (HL∆E)

on a time scale T, where p and 1/r are real rd-continuous functions on T with

r(t) 6= 0, and Φ(y) = |y|α−1 sgn y with α > 1. (For an explanation, why we

require 1/r ∈ Crd(T) instead of r ∈ Crd(T), see, [31].) The terminology half-linear

is motivated by the fact that the space of all solutions of (HL∆E) is homogeneous,

but not generally additive. Thus, it has just “half of the properties” of a linear

space. Equation (HL∆E) covers the half-linear differential equation (if T = R)

[r(t)Φ(y′)]′ + p(t)Φ(y) = 0 (HLDE)

as well as the half-linear difference equation (if T = Z)

∆[rkΦ(∆yk)] + pkΦ(yk+1) = 0. (HL∆E)

Furthermore, the linear differential equation (frequently called as a Sturm-Liou-

ville differential equation)

(r(t)y′)′ + p(t)(y) = 0 (LDE)

14



2. Preliminaries

is a special case of (HLDE) (when α = 2). If Φ = id (i.e., α = 2), then (HL∆E)

reduces to the linear (Sturm-Liouville) difference equation

∆(rk∆yk) + pkyk+1 = 0. (L∆E)

Finally, the linear dynamic equation

(r(t)y∆)∆ + p(t)yσ = 0, (L∆E)

which covers (LDE) and (L∆E) when T = R and T = Z, respectively, is a special

case of (HL∆E) (when α = 2).

Oscillation and nonoscillation criteria have been established at first for equa-

tions (LDE) and (L∆E), see, for example [1, 18, 38, 39], and later naturally ex-

tended on (HLDE), (HL∆E), (L∆E) and (HL∆E), see, for example [6, 12, 13, 14,

31, 32, 33, 34, 35]. Because our investigation is concerned with equations (HL∆E)

and (L∆E) and their special cases, we recall some concepts and facts about equa-

tion (HL∆E) as an equation including all other cases. The symbol Φ−1 denotes the

inverse function of Φ. It can be shown that Φ−1(y) = |y|β−1 sgn y, where β is the

conjugate number of α, i.e., 1/α + 1/β = 1. In this thesis, we will suppose that

T = Ia, hence p, 1/r ∈ Crd(Ia) with r(t) 6= 0. We say that y ∈ C1
rd(Ia), is a solution

of (HL∆E) provided

{
[rΦ(y∆)]∆ + pΦ(yσ)

}
(t) = 0 holds for all t ∈ Ia.

Let us consider the initial value problem (IVP)

[r(t)Φ(y∆)]∆ + p(t)Φ(yσ) = 0, y(t0) = A, y∆(t0) = B (2.11)

on Ia, where A,B ∈ R, t0 ∈ Ia.

Theorem 2.1 (Existence and Uniqueness [33, p. 380]). Let p and 1/r are rd-conti-

nuous functions on Ia. Then the IVP (2.11) has exactly one solution.

Definition 2.8. We say that a nontrivial solution y of (HL∆E) has a generalized zero

at t, if r(t)y(t)y(σ(t)) ≤ 0. If y(t) = 0, we say that solution y has a common zero at t

(common zero is a special case of generalized zero).

Definition 2.9. We say that a solution y of equation (HL∆E) is nonoscillatory on Ia,
if there exists τ ∈ Ia such that does not exist any generalized zero at t for t > τ .

Otherwise, it is oscillatory. Oscillation may be equivalently defined as follows.

A nontrivial solution y of (HL∆E) is called oscillatory on Ia, if for every τ ∈ Ia
has y a generalized zero on I τ .
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2. Preliminaries

Theorem 2.2 (Sturm Type Separation Theorem [33, p. 388]). Let x, y be two linearly

independent solutions of (HL∆E). If there are c1, c2 ∈ Ia, with c1 < c2, such that

(rxxσ)(c1) ≤ 0 and (rxxσ)(c2) ≤ 0 (we exclude the case where σ(c1) = c2 and y(c2) =

0), then there is d ∈ [c1, c2] such that (ryyσ)(d) ≤ 0. Two nontrivial solutions of (HL∆E),

which are not proportional, can not have a common zero.

From the Sturm type separation theorem it is clear that if one solution of

(HL∆E) is oscillatory (resp. nonoscillatory), then every solution of (HL∆E) is os-

cillatory (resp. nonoscillatory). Hence we can speak about oscillation or nonoscil-

lation of equation (HL∆E).

Remark 2.4. In most literature one supposes only r(t) > 0, hence a generalized

zero of a solution y is defined as a point t ∈ Ia such that only y(t)yσ(t) ≤ 0.

This situation is common, in particular, in the continuous case (equation (HLDE)

and classic Sturm-Liouville differential equation), where the assumption of the

continuity of r(t) implies a preservation of sgn r(t), hence (in this case) it is natural

to suppose r(t) > 0 for all t. Thanks to Definition 2.8, which is designed just for

the case r(t) 6= 0, it is guaranteed that all solutions of (HL∆E) are either oscillatory

or nonoscillatory, thus every equation in the form of (HL∆E) can be classified as

oscillatory or nonoscillatory. However, this assertion is not true, if we use a “more

simple” definition of a generalized zero with y(t)yσ(t) ≤ 0. For more information

about concept of generalized zero, see, e.g. [33] and references therein.

Theorem 2.3 (Sturm Type Comparison Theorem [33, p. 388]). Consider the equa-

tion

[R(t)Φ(y∆)]∆ + P (t)Φ(yσ) = 0, (2.12)

and equation (HL∆E), where R, r, P, p ∈ Crd(Ia) with r(t), R(t) 6= 0. Suppose that we

have R(t) ≥ r(t) and p(t) ≥ P (t) for every t ∈ Ia. If (HL∆E) is nonoscillatory on Ia,
then (2.12) is also nonoscillatory on Ia.

Our approach to the oscillatory and nonoscillatory problems of (HL∆E) is

based mainly on the application of the generalized Riccati dynamic equation

w∆(t) + p(t) + S[w, r, µ](t) = 0, (GR∆E)

where

S[w, r, µ] = lim
λ→µ

w

λ

(
1 − r

Φ(Φ−1(r) + λΦ−1(w))

)
. (2.13)

It is not difficult to observe that

S[w, r, µ](t) =





{
α−1

Φ−1(r)
|w|β

}
(t) at right-dense t,

{
w
µ

(
1 − r

Φ(Φ−1(r)+µΦ−1(w))

)}
(t) at right-scattered t.
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2. Preliminaries

The relation between (HL∆E) and (GR∆E) is following. If y(t) is a solution of

(HL∆E) with y(t)yσ(t) 6= 0 for t ∈ [t1, t2] ∩ Ia we let

w(t) =
r(t)Φ(y∆(t))

Φ(y(t))
. (2.14)

Then for t ∈ [t1, t2] ∩ Ia, w = w(t) satisfies equation (GR∆E). If t ∈ [t1, t2] ∩ Ia is

right-scattered, then from (2.10) and (GR∆E) we have

w(σ(t)) =
r(t)w(t)

Φ [Φ−1(r(t)) + µ(t)Φ−1(w(t))]
− µ(t)p(t). (2.15)

Note that (2.15) is trivially satisfied at a right-dense t. The following theorem

can be understood as a central statement of the oscillation theory for equation

(HL∆E).

Theorem 2.4 (Roundabout Theorem [33, p. 383]). The following statements are equi-

valent

(i) Every nontrivial solution of (HL∆E) has at most one generalized zero on Ia.

(ii) Equation (HL∆E) has a solution having no generalized zeros on Ia.

(iii) Equation (GR∆E) has a solution w with

{
Φ−1(r) + µΦ−1(w)

}
(t) > 0 for t ∈ Ia. (2.16)

(iv) An α-degree functional F ,

F(ξ; b, c) =

∫ c

b

{
r|ξ∆|α − p|ξσ|α

}
(t)∆t,

defined on U(b, c) =
{
ξ ∈ C1

prd(Ia) : ξ(b) = ξ(c) = 0
}

is positive definite on U ,

i.e., F(ξ) ≥ 0 for all ξ ∈ U and F(ξ) = 0 if and only if ξ = 0.

The following theorem is a consequence of the Roundabout theorem and the

Sturm type comparison theorem. The method of oscillation theory for (HL∆E),

which uses the ideas of the following theorem, is usually referred to as the Riccati

technique.

Theorem 2.5 (Riccati technique [33, p. 390]). The following statements are equivalent

(i) Equation (HL∆E) is nonoscillatory.

(ii) There is a ∈ T and a function w : Ia → R such that (2.16) holds and w(t) satisfies

(GR∆E) for t ∈ Ia.
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(iii) There is a ∈ T and a function w : Ia → R such that (2.16) holds and w(t) satisfies

w∆(t) + p(t) + S[w, r, µ](t) ≤ 0 for t ∈ Ia.

Remark 2.5. If α = 2, i.e., (HL∆E) reduces to (L∆E), then equation (GR∆E) reduces

to the Riccati dynamic equation

w∆(t) + p(t) +
w2(t)

r(t) + µ(t)w(t)
= 0 (R∆E)

and Riccati substitution (2.14) can be written in a form

w(t) =
r(t)y∆(t)

y(t)
. (2.17)

Note that oscillatory theory of equation (HL∆E) will be needed in Chapter 5,

while in Chapter 3 we will study nonoscillatory (precisely asymptotic) properties

of solution of some special cases of equation (HL∆E), resp. (L∆E). For more

information about equation (HL∆E), see [33]. In [6], we can find a detailed theory

concerning equation (L∆E).

2.4 q-calculus and theory of q-difference equations

In this short section we briefly recall some important facts. We start with some

preliminaries of q-calculus or quantum calculus, which is calculus on special lattice

or time scale T = qN0 := {qk : k ∈ N0}, q > 1 and µ(t) = (q − 1)t. First note that

the theory of q-calculus is a special case of the theory on time scales. However,

for a comfort of the reader, we recall this theory in more detail.

Similarly as in general time scale case, by an interval [a, b]q , where a, b ∈ qN0 ,

we will mean the set {t ∈ qN0 : a ≤ t ≤ b}. A symbol [a,∞)q, we will use

for an infinite interval in qN0 , i.e., [a,∞)q = {a, aq, aq2, . . . } with a ∈ qN0 . The

q-derivative of a function f : qN0 → R is defined by

Dqf(t) =
f(qt) − f(t)

(q − 1)t
.

Here are some useful rules:

(i) Dq(fg)(t) = g(qt)Dqf(t) + f(t)Dqg(t) = f(qt)Dqg(t) + g(t)Dqf(t).

(ii) Dq

(
f

g

)
(t) =

g(t)Dqf(t) − f(t)Dqg(t)

g(t)g(qt)
.

(iii) f(qt) = f(t) + (q − 1)tDqf(t).
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The proper q-integral is defined by

∫ b

a

f(t) dqt =





(q − 1)
∑

t∈[a,b)∩qN0
tf(t) if a < b

0 if a = b

(1 − q)
∑

t∈[b,a)∩qN0
tf(t) if a > b,

a, b ∈ qN0 . The improper q-integral is defined by
∫ ∞

a

f(t) dqt = lim
b→∞

∫ b

a

f(t) dqt.

For f ∈ R(qN0) (i.e., for f : qN0 → R satisfying 1 + (q − 1)tf(t) 6= 0 for all t ∈ qN0)

we get generalized exponential function

ef (t, s) =





∏
τ∈[s,t)∩qN0

[(q − 1)τf(τ) + 1] if s < t

1 if s = t

1/
∏

τ∈[t,s)∩qN0
[(q − 1)τf(τ) + 1] if s > t,

where s, t ∈ qN0 . Here are some useful properties of function ef(t, s):

(i) For f ∈ R(qN0), ef(·, t0) is a solution of the IVP

Dqy = f(t)y, y(t0) = 1, t ∈ qN0 . (IVPq)

(ii) For f ∈ R+(qN0) (i.e., for f : qN0 → R satisfying 1 + (q − 1)tf(t) > 0 for all

t ∈ qN0), we have ef(t, s) > 0 for all s, t ∈ qN0 .

(iii) If f ∈ R(qN0), then ef(t, τ)ef (τ, s) = ef(t, s) for all s, t, τ ∈ qN0 .

(iv) If f, g ∈ R(qN0), then ef (t, s)eg(t, s) = ef+g+t(q−1)fg(t, s) for all s, t ∈ qN0 .

For more details on this topic see [3, 9]. See also [6] for the calculus on time scales

which contains q-calculus.

Now we recall some basic information about second order q-difference equa-

tions. We begin with half-linear q-difference equation

Dq[r(t)Φ(Dqy(t))] + p(t)Φ(y(qt)) = 0 (HLqE)

on qN0 with q > 1, where p, r : qN0 → R with r(t) 6= 0. The linear q-difference

equation

Dq[r(t)Dqy(t)] + p(t)y(qt) = 0 (LqE)

is a special case of (HLqE) (when α = 2). Of course, equations (HLqE) and (LqE)

are the special cases of equations (HL∆E) and (L∆E), thus the theory established

in previous section holds for these two equations too. Note that asymptotic pro-

perties of equations (LqE) and (HLqE) will be studied in Chapter 4. More detailed

information about qualitative and quantitative properties of equations of type

(LqE) we can find, e.g., in [5, 6, 7].
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Regular and rapid variation on
time scales with applications to
dynamic equations 3
In following chapter we introduce the concept of regular and rapid variation on

time scales, which extends and unifies the existing continuous and discrete theo-

ries. Later, we will use the established theory in applications, concretely, we will

study asymptotic properties of solutions to half-linear (resp. linear) second order

dynamic equations on time scales. The graininess of time scale T is assumed to

be µ(t) = o(t), in some cases we will assume that the graininess is o(t) = O(t). In

Chapter 4 we will study a special time scale case T = qN0 with µ(t) = (q−1)t. The

reasons why we consider only these two cases of graininess and why we study

them separately, will be discussed in the end of this chapter in Section 3.5.

Throughout this chapter, T is assumed to be unbounded above, i.e., conside-

red on an interval of the form Ia = [a,∞) with a > 0.

3.1 Theory of regular variation on time scales

Before we give the first definition, note that in some parts of this section the con-

ditions on smoothness can be somehow relaxed. But we do not do it since our

theory focuses on a generalization in the sense of a “domain of definition” rather

than considering “badly behaving” functions. In [36] the concept of regular vari-

ation on T was introduced in the following way.

Definition 3.1. A measurable function f : T → (0,∞) is said to be regularly vary-

ing of index ϑ, ϑ ∈ R, if there exists a positive rd-continuously ∆-differentiable

function ω satisfying

f(t) ∼ Cω(t) and lim
t→∞

tω∆(t)

ω(t)
= ϑ, (3.1)

C being a positive constant; we write f ∈ RVT(ϑ). If ϑ = 0, then f is said to be

slowly varying; we write f ∈ SVT.

Using elementary properties of linear first order dynamic equations and gen-

eralized exponential functions eδ(t, s), the following representation was estab-

lished in [36].
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Theorem 3.1. A positive function f ∈ Crd(Ia) belongs to RVT(ϑ) if and only if it has a

representation

f(t) = ϕ(t)eδ(t, a), (3.2)

where ϕ ∈ Crd(Ia) is a positive function tending to a positive constant and δ ∈ R+(Ia)
satisfies limt→∞ tδ(t) = ϑ.

Now we prove the representation theorem in the following form.

Theorem 3.2 (Representation theorem). (i) Let µ(t) = o(t). It holds f ∈ RVT(ϑ) if

and only if it has a representation

f(t) = ϕ(t)tϑeη(t, a), (3.3)

where ϕ is a positive measurable function tending to a positive constant and a function

η ∈ Crd(Ia) satisfies limt→∞ tη(t) = 0. If ϑ = 0, then the condition µ(t) = o(t) can be

omitted and (3.3) coincides with representation (3.2).

(ii) Let µ(t) = o(t). It holds f ∈ RVT(ϑ) if and only if it has a representation

f(t) = ϕ(t)tϑ exp

{∫ t

a

ψ(s)

s
∆s

}
, (3.4)

where ϕ is a positive measurable function tending to a positive constant and a function

ψ ∈ Crd(Ia) satisfies limt→∞ ψ(t) = 0. If ϑ = 0, then the condition µ(t) = o(t) can be

replaced by µ(t) = O(t).

Proof. We show the implications (3.2) ⇒ (3.3) ⇒ (3.4) ⇒ (3.1).

From (3.2), f(t) ∼ C1t
ϑL(t), where C1 > 0 and L(t) = eδ(t, a)t

−ϑ. Conse-

quently,

tL∆(t)

L(t)
= tδ(t)

(
t

σ(t)

)ϑ
− ϑ

t

σ(t)

(
ξ(t)

σ(t)

)ϑ−1

= o(1)

as t → ∞, where t ≤ ξ(t) ≤ σ(t), since 1 ≤ ξ(t)/t ≤ 1 + µ(t)/t = 1 + o(1). Hence

L ∈ SVT, and so L(t) = C2eη(t, a) with C2 > 0 and limt→∞ tη(t) = 0. This implies

(3.3).

From (3.3) we have f(t) ∼ C3t
ϑ exp

{∫ t
a
ψ(s)/s∆s

}
H(t), where C3 > 0,

H(t) = eψ
t

(t, a) exp

{
−
∫ t

a

ψ(s)

s
∆s

}
,

and limt→∞ ψ(t) = 0. We show that limt→∞H(t) = 1. We have

eψ
t

(t, a) = exp

{∫ t

a

ξµ(s)
ψ(s)

s
∆s

}
,
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where

ξµ(t)

(
ψ(t)

t

)
=

{
ln (µ(t)ψ(t)/t+ 1)/µ(t) for µ(t) > 0

ψ(t)/t for µ(t) = 0.

In view of the equalities limx→0 ln(x+ 1)/x = 1 and limt→∞ µ(t)ψ(t)/t = 0, we

get ξµ(t) (ψ(t)/t) ∼ ψ(t)/t. Consequently, limt→∞H(t) = 1, and so f has represen-

tation (3.4).

From (3.4) we have f(t) = ϕ(t)ω(t), where ω(t) = tϑ exp
{∫ t

a
ψ(s)/s∆s

}
with

limt→∞ ψ(t) = 0. Then, at a right scattered t,

tω∆(t)

ω(t)
=

(tϑ)∆

tϑ−1
+

(
σ(t)

t

)ϑ
exp(µ(t)ψ(t)/t) − 1

µ(t)ψ(t)/t
ψ(t),

while, at a right dense t, tω∆(t)/ω(t) = ϑ + ψ(t). Thanks to µ(t) = o(t) (resp.

µ(t) = O(t) for ϑ = 0) we get limt→∞ tω∆/ω(t) = ϑ, and so f satisfies (3.1).

Remark 3.1. From the last theorem it is clear that f ∈ RVT(ϑ) if and only if f(t) =

tϑL(t), where L ∈ SVT.

Next we prove that Definition 3.1 implies the following Karamata type defi-

nition.

Definition 3.2 (Karamata type definition). A measurable function f : T → (0,∞)

satisfying

lim
t→∞

f(τ(λt))

f(t)
= λϑ (3.5)

uniformly on each compact λ-set in (0,∞), where τ : R → T is defined as τ(t) =

max{s ∈ T : s ≤ t}, is said to be regularly varying of index ϑ (ϑ ∈ R) in the sense of

Karamata. We write f ∈ KRVT(ϑ).

Theorem 3.3. Let µ(t) = o(t). If f ∈ RVT(ϑ), then f ∈ KRVT(ϑ). If ϑ = 0, then the

condition µ(t) = o(t) can be replaced by µ(t) = O(t).

Proof. We want to show that (3.5) holds uniformly for λ from a compact subin-

terval [c, d] of (0,∞). We confine our attention to λ ≥ 1 (i.e., 1 ≤ c < d); the case

λ ∈ (0, 1) being handled similarly. From Theorem 3.2 we have (3.4). Hence,

f(τ(λt))

f(t)
=
ϕ(τ(λt))

ϕ(t)

(
τ(λt)

t

)ϑ
exp

{∫ τ(λt)

t

ψ(s)

s
∆s

}
. (3.6)

Clearly, ϕ(τ(λt))/ϕ(t) → 1 as t → ∞ uniformly for λ ∈ [c, d]. To prove that

(τ(λt)/t)ϑ → λϑ as t → ∞ uniformly on the λ-set [c, d], it is sufficient to show

that supλ∈[c,d] |λt/τ(λt) − 1| → 0 as t → ∞. First note that for x ∈ R, x ≥ a,
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3. Regular and rapid variation on time scales with applications to dynamic equations

τ(x) ≤ x ≤ σ(τ(x)), and thus 1 ≤ x/τ(x) ≤ 1 +µ(τ(x))/τ(x) = o(1) as x→ ∞. We

have

sup
λ∈[c,d]

∣∣∣∣
λt

τ(λt)
− 1

∣∣∣∣ ≤ sup
λ∈[c,d]

(
σ(τ(λt))

τ(λt)
− 1

)
≤ sup

λ∈[c,d]

µ(τ(λt))

τ(λt)
≤ µ(τ(Λ(t)t))

τ(ct)

=
µ(τ(Λ(t)t))

τ(Λ(t)t)
· τ(Λ(t)t)

τ(ct)
≤ µ(τ(Λ(t)t))

τ(Λ(t)t)
· τ(dt)
τ(ct)

= o(1)

as t→ ∞, where Λ : T → [c, d] is a suitable function. The uniform convergence to

1 of the last term in (3.6) follows from

sup
λ∈[c,d]

∣∣∣∣∣

∫ τ(λt)

t

ψ(s)

s
∆s

∣∣∣∣∣ ≤ sup
λ∈[c,d]

∫ τ(λt)

t

|ψ(s)|
s

∆s ≤
∫ τ(dt)

t

|ψ(s)|
s

∆s

≤ (τ(dt) − t) sup
s≥t

|ψ(s)|
s

≤ t(d− 1) sup
s≥t

|ψ(s)|
s

≤ (d− 1) sup
s≥t

|ψ(s)| = o(1)

as t→ ∞.

Before showing that Karamata type definition makes an embedding possible,

and, consequently, implies Definition 3.1, we prove a useful lemma.

Lemma 3.1. Let µ(t) = O(t). If f ∈ KRVT(ϑ), then fσ(t)/f(t) → 1 as t→ ∞.

Proof. If µ(t) = O(t), then M ∈ N exists such that 0 ≤ µ(t)/t ≤M − 1 for all t ∈ T.

Hence 1 ≤ (t+ µ(t))/t ≤M and thus

1 ≤ σ(t)/t ≤M for all t ∈ T (3.7)

and

1/M ≤
√
t/σ(t) ≤ 1 for all t ∈ T. (3.8)

We distinguish two cases.

(i) ϑ = 0. By Definition 3.2

lim
t→∞

f(τ(Λ(t)t))/f(t) = 1.

where Λ : T → R is a bounded function. Thanks to (3.7) we may take the function

Λ(t) = σ(t)/t. Then we get

1 = lim
t→∞

f(τ(tσ(t)/t))

f(t)
= lim

t→∞

fσ(t)

f(t)
.
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(ii) ϑ 6= 0. From Definition 3.2 we have limt→∞ f(τ(t/λ))/f(t) = (1/λ)ϑ for all

λ > 0 and thus we get

lim
t→∞

f(τ(τ(λt)/λ))

f(τ(λt))
=

(
1

λ

)ϑ
for all λ > 0. (3.9)

Multiplying (3.5) by (3.9) and shifting t to σ(t) we obtain

lim
t→∞

f(τ(τ(λσ(t))/λ))

fσ(t)
= 1 for all λ > 0.

Hence,

lim
t→∞

f(τ(τ(Λ(t)σ(t))/Λ(t)))

fσ(t)
= 1. (3.10)

where Λ : T → R is a bounded function. Thanks to (3.8), we may take the function

Λ(t) =
√
t/σ(t). Since

τ

(
τ(Λ(t)σ(t))

Λ(t)

)
= τ



τ
(√

t/σ(t)σ(t)
)

√
t/σ(t)


 = τ



τ
(√

tσ(t)
)

√
t/σ(t)




= τ

(
t

√
σ(t)

t

)
= τ

(√
tσ(t)

)
= t

we can rewrite (3.10) to limt→∞ f(t)/fσ(t) = 1.

Remark 3.2. If f ∈ RVT(ϑ), then the property limt→∞ fσ(t)/f(t) = 1 is almost

immediate, however, only for µ(t) = o(t). Indeed, in view of (3.4) f(t) = ϕ(t)ω(t),

where limt→∞ ϕ(t) = C > 0 and ω ∈ C1
rd(T). Thanks to

ωσ(t)

ω(t)
=
ω(t) + µ(t)ω∆(t)

ω(t)
= 1 +

µ(t)

t
· tω

∆(t)

ω(t)
,

we have limt→∞ fσ(t)/f(t) = limt→∞ ωσ(t)/ω(t) = 1 + 0 · ϑ = 1.

Theorem 3.4 (Embedding theorem). Assume that T satisfies
{

every large t ∈ T is isolated and µ is either bounded

or eventually nondecreasing with µ(t) = O(t) as t→ ∞.
(3.11)

If f ∈ KRVT(ϑ), then the function R : R → R defined by R(x) := f(τ(x)) satisfies

R ∈ RVR(ϑ).

Proof. We can write

lim
x→∞

R(λx)

R(x)
= lim

x→∞

f(τ(λx))

f(τ(x))
· f(τ(λτ(x)))

f(τ(λτ(x)))
= lim

x→∞

f(τ(λτ(x)))

f(τ(x))
· f(τ(λx))

f(τ(λτ(x)))

= λϑ lim
x→∞

f(τ(λx))

f(τ(λτ(x)))
.
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3. Regular and rapid variation on time scales with applications to dynamic equations

The theorem will be proved, if we show that

lim
x→∞

f(τ(λx))

f(τ(λτ(x)))
= 1 for all λ > 0. (3.12)

Due to [4, Theorem 1.4.3] it is enough to show that (3.12) holds for all λ in a set

of positive measure. Next we show that for every λ from a suitably chosen set of

positive measure there exists A = A(λ) ∈ R such that card ( τ(λτ(x)), τ(λx) ) ≤ A

for large x ∈ R. If we show it, we can apply k-times (k ≤ A) Lemma 3.2 (with the

use of an obvious transitivity property) and hereby relation (3.12) will be verified.

(i) Let µ(t) < H (H ∈ R) for large t. Then x− τ(x) < H and λx− λτ(x) < λH

for all λ > 0, hence τ(λx)− τ(λτ(x)) < (λ+ 1)H <∞ for large x. Therefore, there

exists A ∈ R such that card ( τ(λτ(x)), τ(λx) ) ≤ A for large x and λ > 0.

(ii) Suppose that limt→∞ µ(t) = ∞ and the function µ(t) is nondecreasing for

large t. Let λ > N , where N ∈ N satisfies σ(τ(x))/τ(x) ≤ N for all x (this N exists,

see (3.7) ). Hence σ(τ(x))/τ(x) ≤ λ and therefore, x < λτ(x) for all x ∈ R. Using

this inequality we can write

τ(λx) ≤ τ(λσ(τ(x))) = τ(λτ(x) + λµ(τ(x))) ≤ λτ(x) + λµ(τ(x))

≤ τ(λτ(x)) + µ(τ(λτ(x))) + λµ(τ(x))

≤ τ(λτ(x)) + µ(τ(λτ(x))) + λµ(τ(λτ(x)))

= τ(λτ(x)) + (λ+ 1)µ(τ(λτ(x))).

Hence
(
τ(λτ(x)) , τ(λx)

)
⊆
(
τ(λτ(x)) , τ(λτ(x)) + (λ+ 1)µ(τ(λτ(x)))

)

and thus for x̃ ∈ R, x̃ := τ(λτ(x)), we get

( τ(λτ(x)) , τ(λx) ) ⊆ ( x̃ , x̃+ (λ+ 1)µ(x̃) ).

It is easy to see that for large x̃ there is card ( x̃ , x̃+ (λ+ 1)µ(x̃) ) < [λ+ 1] (where

[λ+ 1] denotes the integer part of number λ+ 1), because the graininess at every

point σ(t) is greater (or the same) than the graininess at point t (for large t).

Later (in this section) we give comments to additional condition (3.11) on T. In

Section 3.5 we will discuss additional conditions, like µ(t) = o(t), or µ(t) = O(t).

The next result can be understood as a converse of the previous one, in view

of Theorem 3.3. Condition (3.11) does not need to be assumed.

Theorem 3.5. Let µ(t) = o(t). If f : T → R and f(t) = R(t) for t ∈ T, where

R ∈ RVR(ϑ), then f ∈ RVT(ϑ). If ϑ = 0, then the condition µ(t) = o(t) can be replaced

by µ(t) = O(t).
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3. Regular and rapid variation on time scales with applications to dynamic equations

Proof. If R ∈ RVR(ϑ), then we have R(x) = ϕ(x)xϑ exp
{∫ x

a
ψ(s)/s ds

}
, where

limx→∞ ϕ(x) = C > 0, limx→∞ ψ(x) = 0, ψ may be taken as continuous, and a ∈ T,

see e.g. [17]. Then, in view of (3.4), we get for t ∈ T, t ≥ a, f(t) = ϕ(t)tϑω(t),

where ω(t) = exp
{∫ t

a
ψ(s)/s ds

}
. Further ω∆(t) = exp(η(t))G(t), where

G(t) = lim
u→t

∫ σ(u)

t
ψ(s)/s ds

(σ(u) − t)

and
∫ t

a

ψ(s)

s
ds−

∫ σ(t)

t

|ψ(s)|
s

ds ≤ η(t) ≤
∫ t

a

ψ(s)

s
ds+

∫ σ(t)

t

|ψ(s)|
s

ds.

If t is right-scattered, then using the Mean Value Theorem,

G(t) =
1

µ(t)

∫ σ(t)

t

ψ(s)

s
ds =

ψ(ξ(t))

ξ(t)
,

where t ≤ ξ(t) ≤ σ(t). If t is right-dense, then the L’Hospital rule yields G(t) =

ψ(t)/t. Hence,
tω∆(t)

ω(t)
=
tψ(ξ(t))

ξ(t)
· exp(η(t))

exp
{∫ t

a
ψ(s)/s ds

} .

Since 1 ≤ ξ(t)/t ≤ 1 + µ(t)/t, we have that t/ξ(t) is bounded. Moreover,

∫ σ(t)

t

|ψ(s)|
s

ds = |ψ(ζ(t))| ln(1 + µ(t)/t) = o(1),

where t ≤ ζ(t) ≤ σ(t). Consequently, limt→∞ tω∆(t)/ω(t) = 0, and so ω ∈ SV .

Hence we have f ∈ RV(ϑ), in view of Theorem 3.2.

Remark 3.3. In the last proof, we may proceed in an alternative way, where we

come to the regularly varying of index ϑ function f , which is represented by

f(t) = ϕ(t)tϑ exp

{∫ t

a

ψ̃(s)

s
∆s

}

with

ψ̃(t) = lim
u→t

t

σ(u) − t

∫ σ(u)

t

ψ(s)

s
ds = o(1).

Theorems 3.3, 3.4, and 3.5 imply the following equivalence between Defini-

tion 3.1 and Definition 3.2.

Theorem 3.6. Let T satisfy (3.11) with µ(t) = o(t). Then f ∈ RVT(ϑ) if and only if

f ∈ KRVT(ϑ). If ϑ = 0, then the condition µ(t) = o(t) can be replaced by µ(t) = O(t).
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3. Regular and rapid variation on time scales with applications to dynamic equations

Remark 3.4. Note that Theorem 3.4 (and hereby the if part of Theorem 3.6) re-

quires an additional condition on the graininess, namely (3.11). This condition is

not too restrictive regarding to practical purposes. Indeed, e.g., T = hN = {hn :

n ∈ N} with h > 0, or T = {Hn : n ∈ N} with H0 = 0, Hn =
∑n

k=1 1/k for

n ∈ N, or T = Nκ
0 = {nκ : n ∈ N0} with 0 < κ < 1 all have a bounded graini-

ness, while T = N
χ
0 with χ > 1 has an unbounded increasing graininess satisfying

µ(t) = o(t). On the other hand, we conjecture that (3.11) is not needed in Theo-

rems 3.4 and 3.6, and can be simply relaxed to a natural condition µ(t) = o(t)

(resp. µ(t) = O(t)). Another improvement which we believe could work is an

omission of the uniformity in Definition 3.2.

Now we introduce the concept of a normalized regular variation on time

scales. For the concept of normalized regular variation in the continuous case

see, e.g., [4, 23]. The concept of normalized regularly varying sequences was in-

troduced in [29].

Definition 3.3. An rd-continuously ∆-differentiable function function f : T →
(0,∞) is said to be normalized regularly varying of index ϑ, ϑ ∈ R, if it satisfies

lim
t→∞

tf∆(t)

f(t)
= ϑ; (3.13)

we write f ∈ NRVT(ϑ). If ϑ = 0, then f is said to be normalized slowly varying; we

write f ∈ NSVT.

Remark 3.5. Note that every normalized regularly varying function f is regularly

varying, but the converse proposition is not true even for f ∈ C1
rd(T). Take, e.g.,

sequence fk = kϑ(1 + (−1)k/k) (ϑ ∈ R) motivated by example given in [8, p. 96].

Then f ∈ RVT(ϑ), but f 6∈ NRVT(ϑ) because of limit (3.13) does not exist. Indeed,

lim supk→∞ k∆fk/fk = ϑ+ 2, while lim infk→∞ k∆fk/fk = ϑ− 2.

In the end of this section we list an elementary properties of regularly (resp.

normalized regularly) varying functions.

Proposition 3.1. Let µ(t) = o(t), resp. µ(t) = O(t) if the index of regular variation is

nonzero resp. zero. Then regularly (resp. normalized regularly) varying functions on T

have the following properties.

(i) For f ∈ NRVT(ϑ) in representation formulae (3.2), (3.3), and (3.4), it holds

ϕ(t) ≡ const> 0. Moreover, f ∈ NRVT(ϑ) if and only if f(t) = tϑL(t), where

L ∈ NSVT.

(ii) Let f ∈ RVT(ϑ). Then limt→∞ ln f(t)/ ln t = ϑ. This implies limt→∞ f(t) = 0 if

ϑ < 0 and limt→∞ f(t) = ∞ if ϑ > 0.
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3. Regular and rapid variation on time scales with applications to dynamic equations

(iii) Let f ∈ RVT(ϑ). Then limt→∞ f(t)/tϑ−ε = ∞ and limt→∞ f(t)/tϑ+ε = 0 for

every ε > 0.

(iv) Let f ∈ RVT(ϑ1) and g ∈ RVT(ϑ2). Then fg ∈ RVT(ϑ1+ϑ2), 1/f ∈ RVT(−ϑ1),

and fγ ∈ RVT(γϑ). The same holds if RVT is replaced by NRVT.

(v) Let f ∈ RVT(ϑ). If f is convex, then it is decreasing provided ϑ ≤ 0, and it is

increasing provided ϑ > 0. A concave f is increasing. If f ∈ NRVT(ϑ), then it is

decreasing provided ϑ < 0 and it is increasing provided ϑ > 0.

(vi) Let f ∈ RVT(ϑ), ϑ ∈ R, be of the class C1
rd. If f is convex or concave, then

f ∈ NRVT(ϑ).

(vii) (Zygmund type characterization) Let µ(t) = o(t). Let f be a positive function with

f ∈ C1
rd. Then f ∈ NRVT(ϑ) if and only if f(t)/tγ is eventually increasing for

each γ < ϑ and f(t)/tζ is eventually decreasing for each ζ > ϑ.

Proof. (i) We know that f ∈ RVT(ϑ) can be written as f(t) = tϑL(t), where L ∈
SVT. The statement follows from

tf∆(t)

f(t)
=
t(tϑ)∆

tϑ
+

(
σ(t)

t

)ϑ
tL∆(t)

L(t)

since for ϑ 6= 0 we have t(tϑ)∆/tϑ → ϑ and (σ(t)/t)ϑ → 1 as t→ ∞.

(ii) From representation (3.4) we have

ln f(t)

ln t
=

lnϕ(t)

ln t
+ ϑ+

∫ t
a
ψ(s)/s∆s

ln t
.

We claim that the last term tends to zero as t→ ∞. This follows from the fact that

ψ(t) → 0 and ln t can be written as
∫ t

(1+ |O(1)|)/s∆s. Indeed, at a right-scattered

t we have

(ln t)∆ =
1

t
· ln(1 + µ(t)/t)

µ(t)/t
.

(iii) This follows from representation (3.3) and part (ii) of this proposition.

(iv) This follows from representation (3.4).

(v) First note that the convexity of f implies clearly its eventual monotonicity.

Similarly, the concavity implies that f is increasing; if f were decreasing then it

cannot be eventually positive. Next we show that a convex f ∈ SVT is decreasing.

By a contradiction assume that f is increasing. Thanks to convexity, we then have

f(t) ≥ Mt for large t and for some M > 0. But now f cannot be slowly varying

by (iii) of this proposition. Similarly we proceed when ϑ < 0 and f is convex. If f

is convex with ϑ > 0, then it tends to ∞ and hence must be increasing. The claim

for a normalized function follows from (i) of this proposition.
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3. Regular and rapid variation on time scales with applications to dynamic equations

(vi) Let f ∈ RV(ϑ). By (v) of this proposition, one of the conditions must

eventually hold (a) f is convex, decreasing, or (b) f is concave, increasing, or (c)

f is convex, increasing. Let (a) holds, i.e. f∆ is nonpositive and nondecreasing.

Then, from f ∈ RV(ϑ) we have f ∈ KRVT(ϑ) by Theorem 3.3 and

lim
t→∞

f(τ(λt))

f(t)
= λϑ for all λ > 0 (3.14)

Let λ ∈ (0, 1). Since −f∆ is nonnegative and nonincreasing, we have

−f(t) + f(τ(λt)) = −
∫ t

τ(λt)

f∆(s) ∆s ≥ −f∆(t)[t− τ(λt)] ≥ −f∆(t)(1 − λ)t

for large t. This estimation and (3.14) imply

lim sup
t→∞

−tf∆(t)

f(t)
≤ lim sup

t→∞

1

1 − λ

(
f(τ(λt))

f(t)
− 1

)
=
λϑ − 1

1 − λ
,

which holds for every λ ∈ (0, 1). Taking now the limit as λ→ 1−, we obtain

lim sup
t→∞

−tf∆(t)

f(t)
≤ lim

λ→1−

λϑ − 1

1 − λ
= −ϑ. (3.15)

In view of (3.15) for f ∈ SV , we may now restrict ourselves to ϑ 6= 0. We have

−f(t) + f(τ(λt)) = −
∫ t

τ(λt)

f∆(s) ∆s ≤ −f∆(τ(λt))(t− τ(λt)).

This estimation, (3.14), and λ ∈ (0, 1) imply

λϑ lim inf
t→∞

−tf∆(t)

f(t)
= lim inf

t→∞

f(τ(λt))

f(t)
· −τ(λt)f

∆(τ(λt))

f(τ(λt))

≤ lim inf
t→∞

τ(λt)[f(τ(λt))]

f(t)[t− τ(λt)]

= lim inf
t→∞

τ(λt)

t− τ(λt)

(
f(τ(λt))

f(t)
− 1

)
.

(3.16)

Since for x ∈ R, x ≥ a,

τ(x) ≤ x ≤ σ(τ(x)) = τ(x) + µ(τ(x)),

we have

1 ≤ x

τ(x)
≤ 1 +

µ(τ(x))

τ(x)
,

and so limx→∞(x/τ(x)) = 1. Consequently, in view of (3.14) and (3.16),

λϑ lim inf
t→∞

−tf∆(t)

f(t)
≥ lim inf

t→∞

λ

λt/τ(λt) − λ

(
f(τ(λt))

f(t)
− 1

)
=

λ

1 − λ
(λϑ − 1)
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for every λ ∈ (0, 1). Hence,

lim inf
t→∞

−tf∆(t)

f(t)
≥ lim

λ→1−

λϑ − 1

λϑ−1 − λϑ
= −ϑ. (3.17)

From (3.15), and (3.17), we obtain limt→∞ tf∆(t)/f(t) = ϑ, ϑ ∈ R, which implies

f ∈ NRV(ϑ). Similarly, we can prove case (b). To prove (c) we use arguments

also similar to (a). We use again that f satisfies (3.14). Now we take λ > 1. Using

the equality

f(τ(λt)) − f(t) =

∫ τ(λt)

t

f∆(s) ∆s,

monotonicity properties of f∆, and (3.14) it is not difficult to show that

lim sup
t→∞

tf∆(t)

f(t)
≤ lim

λ→1+

λϑ − 1

λ− 1
= ϑ

and

lim inf
t→∞

tf∆(t)

f(t)
≥ lim

λ→1+

1 − λϑ

1 − λ
= ϑ.

(vii) By (iv) and (v) of this proposition f(t)/tγ ∈ NRVT(ϑ − γ) is increasing

and f(t)/tζ ∈ NRVT(ϑ− ζ) is decreasing. Conversely, from (f(t)/tγ)∆ > 0 we get

tf∆(t)

f(t)
>

(tγ)∆

tγ−1
= γ(1 + o(1)).

Similarly, tf∆(t)/f(t) < ζ(1 + o(1)). The statement follows by choosing γ and ζ

arbitrarily close to ϑ.

3.2 Theory of rapid variation on time scales

In this section we establish the theory of rapid variation on time scales. Through-

out this section, µ(t) = o(t) is assumed. This condition will be discussed later, in

Section 3.5. As we show, if we want to obtain a reasonable theory, we cannot omit

this additional requirement on the graininess.

Definition 3.4. Let c, d be the real constants such that 0 < c ≤ d and ϑ ∈ R. A

measurable function f : T → (0,∞) is said to be rapidly varying of index ∞, resp.

−∞ if there exist function ϕ : T → (0,∞) satisfying ϕ ∈ RVT(ϑ) or c ≤ ϕ(t) ≤ d

for large t and a positive rd-continuously ∆-differentiable function ω such that

f(t) = ϕ(t)ω(t)

and

lim
t→∞

tω∆(t)

ω(t)
= ∞, resp. lim

t→∞

tω∆(t)

ω(t)
= −∞; (3.18)
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we write f ∈ RPVT(∞), resp. f ∈ RPVT(−∞). Moreover, the function ω is said

to be normalized rapidly varying of index ∞, resp. normalized rapidly varying of index

−∞; we write ω ∈ NRPVT(∞), resp. ω ∈ NRPVT(−∞).

Now we prove some important properties of (normalized) rapidly varying

functions which will be needed later.

Proposition 3.2. (i) It holds f ∈ RPVT(∞) if and only if 1/f ∈ RPVT(−∞).

(ii) Let f ∈ NRPVT(∞). Then for every ϑ ∈ [0,∞) the function f(t)/tϑ is increasing

for large t and limt→∞ f(t)/tϑ = ∞.

(iii) Let f ∈ NRPVT(−∞). Then for every ϑ ∈ [0,∞) the function f(t)tϑ is decreas-

ing for large t and limt→∞ f(t)tϑ = 0.

(iv) f ∈ NRPVT(∞) implies f∆(t) > 0 for large t and f(t) is increasing for large t,

moreover f and f∆ are tending to ∞.

(v) f ∈ NRPVT(−∞) implies f∆(t) < 0 for large t and f(t) is decreasing for large

t, moreover f is tending to 0. If f is convex for large t or if there exists h > 0 such

that µ(t) > h for large t, then f∆ is tending to 0.

Proof. (i) Let f = ϕω, f ∈ RPVT(∞). First, we show that ω ∈ NRPVT(∞) ⇔
1/ω ∈ NRPVT(−∞). Due to (3.18), ω∆(t) > 0 for large t. Therefore,

ω ∈ NRPVT(∞) ⇔ lim
t→∞

ω(t)

tω∆(t)
= 0 ⇔ lim

t→∞

ωσ(t) − µ(t)ω∆(t)

tω∆(t)
= 0

⇔ lim
t→∞

(
ωσ(t)

tω∆(t)
− µ(t)

t

)
= 0 ⇔ lim

t→∞

ωσ(t)

tω∆(t)
= 0

⇔ lim
t→∞

tω∆(t)

ωσ(t)
= ∞ ⇔ lim

t→∞

(
t

1/ω(t)
· −ω∆(t)

ω(t)ωσ(t)

)
= −∞

⇔ lim
t→∞

t(1/ω(t))∆

1/ω(t)
= −∞ ⇔ 1

ω
∈ NRPVT(−∞).

Now, since 1/ϕ ∈ RVT(−ϑ), see part (iv) of Proposition 3.1, or 0 < 1/d ≤ 1/ϕ(t) ≤
1/c for large t, we have 1/f ∈ RPVT(−∞). Similarly, 1/f ∈ RPVT(−∞) implies

f ∈ RPVT(∞).

(ii) Let f ∈ NRPVT(∞) and ϑ ∈ [0,∞). Then there exists a function ξ(t),

t ≤ ξ(t) ≤ σ(t), such that

(
f(t)

tϑ

)∆

=
f∆(t)tϑ − f(t)(tϑ)∆

tϑ(σ(t))ϑ
=
f∆(t)tϑ − ϑf(t)(ξ(t))ϑ−1

tϑ(σ(t))ϑ
. (3.19)

In view of
tf∆(t)

f(t)
> ϑ

(
ξ(t)

t

)ϑ−1

for large t
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(indeed, tf∆(t)/f(t) → ∞ as t→ ∞ and ξ(t)/t→ 1 as t→ ∞), which is equivalent

to

f∆(t)tϑ > ϑf(t)(ξ(t))ϑ−1 for large t,

(3.19) is positive for large t and hence f(t)/tϑ is increasing for large t. By a con-

tradiction, suppose that limt→∞ f(t)/tϑ = L, L ∈ (0,∞) (note that a limit of this

function exists for all ϑ ≥ 0 as a finite or infinite number, because the function

f(t)/tϑ is increasing). Then f(t) ∼ Ltϑ and hence f ∈ RVT(ϑ), which is contradic-

tion with f ∈ NRPVT(∞). Therefore, limt→∞ f(t)/tϑ = ∞.

(iii) It follows from (i) and (ii).

(iv) Let f ∈ NRPVT(∞). If we take ϑ = 0 in (ii), we get f(t) is increasing

(thus f∆(t) > 0) for large t and limt→∞ f(t) = ∞. To prove that limt→∞ f∆(t) =

∞, it is enough to show that lim inft→∞ f∆(t) = ∞. We know that f∆(t) > 0.

Assume that lim inft→∞ f∆(t) = c, c > 0. Then, in view of limt→∞ t/f(t) = 0

(which follows from (ii) ), lim inft→∞ tf∆(t)/f(t) = 0, contradiction with (3.18). So

lim inft→∞ f∆(t) = ∞ and hence limt→∞ f∆(t) = ∞.

(v) Analogously as in case (iv), we get (by using (iii) for ϑ = 0) that f(t) is

decreasing (thus f∆(t) < 0) for large t and limt→∞ f(t) = 0. Let f is convex for

large t. Then f∆(t) increases for large t and limt→∞ f∆(t) exists as a nonpositive

number. By a contradiction, assume that limt→∞ f∆(t) = k < 0. Hence, f∆(t) ≤ k

for large t. By integration of last inequality from t0 to t (where t0 ∈ T is sufficiently

large) we get f(t) ≤ kt+ q (q = kt0 − f(t0)) for large t. Hence, f(t) < 0 for large t,

contradiction. Let (for large t) µ(t) be bounded from below by a positive constant

h. Then in a view that f(t) is decreasing for large t

0 > f∆(t) =
fσ(t) − f(t)

µ(t)
>
fσ(t) − f(t)

h
for large t. (3.20)

If t→ ∞ in (3.20), we get (by using limt→∞ f(t) = 0) limt→∞((fσ(t)− f(t))/h) = 0,

hence limt→∞ f∆(t) = 0.

Remark 3.6. (i) From the above proposition it is easy to see that the function

f(t) = at with a > 1 is a typical representative of the class RPVT(∞), while

the function f(t) = at with a ∈ (0, 1) is a typical representative of the class

RPVT(−∞). Of course, as we can see also from Definition 3.4, these classes are

much wider. The rapidly varying function can be understood like a product of

an exponential function and a function, which is regularly varying or bounded.

However, the exact representation is not known for now. We conjecture that it

could be somewhere near to this one: for f ∈ RPVT(∞), resp. f ∈ RPVT(−∞),

f(t) = ϕ(t)ag(t) for a > 1, (3.21)
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resp.

f(t) = ϕ(t)ag(t) for a ∈ (0, 1), (3.22)

where ϕ is a positive measurable function defined as in Definition 3.4 and g(t) ≥
h(t), h ∈ RVT(ϑ) with ϑ > 0. Observe that this “representation” is sufficiently

wide and includes many various rapidly varying functions, e.g., (sin(t) + b)at,

ln(t)at, tγat, at
ϑ

and ab
t

with a ∈ (0, 1) ∪ (1,∞), b > 1, γ ∈ (−∞,∞) and ϑ > 0.

The case a ∈ (0, 1) stands for f ∈ RPVT(−∞), while the case a ∈ (1,∞) stands

for f ∈ RPVT(∞).

(ii) Case (ii), resp. (iii) (and of course (iv), resp. (v) ) of the previous propo-

sition does not hold generally for f ∈ RPVT(∞), resp. f ∈ RPVT(−∞). It is

enough to take, e.g., a function f(t) = at−2 sin t with a > 1, resp. f(t) = at−2 sin t

with a < 1. Note that f(t) ∈ RPVT(±∞) in view of at−2 sin t = a−2 sin tat with

bounded a−2 sin t.

(iii) The assumption of convexity or existence h > 0 in the previous propo-

sition in part (v) (unlike (iv) ) is important, because without this condition only

lim supt→∞ f∆(t) = 0 holds, as can we see in the following example. Let n ∈ N

and consider function f defined on the discrete time scale T = N∪ {n+ (1/2)n+2}
such that

f(t) =

{(
1
2

)t
for t = n

3
4

(
1
2

)t
for t = n +

(
1
2

)n+2
.

Then f(t) ∈ NRPVT(−∞), lim inft→∞ f∆(t) = −1 and lim supt→∞ f∆(t) = 0.

Now we introduce Karamata type definition of rapid variation , see (2.4) - (2.7)

and (3.5).

Definition 3.5 (Karamata type definition). Let τ : R → T be defined as τ(t) =

max{s ∈ T : s ≤ t}. A measurable function f : T → (0,∞) satisfying

lim
t→∞

f(τ(λt))

f(t)
=

{
∞ for λ > 1

0 for 0 < λ < 1,
(3.23)

is said to be rapidly varying of index ∞ in the sense of Karamata. We write f ∈
KRPVT(∞). A measurable function f : T → (0,∞) satisfying

lim
t→∞

f(τ(λt))

f(t)
=

{
0 for λ > 1

∞ for 0 < λ < 1,
(3.24)

is said to be rapidly varying of index −∞ in the sense of Karamata. We write f ∈
KRPVT(−∞).

Note that the classes KRPVT(∞) and KRPVT(−∞) can be described simi-

larly as the classes RPVT(∞) and RPVT(−∞), see part (i) of Remark 3.6. Now
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we prove some properties of rapidly varying functions in the sense of Karamata

which will be needed later.

Proposition 3.3. (I) f ∈ KRPVT(∞) if and only if 1/f ∈ KRPVT(−∞).

(II) Let f : T → (0,∞) be a measurable function, monotone for large t. Then

(i) f ∈ KRPVT(∞) implies f is increasing for large t and lim
t→∞

f(t) = ∞.

(ii) f ∈ KRPVT(−∞) implies f is decreasing for large t and lim
t→∞

f(t) = 0.

(iii) lim
t→∞

f(τ(λt))

f(t)
= ∞ (λ > 1) implies f ∈ KRPVT(∞).

(iv) lim
t→∞

f(τ(λt))

f(t)
= 0 (λ > 1) implies f ∈ KRPVT(−∞).

Proof. (I) We have

f ∈ KRPVT(∞) ⇔ lim
t→∞

f(τ(λt))

f(t)
=

{
∞ for λ > 1

0 for 0 < λ < 1
⇔

⇔ lim
t→∞

1
f(τ(λt))

1
f(t)

=

{
0 for λ > 1

∞ for 0 < λ < 1
⇔ 1

f
∈ KRPVT(−∞).

(II) (i) Let λ > 1 and limt→∞ f(τ(λt))/f(t) = ∞ hold. Suppose that f(t) is nonin-

creasing for large t. Then lim supt→∞ f(τ(λt))/f(t) ≤ 1, contradiction. Similarly, if

we suppose limt→∞ f(t) = c <∞, we get limt→∞ f(τ(λt))/f(t) = 1, contradiction.

(ii) Let λ > 1 and limt→∞ f(τ(λt))/f(t) = 0 hold. Suppose that f(t) is nonde-

creasing for large t. Then lim inft→∞ f(τ(λt))/f(t) ≥ 1, contradiction. Similarly, if

we suppose limt→∞ f(t) = c > 0, we get limt→∞ f(τ(λt))/f(t) = 1, contradiction.

(iii) Let λ > 1 and limt→∞ f(τ(λt))/f(t) = ∞ hold. From (i) we know that f(t)

is increasing for large t. Therefore,

∞ = lim
t→∞

f(τ(λτ( t
λ
)))

f(τ( t
λ
))

≤ lim
t→∞

f(t)

f(τ( 1
λ
t))

(due to f(τ(λτ( t
λ
))) ≤ f(t)). Hence, limt→∞ f(t)/f(τ(λt)) = ∞ for 0 < λ < 1 and

thus limt→∞ f(τ(λt))/f(t) = 0 for 0 < λ < 1. Therefore, f ∈ KRPVT(∞).

(iv) Let λ > 1 and limt→∞ f(τ(λt))/f(t) = 0 hold. From (ii) we know that f(t)

is decreasing for large t. Therefore,

0 = lim
t→∞

f(τ(λτ( t
λ
)))

f(τ( t
λ
))

≥ lim
t→∞

f(t)

f(τ( 1
λ
t))

≥ 0

(due to f(τ(λτ( t
λ
))) ≥ f(t)). Hence, limt→∞ f(t)/f(τ(λt)) = 0 for 0 < λ < 1 and

thus limt→∞ f(τ(λt))/f(t) = ∞ for 0 < λ < 1. Therefore, f ∈ KRPVT(−∞).
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Remark 3.7. In view of (iii) and (iv) of part (II), we can naturally ask, whether the

following condition

lim
t→∞

f(τ(λt))

f(t)
= ∞ (resp. 0) λ > 1 ⇔ lim

t→∞

f(τ(λt))

f(t)
= 0 (resp. ∞) λ ∈ (0, 1)

holds as in the cases T = R and T = Z. We conjecture that if f is positive and

monotone, then the condition holds. However, we are able to prove a missing

implication (similarly as in the proof of Lemma 3.2) only on the assumption that

f be a rd-continuously differentiable with f∆(t) increases for large t.

In the end of this section we answer a naturally question, whether Defini-

tion 3.5 is equivalent to Definition 3.4.

Lemma 3.2. Let f be a positive rd-continuously differentiable function and let f∆(t) be

increasing for large t. Then

(i) f ∈ KRPVT(∞) if and only if f ∈ RPVT(∞) if and only if f ∈ NRPVT(∞).

(ii) f ∈ KRPVT(−∞) if and only if f ∈ RPVT(−∞) if and only if f ∈ NRPVT(−∞).

Moreover, the assumption of convexity is not necessary in all if parts.

Proof. (i) We will proceed in the following way:

f ∈ KRPVT(∞) ⇒ f ∈ NRPVT(∞) ⇒ f ∈ RPVT(∞) ⇒ f ∈ KRPVT(∞).

Let f ∈ KRPVT(∞). First, observe that f(t) is monotone for large t. Indeed, f(t)

is convex, so there exists t0 such that f(t) is monotone for t > t0. Hence, f(t) is

increasing for large t due to Proposition 3.3. Now, for all λ < 1, we have

f(t) − f(τ(λt)) =

∫ t

τ(λt)

f∆(s)∆s ≤ f∆(t)[t− τ(λt)] ≤ f∆(t)[t− (λt− µ(τ(λt)))]

= f∆(t)[t(1 − λ) + µ(τ(λt))].

Hence,
f∆(t)[t(1 − λ) + µ(τ(λt))]

f(t)
≥ f(t) − f(τ(λt))

f(t)
. (3.25)

Note that µ(τ(λt))/f(t) → 0 as t → ∞. Really, f(t) is convex and increasing, so

there exists t0 ∈ T such that f(t) > t for t > t0 and hence,

0 = lim
t→∞

µ(τ(λt))

t
≥ lim

t→∞

µ(τ(λt))

f(t)
≥ 0.

Since λ < 1 is independent of t and can be chosen arbitrarily close to 1, in view of

µ(τ(λt))/f(t) → 0 as t→ ∞ and f(τ(λt))/f(t) → 0 as t→ ∞, from the inequality

(3.25) we have

lim inf
t→∞

tf∆(t)

f(t)
≥ sup

λ<1

1

1 − λ
= ∞ (3.26)
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and thus f ∈ NRPVT(∞). The part f ∈ NRPVT(∞) ⇒ f ∈ RPVT(∞) holds

trivially. Let f ∈ RPVT(∞) and take λ > 1. Then, by Definition 3.4

lim
t→∞

f(τ(λt))

f(t)
= lim

t→∞

ϕ(λt)

ϕ(t)
· ω(λt)

ω(t)
= lim

t→∞
hλ(t)

ω(λt)

ω(t)
. (3.27)

Let ϕ ∈ RVT(ϑ). Hence, ϕ ∈ KRVT(ϑ) by Theorem 3.3, which implies that h(t) →
λϑ as t→ ∞. Let ϕ is bounded, i.e., 0 < c ≤ ϕ(t) ≤ d for large t. Then,

c

d
≤ lim inf

t→∞
hλ(t) ≤ hλ(t) ≤ lim sup

t→∞
hλ(t) ≤

d

c
.

Together, hλ(t) is bounded both above and below for large t by the positive con-

stants. Due to ω ∈ NRPVT(∞), ω(t) is increasing for large t (thanks to Proposi-

tion 3.2). Now, for all λ > 1, we have

ω(τ(λt)) ≥ ω(τ(λt)) − ω(t) =

∫ τ(λt)

t

ω∆(s)∆s ≥ ω∆(t)[τ(λt) − t]

≥ ω∆(t)[λt− µ(τ(λt)) − t] = ω∆(t)[t(λ− 1) − µ(τ(λt))].

Hence,
ω(τ(λt))

ω(t)
≥ ω∆(t)[t(λ− 1) − µ(τ(λt))]

ω(t)
. (3.28)

Since λ > 1, in view of µ(τ(λt))/ω(t) → 0 as t → ∞ (similar reasoning as before),

from (3.27) and (3.28) we have

lim
t→∞

f(τ(λt))

f(t)
≥ lim

t→∞
hλ(t)

tω∆(t)(λ− 1)

ω(t)
= ∞ (λ > 1),

and thus (thanks to Proposition 3.3) f ∈ KRPVT(∞).

(ii) We will proceed analogically as in case (i). Let f ∈ KRPVT(−∞). Similarly

as in part (i), we get f(t) is decreasing for large t due to Proposition 3.3. Now, for

all λ > 1, we have

−f(τ(λt)) + f(t) =

∫ τ(λt)

t

(−f∆(s))∆s ≤ −f∆(t)(τ(λt) − t)) ≤ −f∆(t)(λ− 1)t.

Hence,

−tf
∆(t)

f(t)
≥ 1

λ− 1
· −f(τ(λt)) + f(t)

f(t)
=

1

λ− 1

(
1 − f(τ(λt))

f(t)

)
.

Since λ > 1 is independent of t and can be chosen arbitrarily close to 1, in view of

f(τ(λt))/f(t) → 0 as t→ ∞, from the above inequality we have

lim inf
t→∞

−tf
∆(t)

f(t)
≥ sup

λ>1

1

λ− 1
= ∞
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and thus f ∈ NRPVT(−∞). The part f ∈ NRPVT(−∞) ⇒ f ∈ RPVT(−∞)

holds trivially. Let f ∈ RPVT(−∞). By using Proposition 3.2, part (i) of this

lemma and Proposition 3.3 we can successively write:

f ∈ RPVT(−∞) ⇒ 1

f
∈ RPVT(∞) ⇒ 1

f
∈ KRPVT(∞) ⇒ f ∈ KRPVT(−∞)

and hence, assertion follows.

Remark 3.8 (Important). (i) Note that the concept of normalized rapid variation

is not known in the literature concerning the continuous (resp. discrete) theory

and it seems that there is no reason to distinguish two cases of rapidly varying

behavior in this situation. We conjecture that in this case, every positive diffe-

rentiable function f (resp. every positive sequence), which is rapidly varying, is

automatically normalized rapidly varying and it misses point to consider both

definitions (specially, when we study asymptotic properties of differential or dif-

ference equations and deal with functions which are differentiable). However, the

situation is different on general time scale case and the previous assertion is not

true (only if f is convex and ∆-differentiable, then, in view of previous lemma,

these two definitions are equivalent). Indeed, take, e.g., T = N∪{n+2−n}, n ∈ N,

and f, ϕ, ω : T → R satisfying the assumptions of Definition 3.4 such that

ϕ(t) =

{
1 + 2−t for t = n,

1 − 2−t for t = n+ 2−n
and ω(t) = 2t (t ∈ T).

Then ϕ(t) → 1 as t→ ∞ and ω(t) ∈ NRPVT(∞). Moreover,

f(t) = ϕ(t)ω(t) =

{
2t + 1 for t = n,

2t − 1 for t = n+ 2−n

is of the classC1
rd(T). It is not difficult to verify that f(t) is decreasing in each t = n,

n ∈ N. Hence, f∆(t) is negative for every t = n, thus lim inft→∞ tf∆(t)/g(t) ≤ 0

and hence f 6∈ NRPVT(∞).

(ii) Looking at Definition 3.4 and a condition on a function ϕ, the reader may

ask why we require the function ϕ just in this form. The other eventualities are,

e.g., to consider ϕ in the following forms:

(i) ϕ(t) ∼ C, where C > 0 (less general form),

(ii) tc ≤ ϕ(t) ≤ td, where c, d ∈ R, c ≤ d (more general form).

However, the case (i) is less general then in our definition. Moreover, observe that

the function ϕ from the previous example satisfies condition (i). The case (ii) is

more general but not convenient since our theory focuses on a generalization in

the sense of a “domain of definition” rather than considering “badly behaving”

functions.
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3.3 Applications to dynamic equations on time scales

In this section we apply the obtained theory from the previous two sections to the

investigation of asymptotic behavior of solutions to linear and half-linear second

order dynamic equations on time scale, which allows us to get a precise infor-

mation about asymptotic varying behavior of positive solutions of mentioned

equations. Consider the half-linear second order dynamic equation

[Φ(y∆)]∆ − p(t)Φ(yσ) = 0 (HL)

and its special case, the linear second order dynamic equation (when α = 2)

y∆∆ − p(t)yσ = 0, (L)

on unbounded time scale interval Ia = [a,∞), where p is a positive rd-continuous

function. Equations (HL), resp. (L) are the special cases of equations (HL∆E),

resp. (L∆E) introduced in Section 2.3. Note that every solution y of (HL), resp.

(L) is convex, i.e., y∆ is nondecreasing. Along with (HL), consider the generalized

Riccati dynamic equation

w∆(t) − p(t) + S(t) = 0, (GR)

where

S(t) = lim
γ(t)→µ(t)

w(t)

γ(t)

(
1 − 1

Φ[1 + γ(t) Φ−1(w(t))]

)
. (S)

Note that (GR) is special case of (GR∆E) and relation between (HL) and (GR)

is analogical as in Section 2.3. Hence, y(t) is a nonoscillatory solution of (HL)

having no generalized zero on Ia, i.e., y(t)yσ(t) > 0 for t ∈ Ia if and only if

w(t) = Φ(y∆(t)/y(t)) satisfies (GR) on Ia with 1 + µ(t) Φ−1(w(t)) > 0 on Ia.
We start with equation (HL) and establish necessary and sufficient conditions

for all positive decreasing solutions of (HL) to be regularly varying. Note that

this result generalizes the result established for equation (L), see [36]. For more

related results for linear case in special settings see [26, 29, 30]. Specially, for half-

linear differential case, see [20].

Theorem 3.7. Let y be any positive decreasing solution of (HL) on Ia.

(i) Let µ(t) = O(t). Then y ∈ SV if and only if

lim
t→∞

tα−1

∫ ∞

t

p(s)∆s = 0. (3.29)

Moreover, y ∈ NSV .
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(ii) Let µ(t) = o(t). Then y ∈ RV(Φ−1(ϑ0)) if and only if

lim
t→∞

tα−1

∫ ∞

t

p(s)∆s = A > 0, (3.30)

where ϑ0 is the negative root of the algebraic equation

|ϑ|β − ϑ− A = 0, (3.31)

β is the conjugate number to α, i.e., 1/α+ 1/β = 1.

Moreover, y ∈ NRV(Φ−1(ϑ0)).

Proof. (i) “Only if”: Let y(t) be a slowly varying positive decreasing solution of

(HL) on Ia. Then y∆(t) is negative and nondecreasing on Ia. Hence y ∈ NSV by

Proposition 3.1, part (vi). Let w(t) = Φ(y∆(t)/y(t)). Then w(t) < 0 and satisfies

(GR) with 1 + µ(t) Φ−1(w(t)) > 0 for t ∈ Ia. Since y ∈ NSV , we have

lim
t→∞

ty∆(t)

y(t)
= 0, thus lim

t→∞
tα−1Φ

(
y∆(t)

y(t)

)
= 0,

hence limt→∞ tα−1w(t) = 0 (and also limt→∞w(t) = 0). Therefore,

lim
t→∞

(−1)
∣∣tα−1w(t)

∣∣β−1
= 0, thus lim

t→∞
tΦ−1(w(t)) = 0

and hence

lim
t→∞

NtΦ−1(w(t)) = 0, (3.32)

whereN > 0 is an arbitrary real constant. In view of µ(t) = O(t), there exists posi-

tive N such that µ(t)/t ≤ N for t ∈ Ia, thus µ(t) ≤ Nt for t ∈ Ia. Therefore and

from (3.32) we obtain limt→∞ µ(t) Φ−1(w(t)) = 0. It is easy to show, that S(t) de-

fined by (S) is positive for t ∈ Ia, provided thatw(t) < 0 and 1+µ(t) Φ−1(w(t)) > 0

for t ∈ Ia. Applying the Lagrange mean value theorem, S(t) can be alternatively

written as

S(t) =
(α− 1)|w(t)|βξα−2(t)

[1 + µ(t) Φ−1(w(t))]α−1
, (3.33)

where 0 < 1 + µ(t) Φ−1(w(t)) ≤ ξ(t) ≤ 1. We show that
∫∞
t
S(s)∆s < ∞,

which implies limt→∞
∫∞
t
S(s)∆s = 0. Since limt→∞ µ(t) Φ−1(w(t)) = 0, we get

ξ(t) → 1 as t → ∞ and we have S(t) ≤ 2(α − 1)|w(t)|β for large t. Further, since

limt→∞ t1−αw(t) = 0, there exists M > 0 such that |w(t)| ≤ Mtα−1 for large t.

Hence, for large t (with the use of validity (Mt1−α)
β

= Mβt−α)

∫ ∞

t

S(s)∆s ≤ 2(α− 1)

∫ ∞

t

|w(s)|β∆s ≤ 2(α− 1)Mβ

∫ ∞

t

1

sα
∆s <∞. (3.34)
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Note that the integral
∫∞
t

(1/sα)∆s is indeed convergent since µ(t) = O(t). By

integration of (GR) from t to ∞ and multiplication by tα−1 yield

− tα−1w(t) + tα−1

∫ ∞

t

S(s)∆s = tα−1

∫ ∞

t

p(s)∆s. (3.35)

Equality (3.33) and the time scale L’Hospital rule give

lim
t→∞

tα−1

∫ ∞

t

S(s)∆s = lim
t→∞

−(α− 1)|w(t)|βξα−2(t)

[1 + µ(t) Φ−1(w(t))]α−1 (t1−α)∆
.

Now differentiation of t1−α and applying the Lagrange mean value theorem on

this term with t ≤ η(t) ≤ σ(t), we have (with the use of validity limt→∞ ξ(t) = 1

and η(t)/t ≤ σ(t)/t = 1 + µ(t)/t ≤ 1 +N, N ∈ R)

lim
t→∞

tα−1

∫ ∞

t

S(s)∆s = lim
t→∞

−(α− 1)|w(t)|βξα−2(t)

(1 − α)η−α(t)[1 + µ(t) Φ−1(w(t))]α−1

= lim
t→∞

(tα−1)
β

tα
· ηα(t)|w(t)|βξα−2(t)

[1 + µ(t) Φ−1(w(t))]α−1

≤ (1 +N)α lim
t→∞

∣∣tα−1w(t)
∣∣β = 0.

Hence, from (3.35), we get (3.29).

“If”: Let y > 0 be a decreasing solution of (HL), then limt→∞ y∆(t) = 0. Indeed,

if not, then there is K > 0 such that y∆(t) ≤ −K for t ∈ Ia, and so y(t) ≤
y(a) − (t − a)K. Letting t → ∞ we have limt→∞ y(t) = −∞, a contradiction

with y > 0. Therefore, by integration of (HL) from t to ∞ yields Φ(y∆(t)) =

−
∫∞
t
p(s)Φ(yσ(s))∆s. Multiplying this equality by −tα−1/Φ(y(t)) we obtain

−t
α−1Φ(y∆(t))

Φ(y(t))
=

tα−1

Φ(y(t))

∫ ∞

t

p(s)Φ(yσ(s))∆s

≤ tα−1Φ(y(t))

Φ(y(t))

∫ ∞

t

p(s)∆s = tα−1

∫ ∞

t

p(s)∆s.

Hence 0 < −tα−1Φ(y∆(t)/y(t)) → 0, or 0 < −ty∆(t)/y(t) → 0 as t→ ∞, in view of

(3.29). Thus y ∈ NSV .

(ii) “Only if”: Let y ∈ RV(Φ−1(ϑ0)) be a positive decreasing solution of (HL)

on Ia. Then y∆(t) is negative and nondecreasing on Ia. Thus y ∈ NRV(Φ−1(ϑ0))

by Proposition 3.1, part (vi). Let w = Φ(y∆(t)/y(t)). Then w(t) satisfies the equa-

tion (GR) with 1 + µ(t) Φ−1(w(t)) > 0 for t ∈ Ia. Since y ∈ NRV(Φ−1(ϑ0)), we

have

lim
t→∞

ty∆(t)

y(t)
= Φ−1(ϑ0), hence lim

t→∞
tα−1Φ

(
y∆(t)

y(t)

)
= Φ(Φ−1(ϑ0)),
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thus limt→∞ tα−1w(t) = ϑ0 (and limt→∞w(t) = 0). Therefore,

lim
t→∞

(−1)
∣∣tα−1w(t)

∣∣β−1
= −|ϑ0|β−1 (3.36)

and hence

lim
t→∞

tΦ−1(w(t)) = −|ϑ0|β−1. (3.37)

In a view of µ(t) = o(t), limt→∞ µ(t)/t = 0. Together with (3.37) we get

0 = lim
t→∞

µ(t)

t
lim
t→∞

tΦ−1(w(t)) = lim
t→∞

µ(t) Φ−1(w(t)).

By integration of (GR) from t to ∞ and multiplication by tα−1 yield (3.35). The

convergence of the series
∫∞
t
S(s)∆s can be proved similarly as in the case “only

if” of part (i), see (3.34). Further, as the same way as before, we can show that

lim
t→∞

tα−1

∫ ∞

t

S(s)∆s = lim
t→∞

∣∣tα−1w(t)
∣∣β = |ϑ0|β,

where the last equality is the consequence of (3.36). Hence in view (3.31) and

(3.35) we get (3.30).

“If”: Assume that (3.30) holds. Let y be a positive decreasing solution of (HL).

Let wm(t) = tα−1Φ(y∆(t)/y(t)). Similarly as in the case “if” of part (i), we have

limt→∞ y∆(t) = 0 and 0 < −wm(t) ≤ tα−1
∫∞
t
p(s)∆s. Hence and due to (3.30),

−wm(t) is bounded from above. We will show that limt→∞ wm(t) = ϑ0, which

implies y ∈ NRV(Φ−1(ϑ0)). First observe that wm(t) satisfies the modified Riccati

equation (
wm(t)

tα−1

)∆

− p(t) + F (t) = 0, (3.38)

where

F (t) = lim
γ(t)→µ(t)

wm(t)

tα−1 γ(t)

(
1 − 1

Φ[1 + γ(t) Φ−1(wm(t)/tα−1)]

)
,

with 1 + µ(t) Φ−1(wm(t)) > 0 for t ∈ Ia. Since limt→∞(wm(t)/tα−1) = 0, by integra-

tion of (3.38) from t to ∞ yields

− wm(t)

tα−1
=

∫ ∞

t

p(s)∆s−
∫ ∞

t

F (s)∆s. (3.39)

If we write (3.30) as tα−1
∫∞
t
p(s)∆s = A + ε1(t) = |ϑ0|β − ϑ0 + ε1(t), where ε1(t)

is some function satisfying limt→∞ ε1(t) = 0, then multiplying (3.39) by tα−1 we

obtain

− wm(t) = |ϑ0|β − ϑ0 − tα−1

∫ ∞

t

F (s)∆s+ ε1(t). (3.40)
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Applying the Lagrange mean value theorem, F (t) can be written as

F (t) =
(α− 1)|wm(t)/tα−1|βξα−2(t)

[1 + µ(t) Φ−1(wm(t)/tα−1)]α−1
,

where 0 < 1 + µ(t) Φ−1(wm(t)/tα−1) ≤ ξ(t) ≤ 1. We show that we may write

tα−1

∫ ∞

t

F (s)∆s = tα−1

∫ ∞

t

[
−
(
s1−α)∆] |wm(s)|β∆s + ε2(t), (3.41)

with some function ε2(t) satisfying limt→∞ ε2(t) = 0. Denote

Q(t) =
ξα−2(t)

[1 + µ(t) Φ−1(wm(t)/tα−1)]α−1
.

Since limt→∞(wm(t)/tα−1) = 0, limt→∞ ξ(t) = 1 and so limt→∞Q(t) = 1. We have

tα−1

∫ ∞

t

F (s)∆s = tα−1

∫ ∞

t

[
−
(
s1−α)∆] |wm(s)|β∆s + tα−1

∫ ∞

t

H(s)∆s,

where

H(t) =F (t) −
[
−
(
t1−α

)∆] |wm(t)|β

=
(α− 1)|wm(t)|β

(tα−1)β
Q(t) −

[
−
(
t1−α

)∆] |wm(t)|β

=
(α− 1)|wm(t)|β

(tα−1)β
Q(t) − α− 1

γα(t)
|wm(t)|β,

with t ≤ γ(t) ≤ σ(t). Using the time scale L’Hospital rule and again the Lagrange

mean value theorem on the term tα−1 with t ≤ η(t) ≤ σ(t), we get

lim
t→∞

tα−1

∫ ∞

t

H(s)∆s = lim
t→∞

−(α − 1)|wm(t)|β (Q(t)/tα − 1/γα(t))

(1 − α)/ηα(t)

= lim
t→∞

|wm(t)|β (γ(t) η(t))αQ(t) − (t η(t))α

(t γ(t))α

= lim
t→∞

|wm(t)|β (γ(t) η(t)/t2)
α − (t η(t)/t2)

α

(t γ(t)/t2)α
= 0,

where we use the fact that limt→∞ γ(t)/t = 1 and limt→∞ η(t)/t = 1 following from

µ(t) = o(t). Hence, tα−1
∫∞
t
H(s)∆s = ε2(t), with some ε2(t), where limt→∞ ε2(t) =

0, and so (3.41) holds. In view of (3.41), from (3.40) we get

−wm(t) = |ϑ0|β − ϑ0 − tα−1

∫ ∞

t

[
−
(
s1−α)∆] |wm(s)|β∆s+ ε(t),
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where ε(t) = ε1(t) − ε2(t). Hence,

−wm(t) = |ϑ0|β − ϑ0 − tα−1G(t)

∫ ∞

t

[
−
(
s1−α)∆]∆s+ ε(t),

where m ≤ G(t) ≤M with m = inf t∈Ia |wm(t)|β, M = supt∈Ia |wm(t)|β, or

G(t) − wm(t) = |ϑ0|β − ϑ0 + ε(t). (3.42)

We show that limt→∞wm(t) = ϑ0. Recall that −wm(t) > 0 is bounded from above.

Assume that there exists limt→∞(−wm(t)) = L ≥ 0. Then from (3.42) we get

Lβ + L = |ϑ0|β − ϑ0. If L > −ϑ0, then |ϑ0|β = Lβ + L + ϑ0 > Lβ , contradiction.

Similarly we get contradiction if L < −ϑ0. Next we show that limt→∞(−wm(t))

exists. Assume that

lim inf
t→∞

(−wm(t)) = L∗ < L∗ = lim sup
t→∞

(−wm(t)).

Let L1 be defined by lim inft→∞G(t) = Lβ1 and L2 be defined by lim supt→∞G(t) =

Lβ2 . In general, 0 ≤ L∗ ≤ L1 ≤ L2 ≤ L∗. Assuming that at least one inequality is

strict, which implies that at least on of the values is different from −ϑ0, we come

to a contradiction, arguing similarly as in the case when L existed. All these

observations prove that the limit limt→∞wm(t) exists and is equal to ϑ0.

Remark 3.9. (i) The statements (i) and (ii) in the previous theorem could be uni-

fied, assuming A ≥ 0 and ϑ0 ≤ 0. However, the condition µ(t) = O(t) if ϑ0 = 0 or

µ(t) = o(t) if ϑ0 < 0 has to be assumed, see concluding comments in Section 3.5.

(ii) It is easy to see that conditions (3.29) and (3.30) in the if parts of Theo-

rem 3.7 can be replaced by the simpler ones limt→∞ tαp(t) = 0 and limt→∞ tαp(t) =

A, respectively.

(iii) Observe that the condition y is decreasing in the last theorem does not

need to be assumed. Indeed, we are actually dealing with all SV or RV(Φ−1(ϑ0))

solutions. Hence, ϑ0 ≤ 0. Thanks to convexity of y, assertion now follows from

part (v) of Proposition 3.1.

Necessary and sufficient conditions for all positive decreasing solutions of (L)

to be regularly varying was established in [36]. Now we want to apply the above

developed theory of regular variation, and complete the results from [36] in the

sense of increasing solutions. Note that for decreasing solutions, the following

theorem follows from the previous one.

Theorem 3.8. (i) Let µ(t) = O(t). Equation (L) has a fundamental set of solutions

u(t) = L(t) ∈ SVT and v(t) = tL̃(t) ∈ RVT(1) (3.43)
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if and only if

lim
t→∞

t

∫ ∞

t

p(s) ∆s = 0. (3.44)

Moreover, L, L̃ ∈ NSVT with L̃(t) ∼ 1/L(t). All positive decreasing solutions of (L)

belong to NSVT and all positive increasing solutions of (L) belong to NRVT(1). Any of

two conditions in (3.43) implies (3.44).

(ii) Let µ(t) = o(t). Equation (L) has a fundamental set of solutions

u(t) = tϑ1L(t) ∈ RVT(ϑ1) and v(t) = tϑ2L̃(t) ∈ RV(ϑ2) (3.45)

if and only if

lim
t→∞

t

∫ ∞

t

p(s) ∆s = A > 0, (3.46)

where ϑ1 < 0 and ϑ2 = 1 − ϑ1 are the roots of the equation ϑ2 − ϑ − A = 0. Moreover

L, L̃ ∈ NSVT with L̃(t) ∼ 1/((1 − 2ϑ1)L(t)). All positive decreasing solutions of (L)

belong to NRVT(ϑ1) and all positive increasing solutions of (L) belong to NRVT (ϑ2).

Any of two conditions in (3.45) implies (3.46).

Proof. Parts (i) and (ii) of the theorem will be proved simultaneously assuming

A ≥ 0 in (3.46) and, consequently, ϑ1 ≤ 0 (resp. ϑ2 ≥ 1).

“Only if parts”: In view of the convexity, a solution u ∈ RVT(ϑ1) necessarily

decreases and a solution v ∈ RVT(ϑ2) necessarily increases by (v) of Proposi-

tion 3.1. For decreasing solution u, either see the proof in [36] or take α = 2 in

previous theorem. Using arguments similar to those in [36] we can show that if

a positive increasing solution v of (L) belongs to RVT(ϑ2), then (3.46) holds. It

means that (3.46) is necessary for any of two conditions in (3.45).

“If parts”: Let limt→∞ t
∫∞
t
p(s) ∆s = A. From [36] (or from the previous

theorem), if u is a positive decreasing solution (which always exists), then u ∈
NRV(ϑ1). Hence, u(t) = tϑ1L(t), where L ∈ NSV by (i) of Proposition 3.1.

Put z = 1/u2. Then z ∈ NRVT(−2ϑ1) by (iv) of Proposition 3.1. Moreover,

z(t) ∼ 1/(u(t)uσ(t)) as t → ∞ by Lemma 3.1 or Remark 3.2. A second linearly

independent solution v of (L) is given by v(t) = u(t)
∫ t
a

1/(u(s)uσ(s)) ∆s. Taking

into account that u is decreasing (recessive), it holds
∫∞
a

1/(u(s)uσ(s)) ∆s = ∞.

Further, tz(t) → ∞ as t → ∞ by (iv) and (ii) of Proposition 3.1. The time scale

L’Hospital rule now yields

lim
t→∞

t/u(t)

v(t)
= lim

t→∞

tz(t)∫ t
a

1/(u(s)uσ(s)) ∆s
= lim

t→∞

z(t) + σ(t)z∆(t)

1/(u(t)uσ(t))

= 1 + lim
t→∞

σ(t)z∆(t)

z(t)
= 1 − 2ϑ1.

Hence (1 − 2ϑ1)v(t) ∼ t/u(t) = t1−ϑ1/L(t). Consequently, v(t) = t1−ϑ1L̃(t), where

L̃(t) ∼ 1/[(1 − ϑ1)L(t)] and L̃ ∈ SVT by (iv) of Proposition 3.1. This implies
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v ∈ RVT(ϑ2) by (i) of Proposition 3.1. Further, since (the solution) v is convex, it is

increasing by (v) of Proposition 3.1, thus it is normalized by (vi) of Proposition 3.1,

and therefore L̃ is normalized too by (i) of Proposition 3.1.

Remark 3.10. (i) The condition µ(t) = O(t) if ϑ = 0 or µ(t) = o(t) if ϑ 6= 0 has to

be assumed in Theorem 3.8, see concluding comments in Section 3.5.

(ii) Similarly as in half-linear case, see, (ii) in Remark 3.9, conditions (3.44)

and (3.46) in the if parts of Theorem 3.8 can be replaced by the simpler ones

limt→∞ t2p(t) = 0 and limt→∞ t2p(t) = A, respectively.

As an application of theory of rapid variation, we study asymptotic behavior

of positive solutions of (HL). Recall that every positive solution of (HL) is convex.

Theorem 3.9. Let µ(t) = o(t). Equation (HL) has solutions u ∈ RPVT(−∞) and

v ∈ RPVT(∞) if and only if for all λ > 1

lim
t→∞

tα−1

∫ τ(λt)

t

p(s)∆s = ∞. (3.47)

Moreover, all positive decreasing solutions of (HL) belong to NRPVT(−∞) and all

positive increasing solutions of (HL) belong to NRPVT(∞).

Proof. “If ”: Let u be a positive decreasing solution of (HL) and let (3.47) hold. By

integration of equation (L) from t to τ(
√
λt) (λ > 1) we get

Φ(u∆(τ(
√
λt))) − Φ(u∆(t)) =

∫ τ(
√
λt)

t

p(s)Φ(u(σ(s)))∆s.

Since u∆ < 0 and u is positive decreasing with zero limit, we can write

− u∆(t) ≥ Φ−1

(∫ τ(
√
λt)

t

p(s)Φ(u(σ(s)))∆s

)
≥ u(τ(

√
λt))Φ−1

(∫ τ(
√
λt)

t

p(s)∆s

)
.

(3.48)

In the last inequality we use the fact that

∫ b

a

fσ(t)g(t)∆t ≥ f(b)

∫ b

a

g(t)∆t (a, b ∈ T; a < b)

holds for arbitrary positive decreasing function f and positive function g. This

inequality follows from the time scales version of the second mean value theorem

of integral calculus, see [33, Lemma 2.5]. By integration of (3.48) from t to τ(
√
λt)

(λ > 1) we get

u(t) − u(τ(
√
λt)) ≥

∫ τ(
√
λt)

t

u(τ(
√
λs))Φ−1

(∫ τ(
√
λs)

s

p(r)∆r

)
∆s.

45



3. Regular and rapid variation on time scales with applications to dynamic equations

By using the same ideas as before, we get (with the use of u(τ(
√
λτ(

√
λt))) ≥

u(τ(λt)) )

u(t) ≥ u(τ(λt))

∫ τ(
√
λt)

t

Φ−1

(∫ τ(
√
λs)

s

p(r)∆r

)
∆s. (3.49)

In view of (3.47) for any arbitrarily large constantM > 0 there exists t0 sufficiently

large such that ∫ τ(
√
λt)

t

p(s)∆s ≥ M

tα−1
, t > t0. (3.50)

Since u is positive, from (3.49) and (3.50) we get

u(t)

u(τ(λt))
≥ Φ−1(M)

∫ τ(
√
λt)

t

Φ−1

(
1

sα−1

)
∆s = Φ−1(M)

∫ τ(
√
λt)

t

1

s
∆s

≥ Φ−1(M)

∫ τ(
√
λt)

t

1

s
ds = Φ−1(M) ln

τ(
√
λt)

t

≥ Φ−1(M) ln

√
λt− µ(τ(

√
λt))

t

= Φ−1(M) ln

(
√
λ− µ(τ(

√
λt))

t

)
.

where the inequality
∫ τ(√λt)
t

(1/s) ∆s ≥
∫ τ(√λt)
t

(1/s) ds (using also in further part

of the proof of this theorem) follows from [34, Lemma 1.1]. Since µ(τ(
√
λt))/t→ 0

as t→ ∞ and since M was arbitrarily large, this implies

lim
t→∞

u(t)

u(τ(λt))
= ∞.

Consequently,

lim
t→∞

u(τ(λt))

u(t)
= 0, λ > 1,

which implies (due to Proposition 3.3) that u ∈ KRPVT(−∞) and hence, due to

Lemma 3.2 u ∈ (N )RPV
T
(−∞).

Let v be a positive increasing solution of (HL) and let (3.47) hold. By integra-

tion of equation (HL) from τ(t/
√
λ) to t (λ > 1), we get

Φ(v∆(t)) − Φ

(
v∆

(
τ

(
t√
λ

)))
=

∫ t

τ
(

t
√

λ

) p(s)Φ(v(σ(s)))∆s.

Since v∆ > 0 and v is positive increasing, we get

v∆(t) ≥ Φ−1

(∫ t

τ
(

t
√

λ

) p(s)Φ(v(σ(s)))∆s

)
≥ v

(
τ

(
t√
λ

))
Φ−1

(∫ t

τ
(

t
√

λ

) p(s)∆s

)
.
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By integration of the last inequality from σ(τ(t/
√
λ)) to t (λ > 1) we get

v(t) − v

(
σ

(
τ

(
t√
λ

)))
≥
∫ t

σ
(
τ
(

t
√

λ

)) v

(
τ

(
s√
λ

))
Φ−1

(∫ s

τ
(
s

√

λ

) p(r)∆r

)
∆s

By using the same ideas as before, we get

v(t) ≥ v

(
τ

(
t

λ

))∫ t

σ
(
τ
(

t
√

λ

)) Φ−1

(∫ s

τ
(
s

√

λ

) p(r)∆r

)
∆s, (3.51)

where we use

v


τ



σ
(
τ
(

t√
λ

))

√
λ




 ≥ v

(
τ

(
t

λ

))
.

Inequality (3.51) can be rewritten on the form

v(t)

v
(
τ
(
t
λ

)) ≥
∫ t

σ
(
τ
(

t
√

λ

)) Φ−1

(∫ s

τ
(
s

√

λ

) p(r)∆r

)
∆s, (3.52)

In view of (3.47), which can be equivalently written with
√
λ instead of λ, we have

(due to {τ(t/
√
λ)} ⊆ T for large t)

lim
t→∞

(
τ

(
t√
λ

))α−1 ∫ τ
(√

λτ
(

t
√

λ

))

τ
(

t
√

λ

) p(s)∆s = ∞.

Therefore, thanks to τ(t/
√
λ) ≤ t/

√
λ < t and τ(

√
λτ(t/

√
λ)) ≤ t, we get

lim
t→∞

tα−1

∫ t

τ
(

t
√

λ

) p(s)∆s = ∞,

which means that for arbitrarily large constant M > 0, there exists s0 sufficiently

large such that ∫ s

τ
(
s

√

λ

) p(r)∆r ≥
M

sα−1
, s > s0, (3.53)

and since v is positive, then from (3.52) and (3.53), we get (by using the similar
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calculations as in previous case for decreasing solution u)

v(t)

v
(
τ
(
t
λ

)) ≥ Φ−1(M)

∫ t

σ
(
τ
(

t
√

λ

))
1

s
∆s ≥ Φ−1(M)

∫ t

σ
(
τ
(

t
√

λ

))
1

s
ds

= Φ−1(M) ln
t

σ
(
τ
(

t√
λ

)) ≥ Φ−1(M) ln
t

t√
λ

+ µ
(
τ
(

t√
λ

))

= Φ−1(M) ln

√
λ

1 +
µ
(
τ
(

t
√

λ

))

t
√

λ

.

Since µ(t) = o(t), µ(τ(t/
√
λ))/(t/

√
λ) → 0 as t → ∞ and since M was arbitrarily

large, this yields

lim
t→∞

v(t)

v
(
τ
(
t
λ

)) ≥ Φ−1(M) ln
√
λ = ∞, λ > 1,

i.e.,

lim
t→∞

v(τ(λt))

v(t)
= 0, λ < 1,

which implies, similarly as in the proof of Lemma 3.2, first implication of part (i)

(indeed, the function v satisfies (3.25) and (3.26) ), that v ∈ (N )RPV
T
(∞).

“Only if ”: Let u be a positive decreasing rapidly varying solution of (HL).

Thanks to u∆∆ > 0 (see (HL)), we have u∆ increases and due to Lemma 3.2,

u ∈ NRPVT(−∞). Hence, u∆(t) is negative with zero limit and u(t) → 0 as

t → ∞ (thanks to Proposition 3.2). Moreover, −u∆(t) decreases. For λ > 1 we

have

−u∆(τ(λt)) τ(λt)

(
1 − t

τ(λt)

)
= −u∆(τ(λt))(τ(λt) − t)

= −u∆(τ(λt))

∫ τ(λt)

t

∆s (3.54)

≤ −
∫ τ(λt)

t

u∆(s)∆s = u(t) − u(τ(λt)).

From the fact that

1 − t

τ(λt)
≥ 1 − t

λt− µ(τ(λt))
= 1 − 1

λ− µ(τ(λt))
t

= 1 − 1

λ
(
1 − µ(τ(λt))

λt

)

≥ 1 − 1

λ
(
1 − µ(τ(λt))

τ(λt)

) ,
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we have (due to µ(τ(λt))/τ(λt) → 0 as t→ ∞):

lim
t→∞

(
1 − t

τ(λt)

)
≥ lim

t→∞


1 − 1

λ
(
1 − µ(τ(λt))

τ(λt)

)


 = 1 − 1

λ
> 0.

Since limt→∞(u(t) − u(τ(λt))) = 0, inequality (3.54) implies

lim
t→∞

τ(λt)u∆(τ(λt)) = 0. (3.55)

Due to u∆(t) is negative increasing,

u∆(τ(λt))

u∆(t)
≤ 1.

Now we want to show that

lim sup
t→∞

u∆(τ(λt))

u∆(t)
< 1, λ > 1. (3.56)

By a contradiction, assume that there exist λ0 > 1 and an unbounded sequence

{tk}∞k=1 ⊆ T such that

lim
tk→∞

u∆(τ(λ2
0tk))

u∆(tk)
= 1. (3.57)

Let y be a continuous positive decreasing function of a real variable, such that

y(t) = −u∆(t) for all t ∈ {tk} and

y(t) ≥ −u∆(t) for all t ∈ T.

Thanks to µ(t)/t→ 0 as t→ ∞, we have for large t

µ(τ(λ0t))

λ0t
≤ µ(τ(λ0t))

τ(λ0t)
≤ λ0 − 1

and therefore, we get

µ(τ(λ0t)) ≤ λ2
0 t− λ0t ≤ λ2

0 t− τ(λ0t).

From the last inequality we have σ(τ(λ0t)) ≤ λ2
0 t for large t and hence

λ0t ≤ τ(λ2
0 t). (3.58)

From (3.57), (3.58) and thanks to y is decreasing we have

1 >
y(λ0tk)

y(tk)
≥ y(τ(λ2

0 tk))

y(tk)
≥ u∆(τ(λ2

0 tk))

u∆(tk)
→ 1,
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as tk → ∞. Then (see the proof of [26, Theorem 1.3]) there exists a continuous

positive decreasing function z of real variable, such that z(t) = y(t) for eve-

ry t ∈ T sufficiently large, and limx→∞(z(λ0x)/z(x)) = 1. Since z is monotone,

limx→∞(z(λx)/z(x)) = 1 holds for every λ > 0, see [4, Proposition 1.10.1] and this

implies that z is slowly varying function, see [4]. Therefore, limx→∞ xz(x) = ∞.

The contradiction follows by observing that

z(τ(λt)) = y(τ(λt)) = −u∆(τ(λt)), t ∈ {tk}

and

lim
t→∞

−τ(λt) u∆(τ(λt)) = 0, t ∈ {tk},

which holds due to (3.55). Hence, (3.56) holds. Therefore, there exists N > 0 such

that

1 − Φ

(
u∆(τ(λt))

u∆(t)

)
≥ N, (3.59)

for every λ > 1 and t sufficiently large. By integration of (HL) from t to τ(λt) we

have

Φ(u∆(τ(λt))) − Φ(u∆(t)) =

∫ τ(λt)

t

p(s) Φ(u(σ(s)))∆s ≤ Φ(u(t))

∫ τ(λt)

t

p(s) ∆s.

This implies

−Φ(u∆(t))

(
1 − Φ(u∆(τ(λt)))

Φ(u∆(t))

)
≤ Φ(u(t))

∫ τ(λt)

t

p(s) ∆s.

From (3.59) and by multiplying previous inequality by tα−1, we have

N

(−tu∆(t)

u(t)

)α−1

≤ tα−1

∫ τ(λt)

t

p(s)∆s,

which (with t→ ∞) implies (3.47).

Remark 3.11. Note that the previous theorem is new even for the linear case

(when α = 2), where u and v form a fundamental set of solutions of (L). A suffi-

ciency part for increasing solution v is new also for the half-linear discrete case.

For more information about the discrete case, see, e.g. [28, 30]. For continuous

case, we refer to Marić’s book [26] or to [27] for the corresponding results in the

linear case. However, according to the best of our knowledge, the corresponding

case of rapid variation in half-linear differential equations has not been processed

in the literature. Finally note that a necessity part for increasing solutions has not

been proved (even in linear case) in the differential (resp. difference or dynamic)

equations setting yet.
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3. Regular and rapid variation on time scales with applications to dynamic equations

3.4 M-classification and Karamata functions

In this section we provide information about asymptotic behavior of all positive

solutions of (L) and all positive decreasing solutions of (HL) as t → ∞. First

consider the linear second order dynamic equation (L). Note that all nontrivial

solutions of (L) are nonoscillatory (i.e., of one sign for large t) and monotone

for large t. Because of linearity, without loss of generality, we may consider just

positive solutions of (L); we denote this set as M. Thanks to the monotonicity, the

set M can be further split in the two classes M+ and M−, where

M
+ = {y ∈ M : ∃ty ∈ T such that y(t) > 0, y∆(t) > 0 for t ≥ ty},

M
− = {y ∈ M : y(t) > 0, y∆(t) < 0}.

These classes are always nonempty. To see it, the reader can follow the continuous

ideas described, e.g., in [14, Chapter 4] or understand this equation as a special

case of a more general quasi-linear dynamic equation; its asymptotic behavior is

discussed, e.g., in [2].

A positive function f : T → R is said to be Karamata function, if f is slowly or

regularly or rapidly varying; we write f ∈ KFT. In Theorem 3.8 we established

necessary and sufficient conditions for all positive solutions of (L) to be regularly

(resp. slowly) varying and in Theorem 3.9 (taking α = 2) we completed this

discussion for all positive solutions of (L) to be rapidly varying. Introduce the

following notation:

M
−
SV = M

− ∩NSVT,

M
−
RV (ϑ1) = M

− ∩NRVT(ϑ1), ϑ1 < 0,

M
+
RV (ϑ2) = M

+ ∩NRVT(ϑ2), ϑ2 = 1 − ϑ1 > 1,

M
−
RPV (−∞) = M

− ∩NRPVT(−∞),

M
+
RPV (∞) = M

+ ∩NRPVT(∞),

M
−
0 = {y ∈ M

− : lim
t→∞

y(t) = 0},

M
+
∞ = {y ∈ M

+ : lim
t→∞

y(t) = ∞}

and distinguish three cases for behavior of the coefficient p(t) from equation (L):

lim
t→∞

t

∫ ∞

t

p(s) ∆s = 0, (3.60)

lim
t→∞

t

∫ ∞

t

p(s) ∆s = A > 0, (3.61)

lim
t→∞

t

∫ τ(λt)

t

p(s)∆s = ∞ ∀ λ > 1. (3.62)
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3. Regular and rapid variation on time scales with applications to dynamic equations

In view of (ii) of Proposition 3.1, Proposition 3.2, Theorem 3.8 and Theorem 3.9

we can claim

M
− = M

−
SV ⇐⇒ (3.60) ⇐⇒ M

+ = M
+
RV (1) = M

+
∞,

M
− = M

−
RV (ϑ1) = M

−
0 ⇐⇒ (3.61) ⇐⇒ M

+ = M
+
RV (ϑ2) = M

+
∞,

M
− = M

−
RPV (−∞) = M

−
0 ⇐⇒ (3.62) =⇒ M

+ = M
+
RPV (∞) = M

+
∞. (3.63)

Now consider the half-linear second order dynamic equation (HL). The space

of all solutions is here more complicated than the space of all solution of equation

(L). The reason is that we do not have a property of the linearity in this case. In

Theorem 3.7 we established necessary and sufficient conditions for all positive

decreasing solutions of (HL) to be regularly varying. By using Theorem 3.9 we

completed this result in the sense of rapidly varying behavior. We distinguish

three cases for behavior of coefficient p(t) from equation (HL):

lim
t→∞

tα−1

∫ ∞

t

p(s)∆s = 0, (3.64)

lim
t→∞

tα−1

∫ ∞

t

p(s)∆s = B > 0, (3.65)

lim
t→∞

tα−1

∫ τ(λt)

t

p(s)∆s = ∞ ∀ λ > 1. (3.66)

In view of (ii) of Proposition 3.1, Proposition 3.2, Theorem 3.7 and Theorem 3.9

we can claim:

M
− = M

−
SV ⇐⇒ (3.64),

M
− = M

−
RV (ϑ1) = M

−
0 ⇐⇒ (3.65),

M
− = M

−
RPV (−∞) = M

−
0 ⇐⇒ (3.66) =⇒ M

+ = M
+
RPV (∞) = M

+
∞. (3.67)

The reader may wonder that we integrate from t to τ(λ(t)) in condition (3.62)

(resp. (3.66)), while in conditions (3.60) and (3.61) (resp. (3.64) and (3.65)) we

integrate from t to ∞. In [28, Example 1], it is shown that there exists function

p : N → R (so p is a sequence), which satisfies following condition

lim
t→∞

t

∫ ∞

t

p(s) ∆s = ∞, but lim
t→∞

t

∫ τ(λt)

t

p(s)∆s 6= ∞, (3.68)

for some λ > 1. For simplicity, introduce the following notation

P = lim
t→∞

tα−1

∫ ∞

t

p(s) ∆s, Pλ = lim
t→∞

tα−1

∫ τ(λt)

t

p(s)∆s, λ > 1.
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3. Regular and rapid variation on time scales with applications to dynamic equations

In view of that example, P = ∞ does not imply Pλ = ∞, ∀λ > 1 (only the

inverse implication holds, because
∫ τ(λt)
t

p(s)∆s <
∫∞
t
p(s) ∆s). But if P is a finite

(nonnegative) number, then Pλ is also a finite (nonnegative) number for all λ > 1

and contrariwise, if Pλ is finite (nonnegative) number for all λ > 1, then P is

also finite (nonnegative) number. A relation between P and Pλ is shown in the

following theorem.

Theorem 3.10. It holds

P = C ≥ 0 if and only if Pλ =
C(λα−1 − 1)

λα−1
, ∀λ > 1.

Proof. In this proof we will need a special sequence of reals. Take λ > 1 and t ∈ T

sufficiently large and define sequence {rn}∞n=0 of reals such that λrnt = τ(λnt) for

n ∈ N ∪ {0}. Note that rn = rn(t). We show that rn has following properties:

(i) rn < rn+1 ∀n ∈ N

(ii) r0 = 0 < r1 ≤ 1 < r2 ≤ 2 < · · · < rn−1 ≤ n− 1 < rn ≤ n ∀n ∈ N

(iii) τ(λ1+rnt) ≤ λrn+1t ∀n ∈ N

(iv) rn(t) → n as t→ ∞ ∀n ∈ N

(i) Let n ∈ N. First note that for τ(λnt) right-dense λrnt = τ(λnt) = λnt <

τ(λn+1t) = λrn+1t and (i) holds trivially. Now suppose that τ(λnt) is right-scat-

tered. Thanks to µ(t) = o(t), µ(t) < (λ− 1)t for large t and we can write

σ(τ(λnt)) ≤ λnt+ µ(τ(λnt)) < λnt+ (λ− 1)τ(λnt) ≤ λnt+ (λ− 1)λnt = λn+1t.

Therefore, τ(λnt) < σ(τ(λnt)) ≤ τ(λn+1t). Hence, λrnt < λrn+1t and (i) holds.

(ii) Note that r0 = 0 holds trivially. Let n ∈ N. By using (i) we can write

τ(λn−1t) ≤ λn−1t < τ(λnt) = λrnt ≤ λnt. Hence, n− 1 < rn ≤ n.

(iii) Let n ∈ N. It holds

τ(λ1+rnt) = τ(λλrnt) = τ(λ(τ(λnt))) ≤ τ(λλnt) = τ(λn+1t) = λrn+1t.

Hence, (iii) is fulfilled.

(iv) In view of

1 ≥ τ(λnt)

λnt
≥ λnt− µ(τ(λnt))

λnt
= 1 − µ(τ(λnt))

λnt
→ 1 as t→ ∞,

we get limt→∞ τ(λnt)/(λnt) = 1. Hence,

1 = lim
t→∞

τ(λnt)

λnt
= lim

t→∞

λrnt

λnt
= λrn−n,
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3. Regular and rapid variation on time scales with applications to dynamic equations

which implies rn(t) → n as t→ ∞ for each n ∈ N.

“If ”: We wish to show that if there is λ > 1 such that Pλ = L, then P =

Lλα−1/(λα−1 − 1).

First suppose that there exist λ > 1 and L∗ > 0 such that

lim inf
t→∞

tα−1

∫ τ(λt)

t

p(s) ∆s ≥ L∗.

Let ε > 0 and take t ∈ T sufficiently large. Then by using the properties (i), (ii)

and (iii) we get

(λnt)α−1

∫ λrn+1 t

λrn t

p(s)∆s ≥ (λrnt)α−1

∫ τ(λ1+rn t)

λrn t

p(s)∆s ≥ L∗ − ε, ∀n ∈ N ∪ {0},

hence,

tα−1

∫ λrn+1t

λrn t

p(s)∆s ≥ L∗ − ε

(λα−1)n
, ∀n ∈ N ∪ {0}.

Summing this inequality for n from 0 to ∞ we get

tα−1

∫ ∞

t

p(s) ∆s ≥ (L∗ − ε)

∞∑

n=0

1

(λα−1)n
=

(L∗ − ε)λα−1

λα−1 − 1
,

which implies

lim inf
t→∞

tα−1

∫ ∞

t

p(s) ∆s ≥ L∗λ
α−1

λα−1 − 1
.

Now suppose that there exist λ > 1 and L∗ > 0 such that

lim sup
t→∞

tα−1

∫ τ(λt)

t

p(s) ∆s ≤ L∗.

Let ε > 0. Take t ∈ T sufficiently large. Then

(λrnt)α−1

∫ τ(λ1+rn t)

λrn t

p(s)∆s ≤ L∗ + ε, ∀n ∈ N ∪ {0},

hence,

tα−1

∫ τ(λ1+rn t)

λrn t

p(s)∆s ≤ L∗ + ε

(λα−1)rn
, ∀n ∈ N ∪ {0}.

Summing this inequality for n from 0 to ∞ we get

tα−1
∞∑

n=0

∫ τ(λ1+rn t)

λrn t

p(s)∆s ≤ (L∗ + ε)
∞∑

n=0

1

(λα−1)rn
. (3.69)
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3. Regular and rapid variation on time scales with applications to dynamic equations

In view of property (ii), it is clear that the series on the right-hand side of the

inequality (3.69) can be majorized by the convergent series

∞∑

n=0

1

(λα−1)n−1

for each sufficiently large t. Hence, using the property (iv), resp. 1 + rn(t) →
rn+1(t) as t→ ∞ following from (iv), (3.69) implies

lim sup
t→∞

tα−1
∞∑

n=0

∫ λrn+1 t

λrnt

p(s)∆s ≤ L∗
∞∑

n=0

1

(λα−1)n
,

i.e.,

lim sup
t→∞

tα−1

∫ ∞

t

p(s) ∆s ≤ L∗λα−1

λα−1 − 1
.

Therefore, if L = L∗ = L∗ part “If ” follows.

“Only if ”: Let P = C and let λ > 1 be an arbitrary real number. Then

tα−1

∫ ∞

t

p(s) ∆s = tα−1

∫ τ(λt)

t

p(s) ∆s+ tα−1

∫ ∞

τ(λt)

p(s) ∆s

= tα−1

∫ τ(λt)

t

p(s) ∆s+
tα−1

(τ(λt))α−1
(τ(λt))α−1

∫ ∞

τ(λt)

p(s) ∆s.

(3.70)

Since (τ(λt))α−1
∫∞
τ(λt)

p(s) ∆s → A and t/τ(λt) → 1/λ as t → ∞, from (3.70) we

get

Pλ = lim
t→∞

tα−1

∫ τ(λt)

t

p(s)∆s = C − C

λα−1
=
C(λα−1 − 1)

λα−1
.

In view of previous results, we get the following statement.

Corollary 3.1. All positive solutions of (L) are Karamata functions if and only if for

every λ > 1 there exists the (finite or infinite) limit

lim
t→∞

t

∫ τ(λt)

t

p(s)∆s. (3.71)

All positive decreasing solutions of (HL) are Karamata functions if and only if for every

λ > 1 there exists the (finite or infinite) limit

lim
t→∞

tα−1

∫ τ(λt)

t

p(s)∆s.
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3. Regular and rapid variation on time scales with applications to dynamic equations

3.5 Concluding comments and open problems

In the first part of this section we give a few observations concerning graininess,

which plays an important role in established theory of regular and rapid variation

on time scales. The reader might wonder whether the condition µ(t) = o(t) (or

µ(t) = O(t) in connection with the slowly varying functions), which repeatedly

appears in our assumptions, can be omitted to obtain a general theory of regular

and rapid variation which is applicable on any time scales; in particular, on time

scales with a “large” graininess. For this purpose, distinguish three cases of the

behavior of the graininess in theory of regularly (resp. slowly) varying functions

of index ϑ, ϑ ∈ R, and of rapidly varying functions of index ±∞ on time scales:

(i) µ(t) = o(t) (resp. µ(t) = O(t) if ϑ = 0)

If we want to obtain a reasonable theory, which from a certain point of view

corresponds with a continuous (or a discrete) theory, this condition on the

graininess needs to be assumed and, moreover, cannot be improved. At

first, recall that we want f(t) = tϑ, ϑ 6= 0, to be a typical example of a

regularly varying function of index ϑ. However, for instance, with T = qN0 ,

where q > 1, µ(t) = (q − 1)t = O(t), see theory of q-calculus in Section 2.4,

we have fσ(t)/f(t) → qϑ 6= 1, and so the property from Lemma 3.1 fails to

hold. Also

lim
t→∞

tf∆(t)

f(t)
=
qϑ − 1

q − 1
6= ϑ.

Moreover, for f(t) = tϑ, (3.5) holds only when λ = qj , j ∈ Z. Among others

this means that even if Lemma 3.1 and Theorem 3.4 hold for µ(t) = O(t),

it is senseful to assume µ(t) = o(t) when ϑ 6= 0. Now, consider function

f(t) = (1/2)t and take again T = qN0 , q > 1. We expect that f ∈ RPVT(−∞).

But

lim
t→∞

t f∆(t)

f(t)
=

1

1 − q
6= −∞.

Note that for similar reasons the assumption µ(t) = o(t) cannot be omitted

also in Proposition 3.2 and Lemma 3.2.

(ii) µ(t) = Ct, with C > 0

In the next chapter, we introduce a theory of q-regular and q-rapid variation,

which means that considered functions are defined as in the q-calculus, i.e.,

on T = qN0 , with q > 1 (µ(t) = (q − 1)t). The theory of q-regular and q-

rapid variation was established using suitable modifications of “classical”

theories. It is worthy to mention that the theory shows some interesting

and surprising simplifications comparing with that on T = R or T = Z,
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3. Regular and rapid variation on time scales with applications to dynamic equations

since T = qN0 is somehow natural setting for a characterization of regularly

(resp. rapidly) varying behavior.

(iii) Other cases

If the graininess is eventually “very big” (or a combination of “very big”

and “small”), then the theory gives no proper results. Indeed, for instance,

let T = 2p
N0 = {2pk : k ∈ N0} with p > 1. Note that µ(t) = tp − t, hence the

condition µ(t) 6= O(t) is fulfilled. Take function f(t) = tϑ with ϑ ∈ R \ {0}
and use Definition 3.1. We expect that f ∈ RVT(ϑ). But on this time scale

we can observe that

lim
t→∞

tf∆(t)

f(t)
=
t((tp)ϑ − tϑ)

tϑ(tp − t)
=
tϑ(p−1) − 1

tp−1 − 1
=

{
∞ for ϑ > 1,

0 for ϑ < 1,

which is different from the expected value ϑ. Now use Definition 3.2 on

function f for λ = 1/2, then, with t = 2p
k

, k ∈ N0,

f(τ(λt))

f(t)
=

(
τ(2p

k

/2)

2pk

)ϑ

=

(
2p

k−1

2pk

)ϑ

→ 0 as t→ ∞ resp. k → ∞.

It is not difficult to observe that also f(τ(λt))/f(t) → 0 as t→ ∞ for any λ ∈
(0, 1), which is again different from the expected value λϑ. Moreover, in both

cases the value of the limit is equal ∞ or 0, which is related to the rapidly

varying behavior. Now take function f(t) = at, a 6= 1, again on T = 2p
N0

with p > 1. We expect that f ∈ KRPVT(∞) for a > 1 and f ∈ KRPVT(−∞)

for a < 1. But for λ > 1 we get f(τ(λt))/f(t) → 1 as t → ∞ (really, on

this time scale for each λ > 1 there exists t0 ∈ T such that τ(λt) = t for

t > t0) and therefore f 6∈ KRPVT(±∞). It still remains to discuss whether

the condition µ(t) = O(t) can be omitted (when ϑ = 0). Again, let T = 2p
N0

with p > 1. Take f(t) = ln t. We expect that f ∈ SV . Indeed, we have

lim
t→∞

tf∆(t)

f(t)
=
t(ln tp − ln t)

(tp − 1) ln t
=
t(p− 1)

tp − 1
= 0.

On the other hand, with λ ∈ (0, 1), t = 2k, for sufficiently large t,

f(τ(λt))

f(t)
=

ln τ(λ2p
k

)

ln 2pk
=

ln 2p
k−1

ln 2pk
=
pk−1

pk
=

1

p
6= 1,

where 1 is the expected value, in view of slow variation.

From the above observations, we conclude that it is advisable to distinguish and

consider only the cases (i) and (ii) in the theory of regular and rapid variation on
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3. Regular and rapid variation on time scales with applications to dynamic equations

time scales. Specially, concerning just a slow variation, it is sufficient to consider

only one general case, namely µ(t) = O(t).

In the second part of this section we give a few information about open prob-

lems and perspectives related to equations (HL) or (L), their M-classifications and

Karamata functions. Looking at relation (3.63) (resp. (3.67) ), which can be alter-

natively rewritten on

M
− = M

−
RPV (−∞) = M

−
0 and M

+ = M
+
RPV (∞) = M

+
∞ ⇐⇒ (3.62) (resp. (3.66)),

but it is not known (even in continuous and discrete case) whether

M+ = M
+
RPV (∞) = M

+
∞ =⇒ (3.62) (resp. (3.66)). (3.72)

If the implication (3.72) were true, then the theory of asymptotic behavior of all

solutions of equation (L) would be complete and we could claim (compare with

Corollary 4.1) :

“There exists positive solution y of (L) such that y ∈ KFT (resp. y 6∈ KFT) if and only if

every positive solution y of (L) satisfies y ∈ KFT (resp. y 6∈ KFT) if and only if the limit

(3.71) exists (resp. does not exist). Specially, there exists positive decreasing solution u

of (L) such that u ∈ RPVT(−∞) if and only if there exists positive increasing solution

v of (L) such that v ∈ RPVT(∞) if and only if the limit (3.71) is equal ∞. ”

On the other hand, thanks to the existence of a function p satisfying condition

(3.68) we know that a positive decreasing “No-Karamata” solution u 6∈ KFT of

(L) really exists. Indeed, it can be obtained as a decreasing solution of (L) with

the mentioned coefficient p. However, the existence of an increasing solution v

of (L) such that v 6∈ KFT has not been shown yet. From the above observations,

there are three possibilities for fundamental set of rapidly varying solutions of

equation (L):

(i) u ∈ RPVT(−∞), v ∈ RPVT(∞).

(ii) u 6∈ KFT such that u is positive decreasing, v ∈ RPVT(∞).

(iii) u 6∈ KFT such that u is positive decreasing, v 6∈ KFT such that v is positive

increasing.

Finally note that further possible research related to equation (HL) could be the

following one - to establish necessary and sufficient conditions for all positive

increasing solutions of (HL) to be regularly varying.
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q-regular and q-rapid variation
with applications to q-difference
equations 4
This chapter is organized similarly as the previous one. At first, we introduce the

concept of q-regularly and q-rapidly varying functions, i.e., the functions defined

on the lattice qN0 = {qk : k ∈ N0}, q > 1. Recall that the theory of q-calculus was

introduced in Section 2.4. Theory of q-regular, resp. q-rapid variation extends the

existing related theories, see, Section 2.1. Later, we use the established theory in

applications, concretely, in an asymptotic theory of second order linear and half-

linear q-difference equations. The obtained results can be seen as q-versions of

the existing ones in the linear (resp. half-linear) differential (resp. difference or

dynamic) equation case. If we compare this and previous chapter, one can say

that this “q-version” of previous theory is “simpler”. The reason is mainly in

structure of the set qN0 . Our results demonstrates that qN0 is very natural setting

for the theory of q-rapidly and q-regularly varying functions and its applications,

and reveal some interesting phenomena, which are not known from the related

theories. On the other hand, this fact allows us to prove some assertions in more

general form unlike previous cases.

4.1 Theory of q-regular variation

In this section we establish the theory of q-regularly varying functions. Since the

fraction (qa − 1)/(q − 1) appears quite frequently, let us introduce the notation

[a]q :=
qa − 1

q − 1
for a ∈ R. (4.1)

Note that limq→1[a]q = a. Now we introduce the concept of q-regular variation.

Definition 4.1. A function f : qN0 → (0,∞) is said to be q-regularly varying of index

ϑ, ϑ ∈ R, if there exists a function ω : qN0 → (0,∞) satisfying

f(t) ∼ Cω(t) and lim
t→∞

tDqω(t)

ω(t)
= [ϑ]q, (4.2)

C being a positive constant; we write f ∈ RVq(ϑ). If ϑ = 0, then f is said to be

q-slowly varying; we write f ∈ SVq.
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In fact, we have defined q-regular variation at infinity. If we consider a func-

tion f : qZ → (0,∞), qZ := {qk : k ∈ Z}, then f(·) is said to be q-regularly varying

at zero if f(1/t) is q-regularly varying at infinity. But it is apparent that it is suf-

ficient to develop just the theory of q-regular variation at infinity. It is easy to

see that the function tϑ is a typical representant of the class RVq(ϑ). Of course,

this class is much wider as can be seen from the representations derived in the

following theorem, where we also offer some other (simple) characterizations of

q-regular variation and show a relation with the continuous theory.

Theorem 4.1. (i) (Simple characterization) For a positive function f , f ∈ RVq(ϑ) if

and only if f satisfies

lim
t→∞

f(qt)

f(t)
= qϑ. (4.3)

Moreover, f ∈ RVq(ϑ) if and only if f satisfies just the second condition in (4.2),

i.e.,

lim
t→∞

tDqf(t)

f(t)
= [ϑ]q. (4.4)

(ii) (Zygmund type characterization) For a positive function f , f ∈ RVq(ϑ) if and

only if f(t)/tγ is eventually increasing for each γ < ϑ and f(t)/tη is eventually

decreasing for each η > ϑ.

(iii) (Representation I) f ∈ RVq(ϑ) if and only if f has the representation

f(t) = ϕ(t)eδ(t, 1), (4.5)

where ϕ : qN0 → (0,∞) tends to a positive constant and δ : qN0 → R satisfies

limt→∞ tδ(t) = [ϑ]q and δ ∈ R+. Without loss of generality, in particular in the

only if part, the function ϕ in (4.5) can be replaced by a positive constant.

(iv) (Representation II) f ∈ RVq(ϑ) if and only if f has the representation

f(t) = tϑϕ̃(t)eψ(t, 1), (4.6)

where ϕ̃ : qN0 → (0,∞) tends to a positive constant and ψ : qN0 → R satisfies

limt→∞ tψ(t) = 0 and ψ ∈ R+. Without loss of generality, in particular in the

only if part, the function ϕ̃ in (4.6) can be replaced by a positive constant.

(v) (Karamata type characterization) For a positive function f , f ∈ RVq(ϑ) if and

only if f satisfies

lim
t→∞

f(τ(λt))

f(t)
= (τ(λ))ϑ for λ ≥ 1 (4.7)

where τ : [1,∞) → qN0 is defined as τ(x) = max{s ∈ qN0 : s ≤ x}.
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(vi) (Imbeddability) If f ∈ RVq(ϑ) then R ∈ RV(ϑ), where

R(x) = f(τ(x))

(
x

τ(x)

)ϑ
for x ∈ [1,∞). (4.8)

Conversely, if R ∈ RV(ϑ), then f ∈ RVq(ϑ), where f(t) = R(t) for t ∈ qN0 .

Proof. (i) If f ∈ RVq(ϑ), then with limt→∞ ϕ(t) = C > 0 we have

lim
t→∞

f(qt)

f(t)
= lim

t→∞

ϕ(qt)ω(qt)

ϕ(t)ω(t)
= lim

t→∞

ω(t) + (q − 1)tDqω(t)

ω(t)
= 1 + (q − 1)[ϑ]q = qϑ,

which implies (4.3). Conversely,

lim
t→∞

tDqf(t)

f(t)
= lim

t→∞

t

t(q − 1)

(
f(qt)

f(t)
− 1

)
= [ϑ]q

(ii) If f ∈ RVq(ϑ), then by (i)

f(qt)

(qt)γ
− f(t)

tγ
=

f(t)

(qt)γ

(
f(qt)

f(t)
− qγ

)
=

f(t)

(qt)γ
(qϑ − qγ + o(1)).

The monotonicity for large t with η instead of γ follows similarly. Conversely, the

monotonicities imply (qt/t)γ ≤ f(qt)/f(t) ≤ (qt/t)η so that qγ ≤ f(qt)/f(t) ≤ qη.

The statement follows by choosing γ and η arbitrarily close to ϑ and using (i).

Statements (iii) and (iv) follow from the implications f ∈ RVq(ϑ) ⇒ f satisfies

(4.5) ⇒ f satisfies (4.6) ⇒ f ∈ RVq(ϑ), which will be proved next. If f ∈ RVq(ϑ),

then there is δ such that Dqω(t) = δ(t)ω(t) and limt→∞ tδ(t) = [ϑ]q. Since this is

a first order q-difference equation and ω is its positive solution, it has the form

ω(t) = ω0eδ(t, 1) with ω0 > 0. Formula (4.5) now follows from the first condition

in (4.2) and the fact that eδ(t, 1) > 0 implies δ ∈ R+. If f satisfies (4.5), then we

have f(t) = ϕ(t)tϑL(t), where L(t) = eδ(t, 1)/tϑ > 0 and limt→∞ tδ(t) = [ϑ]q . We

show that limt→∞ tDqL(t)/L(t) = 0. Indeed, from

DqL(t) =
δ(t)eδ(t, 1) − eδ(t, 1)[ϑ]q

qϑtϑ

we get
tDqL(t)

L(t)
=
tδ(t)

qϑ
− [ϑ]q

qϑ
→ 0

as t → ∞. Hence, arguing as in the previous part, there is ψ such that L(t) =

ψ0eψ(t, 1) > 0 where ψ0 > 0 and limt→∞ tψ(t) = 0. Thus f can be written in the

form (4.6). If f satisfies (4.6), we have f(t) = ϕ̃(t)ω(t), where ω(t) = tϑeψ(t, 1) > 0

and limt→∞ tψ(t) = 0. Similarly, as in the previous part, it is easy to show that

limt→∞ tDqω(t)/ω(t) = [ϑ]q . The fact that ϕ and ϕ̃ can be replaced by a constant

follows from (i).
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(v) The if part trivially follows from (i). Conversely, assume that f ∈ RVq(ϑ).

Then (4.6) holds. First observe that if t ∈ qN0 and λ ≥ 1, then t = qn and λ ∈
[qj, qj+1) for some j, n ∈ N0. Hence, τ(λt)/t = qn+j/qj = τ(λ).

From (4.6) we have

f(τ(λt))

f(t)
=
ϕ̃(τ(λt))

ϕ̃(t)

(
τ(λt)

t

)ϑ
eψ(τ(λt), t).

Hence,

lim
t→∞

f(τ(λt))

f(t)
= (τ(λ))ϑ lim

t→∞
eψ(τ(λt), t).

Set qn = t, qn+m = τ(λt), m,n ∈ N0. Note that τ(λ) = qm, where m is fixed since

τ(λt) = τ(λ)t. We have

eψ(τ(λt), t) =

n+m−1∏

j=n

[(q − 1)qjψ(qj) + 1].

Since qjψ(qj) → 0 as j → ∞, we obtain limt→∞ eψ(τ(λt), t). Hence (4.7) holds for

λ ≥ 1.

(vi) First we show that if f satisfies (4.7), then R : [1,∞) → (0,∞) given by

(4.8) satisfies R ∈ RV(ϑ). Note that R(t) = f(t) for t ∈ qN0 . We have

lim
x→∞

R(λx)

R(x)
= lim

x→∞

f(τ(λx))

f(τ(x))

(
λx

τ(λx)

)ϑ(
τ(x)

x

)ϑ

= λϑ lim
x→∞

f(τ(λτ(x)))

f(τ(x))
Ω(x, λ)

= λϑ(τ(λ))ϑ lim
x→∞

Ω(x, λ),

where

Ω(x, λ) =

(
τ(x)

τ(λx)

)ϑ
f(τ(λx))

f(τ(λτ(x)))
.

Since for each λ, x ≥ 1, there are m,n ∈ N0 such that λ ∈ [qm, qm+1) and x ∈
[qn, qn+1), we have λx ∈ [qm+n, qm+n+2), and so either (I) τ(λx) = qm+n = τ(λ)τ(x)

or (II) τ(λx) = qm+n+1 = qτ(λ)τ(x). Recall τ(λτ(x)) = τ(λ)τ(x). In case (I) we

obtain Ω(x, λ) = (τ(λ))−ϑ, while in case (II)

Ω(x, λ) = (qτ(λ))−ϑ
f(qτ(λ)τ(x))

f(τ(λ)τ(x))
.

Since limt→∞ f(qt)/f(t) = qϑ, from (I) and (II) we get limx→∞ Ω(x, λ) = (τ(λ))−ϑ.

Hence, limx→∞R(λx)/R(x) = λϑ for all λ > 1 and so by [4, Theorem 1.4.1], for
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all λ > 0. Consequently, R ∈ RV(ϑ). Conversely, if R ∈ RV(ϑ), then by [4,

Theorem 1.3.1, Theorem 1.4.1],

R(x) = Φ(x)xϑ exp

{∫ x

1

Ψ(s)

s
ds

}
,

where Φ,Ψ are bounded measurable functions on [1,∞) such that limx→∞ Φ(x) =

C > 0 and limx→∞ Ψ(x) = 0 (Ψ may be taken as continuous). Hence for t ∈ qN0

we have

f(t) = Φ(t)tϑ exp

{∫ t

1

Ψ(s)

s
ds

}
.

Then
f(qt)

f(t)
=

Φ(qt)

Φ(t)
qϑ exp

{∫ qt

t

Ψ(s)

s
ds

}
.

Using the mean value theorem,

∫ qt

t

Ψ(s)

s
ds = Ψ(ξ(t)) ln q → 0 as t→ ∞,

where t ≤ ξ(t) ≤ qt. Consequently limt→∞ f(qt)/f(t) = qϑ, and the statement

follows from (i).

Remark 4.1. (i) (Important) The so-called normalized regularly varying functions

of index ϑ can be defined as a function satisfying (4.4) or, equivalently, as those

having representation (4.5) or (4.6) with a constant instead of ϕ(t) or ϕ̃(t), respec-

tively. However, in contrast to the classical continuous or discrete case, owing

to (i) and (ii) of Theorem 4.1, the distinction between normalized (or Zygmund)

and ordinary regular variation disappears in q-calculus. Therefore, we do not

need to introduce the concept of normalized regular variation. Moreover, in the

q-calculus case we have another property not known in the classical theories: A

Karamata type characterization (4.7) can be substantially simplified to (4.3). Note

that for the discrete case, an analog of (4.7) is f([λt])/f(t) → λ̺ and an analog for

(4.3) can be seen as f(t + 1)/f(t) → 1. However, the latter one is just necessary

for regular variation on Z. Altogether we see that regularly varying functions in

q-calculus can be defined very simply by (4.3) or by (4.4), and that ϕ(t) and ϕ̃(t) in

representations (4.5) and (4.6), respectively, can be replaced by a positive constant

without loss of generality. The reason for this simplification may be that regular

variation can be based on a product characterization which is very natural for the

q-calculus case.

(ii) A suitable extension of the operator τ enables to have formula (4.7) also

for λ ∈ (0, 1).

(iii) Observe how the above (but also subsequent) results nicely resembles

continuous results as q → 1.
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Regularly varying functions on qN0 possess a number of properties. We list the

following ones, which will be needed later.

Proposition 4.1. Regularly varying functions have the following properties:

(i) It holds f ∈ RVq(ϑ) if and only if f(t) = tϑL(t), where L ∈ SVq.

(ii) Let f ∈ RVq(ϑ). Then limt→∞ log f(t)/ log t = ϑ. This implies limt→∞ f(t) = 0

if ϑ < 0 and limt→∞ f(t) = ∞ if ϑ > 0.

(iii) Let f ∈ RVq(ϑ). Then limt→∞ f(t)/tϑ−ε = ∞ and limt→∞ f(t)/tϑ+ε = 0 for

every ε > 0.

(iv) Let f ∈ RVq(ϑ). Then fγ ∈ RVq(γϑ).

(v) Let f ∈ RVq(ϑ1) and g ∈ RVq(ϑ2). Then fg ∈ RVq(ϑ1 + ϑ2) and 1/f ∈
RVq(−ϑ1).

(vi) Let f ∈ RVq(ϑ). Then f is decreasing provided ϑ < 0, and it is increasing provided

ϑ > 0. A concave f is increasing. If f ∈ SVq is convex, then it is decreasing.

Proof. (i), (iv), (v) The proofs of these parts are trivial.

(ii) From (4.5), using the q-L’Hospital rule, we have

lim
t→∞

log f(t)

log t
= lim

t→∞

∑
s∈[1,t)∩qN0

log[(q − 1)sδ(s) + 1]

log t
= lim

t→∞

log[(q − 1)tδ(t) + 1]

log q
= ϑ.

Alternatively we can see it from the imbedding result.

(iii) Follows from (4.6) and (ii) of this proposition.

(vi) The part for ϑ 6= 0 is simple. For ϑ = 0, i.e., f ∈ SV q, first we show that

D2
qf(t) > 0 implies eventual monotonicity of f . Indeed, either we haveDqf(t) < 0

for all t ∈ qN0 , or if there is t0 ∈ qN0 such that Dqf(t0) ≥ 0, then 0 ≤ Dqf(t0) <

Dqf(qt0) < . . . , hence Dqf(t) > 0 for all t ∈ (t0,∞) ∩ qN0 . By a contradiction

assume that Dqf(t) ≥ 0. Thanks to the convexity we have Dqf(t) ≥ M > 0

for large t ∈ qN0 and for some M > 0. Integrating from s to t we obtain f(t) ≥
f(s)+(t−s)M . But now f cannot be slowly varying by (iii) of this proposition.

4.2 Theory of q-rapid variation

In this section we extend the previous theory of q-regularly varying functions to

q-rapidly varying functions and establish analogical theory as in Section 3.2 on

qN0 . In view of (4.1), it is natural to extend this notation to

[∞]q := lim
t→∞

qt − 1

q − 1
= ∞ and [−∞]q := lim

t→−∞

qt − 1

q − 1
=

1

1 − q
.
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4. q-regular and q-rapid variation with applications to q-difference equations

Looking at the values on the right hand sides of (4.4) and (4.3) we will interested

in situations, where these values attain their extremal values, i.e., [∞]q and [−∞]q
in (4.4) and ∞ and 0 in (4.3). This leads to the concept of q-rapid variation.

Definition 4.2. A function f : qN0 → (0,∞) is said to be q-rapidly varying of index

∞, resp. of index −∞ if

lim
t→∞

tDqf(t)

f(t)
= [∞]q, resp. lim

t→∞

tDqf(t)

f(t)
= [−∞]q;

we write f ∈ RPVq(∞), resp. f ∈ RPVq(−∞).

In fact, we have defined q-rapid variation at infinity. If we consider a function

f : qZ → (0,∞), qZ := {qk : k ∈ Z}, then f(t) is said to be q-rapidly varying at

zero if f(1/t) is q-rapidly varying at infinity. But it is apparent that it is sufficient

to develop just the theory of q-rapid variation at infinity. It is easy to see that the

function f(t) = at with a > 1 is a typical representative of the class RPV q(∞),

while the function f(t) = at with a ∈ (0, 1) is a typical representative of the class

RPVq(−∞). Of course, these classes are much wider as can be seen also from the

simple representations derived in the following proposition, where we present

important properties of q-rapidly varying functions.

Proposition 4.2. (i) (Simple characterization) For a function f ∈ qN0 → (0,∞),

f ∈ RPVq(∞), resp. f ∈ RPVq(−∞), if and only if f satisfies

lim
t→∞

f(qt)

f(t)
= ∞, resp. lim

t→∞

f(qt)

f(t)
= 0.

(ii) (Karamata type definition) Define τ : [1,∞) → qN0 by τ(x) = max{s ∈ qN0 : s ≤
x}. For a function f ∈ qN0 → (0,∞), f ∈ RPVq(∞), resp. f ∈ RPVq(−∞), if

and only if f satisfies

lim
t→∞

f(τ(λt))

f(t)
= ∞, resp. lim

t→∞

f(τ(λt))

f(t)
= 0, for some λ ∈ [q,∞), (4.9)

which holds if and only if f satisfies

lim
t→∞

f(τ(λt))

f(t)
= ∞, resp. lim

t→∞

f(τ(λt))

f(t)
= 0, for every λ ∈ [q,∞),

which holds if and only if f satisfies

lim
t→∞

f(τ(λt))

f(t)
= 0, resp. lim

t→∞

f(τ(λt))

f(t)
= ∞, for some λ ∈ (0, 1),

which holds if and only if f satisfies

lim
t→∞

f(τ(λt))

f(t)
= 0, resp. lim

t→∞

f(τ(λt))

f(t)
= ∞, for every λ ∈ (0, 1).
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(iii) It holds f ∈ RPVq(∞) if and only if 1/f ∈ RPVq(−∞).

(iv) If f ∈ RPV q(∞), then for each ϑ ∈ [0,∞) the function f(t)/tϑ is eventually

increasing and limt→∞ f(t)/tϑ = ∞.

(v) If f ∈ RPVq(−∞), then for each ϑ ∈ [0,∞) the function f(t)tϑ is eventually

decreasing and limt→∞ f(t)tϑ = 0.

Proof. (i) It follows from the identity

tDqf(t)

f(t)
=

1

q − 1

(
f(qt)

f(t)
− 1

)
.

(ii) We prove that f ∈ RPV q(∞) if and only if the first condition in (4.9) holds.

Other cases follow similarly. First assume that f ∈ RPVq(∞). As shown in

(iv), f is eventually increasing. Hence, f(τ(λt))/f(t) ≥ f(qt)/f(t) for large t

and λ ∈ [q,∞). Hence, thanks to (i), the result follows. Conversely assume

that limt→∞ f(τ(λt))/f(t) = ∞ for some λ ∈ [q,∞). Let m ∈ N be such that

λ ∈ [qm, qm+1). Then

f(τ(λt))

f(t)
=
f(qmt)

f(t)
=

f(qmt)

f(qm−1t)
· f(qm−1t)

f(qm−2t)
· · · · · f(qt)

f(t)
. (4.10)

Assume by a contradiction f 6∈ RPVq(∞), i.e., by (i), lim inft→∞ f(qt)/f(t) < ∞.

Then lim inft→∞ f(qit)/f(qi−1t) <∞ for all i ∈ N. Hence, in view of (4.10), we get

lim inft→∞ f(τ(λt))/f(t) <∞, which is a contradiction.

(iii) In view of (i), the proof is trivial.

(iv) We have

Dq

(
f(t)

tϑ

)
=
Dqf(t)tϑ − f(t) (qt)ϑ−tϑ

(q−1)t

tϑ(qt)ϑ

=
Dqf(t) − f(t)

t
[ϑ]q

(qt)ϑ
.

(4.11)

Since f ∈ RPVq(∞), for eachM > 0 there exists t0 ∈ qN0 such that tDqf(t)/f(t) >

M for t ≥ t0. Hence, Dqf(t) > f(t)[ϑ]q/t for large t, and so Dq(f(t)/tϑ) is even-

tually positive in view of (4.11). Consequently, f(t)/tϑ is eventually increasing,

and so its limit, as t → ∞, must exist (finite positive or infinite). By a contradic-

tion assume that limt→∞ f(t)/tϑ = K ∈ (0,∞). Then f(t) ∼ Ktϑ, which implies

limt→∞ f(qt)/f(t) = qϑ 6= ∞, i.e., f 6∈ RPVq(∞), contradiction.

(v) It follows from (iii) and (iv).

Remark 4.2. (i) In contrast to the general theory on time scales (see Definition 3.5

in Section 3.2) or classical continuous and discrete theories (see Section 2.1) we

can observe that the Karamata type definition is substantially simpler, see (ii)
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and also (i) of Proposition 4.2. Actually, here we can restrict our consideration

just to one value of the parameter λ. The reason for this simply looking condition

may be that rapid variation can be based on a product in the argument charac-

terization which is quite natural for the q-calculus case. Observe that we do not

consider the values of λ in the sets (0, 1) and (1,∞) as in general time scales (resp.

classical continuous or discrete) theory, but in the sets (0, 1) and [q,∞). It is be-

cause τ(λt) = t for λ ∈ (1, q).

(ii) Another simplification in comparison with general time scale theory (resp.

classical theories) is that for showing the equivalence between the Karamata type

definition (or the simple characterization (i) of Proposition 4.2) and Definition 4.2

we do not need additional assumptions like convexity, see Lemma 3.2 in Sec-

tion 3.2 (resp. Section 2.1, namely assumptions of validity of conditions (2.8) and

(2.9) ).

(iii) In view of (iv) and (v) of Proposition 4.2, RPVq(∞) functions are always

eventually increasing to ∞, while RPVq(−∞) functions are always eventually

decreasing to zero.

(iv) Similarly as in theory of q-regular variation, it is not difficult to see that the

concept of normalized q-rapid variation misses point. Indeed, let “normalized”

q-rapidly varying functions are defined as in Definition 4.2. Let us define the

concept of q-rapid variation in a seemingly more general way: A function g :

qN0 → (0,∞) is q-rapidly varying of index ∞, resp. of index −∞ if there are

positive functions ϕ and ω satisfying g(t) = ϕ(t)ω(t), limt→∞ ϕ(t) = C ∈ (0,∞),

limt→∞ tDqω(t)/ω(t) = [∞]q resp. = [−∞]q . By Proposition 4.2 we then get

lim
t→∞

g(qt)

g(t)
=
ϕ(qt)

ϕ(t)
· ω(qt)

ω(t)
= ∞ resp. 0,

and so g is also “normalized” q-rapidly varying of index ∞, resp. −∞. Note

that these observations remain valid even under another generalization, where

the condition limt→∞ ϕ(t) = C ∈ (0,∞) is relaxed to 0 < C1 ≤ ϕ(t) ≤ C2 < ∞ for

large t.

4.3 Applications to q-difference equations

In this section we apply the theory from the previous two sections to the investi-

gation of asymptotic behavior of solutions to linear and half-linear second order

q-difference equations, which allows us to get a precise information about asymp-

totic varying behavior of positive solutions of mentioned equations. Consider the

half-linear second order q-difference equation

Dq[Φ(Dqy(t))] − p(t)Φ(y(qt)) = 0, (HLq)
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on qN0 with q > 1, where p : qN0 → (0,∞). The linear q-difference equation

D2
qy(t) − p(t)y(qt) = 0 (Lq)

is a special case of (HLq) (when α = 2). Equations (HLq), resp. (Lq) are the special

cases of equations (HLqE), resp. (LqE) introduced in Section 2.4.

In this section we use two methods of the proofs. First method uses the classi-

cal tool, namely the Riccati type transformation. This type of method we also

used in the proofs in Section 3.3. Second method of the proof is suitable for

investigating of (HLq) and (Lq). This method is new and designed just for the

q-calculus case. It also turns out to be elegant and powerful tool also for the ex-

amination of asymptotic behavior to many other q-difference equations, which

then may serve to predict how their (trickily detectable) continuous counterparts

look like (we simply take, formally, the limit as q → 1+). Note that second method

is more practical and allows us to get more general results that the previous one.

In the following theorem, by using the first method, we establish necessary

and sufficient conditions for all positive solutions of (Lq) to be q-regularly vary-

ing. Note that all nontrivial solutions of (Lq) are nonoscillatory (i.e., are eventu-

ally of one sign) and eventually monotone and convex, i.e., Dqy is nondecreasing.

Because of linearity, without loss of generality, it is sufficient to consider just pos-

itive solutions of (Lq).

Theorem 4.2. (i) Equation (Lq) has a fundamental set of solutions

u(t) = L(t) ∈ SVq, v(t) = tL̃(t) ∈ RVq(1) (4.12)

if and only if

lim
t→∞

t

∫ ∞

t

p(s) dqs = 0. (4.13)

Moreover, L̃ ∈ SVq with L̃(t) ∼ 1/L(t). All positive decreasing solutions of (Lq)

belong to SVq and all positive increasing solutions of (Lq) belong to RVq(1). Any of two

conditions in (4.12) implies (4.13).

(ii) Equation (Lq) has a fundamental set of solutions

u(t) = tϑ1L(t) ∈ RVq(ϑ1), v(t) = tϑ2L̃(t) ∈ RVq(ϑ2) (4.14)

if and only if

lim
t→∞

t

∫ ∞

t

p(s) dqs = A > 0, (4.15)

where ϑi = logq[(q − 1)λi + 1], i = 1, 2, λ1 < 0 < λ2 are the roots of the equation

λ2 − [A(q − 1) + 1]λ−A = 0.
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It holds ϑ1 < 0 < ϑ2,

λ2 = [ϑ2]q = A(q − 1) + 1 − [ϑ1]q = A(q − 1) + 1 − λ1,

and ϑ2 = 1 − ϑ1. Moreover, L, L̃ ∈ SVq with

L̃(t) ∼ 1/(qϑ1[1 − 2ϑ1]qL(t)).

All positive decreasing solutions of (Lq) belong to RVq(ϑ1) and all positive increasing

solutions of (Lq) belong to RVq(ϑ2). Any of two conditions in (4.14) implies (4.15).

Proof. Parts (i) and (ii) will be proved simultaneously assuming A ≥ 0 in (4.15)

and, consequently, λ1 ≤ 0 or ϑ1 ≤ 0, if it is not said otherwise. Recall that

[a,∞)q = {a, aq, aq2, . . .} ⊆ qN0 .

“Only if parts”: Let u ∈ RVq(ϑ1) be a positive decreasing solution of (Lq) on

[a,∞)q. Set w = Dqu/u. Then w(t) < 0 and satisfies the Riccati type q-difference

equation

Dqw(t) − p(t) +
w2(t)

1 + (q − 1)tw(t)
= 0 (4.16)

with w ∈ R+ on [a,∞)q. We have limt→∞ tw(t) = [ϑ1]q and so limt→∞w(t) = 0. We

show that ∫ ∞

a

w2(t)

1 + (q − 1)tw(t)
dqt <∞.

Since 1+(q−1)tw(t) → qϑ1 , we have 1+(q−1)tw(t) > qϑ1/2 for large t. Moreover,

there is N > 0 such that |w(t)| ≤ N/t for large t. Without loss of generality, these

large t’s can be taken as t ∈ [a,∞)q. Then

∫ ∞

a

w2(t)

1 + (q − 1)tw(t)
dqt ≤

2N2q

qϑ1

∫ ∞

a

dqt

qt2
=

2N2q

aqϑ1
,

since Dq(1/t) = −1/(qt2). Integration of (4.16) and multiplication by t yield

− tw(t) + t

∫ ∞

t

w2(s)

1 + (q − 1)sw(s)
dqs = t

∫ ∞

t

p(s) dqs. (4.17)

The q-L’Hospital rule gives

lim
t→∞

t

∫ ∞

t

w2(s)

1 + (q − 1)sw(s)
dqs = lim

t→∞

qt2w2(t)

1 + (q − 1)tw(t)
=

q[ϑ1]q
1 + (q − 1)[ϑ1]q

.

Hence, from (4.17) we get

lim
t→∞

t

∫ ∞

t

p(s) dqs =
[ϑ1]

2
q − [ϑ1]q

1 + (q − 1)[ϑ1]q
= A.
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Similar arguments show that also v ∈ RVq(ϑ2) being a positive increasing solu-

tion of (Lq) implies (4.15).

Note that even without assuming monotonicity, a solution u ∈ RVq(ϑ1) nec-

essarily decreases while a solution v ∈ RVq(ϑ2) necessarily increases by (vi) of

Proposition 4.1.

“If parts”: Let u be a positive decreasing solution of (Lq) on [a,∞)q Then

limt→∞Dqu(t) = 0. Indeed, if not, then there is K > 0 such that Dqu(t) ≤ −K
for t ∈ [a,∞)q since Dqu is negative increasing. Hence u(t) ≤ u(a) − (t − a)K.

Letting t → ∞ we have limt→∞ u(t) = −∞, a contradiction with positivity of u.

Integration of (Lq) from t to ∞ yields Dqu(t) = −
∫∞
t
p(s)u(qs) dqs. Hence,

0 <
−tDqu(t)

u(t)
=

t

u(t)

∫ ∞

t

p(s)u(qs) dqs ≤ t

∫ ∞

t

p(s) dqs. (4.18)

If (4.13) holds, then we are done since (4.18) implies limt→∞ tDqu(t)/u(t) = 0, and

so u ∈ SVq. Next we assume (4.15) with A > 0. Set η(t) = tDqu(t)/u(t). From

(4.18), 0 < −η(t) ≤ t
∫∞
t
p(s) dqs, and so η is bounded. Further, η satisfies the

modified Riccati q-difference equation

Dq

(
η(t)

t

)
− p(t) +

η2(t)/t2

1 + (q − 1)η(t)
= 0 (4.19)

with η/t ∈ R+ on [a,∞)q. Since η is bounded, we have limt→∞ η(t)/t = 0 and so

integration of (4.19) from t to ∞ yields

− η(t)

t
=

∫ ∞

t

p(s) dqs−
∫ ∞

t

η2(s)/s2

1 + (q − 1)η(s)
dqs. (4.20)

Let us write condition (4.15) as t
∫∞
t
p(s) dqs = A + ε(t), where limt→∞ ε(t) = 0.

Further, let us write
∫ ∞

t

η2(s)/s2

1 + (q − 1)η(s)
dqs = G(t)

∫ ∞

t

dqs

qs2
=
G(t)

t
,

where m(t) ≤ G(t) ≤M(t) with

m(t) = inf
s≥t

qη2(s)

1 + (q − 1)η(s)
and M(t) = sup

s≥t

qη2(s)

1 + (q − 1)η(s)
.

With these equalities, multiplication of (4.20) by t yields

G(t) − η(t) = A+ ε(t). (4.21)

We claim that limt→∞ η(t) = [ϑ1]q. Recall that η is bounded and denote K∗ =

lim inft→∞(−η(t)), K∗ = lim supt→∞(−η(t)). Observe the monotone properties of

the function f(x) = qx2/(1 + (q − 1)x) which occurs in the formula for G. Recall
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that our “admissible” x’s are just the nonpositive ones satisfying 1 + (q− 1)x > 0.

The function G is bounded. Define K1 and K2 by

lim inf
t→∞

G(t) =
qK2

1

1 − (q − 1)K1
and lim sup

t→∞
G(t) =

qK2
2

1 − (q − 1)K2
.

Thanks to monotonicity of f and boundedness of η we have 0 ≤ K∗ ≤ K1 ≤ K2 ≤
K∗ < 1/(q − 1). Now we distinguish several cases which lead to a contradiction,

and altogether show that limt→∞ η(t) exists and is equal to [ϑ1]q. Assume, for

instance, K1 < −[ϑ1]q. Then K∗ < −[ϑ1]q. Noticing that

A =
[ϑ1]

2
q − [ϑ1]q

1 + (q − 1)[ϑ1]q
=

q[ϑ1]
2
q

1 − (q − 1)(−[ϑ1]q)
+ (−[ϑ1]q)

and taking lim inf as t→ ∞ in (4.21) we get

qK2
1

1 − (q − 1)K1
+K∗ =

q[ϑ1]
2
q

1 − (q − 1)(−[ϑ1]q)
+ (−[ϑ1]q).

Thanks to monotonicity of f , from the last equation we have K∗ = B + (−[ϑ1]q),

where B = f([ϑ1]q) − f(K1) is positive. Hence, K∗ > −[ϑ1]q, a contradiction. In

a similar manner we obtain a contradiction when K∗ < −[ϑ1]q and K1 = −[ϑ1]q.

If K1 > −[ϑ1]q, then K∗ ≥ K2 > −[ϑ1]q and a contradiction is obtained by taking

lim sup as t → ∞ in (4.21). This proves that limt→∞ η(t) = [ϑ1]q, and so u(t) =

tϑ1L(t) ∈ RVq(ϑ1), where u is a positive decreasing solution of (Lq) and L ∈
SVq. Now consider a linearly independent solution v of (Lq), which is given

by v(t) = u(t)
∫ t
a
(1/(u(s)u(qs))) dqs. Put z = 1/u2. Then z ∈ RVq(−2ϑ1) by (v)

of Proposition 4.1. Since
∫∞
a

(1/(u(s)u(qs))) dqs = ∞, the q-L’Hospital rule and

Theorem 4.1 yield

lim
t→∞

t/u(t)

v(t)
= lim

t→∞

tz(t)∫ t
a
(1/(u(s)u(qs))) dqs

= lim
t→∞

z(t) + qtDqz(t)

1/(u(t)u(qt))

= lim
t→∞

(
u(t)u(qt)

u2(t)
+
qu(t)u(qt)

u2(t)
· tDqz(t)

z(t)

)
= qϑ1 + qϑ1+1[−2ϑ1]q =: γ.

Hence, γv(t) ∼ t/u(t) = t1−ϑ1/L(t). Consequently, v(t) = tϑ2L̃(t), where L̃(t) ∼
1/(γL(t)), L̃ ∈ SVq, and so v ∈ RVq(ϑ2) by (v) of Proposition 4.1 since ϑ2 = 1−ϑ1.

The last equality follows from

ϑ2 = logq[(q − 1)λ2 + 1] = logq[(q − 1)(A(q − 1) + 1 − λ1) + 1]

= logq

[
(q − 1)

(
(q − 1)(λ2

1 − λ1)

1 + (q − 1)λ1
+ 1 − λ1

)
+ 1

]

= logq
q

1 + (q − 1)λ1

= logq q − logq[(q − 1)λ1 + 1]

= 1 − ϑ1.
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The solution v increases by (vi) of Proposition 4.1. For the quantity γ we have

γ = qϑ1

(
1 +

q1−2ϑ1 − q

q − 1

)
= qϑ1

q1−2ϑ1 − 1

q − 1
= qϑ1[1 − 2ϑ1]q.

The theorem is proved.

Remark 4.3. For related results concerning linear differential and difference equa-

tions case see [26] and [30], respectively. Observe how the constants (indices of

regular variation) ϑ1, ϑ2 in Theorem 4.2 differ from those in the continuous case.

On the other hand, note how Theorem 4.2 resembles the continuous result as

q → 1.

Before we extend previous result on equation (HLq), we prove a few impor-

tant lemmas, which will be needed later in new method of the proof. The follow-

ing lemmas will play the important roles in showing q-regularly and q-rapidly

varying behavior of solutions to (HLq).

Lemma 4.1. Define the functions f, g : (0,∞) → R by

f(x) = Φ

(
x

q
− 1

q

)
− Φ

(
1 − 1

x

)
and g(x) = Φ

(
x

q
− 1

q

)
+ Φ

(
1 − 1

x

)
.

Then x 7→ f(x) is strictly increasing for x > q1−1/α and strictly decreasing for 0 < x <

q1−1/α, and x 7→ g(x) is strictly increasing for x > 0. Moreover, f(1) = 0 and f(qϑ) > 0

provided ϑ > 1.

Proof. The part concerning the monotonicity follows from the equalities

f ′(x) =
α− 1

(x− 1)2

(
q

∣∣∣∣
x− 1

q

∣∣∣∣
α

−
∣∣∣∣
x− 1

x

∣∣∣∣
α)

.

and

g′(x) =
α− 1

(x− 1)2

(
q

∣∣∣∣
x− 1

q

∣∣∣∣
α

+

∣∣∣∣
x− 1

x

∣∣∣∣
α)

.

Further, with ϑ > 1, f(qϑ) > 0 if and only if qϑ/q − 1/q > 1 − 1/qϑ if and only if

qϑ(qϑ − 1) > q(qϑ − 1) if and only if qϑ > q.

The next lemma shows that (HLq) can be viewed in terms of fractions, which

appear in characterization of q-regular or q-rapid variation.

Lemma 4.2. Define the operator L by

L[y](t) = Φ

(
y(q2t)

qy(qt)
− 1

q

)
− Φ

(
1 − y(t)

y(qt)

)

for y 6= 0. Then

Dq(Φ(Dqy(t))) =
Φ(y(qt))

(q − 1)αtα
L[y](t)

and equation (HLq) can be written as L[y](t) = (q − 1)αtαp(t) for y 6= 0.
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Proof. The statement is an easy consequence of the formula for q-derivative. In-

deed,

Dq(Φ(Dqy(t)))) = Dq

(
Φ

(
y(qt) − y(t)

(q − 1)t

))

=
1

(q − 1)t

(
Φ

(
y(q2t) − y(qt)

(q − 1)qt

)
− Φ

(
y(qt) − y(t)

(q − 1)t

))

=
1

(q − 1)αtα

(
Φ

(
y(qt)

q
(
y(q2t)

y(qt)
− 1)

)
− Φ

(
y(qt)(1 − y(t)

y(qt)
)

))

=
Φ(y(qt))

(q − 1)αtα
L[y](t)

The following lemma will play an important role when dealing with indices

of regular variation of solutions to (HLq).

Lemma 4.3. Define the function hq : (Φ(1/(1 − q)),∞) → R by

hq(x) =
x

1 − q1−α

(
1 −

(
1 + (q − 1)Φ−1(x)

)1−α)
.

Then the graph of x 7→ hq(x) is a parabola like curve with the minimum at the origin.

If C > 0, then the equation hq(x) − x − C = 0 has two real roots x1 < 0 and x2 > 1

on (Φ(1/(1 − q)),∞). If C = 0, then the algebraic equation has the roots x1 = 0 and

x2 = 1. Taking the limit in hq as q → 1+ it holds h1(x) = |x|β.

Proof. The shape of the curve follows from the facts that

h′q(x) sgn(x) =
1

1 − q1−α (1 − (1 + (q − 1)Φ−1(x))−α) sgn(x) > 0

and

h′′q (x) =
β(q − 1)

1 − q1−α |x|
β−2(1 + (q − 1)Φ−1(x))−α−1 > 0

for admissible x, x 6= 0, and hq(0) = h′q(0) = h′′q (0) = 0. The statement concerning

the roots x1, x2 then easily follows from observing the intersections of the graphs

of the line x 7→ x and the function x 7→ hq(x) − C, view of hq(1) = 1. The

equality h1(x) = |x|β follows either by direct using the L’Hospital rule to hq with

the respect to q or from the identity (4.22), in view of the fact that [a]q tends to

[a]1 = a as q → 1+.

We will need to rewrite the expression in the algebraic equation from the pre-

vious lemma in other terms; such a relation is described in the next statement.
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Lemma 4.4. For ϑ ∈ R it holds

Φ([ϑ]q)[1 − ϑ]qα−1 = Φ([ϑ]q) − hq(Φ([ϑ]q)), (4.22)

where 1 + (q − 1)Φ−1(Φ([ϑ]q)) > 0.

Proof. We have 1 + (q − 1)Φ−1(Φ([ϑ]q)) = 1 + (q − 1)[ϑ]q = qϑ > 0. Further,

Φ([ϑ]q) − hq(Φ([ϑ]q)) = Φ([ϑ]q)

(
1 − 1

1 − q1−α

(
1 − qϑ(1−α)

))

= Φ([ϑ]q)
qϑ(1−α) − q1−α

1 − q1−α · q
α−1

qα−1

= Φ([ϑ]q)
q(α−1)(1−ϑ) − 1

qα−1 − 1

= Φ([ϑ]q)[1 − ϑ]qα−1 .

Next is described an important relation between the expression from the pre-

vious lemma and the function f from Lemma 4.1.

Lemma 4.5. For ϑ ∈ R it holds

(q − 1)−αf(qϑ) = Φ([ϑ]q)[1 − ϑ]qα−1 [1 − α]q. (4.23)

Proof. In view of (q1−α − 1)/(qα−1 − 1) = −1/qα−1, we have

Φ([ϑ]q)[1 − ϑ]qα−1 [1 − α]q
(q − 1)−α

= Φ

(
qϑ − 1

q − 1

)
(q(α−1)(1−ϑ) − 1)(q − 1)α(q1−α − 1)

(qα−1 − 1)(q − 1)

= Φ(qϑ − 1)
1 − q(α−1)(1−ϑ)

qα−1

=
Φ(qϑ − 1)

qα−1
− Φ(qϑ − 1)

q(α−1)−(α−1)(1−ϑ)

= Φ

(
qϑ − 1

q

)
− Φ

(
qϑ − 1

qϑ

)

= f(qϑ).

Now we are ready to use the mentioned method, which is designed just for

the q-calculus case and turns out to be more effective than the previous method

using the integral conditions. The following theorem can be understood as a

generalization of the “linear” results from Theorem 4.2. Recall that all positive

solutions of (HLq) are eventually monotone and convex.
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Theorem 4.3. (i) Equation (HLq) has solutions

u ∈ SVq and v ∈ RVq(1) (4.24)

if and only if

lim
t→∞

tαp(t) = 0. (4.25)

All positive decreasing solutions of (HLq) belong to SVq and all positive increasing so-

lutions of (HLq) belong to RVq(1). Any of two conditions in (4.24) implies (4.25).

(ii) Equation (HLq) has solutions

u ∈ RVq(ϑ1) and v ∈ RVq(ϑ2) (4.26)

if and only if

lim
t→∞

tαp(t) = B > 0, (4.27)

where ϑi = logq[(q − 1)Φ−1(λi) + 1], i = 1, 2, λ1 < λ2 being the roots of the equation

hq(λ)−λ+B/[1−α]q = 0; these roots satisfy λ1 ∈ (Φ(1/(1−q)), 0), λ2 > 1, and ϑ1, ϑ2

satisfy ϑ1 ∈ (−∞, 0) and ϑ2 > 1. All positive decreasing solutions of (HLq) belong to

RVq(ϑ1) and all positive increasing solutions of (HLq) belong to RVq(ϑ2). Any of two

conditions in (4.26) implies (4.27).

Proof. First note that the intervals of allowed values for λ1 and λ2 follows from

Lemma 4.3. The intervals for ϑ1, ϑ2 are then consequences of the relations qϑi =

(q − 1)Φ−1(λi) + 1, i = 1, 2.

Parts (i) and (ii) will be proved simultaneously, assuming B ≥ 0 in (4.27) and,

consequently, having λ1 ∈ (Φ(1/(1 − q)), 0] and λ2 ≥ 1.

“Only if parts”: Assume u ∈ RVq(ϑ1). Using Lemmas 4.2, 4.4, and 4.5, we get

lim
t→∞

tαp(t) = (q − 1)−α lim
t→∞

L[u](t)

= (q − 1)−α
(

Φ

(
qϑ

q
− 1

q

)
− Φ

(
1 − 1

qϑ

))

= (q − 1)−αf(qϑ1)

= Φ([ϑ1]q)[1 − ϑ1]qα−1 [1 − α]q

= [1 − α]q (Φ([ϑ1]q) − gq(Φ([ϑ1]q)))

= [1 − α]q (λ1 − gq(λ1))

= [1 − α]q
B

[1 − α]q

= B.

The same arguments work for v ∈ RVq(ϑ2).
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In view of Proposition 4.1, solutions in RVq(ϑ1) necessarily decrease (this in-

cludes also SVq solutions because of their convexity) and solutions in RVq(ϑ1)

necessarily increase.

“If parts”: Assume limt→∞ tαp(t) = B ≥ 0 and u is a positive decreasing solu-

tion of (HLq) on [a,∞)q. Let us write B as B = [1−α]q(Φ([ϑ1]q)− gq(Φ([ϑ1]q))). In

view of Lemma 4.2, we have

lim
t→∞

L[u](t) = (q − 1)α lim
t→∞

tαp(t) = (q − 1)αB

= (q − 1)α[1 − α]q(Φ([ϑ1]q) − gq(Φ([ϑ1]q))).

Now, using Lemma 4.4 and Lemma 4.5 in the last equality, we get

lim
t→∞

L[u](t) = f(qϑ1). (4.28)

We will show that limt→∞ u(qt)/u(t) = qϑ1 . Denote M∗ = lim inft→∞ u(qt)/u(t)

and M∗ = lim supt→∞ u(qt)/u(t). First note that the case M∗ = 0 cannot happen.

Indeed, if M∗ = 0, then lim supt→∞ L[u](t) = ∞, which is in a contradiction with

a real value of f(qϑ1), in view of (4.28). We also have u decreasing, and hence

M∗,M
∗ ∈ (0, 1]. In view of the above observations, taking the lim inf as t → ∞ in

L[u](t) = (q − 1)αtαp(t), we get

Φ

(
M∗

q
− 1

q

)
− Φ

(
1 − 1

M∗

)
= f(qϑ1).

Similarly, the lim sup yields

Φ

(
M∗

q
− 1

q

)
− Φ

(
1 − 1

M∗

)
= f(qϑ1).

Subtracting these equations we obtain g(M∗) = g(M∗). In view of monotone

properties of g (see Lemma 4.1), we get M := M∗ = M∗. Hence, from (4.28),

f(M) = f(qϑ1). We claim that M = qϑ1 . Since M, qϑ1 ∈ (0, 1], we work here

with f on the interval (0, 1], where it is strictly decreasing, see Lemma 4.1. Hence,

M 6= qϑ1 would lead to a contradiction. Thus we get limt→∞ u(qt)/u(t) = M = qϑ1 ,

which implies u ∈ RVq(ϑ1). Similarly we proceed with a positive increasing

solution v of (HLq). However, certain additional steps need to be shown. First

note that for N∗ = lim inf t→∞ v(qt)/v(t) and N∗ = lim supt→∞ v(qt)/v(t) we have

N∗, N
∗ ∈ [1,∞). Because of monotone properties of g we get limt→∞ v(qt)/v(t) =

N ∈ (1,∞). The limit value 1 is excluded since it would lead to v ∈ SVq, and the

solution v then decreases, (in view of convexity, see Proposition 4.1 (vi)), which

is a contradiction. Notice that another argument is 0 = f(1) = f(N) = f(qϑ2) > 0

by Lemma 4.1. We claim that N = qϑ2 . We have that f(N) = f(qϑ2) and recall

that ϑ2 > 1. If N ≥ q1−1/α and we assume N 6= qϑ2 , then we immediately get a
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contradiction since x 7→ f(x) is strictly increasing on [q1−1/α,∞), see Lemma 4.1.

Assume now N ∈ (1, q1−1/α). We know that x 7→ f(x) is strictly decreasing on

(1, q1−1/α), see Lemma 4.1. Moreover, f(1) = 0. Hence, f(N) < f(1) = 0. From

Lemma 4.1 we also know that f(qϑ2) > 0 for ϑ2 > 1, and so we get f(N) < f(qϑ2),

a contradiction. Thus we obtain limt→∞ v(qt)/v(t) = N = qϑ2 , which implies

v ∈ RVq(ϑ2).

In the end of this section we establish nonintegral conditions guaranteeing

that positive solutions of equation (HLq) are q-rapidly varying. We use the ana-

logical method as before.

Theorem 4.4. Equation (HLq) has solutions

u ∈ RPVq(−∞) and v ∈ RPV q(∞) (4.29)

if and only if

lim
t→∞

tαp(t) = ∞. (4.30)

All positive decreasing solutions of (HLq) belong to RPVq(−∞) and all positive increas-

ing solutions of (HLq) belong to RPVq(∞). Any of two conditions in (4.29) implies

(4.30)

Proof. “Only if”: Let u be a solution of (HLq) such that u ∈ RPVq(−∞). Then

u is eventually decreasing (towards zero) and limt→∞ u(qt)/u(t) = 0 by Proposi-

tion 4.2. Hence, limt→∞ u(q2t)/u(qt) = 0 and limt→∞ u(t)/u(qt) = ∞, and so

lim
t→∞

tαp(t) = lim
t→∞

(q − 1)−αL[u](t) = ∞,

in view of Lemma 4.2. Similarly, for a solution v of (HLq) with v ∈ RPVq(∞), we

have v is eventually increasing (towards ∞) and limt→∞ v(qt)/v(t) = ∞, and so

lim
t→∞

tαp(t) = lim
t→∞

(q − 1)−αL[v](t) = ∞.

“If”: Let (4.30) hold and and u be a positive decreasing solution of (HLq) on

[a,∞)q. Since u is decreasing, we have u(qt) ≤ u(t), and in view of Lemma 4.2,

∞ = lim
t→∞

tαp(t) = lim
t→∞

(q − 1)−αL[u](t) ≤ −(q − 1)−αΦ(1 − u(t)/u(qt)).

Consequently, limt→∞ u(t)/u(qt) = ∞, and so u ∈ RPVq(−∞) by Proposition 3.3.

Now assume that v is a positive increasing solution of (HLq) on qN0 . Then v(qt) ≥
v(t), and, similarly as above,

∞ = lim
t→∞

tαp(t) ≤ (q − 1)−αΦ(v(q2t)/v(qt) − 1/q),

which implies limt→∞ v(q2t)/v(qt) = ∞, and, consequently, v ∈ RPV q(∞).
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Remark 4.4. The results presented in Theorem 4.4, except of the necessity part for

an increasing solution, are q-versions of results presented for the equation (HL)

on general time scale, see Theorem 3.9. Recall that a necessity part for increasing

solutions has not been proved in the differential (resp. difference or dynamic)

equations setting yet.

4.4 Concluding comments and Mq-classification

In the first part of this section we discuss the form of conditions guaranteeing q-

regular resp. q-rapid variation of solutions. We compare the linear results (writ-

ten in terms of integral conditions, see Theorem 4.2) with half-linear ones (written

in terms of nonintegral condition, see Theorem 4.3 and Theorem 4.4) and with the

results from the differential equations case. The following questions may come

in our minds: 1. Are the half-linear results on q-regularly varying solutions re-

ally extensions of the linear ones? 2. How are these conditions related? The next

lemma shows that in the case of existence of a proper limit, integral and noninte-

gral conditions are actually equivalent. Hence the half-linear results really extend

the linear ones. Moreover, from that lemma it follows that while the integral con-

dition is not suitable for a unified characterization of rapid or regularly varying

behavior of solutions to (HLq), this can be done via the nonintegral condition,

see also Corollary 4.1. Later we show that these relations are specific just for q-

calculus and differ from what is known in the continuous case. We stress that

there is no sign condition on p in the next lemma.

Lemma 4.6. Let p : qN0 → R and α > 1. It holds

lim
t→∞

tα−1

∫ ∞

t

p(s) dqs = C ∈ R if and only lim
t→∞

tαp(t) = −[1 − α]qC ∈ R.

Moreover,

if lim
t→∞

tαp(t) = ±∞, then lim
t→∞

t

∫ ∞

t

p(s) dqs = ±∞,

but the opposite implication does not hold in general.

Proof. If. Assume limt→∞ tαp(t) = −[1 − α]qC, where C ∈ R ∪ {±∞}. Using the

q-L’Hospital rule, we get

lim
t→∞

tα−1

∫ ∞

t

p(s) dqs = lim
t→∞

−p(t)
((qt)1−α − t1−α)/((q − 1)t)

=
tαp(t)

−[1 − α]q

= C.
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4. q-regular and q-rapid variation with applications to q-difference equations

Only if. Assume limt→∞ tα−1
∫∞
t
p(s) dqs = C ∈ R. We have

tα−1

∫ ∞

t

p(s) dqs = tα−1

(∫ qt

t

p(s) dqs+

∫ ∞

qt

p(s) dqs

)

= (q − 1)tαp(t) +
1

qα−1
(qt)α−1

∫ ∞

qt

p(s) dqs.

Hence,

tαp(t) =
1

q − 1

(
tα−1

∫ ∞

t

p(s) dqs−
1

qα−1
(qt)α−1

∫ ∞

qt

p(s) dqs

)

→ 1

q − 1

(
C − C

qα−1

)

= −C[1 − α]q.

as t → ∞. It remains to find a function p such that limt→∞ t
∫∞
t
p(s) dqs = ∞, but

limt→∞ tαp(t) 6= ∞. For simplicity we present an example corresponding with the

case α = 2. Define the function

p(t) =

{
t−2/q for t = q2n,

t−2/q + t−3/2 for t = q2n+1,

where n ∈ N ∪ {0}. Then

t2p(t) =

{
1/q for t = q2n,
√
t+ 1/q for t = q2n+1.

Thus we see that lim inft→∞ t2p(t) = 1/q < ∞ = lim supt→∞ t2p(t). Further, with

t = qn, we have
∫∞
t
p(s) dqs = (q − 1)

∑∞
j=n q

jp(qj). Hence, summing appropriate

geometric series, we obtain

t

∫ ∞

t

p(s) dqs =

{
qn/2

√
q + 1 =

√
qt+ 1 for t = q2n,

qn/2q + 1 = q
√
t+ 1 for t = q2n+1.

Consequently, limt→∞ t
∫∞
t
p(s) dqs ≥ limt→∞

√
qt = ∞.

To see an interesting specific character of the results in q-calculus case, let us

recall some of their continuous counterparts, see [20, 26] or modify the results

from Chapter 3 on continuous case. Positive solutions of the equation

(Φ(y′(t)))′ − p(t)Φ(y(t)) = 0, (4.31)

p(t) > 0, are regularly varying if and only if limt→∞ tα−1
∫∞
t
p(s) ds = A exists as a

finite number, and are rapidly varying if and only if limt→∞ tα−1
∫ λt
t
p(s) ds = ∞
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for all λ > 1. The indices of regular variation are given here by Φ−1(ϑi), i = 1, 2,

where ϑ1 < ϑ2 are the roots of |ϑ|β = ϑ−A = 0; with the use of Lemma 4.3, observe

how this result matches the one from Theorem 4.3 as q → 1+. Further recall

limt→∞ tα−1
∫∞
t
p(s) ds = C1 exists finite if and only limt→∞ tα−1

∫ λt
t
p(s) ds = C2(λ)

exists finite for all λ > 1 with C2(λ) = C1(λ
α−1 − 1)/λα−1; therefore all positive

solutions of (4.31) are rapidly or regularly varying if and only if for every λ > 1

limt→∞ tα−1
∫ λt
t
p(s) ds exists finite or infinite. The expression

tα−1

∫ τ(λt)

t

p(s) dqs, (4.32)

considered on qN0 , can be understood as a q-version of tα−1
∫ λt
t
p(s) ds. Further

note that the expression tαp(t) in q-calculus can be viewed in two ways: First,

simply as a nonintegral expression. Second, up to certain constant multiple,

as tα−1
∫ qt
t
p(s) dqs, which is equal to (4.32) where λ = q. While the existence

of a (finite or infinite) limit limt→∞ tαp(t) clearly cannot serve to guarantee reg-

ularly or rapidly varying behavior of solutions to (4.31) (in the sense of suf-

ficiency and necessity), this is possible in q-calculus case. It is because in q-

calculus there are “closer” relations among the limits limt→∞ tα−1
∫∞
t
p(s) dqs and

limt→∞ tα−1
∫ qt
t
p(s) dqs and limt→∞ tαp(t), which may not hold in classical calcu-

lus. Also note that while in the continuous case we need the existence of the limit

limt→∞ tα−1
∫ λt
t
p(s) ds for all parameters λ > 1, in q-calculus case we require its

existence just for one parameter λ = 1, compare also with Karamata type def-

initions in cases of both calculi. Finally note that the situation in the classical

discrete case, see [29], or in a general time scale case (with a graininess µ such

that µ(t) = o(t) as t → ∞), see the results from Section 3.4 and 3.5, is similar to

that in the continuous case, and so the q-calculus case is really exceptional.

In the second part of this section we provide information about asymptotic

behavior of all positive solutions of (HLq) as t → ∞ and we establish so-called

Mq-classification for equation (HLq) can be understood as a q-version of M-clas-

sification for equation (HL), see section 3.4. Note that all nontrivial solutions of

(HLq) are nonoscillatory (i.e., of one sign for large t) and monotone for large t.

Note that the solution space of (HLq) has just one half of the properties which

characterize linearity, namely homogeneity (but not additivity). Just because of

homogeneity, without loss of generality, we may restrict our consideration only to

positive solutions of (HLq); we denote this set as Mq. Thanks to the monotonicity,

the set Mq can be further split in the two classes M+
q and M−

q , where

M
+
q = {y ∈ Mq : ∃ty ∈ qN0 such that y(t) > 0, Dqy(t) > 0 for t ≥ ty},

M
−
q = {y ∈ Mq : y(t) > 0, Dqy(t) < 0}.

It is not difficult to see that these classes are always nonempty. The reason is

similar as in section 3.4 concerning M-classification.
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4. q-regular and q-rapid variation with applications to q-difference equations

A positive function f : qN0 → R is said to be a q-Karamata function, if f is q-

slowly or q-regularly or q-rapidly varying; we write f ∈ KF q. We introduce the

following notation:

M
−
qSV = M

−
q ∩ SVq,

M
−
qRV (ϑ1) = M

−
q ∩RVq(ϑ1), ϑ1 < 0,

M
+
qRV (ϑ2) = M

+
q ∩RVq(ϑ2), ϑ2 ≥ 1,

M
−
qRPV (−∞) = M

−
q ∩RPVq(−∞),

M
+
qRPV (∞) = M

+
q ∩RPVq(∞),

M
−
q0 = {y ∈ M

−
q : lim

t→∞
y(t) = 0},

M
+
q∞ = {y ∈ M

+
q : lim

t→∞
y(t) = ∞}

We distinguish three cases for behavior of the coefficient p(t) from equation

(HLq):

lim
t→∞

tαp(t) = 0, (4.33)

lim
t→∞

tαp(t) = B > 0, (4.34)

lim
t→∞

tαp(t) = ∞. (4.35)

With the use of the results of this paper we can claim:

M
−
q = M

−
qSV ⇐⇒ (4.33) ⇐⇒ M

+
q = M

+
qRV (1) = M

+
q∞,

M
−
q = M

−
qRV (ϑ1) = M

−
q0 ⇐⇒ (4.34) ⇐⇒ M

+
q = M

+
qRV (ϑ2) = M

+
q∞,

M
−
q = M

−
qRPV (−∞) = M

−
q0 ⇐⇒ (4.35) ⇐⇒ M

+
q = M

+
qRPV (∞) = M

+
q∞.

In view of previous results, we get the following statement.

Corollary 4.1. The following statements are equivalent:

• ∃u ∈ Mq : u ∈ KF q.

• ∀u ∈ Mq : u ∈ KF q.

• There exists the (finite or infinite) limit

lim
t→∞

tαp(t). (4.36)

Because of this corollary and due to example from the proof of Lemma 4.6,

equation (HLq) may possess a positive solution, which is not in KF q. In fact, such

a case happens if and only if the limit (4.36) does not exist, and then necessarily

no positive solution of (HLq) is an element of KFq.
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The above relations between the Mq-classification and Karamata like behavior

of solutions to (HLq) could be refined, provided more detailed information on

the existence in all subclasses (in the sense of effective conditions) would be at

disposal. Or, possibly, all observations can be extended to equations with no sign

condition on p or to some other q-difference equations. This can be understood

as another direction for a future research.
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Telescoping principle for
oscillation of half-linear
dynamic equations 5
In this chapter, we establish the so-called “telescoping principle” for oscillation of

the second order half-linear dynamic equation

[r(t)Φ(y∆)]∆ + p(t)Φ(yσ) = 0 (HL∆E)

on (an infinite) time scale interval Ia. Throughout this chapter, we suppose that

1/r, p ∈ Crd(Ia) with r(t) 6= 0. Recall that this equation was in detail introduced

in Section 2.3, where we recall the basic information about oscillation theory for

this equation.

5.1 Introduction to oscillatory problems

Many oscillation criteria concerning equation (HL∆E) require to know the pro-

perties of the ∆-integral of coefficient p(t) on the whole interval Ia. According

to the behavior of this integral, we can sometime decide whether our equation

is oscillatory or nonoscillatory. On the other hand, from the Sturm separation

theorem, it is clear that oscillation can be taken as an interval property. Consider

equation (HL∆E). If there exists a sequence of subsets [ai, bi] ∩ T of Ia, ai → ∞ as

i→ ∞, such that for each i there is a nontrivial solution of equation (HL∆E) which

has at least two zeros (resp. generalized zeros) in [ai, bi], then every solution of

(HL∆E) is oscillatory with at least one zero (resp. generalized zero) in each [ai, bi].

From the above observation, the oscillation of (HL∆E) can be studied on suitable

intervals [ai, bi], precisely, any oscillation criterion can be (successfully) founded

from a behavior of coefficients p(t) and r(t) on the suitable chosen intervals [ai, bi].

M. K. Kwong and A. Zettl [25] applied this idea to oscillation of equation

(LDE) and constructed so-called “telescoping principle” which allows to trim off

“problem” parts of
∫ t
0
p(s)ds and use any known oscillation criterion to the re-

maining “good” parts. Q. Kong and A. Zettl [24] came up with an analogical tele-

scoping principle for equation (L∆E) and used it to obtain some new oscillation

results for difference equations. P. Řehák [32] extended this telescoping principle

to equation (HL∆E). Finally, L. H. Erbe, L. Kong and Q. Kong [15] unified and
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5. Telescoping principle for oscillation of half-linear dynamic equations

generalized the telescoping principle for equations (LDE) and (L∆E) into the only

one telescoping principle on time scales for equation (L∆E) and found many new

oscillation results for this equation.

Our aim is to extend, modify and generalize the results of previous papers

to equation (HL∆E) and make an analogical telescoping principle for half-linear

time scale case. Unlike previous works we formulate the telescoping principle

under the weaker assumption r(t) 6= 0 (instead r(t) > 0), which is new even in

the linear case.

5.2 Telescoping principle

In this section we establish the telescoping principle for oscillation of equation

(HL∆E). Consider the following set

J =

( ∞⋃

i=1

Ji

)⋂
Ia, Ji = (ai, σ(bi)), i ∈ N,

where ai, bi ∈ Ia with a < ai < bi < ai+1 and if µ(ai) = 0 then µ(σ(bi)) = 0 for all

i ∈ N. We call J an interval shrinking set in Ia. With the help of the set J we define

following “shrinking” transformation on the time scale Ia.
At first, we define a new time scale Îa by:

Îa :={s ∈ Ia : s ≤ a1}

∪
{

∞⋃

j=1

{
s = t−

j∑

i=1

(
σ(bi) − σ(ai)

)
: t ∈ [σ(bj), aj+1] ∩ Ia

}}
,

(5.1)

which is, anyway, the set Ia without the set J . More precisely, it is the set Ia,
where we trim off the time scales intervals (σ(ai), σ(bi)) (or if one wants, it is the

set Ia, where each (time scale) subinterval (ai, σ(bi)) is collapsed to its left point).

Now we define an interval shrinking transformation T : Ia → Îa by:

s = T t =





t t ∈ [a, a1] ∩ Ia,
a1 t ∈ (a1, σ(b1)) ∩ Ia,
aj+1 −

∑j
i=1

(
σ(bi) − σ(ai)

)
t ∈ (aj+1, σ(bj+1)) ∩ Ia,

t−∑j
i=1

(
σ(bi) − σ(ai)

)
t ∈ [σ(bj), aj+1] ∩ Ia,

where j ∈ N. For s ∈ Îa we define an inverse transformation T −1 : Îa → Ia by:

T −1s = inf {t ∈ Ia : T t = s}.
Note, that the condition if µ(ai) = 0 then µ(σ(bi)) = 0 implies µ̂(s) = µ(t) for all

t = T −1s, where µ̂ denotes the graininess in Îa.

84



5. Telescoping principle for oscillation of half-linear dynamic equations

Lemma 5.1. A solution y of equation (HL∆E) satisfies r(t)y(t)y(σ(t)) > 0 for t ∈
[t1, t2]∩ Ia if and only if the corresponding solution w(t) of the generalized Riccati equa-

tion (GR∆E) satisfies −µα−1(t)w(t) < r(t) for t ∈ [t1, t2] ∩ Ia.

Proof. From Theorem 2.4 (Roundabout Theorem) it is clear that equation (HL∆E)

has a solution y satisfying r(t)y(t)y(σ(t)) > 0 for t ∈ [t1, t2] ∩ Ia if and only if the

corresponding solution w(t) of equation (GR∆E) satisfies

Φ−1(r(t)) + µ(t)Φ−1(w(t)) > 0, (5.2)

for t ∈ [t1, t2] ∩ Ia. However, (5.2) is equivalent to −µα−1(t)w(t) < r(t), so lemma

holds.

Let Îa be defined by (5.1) and consider the telescoped equation of (HL∆E)

[r̂(s)Φ(x∆)]∆ + p̂ (s)Φ
(
xσ̂
)

= 0, s ∈ Îa, ( ̂HL∆E)

where r̂(s) = r(t), p̂(s) = p(t), for t = T −1s, and where σ̂ denotes the forward

jump operator in Îa. The following theorem is similar to the comparison type re-

sult. In simple terms, it says that if a certain solution x(s) of the telescoped equa-

tion (ĤL∆E) has a generalized zero in [a, b] ∩ Îa, then a corresponding solution

y(t) of the original equation (HL∆E) has a generalized zero in [T −1a, T −1b] ∩ Ia.

Theorem 5.1. Assume ∫ σ(bi)

σ(ai)

p(t)∆t ≥ 0, i ∈ N, (5.3)

and let d ∈ Îa be such that d > a. Suppose that x be a solution of (ĤL∆E) with

r̂(s)x(s)x(σ̂(s)) > 0 for s ∈ [a, d) ∩ Îa and r̂(d)x(d)x(σ̂(d)) ≤ 0. Let y be a solution of

(HL∆E) with y(a) 6= 0,

r(a)Φ(y∆(a))

Φ(y(a))
≤ r̂(a)Φ(x∆(a))

Φ(x(a))
.

Then there exists e ≤ T −1d such that r(e)y(e)y(σ(e)) ≤ 0. More precisely, if d ≤ T ai,
then there exists e ≤ ai such that r(e)y(e)y(σ(e)) ≤ 0.

Proof. In this proof, by w 6< v we mean either w ≥ v or w does not exist. The

proof is by induction with respect to the location of the point d ∈ Îa. Assume

the contrary. Then w(t) defined by (2.14) satisfies the generalized Riccati equation

(GR∆E) and (2.15), and by Lemma 5.1 −µα−1(t)w(t) < r(t) holds for t ∈ [a, T −1d]∩
Ia. For s ∈ Îa, let

v(s) =
r̂(s)Φ(x∆(s))

Φ(x(s))
.
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Then it follows that v satisfies the telescoped generalized Riccati equation

v∆(s) + p̂ (s) + S[v, r̂, µ̂ ](s) = 0, s ∈ Îa, ( ̂GR∆E)

and

v(σ̂(s)) =
r̂(s)v(s)

Φ [Φ−1(r̂(s)) + µ̂(s)Φ−1(v(s))]
− µ̂(s)p̂(s), s ∈ Îa. (5.4)

By Lemma 5.1,

−µ̂ α−1(s)v(s) < r̂(s)

for s ∈ [a, d) ∩ Îa and moreover

−µ̂ α−1(d)v(d) 6< r̂(d).

(i) Assume that d ≤ T a1 = a1, then t = T −1s = s for s ∈ [a, d] ∩ Îa, so we

have r̂(t) = r(t), p̂(t) = p(t), and equations (GR∆E) and (ĜR∆E) are the same on

[a, d] ∩ Ia. We wish to show that

w(t) ≤ v(t), t ∈ [a, d] ∩ Ia. (5.5)

From Theorem 2.1 (Existence and Uniqueness), it follows that the initial value

problem

w∆
n (t) + p(t) + S[wn, r, µ](t) +

1

n
= 0, wn(a) = w(a), (5.6)

has a unique solution wn(t) on t ∈ [a, d]∩Ia. It is clear that wn(t) → w(t) as n→ ∞
for t ∈ [a, d] ∩ Ia. We want to show that for all large n ∈ N,

wn(t) ≤ v(t), t ∈ [a, d] ∩ Ia. (5.7)

Assume the contrary. Since wn(a) ≤ v(a), suppose that there exist points t∗, t
∗ ∈

Ia with a ≤ t∗ < t∗ ≤ d such that

wn(t) ≤ v(t), t ∈ (a, t∗] ∩ Ia and wn(t) > v(t), t ∈ (t∗, t
∗] ∩ Ia. (5.8)

If t∗ is right-scattered in Ia (thus in Îa), then from (5.6) and (2.15)

wn(σ(t∗)) =
r(t∗)wn(t∗)

Φ [Φ−1(r(t∗)) + µ(t∗)Φ−1(wn(t∗))]
− µ(t∗)p(t∗) −

µ(t∗)

n
. (5.9)

Let the function S̃(w, r, µ) represent the first term of the right-hand side of equa-

tions (5.9) and (5.4), so

S̃(w, r, µ) =
rw

Φ [Φ−1(r) + µΦ−1(w)]
.
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Then from the continuity of S̃ with respect to the first variable and from the po-

sitivity of term [Φ−1(r) + µΦ−1(w)] (see, (5.2)), we obtain

∂S̃
∂w

= r

(
[Φ−1(r) + µΦ−1(w)]

α−1 − [Φ−1(r) + µΦ−1(w)]
α−2

µΦ−1(w)

[Φ−1(r) + µΦ−1(w)]2α−2

)

= r

(
[Φ−1(r) + µΦ−1(w)] − µΦ−1(w)

[Φ−1(r) + µΦ−1(w)]α

)

=
|r|β

[Φ−1(r) + µΦ−1(w)]α
.

Hence
∂S̃(w, r, µ)

∂w
> 0,

which means that the function S̃ is increasing with respect to w. If we compare

(5.4) and (5.9), we obtain a contradiction to (5.8). If t∗ is right-dense in Ia (thus

in Îa), then wn(t∗) = v(t∗) and moreover wn(t) > v(t) for t ∈ (t∗, t
∗] ∩ Ia. From

(ĜR∆E) and (5.6), w∆
n (t∗) < v∆(t∗), so there exists t̄ ∈ (t∗, t

∗]∩Ia such that wn(t̄) <

v(t̄), which is a contradiction to (5.8). Hence (5.7) holds. Therefore, from wn(t) →
w(t) as n→ ∞ for t ∈ [a, d]∩Ia, we get (5.5), and so letting t = d in (5.5), we have

(with the use of the validity of µ̂(s) = µ(t) for all t = T −1s)

−µα−1(d)w(d) ≥ −µ̂ α−1(d)v(d) 6< r̂(d) = r(d).

Hence (with use the fact d = T −1d), −µα−1(T −1d)w(T −1d) 6< r(T −1d), which is

the contradiction to assumption.

(ii) Assume that T a1 < d ≤ T a2, then arguing as in the first part above, we

see that w(σ(a1)) ≤ v(σ̂(a1)) = v(σ̂(T a1)). Now we integrate (GR∆E) from σ(a1)

to σ(b1) and obtain

w(σ(b1)) − w(σ(a1)) = −
∫ σ(b1)

σ(a1)

S[w, r, µ](t)∆t−
∫ σ(b1)

σ(a1)

p(t)∆t. (5.10)

We wish to show, that the right-hand side of (5.10) is nonpositive and so the rela-

tion

w(σ(b1)) ≤ w(σ(a1)) (5.11)

holds. Due to (5.3) is it enough to show that the function S is nonnegative. Under

the assumption that −µα−1(t)w(t) < r(t) for t ∈ [a, T −1d]∩Ia, which is equivalent

to (5.2), it is enough to show that function S satisfies

S(w, r, µ) ≥ 0 for Φ−1(r) + µΦ−1(w) > 0. (5.12)

87



5. Telescoping principle for oscillation of half-linear dynamic equations

The statement (3.17) is obvious if µ = 0. Hence, suppose µ > 0. It is not difficult

to compute (similar like in case of the function S̃) that

∂S(w, r, µ)

∂w
=

[Φ−1(r) + µΦ−1(w)]
α − |Φ−1(r)|α

µ [Φ−1(r) + µΦ−1(w)]α
.

For the case r > 0, function ∂S(w, r, µ)/∂w is negative for w < 0 and positive for

w > 0 Hence for w = 0 has function S(w, r, µ) minimum, which is 0 for every r >

0, thus (5.12) holds. One can observe that function S(w, r, µ) with arbitrary fixed

r < 0 and [Φ−1(r) + µΦ−1(w)] > 0 is increasing with the respect to the variable w

for w > (2/µ)α−1|r|, decreasing for |r| < w < (2/µ)α−1|r| and S((2/µ)α−1|r|, r, µ)

is positive. The statement (5.12) now follows from the continuity of S. The case

r, w < 0 is excluded due to [Φ−1(r) + µΦ−1(w)] > 0. Hence (5.12) holds and thus

(5.11) holds too. Because of (5.11),

w(σ(b1)) ≤ w(σ(a1)) ≤ v(σ̂(T a1)) = v(T σ(b1)). (5.13)

Now since T σ(b1) = σ̂(T a1), it follows that w(t) and v(s) satisfy the same gener-

alized Riccati equation for σ(b1) ≤ t ≤ T −1d and T σ(b1) ≤ s ≤ d, respectively,

and also from (5.13), w(σ(b1)) ≤ v(T σ(b1)) holds. As before, we see that

− µα−1(T −1d)w(T −1d) ≥ −µ̂ α−1(d)v(d) 6< r̂(d) = r(T −1d). (5.14)

This implies that −µα−1(T −1d)w(T −1d) 6< r(T −1d), which is the contradiction to

assumption.

The proof of the induction step from i to i+ 1 is similar and hence is omitted.

Theorem 5.2 (Telescoping Principle). Under the same conditions and with the same

notation of Theorem 5.1, if the telescoped equation (ĤL∆E) is oscillatory, then (HL∆E) is

oscillatory too.

Proof. Let y(t) be a solution of (HL∆E) with y(a) 6= 0 and let x1(s) be a solution of

(ĤL∆E) with x1(a) 6= 0 satisfying

r(a)Φ(y∆(a))

Φ(y(a))
≤ r̂(a)Φ(x∆

1 (a))

Φ(x1(a))
.

Since x1(s) is oscillatory, there exists a smallest d1 > a in Îa, which satisfies

r̂(s)x1(s)x1(σ̂(s)) > 0 for s ∈ [a, d1) ∩ Îa and r̂(d1)x1(d1)(x1(σ̂(d1)) ≤ 0. By Theo-

rem 5.1, there exists e1 ≤ T −1d1 in Ia with r(e1)y(e1)(y(σ(e1)) ≤ 0. Now, we will

be interested in behavior of the solution y(t) for t > e1. Let f1 ∈ Ia with f1 ≥ e1

satisfies y(f1) 6= 0. Let x2(s) be a solution of (ĤL∆E) with x2(f1) 6= 0 satisfying

r(f1)Φ(y∆(f1))

Φ(y(f1))
≤ r̂(T f1)Φ(x∆

1 (T f1))

Φ(x1(T f1))
.
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5. Telescoping principle for oscillation of half-linear dynamic equations

Proceeding as before, we show that there exists e2 ∈ Ia with e2 > e1 such that

r(e2)y(e2)y(σ(e2)) ≤ 0. Continuing this process leads to the conclusion that y is

oscillatory and therefore the equation (HL∆E) is oscillatory too.

This principle can be applied to get many new examples of oscillatory equa-

tions. We use a process which is the reverse of the construction in Theorem 5.2.

We begin with any known oscillatory equation (ĤL∆E). We choose a sequence of

numbers si ∈ Îa such that si → ∞. Now we cut Îa at each si and pull the two

halves of Îa apart to form a gap of arbitrary new (bounded) time scale interval.

Now we define a function r on the new time scale interval and create an arbitrary

function p, whose integral over the new time scale interval is nonnegative. When

we do it at each si and relabel the so-constructed new coefficient functions by r(t)

and p(t), then we obtain equation (HL∆E), which is oscillatory.
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Conclusions 6
The central idea of this thesis was to establish a theory of regular and rapid vari-

ation on time scales and then to apply the obtained theory to an investigation of

asymptotic behavior of solutions of linear and half-linear second order dynamic

equations on time scale.

In Chapter 3 we established the theory which is valid on any time scale with

“sufficiently” small graininess. We show that the condition on graininess is nec-

essary in the case we want to obtain a reasonable theory. Note that in application,

we prove many new asymptotic properties, particular in case of rapid variation

our results are new even in linear and even in continuous and discrete case.

In Chapter 4 we study analogically q-regular variation and q-rapid variation

considered on a special lattice qN0 . The situation required this case with a “big-

ger” graininess – important and frequently used – to be studied separately, be-

cause the asymptotic behavior of functions in these cases was different. In appli-

cations, we completed results concerning the equation (HLq) and showed a new

method for the proofs convenient exactly for q-difference equations. This method

can be used for examination of asymptotic behavior of many other q-difference

equations and sometimes may serve to predict how their continuous counterparts

look like.

Chapter 5 which is devoted to so-called “telescoping principle” , is not con-

nected with theory of regular and rapid variation, however strong connecting

tool is the half-linear dynamic equation and studying its oscillatory properties.

Note that results established in this chapter are new even in the linear case.

Many opened problems mentioned in the thesis, e.g., to prove some results

in theory of regular variation without additional conditions, to find a convenient

representation for the rapidly varying function, to establish the necessary and

sufficient conditions for all positive increasing solutions of (HL) to be regularly

varying, await further examination.
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[P1] P. Řehák, J. Vı́tovec, q-Karamata functions and second order q-difference

equations, submitted (2010).
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[8] R. Bojanić, E. Seneta, A unified theory of regularly varying sequences, Math.

Z. 134 (1973), 91 – 106.

91



References

[9] P. Cheung, V. Kac Quantum Calculus, Springer-Verlag, Berlin-Heidelberg-

New York, 2002.
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