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Preface

Many phenomena in nature have oscillatory character and their mathematical models
have led to the introduction of certain classes of functions to describe them. Such a class
form almost periodic sequences and functions with applications in theoretical mechanics,
electronics, biology, celestial mechanics, astrodynamics, geophysics, and so on.

In this work we consider only a small part of the notion of almost periodicity combined
with the theory of linear difference and differential equations. More precisely, we use
special constructions of almost periodic sequences (Chapter 1) and functions (Chapter 3)
to analyse non-almost periodic solutions of almost periodic homogeneous linear difference
(Chapter 2) and differential (Chapter 4) systems respectively. Our aim is to find systems
all of whose solutions can be almost periodic and prove that in any neighbourhood of such
a system there exists a system which does not have an almost periodic solution other than
the trivial one.

All results presented in this work are due to the author and are embodied in [160–163].
The corresponding results about almost periodic solutions was partially investigated in
the diploma work of the author (see [165]). Thus they are omitted. The motivation and
history of our topic are included at the beginnings of chapters; less important comments
and historical notes are mentioned in footnotes (see the ends of both of parts); and used
notations and basic definitions are in sections called Preliminaries. Note that definitions,
theorems, lemmas, corollaries, examples, and remarks are numbered consecutively within
each chapter.
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PART I

CONSTRUCTIONS OF ALMOST

PERIODIC SEQUENCES

AND

HOMOGENEOUS LINEAR

DIFFERENCE SYSTEMS



Abstracts of Part I

Chapter 1: We define almost periodic sequences with values in a pseudometric space X
and we modify the Bochner definition of almost periodicity so that it remains equivalent
with the Bohr definition. We present one (easily modifiable) method for constructing al-
most periodic sequences in X . Using such a construction, we find almost periodic sequences
with prescribed values. Then we apply the method to construct almost periodic homoge-
neous linear difference systems which do not have any nontrivial almost periodic solution.
We treat this problem in a general setting where we suppose that entries of matrices in
linear systems belong to a ring with a unit.

Chapter 2: We consider almost periodic homogeneous linear difference systems. We
suppose that the coefficient matrices belong to a group. The goal is to find such groups
that the systems having no nontrivial almost periodic solution form a dense subset of
the set of all considered systems. A closer examination of the used methods reveals that
the problem can be treated in such a generality that the entries of coefficient matrices
are allowed to belong to any complete metric field. The concepts of transformable and
strongly transformable groups of matrices are introduced and these concepts enable us to
derive efficient conditions for determining what matrix groups have the required property.
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Chapter 1

Constructions of almost periodic
sequences with given properties

First of all we mention the article [63] by K. Fan which considers almost periodic
sequences of elements of a metric space1 and the article [159] by H. Tornehave about almost
periodic functions of the real variable with values in a metric space. In these papers, it
is shown that many theorems that are valid for complex valued sequences and functions
are no longer true. For continuous functions, it was observed that the important property
is the local connection by arcs of the space of values and also its completeness. However,
we will not use their results or other theorems and we will define the notion of the almost
periodicity of sequences in pseudometric spaces without any additional restrictions, i.e.,
the definition is similar to the classical definition of H. Bohr, the modulus being replaced
by the distance. We also refer to [80], [117], [118], [130], [173], [176]. We add that the
concept of almost periodic functions of several variables with respect to Hausdorff metrics
can be found in [149] which is an extension of [54] (see also [55], [131]).

In Banach spaces, a sequence {ϕk}k∈Z is almost periodic if and only if any sequence
of translates of {ϕk} has a subsequence which converges and its convergence is uniform
with respect to k in the sense of the norm. In 1933, the continuous case of the previous
result was proved by S. Bochner in [17], where the fundamental theorems of the theory
of almost periodic functions with values in a Banach space are proved too—see, e.g., [5],
[6, pp. 3–25] or [101], where the theorems have been redemonstrated by the methods of
the functional analysis. We remark that the discrete version of this result can be proved
similarly as in [17]. We also mention directly the papers [138] and [166].

In pseudometric spaces, the above result is not generally true. Nevertheless, by a mo-
dification of the Bochner proof of this result, we will prove that a necessary and sufficient
condition for a sequence {ϕk}k∈Z to be almost periodic is that any sequence of translates
of {ϕk} has a subsequence satisfying the Cauchy condition, uniformly with respect to k.

We will also analyse systems of the form

xk+1 = Ak · xk, k ∈ Z (or k ∈ N0),

where {Ak} is almost periodic. We want to prove that there exists a system of the above
form which does not have an almost periodic solution other than the trivial one. (See
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1.1 Preliminaries 7

Theorem 1.26.) A closer examination of the methods used in constructions reveals that
the problem can be treated in possibly the most general setting:

almost periodic sequences attain values in a pseudometric space;

the entries of almost periodic matrices are elements of an infinite ring with a unit.

We note that many theorems about the existence of almost periodic solutions of almost
periodic difference systems of general forms are published in [16], [76], [79], [145], [168],
[173], [174], [176] and several these existence theorems are proved there in terms of discrete
Lyapunov functions. Here, we can also refer to the monograph [171] and [177, Theorems 3.6,
3.7, 3.8]. For linear systems with k ∈ N0, see [4], [150].

This chapter is organized as follows. Section 1.2 presents the definition of almost
periodic sequences in a pseudometric space, the above necessary and sufficient condition
for the almost periodicity of a sequence {ϕk}k∈Z, and some basic properties of almost
periodic sequences in pseudometric spaces.

In Section 1.3, we show the way one can construct almost periodic sequences in pseudo-
metric spaces. We remark that our process is comprehensible and easily modifiable and
that methods of generating almost periodic sequences are mentioned in [123, Section 4] as
well.

The goal of Section 1.4 is to find almost periodic sequences whose ranges consist of
arbitrarily given sets applying a construction from the previous section. More precisely,
for any totally bounded countable set X, it is proved the existence of an almost periodic
sequence {ψk}k∈Z such that {ψk; k ∈ Z} = X and ψk = ψk+lq(k), l ∈ Z for all k and
some q(k) ∈ N which depends on k.

Finally, in Section 1.5, we use results from the second and the third section to obtain
a theorem which will play important role in Chapter 2, where it is proved that the almost
periodic homogeneous linear difference systems which do not have any nonzero almost
periodic solution form a dense subset of the set of all considered systems. Using our
constructions, we will get generalizations of statements from [158] and [164], where unitary
(and orthogonal) systems are studied.

1.1 Preliminaries

As usual, R+ denotes the set of all positive reals, R+
0 the set of all nonnegative real numbers,

N0 the set of all natural numbers including the zero.
Let X 6= ∅ be an arbitrary set and let d : X × X → R+

0 have these properties:

(a) d(x, x) = 0 for all x ∈ X ,

(b) d(x, y) = d(y, x) for all x, y ∈ X ,

(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

We say that d is a pseudometric on X and (X , d) a pseudometric space.
For given ε > 0, x ∈ X , in the same way as in metric spaces, we define the ε-neigh-

bourhood of x in X as the set {y ∈ X ; d(x, y) < ε}. It will be denoted by Oε(x). We recall
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that, same as in metric spaces, the function Φ : X1 → X2 is continuous in the pseudometric
spaces (X1, d1) and (X2, d2) if

(∀x ∈ X1)(∀ε > 0)(∃δ > 0)(∀y ∈ Oδ(x) ⊆ X1) =⇒ (d2(Φ(x),Φ(y)) < ε),

and it is uniformly continuous if

(∀ε > 0)(∃δ > 0)(∀x ∈ X1)(∀y ∈ Oδ(x) ⊆ X1) =⇒ (d2(Φ(x),Φ(y)) < ε).

Sequences, which we will consider, will be subsets of X . The scalar (and vector) valued
sequences will be denoted by the lower-case letters, the matrix valued sequences by the
capital letters (X is a set of matrices in this case), and each one of the scalar and matrix
valued sequences by the symbols {ϕk}, {ψk}, {χk}.

1.2 Almost periodic sequences in pseudometric spaces

Now we introduce a “natural” generalization of the almost periodicity. We remark that
our approach is very general and that the theory of almost periodic sequences presented
here does not distinguish between x ∈ X and y ∈ X if d(x, y) = 0.

1.2.1 The Bohr definition

Definition 1.1. A sequence {ϕk} is called almost periodic if for any ε > 0, there exists
a positive integer p (ε) such that any set consisting of p (ε) consecutive integers (nonnegative
integers if k ∈ N0) contains at least one integer l with the property that

d(ϕk+l, ϕk) < ε, k ∈ Z (or k ∈ N0).

In the above definition, l is called an ε-translation number of {ϕk}.

Consider again ε > 0. Henceforward, the set of all ε-translation numbers of a se-
quence {ϕk} will be denoted by T ({ϕk}, ε).

Remark 1.2. If X is a Banach space (d(x, y) is given by || x− y ||), then a necessary and
sufficient condition for a sequence {ϕk}k∈Z to be almost periodic is it to be normal ; i.e.,
{ϕk} is almost periodic if and only if any sequence of translates of {ϕk} has a subsequence,
uniformly convergent for k ∈ Z in the sense of the norm. This statement and the below
given Theorem 1.3 are not valid if {ϕk} is defined for k ∈ N0 and if we consider only
translates to the right—see the example X = R, ϕ0 = 1, and ϕk = 0, k ∈ N. But, if we
consider translates to the left, then both of results are valid for k ∈ N0 as well.

1.2.2 The Bochner definition

It is seen that the result mentioned in Remark 1.2 is no longer valid if the space of values
fails to be complete. Especially, in a pseudometric space (X , d), it is not generally true that
a sequence {ϕk}k∈Z is almost periodic if and only if it is normal. Nevertheless, applying the
methods from any one of the proofs of the results [6, Statement (ζ)], [39, Theorem 1.10],
and [69, Theorem 1.14], one can easily prove that every normal sequence {ϕk}k∈Z is almost
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periodic. Further, we can prove the next theorem (a generalization of the theorem called
the Bochner definition) which we will need later.2 We add that its proof is a modification
of the proof of [39, Theorem 1.26].

Theorem 1.3. Let {ϕk}k∈Z be given. For an arbitrary sequence {hn}n∈N ⊆ Z, there exists
a subsequence {h̃n}n∈N ⊆ {hn}n∈N with the Cauchy property with respect to {ϕk}; i.e., for
any ε > 0, there exists M = M(ε) ∈ N for which the inequality

d
(
ϕk+h̃i

, ϕk+h̃j

)
< ε

holds for all i, j, k ∈ Z, i, j > M , if and only if {ϕk}k∈Z is almost periodic.

Proof. If any sequence of translates of {ϕk} has a subsequence which has the Cauchy
property, then {ϕk} is almost periodic. It can be proved similarly as [39, Theorem 1.10],
where it is not used that X is complete.3 To prove the opposite implication, we will assume
that {ϕk} is almost periodic, and we will use the known method of the diagonal extraction.

Let {hn}n∈N ⊆ Z and ϑ > 0 be arbitrary. By Definition 1.1, there exists a positive
integer p such that, in any set {hn − p, hn − p + 1, . . . , hn}, there exists a ϑ-translation
number ln. We know that 0 ≤ hn − ln ≤ p for all n ∈ N. We put kn := hn − ln, n ∈ N.
Clearly, kn = c = const. (a constant value from {0, 1, . . . , p}) for infinitely many values
of n. Since

d (ϕk+hn
, ϕk+kn

) = d
(
ϕ(k+hn−ln)+ln , ϕk+hn−ln

)
< ϑ, k ∈ Z,

there exists a subsequence {h1
n} of {hn} and an integer c1 such that

d
(
ϕk+h1

n
, ϕk+c1

)
< ϑ, k ∈ Z, n ∈ N. (1.1)

Consider now a sequence of positive numbers ϑ1 > ϑ2 > · · · > ϑn > · · · converging
to 0. We extract from the sequence {ϕk+hn

} a subsequence {ϕk+h1
n
} which satisfies (1.1)

for ϑ = ϑ1. From this sequence we extract a subsequence {ϕk+h2
n
} for which an inequality

analogous to (1.1) is valid. Of course, c will not be the same, but will depend on the
subsequence. We proceed further in the same way. Next, we form the sequence {ϕk+hn

n
}n∈N.

Assume that ε > 0 is given and that we have 2ϑm < ε for m ∈ N. As a result, for i, j > m,
i, j ∈ N, we obtain

d
(
ϕk+hi

i
, ϕk+hj

j

)
≤ d

(
ϕk+hi

i
, ϕk+cm

)
+ d

(
ϕk+cm

, ϕk+hj
j

)
< ε, k ∈ Z,

where cm is the number corresponding to the sequence {ϕk+hm
n
}n∈N and ϑm.

In Chapter 2, we will consider almost periodic sequences in complete metric spaces.
Thus, we will also use the following version of the so-called Bochner definition:

Corollary 1.4. An arbitrary sequence {ϕk}k∈Z in a complete metric space is almost pe-
riodic if and only if from any sequence of the form {{ϕk+hi

}k∈Z}i∈N, where {hi}i∈N ⊆ Z,
one can extract a subsequence converging uniformly for k ∈ Z.
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1.2.3 Properties of almost periodic sequences

Note that many statements for almost periodic sequences with values in C extend to
sequences with values in a complete metric space (or in a pseudometric space). We mention
the following results which we will need later and which can be easily proved using methods
from the classical theory of almost periodic functions (see [6], [39] for the classical cases
and, e.g., [11] for generalizations). We also refer to [120], [176].

Theorem 1.5. Let X1,X2 be arbitrary pseudometric spaces and Φ : X1 → X2 be a uni-
formly continuous map. If {ϕk} ⊆ X1 is almost periodic, then the sequence {Φ(ϕk)} is
almost periodic too.

Proof. Taking ε > 0 arbitrarily, let δ(ε) > 0 be the number corresponding to ε from the
definition of the uniform continuity of Φ. Now, Theorem 1.5 follows from the fact that the
set of all ε-translation numbers of {Φ(ϕk)} contains the set of all δ(ε)-translation numbers
of {ϕk}, i.e., from the inclusion

T ({ϕk}, δ(ε)) ⊆ T ({Φ(ϕk)}, ε) .

Theorem 1.6. For every sequence of almost periodic sequences

{ϕ1
k}, . . . , {ϕ

i
k}, . . . ,

the sequence of lim
i→∞

ϕi
k is almost periodic if the convergence is uniform with respect to k.

Proof. The proof can be easily obtained by a modification of the proof of [39, Theo-
rem 6.4].

Theorem 1.7. Let (X , d) be a complete metric space. For an almost periodic sequence
{ϕk}k∈Z and an arbitrary sequence of integers h1, . . . , hi, . . . , there exists a subsequence
{h̃i}i∈N of {hi}i∈N such that

lim
j→∞

(
lim
i→∞

ϕk+h̃i−h̃j

)
= ϕk.

Proof. Since {ϕk} is normal, we know that there exists {h̄i}i∈N ⊆ {hi}i∈N for which
the sequence {{ϕk+h̄i

}k∈Z}i∈N converges uniformly to an almost periodic sequence (see
Theorem 1.6), denoted as {ψk}. Applying Corollary 1.4 again, we obtain a subsequence
{h̃i}i∈N ⊆ {h̄i}i∈N with the property that the sequence {{ψk−h̃i

}k∈Z}i∈N is uniformly con-
vergent. We will denote the limit as {χk}.

Now we choose ε > 0 arbitrarily. We have

%
(
ψk−h̃i

, χk

)
<
ε

2
, %

(
ψk, ϕk+h̃j

)
<
ε

2
, k ∈ Z

if i, j > n (i, j ∈ N) for some sufficiently large n = n(ε) ∈ N. Thus, for all k ∈ Z, it is true

% (ϕk, χk) ≤ %
(
ϕk, ψk−h̃i

)
+ %

(
ψk−h̃i

, χk

)
< ε.

Because of the arbitrariness of ε > 0, we get the identity {ϕk} ≡ {χk}.
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Remark 1.8. It is possible to prove that a sequence {ϕk}k∈Z is almost periodic if and only
if every pair of sequences {hi}i∈N, {li}i∈N ⊆ Z have common subsequences {h̃i}i∈N, {l̃i}i∈N

with the property that

lim
j→∞

(
lim
i→∞

ϕk+h̃i+l̃j

)
= lim

i→∞
ϕk+h̃i+l̃i

, pointwise for k ∈ Z. (1.2)

In fact, condition (1.2) is necessary and sufficient in any one of the two modes of the
convergence; i.e., in the strongest version, this condition is necessary in the uniform sense
and sufficient in the pointwise sense. For almost periodic functions defined on R with values
in C, the above result is due to S. Bochner and it can be found in [18]. The proof from the
paper can be generalized for complete metric spaces (see [124], [125]). If this necessary and
sufficient condition is applied only to the case {li} ≡ {−hi} (as in Theorem 1.7), then one
gets a different class of sequences called almost automorphic sequences—see [31], [132].

Taking n ∈ N and using Theorem 1.3 (and Remark 1.2) n-times, one can easily prove:

Corollary 1.9. Let sequences {ϕ1
k}, . . . , {ϕ

n
k} be given. Then, the sequence {ψk} which is

defined by
ψk := ϕi+1

j for all considered k,

where k = jn + i, j ∈ Z, i ∈ {0, . . . , n− 1}, is almost periodic if and only if all sequences
{ϕ1

k}, . . . , {ϕ
n
k} are almost periodic.

Corollary 1.10. Let (X1, d1), . . . , (Xn, dn) be pseudometric spaces and {ϕ1
k}, . . . , {ϕ

n
k} be

arbitrary sequences with values in X1, . . . ,Xn, respectively. The sequence {ψk}, with values
in X1 × · · · × Xn given by

ψk := (ϕ1
k, . . . , ϕ

n
k) for all considered k,

is almost periodic if and only if any one of sequences {ϕ1
k}, . . . , {ϕ

n
k} is almost periodic.

Corollary 1.11. Let ε > 0 be arbitrary and let the sequences {ϕ1
k}k∈Z, . . . , {ϕ

n
k}k∈Z be

almost periodic. Then, the set

T ({ϕ1
k}, ε) ∩ · · · ∩ T ({ϕn

k}, ε)

is relative dense in Z.

We remark that it is possible to use the above results to obtain more general versions
of the below given Theorems 1.12, 1.16, 1.18.

1.3 Constructions of almost periodic sequences

Now we prove several theorems which facilitate to find almost periodic sequences having
certain specific properties. In Theorem 1.12, we consider almost periodic sequences for
k ∈ N0; in Theorem 1.14 and Corollary 1.15, sequences for k ∈ Z obtained from almost
periodic sequences for k ∈ N0; and, in Theorems 1.16 and 1.18, sequences for k ∈ Z.
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Theorem 1.12. Let ϕ0, . . . , ϕm ∈ X and j ∈ N be arbitrarily given. Let {rn}n∈N be an
arbitrary sequence of nonnegative real numbers such that

∞∑

n=1

rn <∞. (1.3)

Then, any sequence {ϕk}k∈N0 ⊆ X , where

ϕk ∈ Or1

(
ϕk−(m+1)

)
, k ∈ {m+ 1, . . . , 2m+ 1},

ϕk ∈ Or1

(
ϕk−2(m+1)

)
, k ∈ {2(m+ 1), . . . , 3(m+ 1)− 1},

...

ϕk ∈ Or1

(
ϕk−j(m+1)

)
, k ∈ {j(m+ 1), . . . , (j + 1)(m+ 1)− 1},

ϕk ∈ Or2

(
ϕk−(j+1)(m+1)

)
, k ∈ {(j + 1)(m + 1), . . . , 2(j + 1)(m+ 1)− 1},

ϕk ∈ Or2

(
ϕk−2(j+1)(m+1)

)
, k ∈ {2(j + 1)(m + 1), . . . , 3(j + 1)(m+ 1)− 1},

...

ϕk ∈ Or2

(
ϕk−j(j+1)(m+1)

)
, k ∈ {j(j + 1)(m+ 1), . . . , (j + 1)2(m+ 1)− 1},

...

ϕk ∈ Orn

(
ϕk−(j+1)n−1(m+1)

)
, k ∈

{
(j + 1)n−1(m + 1),

. . . , 2(j + 1)n−1(m+ 1)− 1
}
,

ϕk ∈ Orn

(
ϕk−2(j+1)n−1(m+1)

)
, k ∈

{
2(j + 1)n−1(m+ 1),

. . . , 3(j + 1)n−1(m + 1)− 1
}
,

...

ϕk ∈ Orn

(
ϕk−j(j+1)n−1(m+1)

)
, k ∈

{
j(j + 1)n−1(m+ 1),

. . . , (j + 1)n(m + 1)− 1
}
,

...

are arbitrary too, is almost periodic.

Proof. Consider an arbitrary ε > 0. We need to prove that the set of all ε-translation
numbers of {ϕk} is relative dense in N0. Using (1.3), one can find n(ε) for which

∞∑

n=n(ε)

rn <
ε

2
. (1.4)
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We see that
ϕk+(j+1)n(ε)−1(m+1) ∈ Orn(ε)

(ϕk),

ϕk+2(j+1)n(ε)−1(m+1) ∈ Orn(ε)
(ϕk),

...

ϕk+j(j+1)n(ε)−1(m+1) ∈ Orn(ε)
(ϕk)

(1.5)

if
0 ≤ k < (j + 1)n(ε)−1(m + 1).

Next, from (c) and (1.5) it follows (i ∈ {(j + 1)n, . . . , (j + 1)n+1 − 1}, n ∈ N)

ϕk+(j+1)(j+1)n(ε)−1(m+1) ∈ Orn(ε)+rn(ε)+1
(ϕk),

ϕk+((j+1)2−1)(j+1)n(ε)−1(m+1) ∈ Orn(ε)+rn(ε)+1
(ϕk),

...

ϕk+i(j+1)n(ε)−1(m+1) ∈ Orn(ε)+rn(ε)+1+···+rn(ε)+n
(ϕk),

...

for k ∈ {0, . . . , (j + 1)n(ε)−1(m + 1)− 1}. Therefore (consider (1.4)), we have

ϕk+l(j+1)n(ε)−1(m+1) ∈ O ε
2
(ϕk), 0 ≤ k < (j + 1)n(ε)−1(m+ 1), l ∈ N0. (1.6)

We put
q(ε) := (j + 1)n(ε)−1(m+ 1). (1.7)

Any p ∈ N0 can be expressed uniquely in the form

p = k(p) + l(p)q(ε) for some k(p) ∈ {0, . . . , q(ε)− 1} and l(p) ∈ N0.

Applying (1.6), we obtain

d
(
ϕp, ϕp+lq(ε)

)
= d

(
ϕk(p)+l(p)q(ε), ϕk(p)+l(p)q(ε)+lq(ε)

)

≤ d
(
ϕk(p)+l(p)q(ε), ϕk(p)

)
+ d

(
ϕk(p), ϕk(p)+(l+l(p))q(ε)

)

<
ε

2
+
ε

2
= ε,

(1.8)

where p, l ∈ N0 are arbitrary; i.e., lq(ε) is an ε-translation number of {ϕk} for all l ∈ N0.
The fact that the set {lq(ε); l ∈ N0} is relative dense in N0 proves the theorem.

Remark 1.13. From the proof of Theorem 1.12 (see (1.7) and (1.8)), for any ε > 0 and
any sequence {ϕk} considered there, we get the existence of n(ε) ∈ N such that the set of
all ε-translation numbers of {ϕk} contains {l(j + 1)n(ε)−1(m+ 1); l ∈ N}; i.e., we have

T ({ϕk}, n(ε)) := {l(j + 1)n(ε)−1(m+ 1); l ∈ N} ⊆ T ({ϕk}, ε) (1.9)

for every ε > 0.
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Theorem 1.14. Let {ϕk}k∈N0 be an almost periodic sequence and let {rn}n∈N ⊂ R+
0 and

{ln}n∈N ⊆ N be such that
rnln → 0 as n→∞. (1.10)

If for all n, there exists a set T (rn) of some rn-translation numbers of {ϕk} which is
relative dense in N0 and, for every nonzero l = l(rn) ∈ T (rn), there exists i = i(l) ∈
{1, . . . , ln + 1} with the property that

ϕ(i−1)l+k ∈ Ornln (ϕil−k) , k ∈ {0, . . . , l}, (1.11)

then the sequence {ψk}k∈Z, given by the formula

ψk := ϕk for k ∈ N0 and ψk := ϕ−k for k ∈ Z r N0, (1.12)

is almost periodic.
If for all n, there exists a set T̃ (rn) of some rn-translation numbers of {ϕk} which is

relative dense in N0 and, for every nonzero m = m(rn) ∈ T̃ (rn), there exists i = i (m) ∈
{1, . . . , ln + 1} with the property that

ϕ(i−1)m+k ∈ Ornln (ϕim−k−1) , k ∈ {0, . . . , m− 1}, (1.13)

then the sequence {χk}k∈Z, given by the formula

χk := ϕk for k ∈ N0 and χk := ϕ−(k+1) for k ∈ Z r N0, (1.14)

is almost periodic.

Proof. We will prove only the first part of Theorem 1.14. The proof of the second case (the
almost periodicity of {χk}) is analogic. Let ε > 0 be arbitrarily small. Consider n ∈ N

satisfying (see (1.10))

rnln <
ε

3
. (1.15)

We will prove that the set T ({ψk}, ε) of all ε-translation numbers of {ψk} contains the
numbers {±l; l ∈ T (rn)}; i.e., we will get the inequality

d (ψk, ψk±l) < ε, l ∈ T (rn), k ∈ Z (1.16)

which proves the theorem because {±l; l ∈ T (rn)} is relative dense in Z.
First of all we choose arbitrary l ∈ T (rn). From the theorem, we have i = i(l). Without

loss of the generality, we can consider only +l. (For −l, we can proceed similarly.) Because
of ln ∈ N and l ∈ T (rn), from (1.12) and (1.15) it follows

d (ψk, ψk+l) <
ε

3
, k /∈ {−l, . . . ,−1}, k ∈ Z. (1.17)

Let k ∈ {−l, . . . ,−1} be also arbitrarily chosen. Evidently, we have

k + (1− i)l ∈ {−il, . . . ,−(i− 1)l − 1}

and
d (ψk, ψk+l) ≤ d

(
ψk, ψk+(1−i)l

)
+ d

(
ψk+(1−i)l, ψk+l

)

= d
(
ϕ−k, ϕ(i−1)l−k

)
+ d

(
ϕ(i−1)l−k, ϕl+k

)
.

(1.18)
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The number (i − 1)l is an (ε/3)-translation number of {ϕk}. It follows from (c), (1.15),
and from i ≤ ln + 1. Therefore, we have

d
(
ϕ−k, ϕ(i−1)l−k

)
<
ε

3
. (1.19)

Using (1.11) and (1.15), we get

d
(
ϕ(i−1)l−k, ϕil+k

)
< rnln <

ε

3
.

Thus, it holds

d
(
ϕ(i−1)l−k, ϕl+k

)
<

2ε

3
. (1.20)

Indeed, (i− 1)l is an (ε/3)-translation number of {ϕk} (consider again (c), (1.15), and the
inequality i− 1 ≤ ln).

Altogether, from (1.18), (1.19), and (1.20), we obtain

d (ψk, ψk+l) <
ε

3
+

2ε

3
= ε. (1.21)

Since the choice of k, l was arbitrary (see (1.17)), (1.21) gives (1.16).

Corollary 1.15. Let m ∈ N0, j ∈ N, and the sequence {ϕk}k∈N0 be from Theorem 1.12
and M > 0 be arbitrary. If for all n > M , n ∈ N, there exists at least one i ∈ {1, . . . , j}
satisfying

ϕi(j+1)n(m+1)+k = ϕ(i+1)(j+1)n(m+1)−k, k ∈ {0, . . . , (j + 1)n(m + 1)}, (1.22)

then the sequence {ψk}k∈Z given by (1.12) is almost periodic. If for all n > M , n ∈ N,
there exists at least one i ∈ {1, . . . , j} satisfying

ϕi(j+1)n(m+1)+k = ϕ(i+1)(j+1)n(m+1)−k−1, k ∈ {0, . . . , (j + 1)n(m + 1)− 1}, (1.23)

then the sequence {χk}k∈Z given by (1.14) is almost periodic.

Proof. We put

rn :=
1

n
, ln := 1, T (rn) := T

(
{ϕk}, n

(rn

2

))
for all n ∈ N,

where T ({ϕk}, n(ε)) is defined by (1.9). Since we can assume that n (1/2) > M − 1, it
suffices to consider Theorem 1.14 and Remark 1.13 (from (c), using (1.22) and (1.23), we
get (1.11) and (1.13), respectively).

Theorem 1.16. Let ϕ0, . . . , ϕn ∈ X and j ∈ N be given and {ri}i∈N ⊂ R+
0 be arbitrary so

that
∞∑

i=1

ri <∞ (1.24)

holds. Then, every sequence {ϕk} for which it is true

ϕk ∈ Or1

(
ϕk−(n+1)

)
, k ∈ {n+ 1, . . . , 2(n+ 1)− 1},
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...

ϕk ∈ Or1

(
ϕk−j(n+1)

)
, k ∈ {j(n+ 1), . . . , (j + 1)(n+ 1)− 1},

ϕk ∈ Or2

(
ϕk+(j+1)(n+1)

)
, k ∈ {−(j + 1)(n+ 1), . . . ,−1},

...

ϕk ∈ Or2

(
ϕk+j(j+1)(n+1)

)
,

k ∈ {−j(j + 1)(n+ 1), . . . ,−(j − 1)(j + 1)(n+ 1)− 1},

ϕk ∈ Or3

(
ϕk−(j+1)2(n+1)

)
,

k ∈ {(j + 1)(n+ 1), . . . , (j + 1)(n+ 1) + (j + 1)2(n+ 1)− 1},

...

ϕk ∈ Or3

(
ϕk−j(j+1)2(n+1)

)
,

k ∈ {(j + 1)(n+ 1) + (j − 1)(j + 1)2(n+ 1), . . . ,

(j + 1)(n+ 1) + j(j + 1)2(n+ 1)− 1},

ϕk ∈ Or4

(
ϕk+(j+1)3(n+1)

)
,

k ∈ {−(j + 1)3(n+ 1)− j(j + 1)(n+ 1), . . . ,−j(j + 1)(n+ 1)− 1},

...

ϕk ∈ Or4

(
ϕk+j(j+1)3(n+1)

)
,

k ∈ {−j(j + 1)3(n+ 1)− j(j + 1)(n+ 1), . . . ,

− (j − 1)(j + 1)3(n+ 1)− j(j + 1)(n+ 1)− 1},

...

ϕk ∈ Or2i

(
ϕk+(j+1)2i−1(n+1)

)
,

k ∈ {−((j + 1)2i−1 + · · ·+ j(j + 1)3 + j(j + 1))(n+ 1), . . . ,

− (j(j + 1)2i−3 + · · ·+ j(j + 1)3 + j(j + 1))(n+ 1)− 1},

...

ϕk ∈ Or2i

(
ϕk+j(j+1)2i−1(n+1)

)
,

k ∈ {−(j(j + 1)2i−1 + · · ·+ j(j + 1)3 + j(j + 1))(n+ 1), . . . ,

− ((j − 1)(j + 1)2i−1 + · · ·+ j(j + 1)3 + j(j + 1))(n+ 1)− 1},

ϕk ∈ Or2i+1

(
ϕk−(j+1)2i(n+1)

)
,

k ∈ {(j + 1)(n+ 1) + j(j + 1)2(n+ 1) + · · ·+ j(j + 1)2i−2(n+ 1), . . . ,

(j + 1)(n+ 1) + j(j + 1)2(n + 1) + · · ·

+ j(j + 1)2i−2(n+ 1) + (j + 1)2i(n + 1)− 1},

...
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ϕk ∈ Or2i+1

(
ϕk−j(j+1)2i(n+1)

)
,

k ∈ {(j + 1)(n+ 1) + j(j + 1)2(n + 1) + · · ·

+ j(j + 1)2i−2(n+ 1) + (j − 1)(j + 1)2i(n + 1), . . . ,

(j + 1)(n+ 1) + j(j + 1)2(n + 1) + · · ·+ j(j + 1)2i(n+ 1)− 1},

...

is almost periodic.

Proof. Let ε > 0 be arbitrarily given and let the number i(ε) ∈ N satisfy the condition
(see (1.24))

∞∑

i=i(ε)

ri <
ε

2
.

One can show {
l(j + 1)i(ε)−1(n+ 1); l ∈ Z

}
⊆ T ({ϕk}, ε) .

The fact that the above set is relative dense in Z proves the theorem.

For n = 0, j = 1, we get the most important case of Theorem 1.16:

Corollary 1.17. Let ψ0 ∈ X and {εi}i∈N ⊂ R+
0 satisfying

∞∑

i=1

εi <∞ (1.25)

be arbitrary. Then, every sequence {ψk}k∈Z for which it is valid

ψk ∈ Oε1 (ψk−20) , k ∈ {1} = {2− 1},

ψk ∈ Oε2 (ψk+21) , k ∈ {−2,−1},

ψk ∈ Oε3 (ψk−22) , k ∈ {2, . . . , 2 + 22 − 1},

ψk ∈ Oε4 (ψk+23) , k ∈ {−23 − 2, . . . ,−2− 1},

ψk ∈ Oε5 (ψk−24) , k ∈ {2 + 22, . . . , 2 + 22 + 24 − 1},

...

ψk ∈ Oε2i
(ψk+22i−1) , k ∈ {−22i−1 − · · · − 23 − 2, · · · ,−22i−3 − · · · − 23 − 2− 1},

ψk ∈ Oε2i+1
(ψk−22i) , k ∈ {2 + 22 + · · ·+ 22i−2, . . . , 2 + 22 + · · ·+ 22i−2 + 22i − 1},

...

is almost periodic.
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Theorem 1.18. Let ϕ0, . . . , ϕm ∈ X be given, {ri}i∈N ⊂ R+
0 , {ji}i∈N ⊆ N, and n ∈ N0 be

arbitrary such that m + n is even and

∞∑

i=1

ri ji <∞. (1.26)

For any ϕm+1, . . . , ϕm+n, if we set

ψk := ϕk+m+n
2
, k ∈

{
−
m + n

2
, . . . ,

m+ n

2

}
,

M :=
m+ n

2
, N := m+ n

and we choose arbitrarily

ψk ∈ Or1 (ψk+N+1) , k ∈ {−N −M − 1, . . . ,−M − 1},

...

ψk ∈ Or1 (ψk+N+1) , k ∈ {−j1N −M − 1, . . . ,−(j1 − 1)N −M − 1},

ψk ∈ Or1 (ψk−N−1) , k ∈ {M + 1, . . . , N +M + 1},

...

ψk ∈ Or1 (ψk−N−1) , k ∈ {(j1 − 1)N +M + 1, . . . , j1N +M + 1},

...

ψk ∈ Ori
(ψk+pi

) , k ∈ {−pi − pi−1 − · · · − p1, . . . ,−pi−1 − · · · − p1},

...

ψk ∈ Ori
(ψk+pi

) , k ∈ {−jipi − pi−1 − · · · − p1, . . . ,−(ji − 1)pi − pi−1 − · · · − p1},

ψk ∈ Ori
(ψk−pi

) , k ∈ {pi−1 + · · ·+ p1, . . . , pi + pi−1 + · · ·+ p1},

...

ψk ∈ Ori
(ψk−pi

) , k ∈ {(ji − 1)pi + pi−1 + · · ·+ p1, . . . , jipi + pi−1 + · · ·+ p1},

...

where
p1 := (j1N +M + 1) + 1, p2 := 2(j1N +M + 1) + 1,

p3 := (2j2 + 1)p2, . . . pi := (2ji−1 + 1)pi−1, . . . ,

then the resulting sequence {ψk}k∈Z is almost periodic.

Proof. Consider arbitrary ε > 0 and a positive integer n(ε) ≥ 2 for which (see (1.26))

∞∑

i=n(ε)

ri ji <
ε

4
.

One can show that
{lpn(ε); l ∈ Z} ⊆ T ({ψk}, ε)

which completes the proof.



1.4 Almost periodic sequences with given values 19

1.4 Almost periodic sequences with given values

Now we will construct almost periodic sequences whose ranges consist of arbitrarily given
sets satisfying only necessary conditions. We are motivated by the paper [70] where a si-
milar problem is investigated for real valued sequences. In that paper, using an explicit
construction, it is shown that, for any bounded countable set of real numbers, there exists
an almost periodic sequence whose range is this set and which attains each value in this
set periodically.4 We will extend this result to sequences attaining values in X .

Concerning almost periodic sequences with indices k ∈ N (or asymptotically almost
periodic sequences), we refer to [92] where it is proved that, for any precompact sequence
{xk}k∈N in a metric space X , there exists a permutation P of the set of positive integers
such that the sequence {xP (k)}k∈N is almost periodic. Let us point out that the definition of
the asymptotic almost periodicity in [92] is based on the Bochner concept; i.e., a bounded
sequence {xk}k∈N in X is called almost periodic if the set of sequences {xk+p}k∈N, p ∈ N,
is precompact in the space of all bounded sequences in X . It is known that, for sequences
with values in complete metric spaces, the Bochner definition is equivalent with the Bohr
definition which we prefer. Moreover, we know that these definitions remain also equivalent
in an arbitrary pseudometric space if one replaces the convergence in the Bochner definition
by the Cauchy property (see Theorem 1.3). But, it is seen that the result of [92] for the
almost periodicity on N cannot be true for the almost periodicity on Z or R (see also
Remark 1.2).

In a Banach space, an other important necessary and sufficient condition for a function
to be almost periodic is that it has the approximation property ; i.e., a function is almost
periodic if and only if there exists a sequence of trigonometric polynomials which converges
uniformly to the function on the whole real line in the norm topology (see [39, Theo-
rems 6.8, 6.15]). There exist generalizations of this result (see [33], [159]). For example, it
is proved in [11] that an almost periodic function with fuzzy real numbers as values can be
uniformly approximated by a sequence of generalized trigonometric polynomials. We add
that fuzzy real numbers form a complete metric space. One shows that the approximation
theorem remains generally unvalid if one does not require the completeness of the space of
values. Thus, we cannot use this idea in our constructions for general pseudometric spaces.

We prove that, for a countable subset of X , there exists an almost periodic sequence
whose range is exactly this set. Since the range of any almost periodic sequence is totally
bounded, this requirement on the set is necessary. Now we prove that the condition is
sufficient as well.

Theorem 1.19. Let any countable and totally bounded set X ⊆ X be given. There exists
an almost periodic sequence {ψk}k∈Z satisfying

{ψk; k ∈ Z} = X (1.27)

with the property that, for any l ∈ Z, there exists q(l) ∈ N such that

ψl = ψl+jq(l), j ∈ Z. (1.28)

Proof. Let us put
X = {ϕk; k ∈ N}.
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Without loss of the generality we can assume that the set {ϕk; k ∈ N} is infinite because,
for only finitely many different ϕk, we can define {ψk} as periodic. Since {ϕk; k ∈ N}
is totally bounded, for any ε > 0, it can be imbedded into a finite number of spheres of
radius ε. Let us denote by xi

1, . . . , x
i
m(i) the centres of the spheres of radius 2−i which cover

the set for all i ∈ N. Evidently, we can also assume that

xi
1, . . . , x

i
m(i) ∈ {ϕk; k ∈ N}, i ∈ N, (1.29)

and that
xi

1 = ϕi, i ∈ N. (1.30)

We will construct {ψk} applying Corollary 1.17. We choose arbitrary n(1) ∈ N for
which 22n(1) > m(1). We put

ψ0 := x1
1, ψ1 := x1

2, . . . , ψm(1)−1 := x1
m(1),

ψk := x1
1, k ∈ {−22n(1)−1 − · · · − 23 − 2, . . . ,−1} ∪ {m(1), . . . , 2 + 22 + · · ·+ 22n(1) − 1}

and
εk := L, k ∈ {1, . . . , 2n(1) + 1}, (1.31)

where
L := max

i,j∈{1,...,m(1)}
d
(
x1

i , x
1
j

)
+ 1.

In the second step, we choose n(2) > n(1) +m(2) (n(2) ∈ N). We define

ψk := ψk+22n(1)+1 , k ∈ {−22n(1)+1 − · · · − 23 − 2, · · · ,−22n(1)−1 − · · · − 23 − 2− 1},

ψk := ψk−22n(1)+2 , k ∈ {2 + 22 + · · ·+ 22n(1), . . . , 2 + 22 + · · ·+ 22n(1)+2 − 1},

...

ψk := ψk+22n(2)−1 , k ∈ {−22n(2)−1 − · · · − 23 − 2, · · · ,−22n(2)−3 − · · · − 23 − 2− 1}

and we put
εk := 0, k ∈ {2n(1) + 2, . . . , 2n(2)}, ε2n(2)+1 := 2−1. (1.32)

Since n(2) > n(1) + m(2), from the above definition of ψk, it follows that, for each
j ∈ {1, . . . , m(1)}, there exist at least 2m(2) + 2 integers

l ∈ {−22n(2)−1 − · · · − 23 − 2, . . . , 22n(2)−2 + · · ·+ 22 + 2− 1}

such that ψl = x1
j . Thus, we can define

ψk ∈ Oε2n(2)+1
(ψk−22n(2)) , k ∈ {2 + 22 + · · ·+ 22n(2)−2, . . . , 2 + 22 + · · ·+ 22n(2) − 1}

with the property that

{ψk; k ∈ {2 + 22 + · · ·+ 22n(2)−2, . . . , 2 + 22 + · · ·+ 22n(2)−2 + 22n(2) − 1}} =

= {x1
1, . . . , x

1
m(1), x

2
1, . . . , x

2
m(2)}.
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In addition, we can put
ψ22n(2) := ψ0 = x1

1 (1.33)

and we can assume that

ψk = x1
1 for some k ∈ {2 + · · ·+ 22n(2)−2, . . . , 2 + · · ·+ 22n(2) − 1}r {22n(2)}.

In the third step, we choose n(3) > n(2)+m(3) (n(3) ∈ N) and we proceed analogously.
We construct {ψk} for

k ∈ {−22n(2)+1 − · · · − 23 − 2, . . . ,−22n(2)−1 − · · · − 23 − 2− 1},

...

k ∈ {−22n(3)−1 − · · · − 23 − 2, . . . ,−22n(3)−3 − · · · − 23 − 2− 1}

as in the 2(n(2) + 1)-th, . . . , 2n(3)-th steps of the process (mentioned in Corollary 1.17)
for

εk := 0, k ∈ {2n(2) + 2, . . . , 2n(3)}. (1.34)

Especially, we have

ψk = x1
1, k ∈ J3

0 ,

J3
0 := {j 22n(2); j ∈ Z} ∩ {−22n(3)−1 − · · · − 2, . . . , 2 + · · ·+ 22n(3)−2 − 1}.

(1.35)

As in the second step, for all j(1) ∈ {1, 2} and j(2) ∈ {1, . . . , m(j(1))}, there exist at
least 2m(3) + 2 integers

l ∈ {−22n(3)−1 − · · · − 23 − 2, . . . , 2 + 22 + · · ·+ 22n(3)−2 − 1}r {j 22n(2); j ∈ Z}

such that ψl = x
j(1)
j(2). It is seen that, to get

ψk ∈ Oε2n(3)+1
(ψk−22n(3)) , k ∈ {2 + 22 + · · ·+ 22n(3)−2, . . . , 2 + 22 + · · ·+ 22n(3) − 1},

where
ε2n(3)+1 := 2−2, (1.36)

satisfying

{ψk; k ∈ {2 + 22 + · · ·+ 22n(3)−2, . . . , 2 + 22 + · · ·+ 22n(3)−2 + 22n(3) − 1}} =

= {x1
1, . . . , x

1
m(1), . . . , x

3
1, . . . , x

3
m(3)},

we need less than (or equal to) m(3) + 1 such integers l. Thus, we can define these ψk so
that

ψk = x1
1, k ∈ I3

0 ,

I3
0 := {j 22n(2); j ∈ Z} ∩ {2 + · · ·+ 22n(3)−2, . . . , 2 + · · ·+ 22n(3) − 1},

(1.37)

ψ22n(3)+1 = ψ1 = x1
2, ψ22n(3)−1 = ψ−1 = x1

1, (1.38)

ψk = ψ1 for some k ∈ {2 + · · ·+ 22n(3)−2, . . . , 2 + · · ·+ 22n(3) − 1}r {22n(3) + 1},
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ψk = ψ−1 for some k ∈ {2 + · · ·+ 22n(3)−2, . . . , 2 + · · ·+ 22n(3) − 1}r {22n(3) − 1}.

We proceed further in the same way. In the i-th step, we have n(i) > n(i − 1) +m(i)
(n(i) ∈ N) and

ψk := ψk+22n(i−1)+1 , k ∈ {−22n(i−1)+1 − · · · − 2, · · · ,−22n(i−1)−1 − · · · − 2− 1},

...

ψk := ψk+22n(i)−1 , k ∈ {−22n(i)−1 − · · · − 2, · · · ,−22n(i)−3 − · · · − 2− 1}

and we denote

εk := 0, k ∈ {2n(i− 1) + 2, . . . , 2n(i)}, ε2n(i)+1 := 2−i+1. (1.39)

We have also

ψk = ψ0, k ∈ J i
0,

J i
0 := {j 22n(2); j ∈ Z} ∩ {−22n(i)−1 − · · · − 2, . . . , 2 + · · ·+ 22n(i)−2 − 1},

(1.40)

ψk = ψ1, k ∈ J i
1,

J i
1 := {1 + j 22n(3); j ∈ Z} ∩ {−22n(i)−1 − · · · − 2, . . . , 2 + · · ·+ 22n(i)−2 − 1},

(1.41)

ψk = ψ−1, k ∈ J i
−1,

J i
−1 := {−1 + j 22n(3); j ∈ Z}

∩ {−22n(i)−1 − · · · − 23 − 2, . . . , 2 + 22 + · · ·+ 22n(i)−2 − 1},

(1.42)

...

ψk = ψi−3, k ∈ J i
i−3,

J i
i−3 := {i− 3 + j 22n(i−1); j ∈ Z}

∩ {−22n(i)−1 − · · · − 23 − 2, . . . , 2 + 22 + · · ·+ 22n(i)−2 − 1},

ψk = ψ−i+3, k ∈ J i
−i+3,

J i
−i+3 := {−i + 3 + j 22n(i−1); j ∈ Z}

∩ {−22n(i)−1 − · · · − 23 − 2, . . . , 2 + 22 + · · ·+ 22n(i)−2 − 1}

if i− 3 < 22n(2). If 22n(2) ≤ i− 3 < 22n(2)+1, we have

...

ψk = ψ−22n(2)+1, k ∈ J i
−22n(2)+1,

J i
−22n(2)+1 := {−22n(2) + 1 + j 22n(22n(2)+1); j ∈ Z}

∩ {−22n(i)−1 − · · · − 23 − 2, . . . , 2 + 22 + · · ·+ 22n(i)−2 − 1},

ψk = ψ22n(2)+1, k ∈ J i
22n(2)+1,

J i
22n(2)+1 := {22n(2) + 1 + j 22n(22n(2)+2); j ∈ Z}

∩ {−22n(i)−1 − · · · − 23 − 2, . . . , 2 + 22 + · · ·+ 22n(i)−2 − 1},
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...

If 22n(2)+1 ≤ i−3, then we omit the values ψj 22n(2) , ψ1+j 22n(3) , ψ−1+j 22n(3) , . . . For simplicity,

let i− 2 < 22n(2).
Considering the construction, for all j(1) ∈ {1, . . . , i − 1}, j(2) ∈ {1, . . . , m(j(1))},

there exist at least 2m(i) + 2 integers

l ∈ {−22n(i)−1 − · · · − 23 − 2, . . . , 2 + 22 + · · ·+ 22n(i)−2 − 1}r (J i
0 ∪ · · · ∪ J

i
−i+3)

such that ψl = x
j(1)
j(2). Evidently (similarly as in the third step), we can obtain

ψk ∈ Oε2n(i)+1
(ψk−22n(i)) , k ∈ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1}

for which

{ψk; k ∈ {2 + · · ·+ 22n(i)−2, . . . ,2 + · · ·+ 22n(i)−2 + 22n(i) − 1}}

= {x1
1, . . . , x

1
m(1), . . . , x

i
1, . . . , x

i
m(i)},

(1.43)

and, in addition, we have

ψk = ψ0, k ∈ I i
0,

I i
0 := {j 22n(2); j ∈ Z} ∩ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1},

(1.44)

ψk = ψ1, k ∈ I i
1,

I i
1 := {1 + j 22n(3); j ∈ Z} ∩ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1},

(1.45)

ψk = ψ−1, k ∈ I i
−1,

I i
−1 := {−1 + j 22n(3); j ∈ Z} ∩ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1},

(1.46)

...

ψk = ψi−3, k ∈ I i
i−3,

I i
i−3 := {i− 3 + j 22n(i−1); j ∈ Z} ∩ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1},

ψk = ψ−i+3, k ∈ I i
−i+3,

I i
−i+3 := {−i + 3 + j 22n(i−1); j ∈ Z} ∩ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1},

and
ψk = ψi−2, k = 22n(i) + i− 2, ψk = ψ−i+2, k = 22n(i) − i + 2,

ψk = ψi−2 for some k ∈ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1}r {22n(i) + i− 2},

ψk = ψ−i+2 for some k ∈ {2 + · · ·+ 22n(i)−2, . . . , 2 + · · ·+ 22n(i) − 1}r {22n(i) − i + 2}.

Using this construction, we get the sequence {ψk}k∈Z ⊆ X with the property that
(see (1.33), (1.35), (1.37), (1.40), (1.44))

ψk = ψ0, k ∈ {j 22n(2); j ∈ Z}

and that (see (1.38), (1.41), (1.42), (1.45), (1.46))

ψk = ψ1, k ∈ {1 + j 22n(3); j ∈ Z},
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ψk = ψ−1, k ∈ {−1 + j 22n(3); j ∈ Z},

and so on; i.e., for any l ∈ Z, there exists i(l) ∈ N satisfying

ψk = ψl, k ∈ {l + j 22n(i(l)); j ∈ Z}. (1.47)

Now it suffices to show that the sequence {ψk} is almost periodic. Indeed, (1.27) follows
from the process, (1.29), (1.30), and (1.43); (1.28) follows from (1.47) for q(l) = 22n(i(l)).
Since we construct {ψk} using Corollary 1.17, {ψk} is almost periodic if (1.25) is satisfied.
Immediately, see (1.31), (1.32), (1.34), (1.36), (1.39), we have

∞∑

i=1

εi = L (2n(1) + 1) + 1 (1.48)

which completes the proof.

1.5 An application

Let m ∈ N be arbitrarily given. We will analyse almost periodic systems of m homogeneous
linear difference equations of the form

xk+1 = Ak · xk, k ∈ Z (or k ∈ N0), (1.49)

where {Ak} is almost periodic. Let X denote the set of all systems (1.49).
An important characteristic property of linear difference systems, which makes them

simple to treat, is the well-known superposition principle (see [1], [99], [106]). In particular,
since we study homogeneous systems, we obtain that every solution of a system S ∈ X

can be expressed as a right linear combination of m solutions of S; i.e., any solution {xk}
of S can be written as

xk = Pk · xl, k ∈ Z (or k ∈ N0) (1.50)

for some matrix valued sequence {Pk} and some l ∈ Z (l ∈ N0). Conversely, for any
considered r1, . . . , rm, the sequence {xk} defined by the formula

xk := Pk ·



r1
...
rm


 , k ∈ Z (or k ∈ N0)

is a solution of S. For given S ∈ X determined by {Ak}, the sequence {Pk} is called the
principal fundamental matrix if P0 is the identity matrix. We get immediately

Pk =
k−1∏

i=0

Ak−i−1 for all k > 0;

Pk =
−1∏

i=k

A−1
i for all k < 0 if k ∈ Z.

(1.51)
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Our aim is to study the existence of a system Ŝ ∈ X which does not have any nontrivial
almost periodic solutions. We are going to treat this problem in a very general setting and
this motivates our requirements on the set of values of matrices Ak.

We need the set of entries of Ak to be a subset of a set R with two operations and unit
elements such that R with them is a ring because the multiplication of matrices Ak has to
be associative (consider the natural expression of solutions of (1.49), i.e., consider (1.50)
and (1.51)). We also need the set of all considered Ak to form a set X which has the below
given properties (1.55), and we need that there exists at least one of the below mentioned
functions F1, F2 : [−1, 1] → X, see (1.56), (1.57), respectively. The conditions (1.56) are
common, natural, and simple. However, the main theorem of this chapter (the existence

of the above system Ŝ ∈ X) is true for many subsets of the set of all unitary or orthogonal
matrices which contain of matrices that have eigenvalue λ = 1. Thus, we will also consider
the existence of F2.

We remark that it is possible to obtain results about the nonexistence of nontrivial
almost periodic solutions using different methods than those presented here. For example,
if the zero solution of a system S of the form (1.49) is asymptotically (or even exponentially)

stable, then it is obviously that we can choose Ŝ := S. See [100] and more general [12],
[52], [89], [148], and [177], where the method of Lyapunov function(al)s is used.

Let R = (R,⊕,�) be an infinite ring with a unit and a zero denoted as e1 and e0,
respectively. The symbol M(R,m) will denote the set of all m×m matrices with elements
from R. If we consider the i-th column of U ∈ M(R,m), then we write Ui; and Rm if we
consider the set of all m × 1 vectors with entries attaining values from R. As usual, we
define the multiplication · of matrices from M(R,m) (and U · v, U ∈ M(R,m), v ∈ Rm)
by ⊕ and �. Let d be a pseudometric on R and suppose that

the operations ⊕ and � are continuous with respect to d. (1.52)

It gives the pseudometrics in Rm and M(R,m) because M(R,m) can be expressed as
Rm×m; i.e., d in Rm and M(R,m) is the sum of m and m2 nonnegative numbers given by
d in R, respectively. For simplicity, we will also denote these pseudometrics as d.

The vector v ∈ Rm is called nonzero (or nontrivial) if d
(
v, (e0, . . . , e0)

T
)
> 0. We

say that a nonzero vector (r1, . . . , rm)T , where r1, . . . , rm ∈ R, is an e1-eigenvector of
U ∈ M(R,m) if

d


U ·



r1
...
rm


 ,



r1
...
rm





 = 0,

and that V ∈ M(R,m) is regular for a nonzero vector (r1, . . . , rm)T ∈ Rm if

d


V ·



r1
...
rm


 ,



e0
...
e0





 > 0. (1.53)

Next, we set

I :=




e1 e0 . . . e0
e0 e1 . . . e0
...

...
. . .

...
e0 e0 . . . e1


 ∈ M(R,m).
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If for given U ∈ M(R,m) and X ⊆ M(R,m), there exists the unique matrix V ∈ X (we
put V = W if d(V,W ) = 0) for which

U · V = V · U = I,

then we define U−1 := V and we say that V is the inverse matrix of U in X.
For any function H : [a, b] → X (a ≤ 0 < b, a, b ∈ R) and s ∈ R, we extend its domain

of definition as follows

H(s) :=

{
H(σ) · (H(b))l for s ≥ 0,

(H(a))l ·H(σ) for s < 0 if a < 0,
(1.54)

where s = lb + σ for l ∈ N0, σ ∈ [0, b) or s = la + σ for l ∈ N0, σ ∈ (a, 0]. Hereafter, we
will restrict coefficients Ak in (1.49) to be elements of an infinite set X ⊆ M(R,m) with
the following properties:

I ∈ X; U, V ∈ X =⇒ U · V ∈ X, U−1 exists in X; (1.55)

and either5

there exists a continuous function F1 : [−1, 1] → X satisfying

F1(0) = I; F1(t) = F−1
1 (−t), t ∈ [0, 1]; (1.56)

and matrix F1(1) has no e1-eigenvector

or6

there exist continuous F2 : [−1, 1] → X, t1, . . . , tq ∈ (0, 1], δ > 0 such that

F2(0) = I; F2

(
p∑

i=1

si

)
=

p∏

i=1

F2 (si), s1, . . . , sp ∈ [−1, 1]; (1.57)

and, for any v ∈ Rm, one can find j ∈ {1, . . . , q} for which v is not an e1-eigen-
vector of F2(t), t ∈ (max{0, tj − δ},min{tj + δ, 1}).

We recall that, for U1, . . . , Up ∈ X (p ∈ N), we define

p∏

i=1

Ui := U1 · U2 · · ·Up,
1∏

i=p

Ui := Up · Up−1 · · ·U1.

For the above function H, we also use the conventional notation

(H(s))0 := I, H−1(s) := (H(s))−1 for all considered s ∈ R.

Actually, a closer examination of our process reveals that the pseudometric d can be defined
“only” on the set

{Fj(s1) · · ·Fj(sn) · v; v ∈ Rm, s1, . . . , sn ∈ [−1, 1]}
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and the set {Fj(t); t ∈ [−1, 1]} can be countable for both of j ∈ {1, 2}.7

We need a sequence {ak}k∈N0 of real numbers, which has special properties (mentioned
in the below given Lemmas 1.20–1.23), to prove the main theorem of this chapter. We
define the sequence {ak}k∈N0 by the recurrent formula

a0 := 1, a1 := 0, a2n+k := ak −
1

2n
, k = 0, . . . , 2n − 1, n ∈ N. (1.58)

For this sequence, we have the following results:

Lemma 1.20. The sequence {ak} is almost periodic.

The above lemma follows from Theorem 1.12 where we set ϕk = ak (k ∈ N) and

X = R, m = 0, j = 1, ϕ0 = 1, rn =
4

2n
, n ∈ N.

Lemma 1.21. The following holds

a2n+2−1−i = −a2n+1+i (1.59)

for any n ∈ N0 and i ∈ {0, . . . , 2n − 1}; i.e., i ∈ {0, . . . , 2n+1 − 1}.

Before proving this statement, observe that (1.59) is equivalent to

2n+2−1−i∑

k=2n+1+i

ak = 0, n ∈ N0, i ∈ {0, . . . , 2
n − 1};

i.e., to
2n+1−1+i∑

k=0

ak =

2n+2−1−i∑

k=0

ak, n ∈ N0, i ∈ {0, . . . , 2
n − 1}.

Proof of Lemma 1.21. Obviously, (1.59) is true for n ∈ {0, 1} because

a2 = −a3 =
1

2
, a4 = −a7 =

3

4
, a5 = −a6 = −

1

4
;

i.e.,
1∑

k=0

ak =

3∑

k=0

ak =

7∑

k=0

ak = 1,

4∑

k=0

ak =

6∑

k=0

ak =
7

4
.

Suppose that (1.59) is true also for 2, . . . , n− 1. We choose i ∈ {0, . . . , 2n− 1} arbitrarily.
(We have 2n+2 − 1− i ≥ 2n+1 + 2n.) From (1.58) and the induction hypothesis it follows

a2n+2−1−i + a2n+1+2n+i = −
1

2n
, a2n+1+i − a2n+1+2n+i =

1

2n
.

Summing the above equalities, we get (1.59).

Lemma 1.22. We have
n∑

k=0

ak ≥ 1, n ∈ N0. (1.60)
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Proof. Evidently, a0 = a0 + a1 = 1. It means that (1.60) is true for n = 0 and n = 1 =
21 − 1. Let it be valid for arbitrarily given 2p − 1 and all n < 2p − 1, i.e., let

n∑

k=0

ak ≥ 1, n ≤ 2p − 1, n ∈ N0.

Considering the definition of {ak}, we obtain

2p+j−1∑

k=0

ak =

2p−1∑

k=0

ak +

2p+j−1∑

k=2p

ak ≥ 1 +

j−1∑

k=0

ak − j
1

2p
≥ 1 + 1− 1 = 1

for any j ∈ {1, . . . , 2p}. Lemma 1.22 now follows by the induction.

Lemma 1.23. We have
2n−1∑

k=0

ak = 1, (1.61)

2n+i+2n−1∑

k=0

ak = 2−
1

2i
, (1.62)

where n ∈ N0, i ∈ N.

Proof. It is possible to prove this result by means of Lemma 1.21, but we prove it directly
using (1.58) and the induction principle. We have

a0 = 1, a0 + a1 = 1, a0 + a1 + a2 + a3 = 1.

If we assume that
2n−1−1∑

k=0

ak = 1,

then we get (see (1.58))

2n−1∑

k=0

ak =
2n−1−1∑

k=0

ak +
2n−1∑

k=2n−1

ak

=

2n−1−1∑

k=0

ak +

2n−1−1∑

k=0

(
ak −

1

2n−1

)

= 2
2n−1−1∑

k=0

ak − 1 = 1.

Therefore, (1.61) is proved. Analogously, applying (1.58) and (1.61), one can compute

2n+i+2n−1∑

k=0

ak =

2n+i−1∑

k=0

ak +

2n+i+2n−1∑

k=2n+i

ak

= 1 +

2n−1∑

k=0

(
ak −

1

2n+i

)
= 1 +

(
1−

1

2i

)

what gives (1.62).
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Applying matrix valued functions F1, F2, we obtain the next lemma.

Lemma 1.24. For each j ∈ {1, 2}, any n ∈ N0, and each i ∈ {0, . . . , 2n − 1}, it holds

Fj(a2n+2−1−i) = F−1
j (a2n+1+i)

and, consequently,
2n+2−1−i∏

k=2n+1+i

Fj(ak) =
2n+1+i∏

k=2n+2−1−i

Fj(ak) = I.

Proof. Clearly, this is a corollary of Lemma 1.21. Consider (1.56), (1.57), and the fact that
the multiplication of matrices (in M(R,m)) is associative.

Immediately, from Lemma 1.23 (see (1.57)), we have the following formulas for the
function F2:

Lemma 1.25. The equalities

2n−1∏

k=0

F2 (ak) = F2(1),
2n+i+2n−1∏

k=0

F2(ak) = F2

(
2−

1

2i

)

hold for all n ∈ N0 and i ∈ N.

Now we can prove the main statement of Chapter 1.

Theorem 1.26. There exists a system of the form (1.49) that does not possess a nonzero
almost periodic solution.

Proof. First we suppose that the coefficients Ak belong to X so that there exists a func-
tion F1 from (1.56). Using Theorem 1.5, we get the almost periodicity of the sequence
{F1(ak)}k∈N0, where {ak} is given by (1.58). We want to show that all nonzero solutions
of the system S1 ∈ X determined by {F1(ak)} are not almost periodic.

By contradiction, suppose that there exist c1, . . . , cm ∈ R such that the vector valued
sequence

{fk} :=




Pk ·



c1
...
cm







, k ∈ N0, (1.63)

where {Pk}k∈N0 is the principal fundamental matrix of S1, is nontrivial and almost periodic;
i.e., suppose that S1 has a nontrivial almost periodic solution {fk}. Since {fk} is almost
periodic, (c1, . . . , cm)T is nonzero, and, because of a0 = 1, it is valid

fi = Ui · F1(1) ·



c1
...
cm


 for any i ∈ N and some Ui ∈ X, (1.64)

we know that (see (1.53))

F1(1) is regular for c := (c1, . . . , cm)T . (1.65)
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Considering (1.58), the uniform continuity of F1 and the continuity of the multiplication
of matrices (see (1.52)), (c), Lemma 1.24, and (1.63), from the first part of Theorem 1.14
(see the proof of Corollary 1.15 and again Lemma 1.24), one can obtain that the sequence
{gk}k∈Z, where

gk := fk, k ∈ N0, gk := f−k, k ∈ Z r N0, (1.66)

is almost periodic too. Now we use Theorem 1.3 for {ϕk} ≡ {gk} and {hn}n∈N ≡ {2n}n∈N

(we can also consider directly {ϕk} ≡ {fk} and use Remark 1.2). This theorem implies
that, for any ε > 0, there exists an infinite set N(ε) ⊆ N such that the inequality

d (gk+2n1 , gk+2n2 ) < ε, k ∈ Z (1.67)

holds for all n1, n2 ∈ N(ε).
Using (1.56) (twice), we get d (c, F1(1) c) > 0, and consequently (consider (1.65))

ϑ := d (F1(1) · c, F1(1) · F1(1) · c) > 0. (1.68)

From Lemma 1.24 (for i = 0), (1.63), and (1.66) (see also (1.64)), we have

g0 = c, g1 = F1(1) · c, . . . , g2n = F1(1) · c, (1.69)

where n ∈ N is arbitrary, and hence, considering (1.58), it holds

d (g2i+2n, F1(1) · F1(1) · c) → 0 as n→∞ (1.70)

for every i ∈ N because F1 is uniformly continuous and the multiplication of matrices is
continuous. We also have

d (g2n2+2n1 , F1(1) · c) <
ϑ

2
(1.71)

for all n1, n2 ∈ N (ϑ/2). Indeed, put k = 2n2 in (1.67) and consider (1.69) for n = n2 + 1.
If we choose n1 ∈ N (ϑ/2) and put i = n1 in (1.70), then there exists n0 ∈ N such that, for
any n ≥ n0, it holds

d (g2n1+2n , F1(1) · F1(1) · c) <
ϑ

2
.

Thus, for arbitrarily given n2 ≥ n0, n2 ∈ N (ϑ/2), we get

d (g2n2+2n1 , F1(1) · F1(1) · c) <
ϑ

2
. (1.72)

Finally, applying (1.68), (c), (1.71), and (1.72), we have

ϑ ≤ d (F1(1) · c, g2n2+2n1 ) + d (g2n2+2n1 , F1(1) · F1(1) · c) < ϑ.

This contradiction gives the proof when we consider (1.56) for k ∈ N0.

Let k ∈ Z. Then, we can consider the system S̃1 determined by the sequence

Bk := F1(ak), k ∈ N0, Bk := F1(−a−k−1), k ∈ Z r N0. (1.73)

Since the sequence {| ak |}k∈N0 is almost periodic (see Theorem 1.5) and has the form of
{ϕk}k∈N0 from Theorem 1.12 and since it is valid (see (1.59))

| a2n+2−1−i | = | a2n+1+i |, n ∈ N0, i ∈ {0, . . . , 2
n − 1},
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the fact that {Bk} is almost periodic follows from the second part of Corollary 1.15, from
Corollary 1.9, and Theorem 1.5. Next, the process is the same as for k ∈ N0. Let {Pk}k∈Z

be the principal fundamental matrix of S̃1 and gk := fk, k ∈ Z. Also now we have (1.67),
and consequently we get the same contradiction.

Let the coefficients Ak belong to X such that there exists a function F2 from (1.57).
Consider the numbers t1, . . . , tq ∈ (0, 1] and δ > 0 from (1.57). Without loss of the
generality, we can assume

δ < t1 < · · · < tq and tq < 1− δ. (1.74)

Indeed, if tj = 1, then we can put tj := 1 − δ
2

and redefine δ. We repeat that any
vector v ∈ Rm determines some j ∈ {1, . . . , q} (see again (1.57)) such that v is not an
e1-eigenvector of F2(t) for t ∈ (tj − δ, tj + δ).

From Theorem 1.5 it follows that the sequence {F2(ak)}k∈N0 is almost periodic. Thus,
it determines a system of the form (1.49). We will denote it as S2. Suppose that S2 has
a nontrivial almost periodic solution {xk}k∈N0. For the principal fundamental matrix {Pk}
of the system S2, we have

xk = Pk · x0, k ∈ N0,

where the vector x0 is nonzero. Using this fact and taking into account Lemma 1.22
and (1.57), we obtain

xn = F2(t) · F
i
2(1) · x0 for some i ∈ N, t ∈ [0, 1), (1.75)

and for arbitrary n ∈ N. From Lemma 1.25, we also get

x2n = F2(1) · x0 for all n ∈ N0 (1.76)

and

x2n+i+2n = F2

(
1−

1

2i

)
· F2(1) · x0 for all n ∈ N0, i ∈ N. (1.77)

Analogously as for {fk}, one can extend {xk}k∈N0 by the formula

xk := x−k, k ∈ Z r N0

for all k ∈ Z so that the sequence {xk}k∈Z is almost periodic too. Now we apply Theo-
rem 1.3 for the sequences {xk}k∈Z and {2n}n∈N. For any ε > 0, there exists an infinite set
M(ε) ⊆ N such that, for any n1, n2 ∈M(ε), we have

d (xk+2n1 , xk+2n2 ) < ε, k ∈ Z. (1.78)

Since F2 is uniformly continuous and the multiplication of matrices is continuous, for
arbitrary i ∈ N and ε > 0, we have from (1.58) and (1.76) that

d (x2i+2n , F2(1) · F2(1) · x0) < ε for sufficiently large n ∈ N. (1.79)

Because of the almost periodicity of {xk} and (1.75), the matrix F2(1) has to be regular
for x0. Let ε > 0 be arbitrarily small and n1 ∈ M(ε) arbitrarily large. From (1.78) and
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(1.79), where we choose k = 2n1−j and i = 2n1−j for j ∈ {0, . . . , n1}, it follows that, for
given n1, there exists sufficiently large n2 ∈M(ε) for which

d (x2n1−j+2n1 , F2(1) · F2(1) · x0) ≤

d (x2n1−j+2n1 , x2n1−j+2n2 ) + d (x2n1−j+2n2 , F2(1) · F2(1) · x0) < 2ε.
(1.80)

Since ε (in (1.80)) is arbitrarily small, choosing j = 0, we get

d (x2n1+1, F2(1) · F2(1) · x0) = 0

which gives (see (1.76)) that F2(1) x0 is an e1-eigenvector of F2(1), i.e., we have

d (F2(1) · x0, F2(1) · F2(1) · x0) = 0. (1.81)

If we choose j = 1, then we obtain (consider (1.77))

d

(
F2

(
1

2

)
· F2(1) · x0, F2(1) · F2(1) · x0

)
= 0.

Analogously, for any j (the number n1 is arbitrarily large), we get

d

(
F2

(
1−

1

2j

)
· F2(1) · x0, F2(1) · F2(1) · x0

)
= 0.

Thus,

d

(
F2

(
2−

1

2j

)
· x0, F2(2) · x0

)
= 0, j ∈ N. (1.82)

Hence, we have

d

(
F2

(
2−

1

2j

)
· x0, F2

(
2−

1

2j−1

)
· x0

)
= 0, j ∈ N. (1.83)

Because of

F2

(
2−

1

2j

)
= F2

(
1

2j
+ 2−

1

2j−1

)
= F2

(
1

2j

)
· F2

(
2−

1

2j−1

)

and (see (1.81) and (1.82))

d

(
F2

(
2−

1

2j−1

)
· x0, F2(1) · x0

)
= 0,

from (1.83) it follows

d

(
F2

(
1

2j

)
· F2(1) · x0, F2(1) · x0

)
= 0 for all j ∈ N,

i.e., F2(1) x0 is an e1-eigenvector of F2(2
−j) for all j ∈ N.

Since any number t ∈ [0, 1] can be expressed in the form

∞∑

i=1

ai

2i
, where ai ∈ {0, 1},
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for considered δ > 0, there exists n ∈ N such that, for every t ∈ [0, 1], there exist
a1, . . . , an ∈ {0, 1} satisfying ∣∣∣∣∣ t−

n∑

i=1

ai

2i

∣∣∣∣∣ < δ.

Thus, F2(1) x0 is an e1-eigenvector of F2(tj + sj) for some | sj | < δ and any j ∈ {1, . . . , q}
which cannot be true. This contradiction shows that {xk}k∈N0 is not almost periodic.

If one considers the system S̃2 obtained from S2 as in (1.73) (after replacing S1 by S2),

then, similarly as for F1 and k ∈ N0, one can prove that S̃2 ∈ X and that any its nontrivial
solution {xk}k∈Z is not almost periodic.

Remark 1.27. Let a nonzero F1(1) v ∈ Rm not be an e1-eigenvector of matrix F1(1)
from (1.56); i.e., the condition (1.56) be weakened in this way. Then, from the first part
of the proof of Theorem 1.26, we obtain that the sequence {fk}, given by (1.63), is not
almost periodic for (c1, . . . , cm)T = v. It means that there exists a system S

1 ∈ X with
the principal fundamental matrix {P 1

k } such that the sequence {P 1
k v}k∈N0 or {P 1

k v}k∈Z is
not almost periodic.

Analogously, it is seen: If one requires in (1.57) only that, for a nonzero vector v ∈ Rm,
there exists t ∈ (0, 1] for which F2(1) v is not an e1-eigenvector of F2(t), then there exists
a system S

2 ∈ X satisfying that the sequence {P 2
k v}k∈Z (or {P 2

k v}k∈N0), where {P 2
k }k∈Z

(or {P 2
k }k∈N0) is the principal fundamental matrix of S

2, is not almost periodic.

The condition

F2

(
p∑

i=1

si

)
=

p∏

i=1

F2 (si), s1, . . . , sp ∈ [−1, 1], p ∈ N (1.84)

in (1.57) is “strong”. For example, from it follows that the multiplication of matrices from
the set {F2(t); t ∈ R} is commutative. At the same time, we say that, for many subsets of
unitary or orthogonal matrices, it is not a limitation and that the method in the proof of
Theorem 1.26 can be simplified in many cases. We will show it in two important special
cases.

Example 1.28. If for any nontrivial vector v ∈ Rm, there exists ε(v) > 0 with the property
that

F2(t) · v /∈ Oε(v)(v) for all t ≥ 1 (see (1.54)),

then the fact, that the systems S2 and S̃2 from the proof of Theorem 1.26 do not have
nontrivial almost periodic solutions, follows directly from Lemma 1.22 and (1.84). Indeed,
the set T ({xk}, ε(x0)) r {0} is empty for any nonzero solution {xk}.

Example 1.29. Let the function F2, in addition to (1.57), satisfy

F2(s) = F2(0) = I (1.85)

for some positive irrational number s, (1.74) hold, and p ∈ N be arbitrary. Then, the
system S determined by the sequence

{Ak} := {F2(k/p)},
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where k ∈ N0 or k ∈ Z, has no nontrivial almost periodic solutions.
The function F2(t/p), t ∈ R, is continuous and periodic with a period ps (see (1.84),

(1.85)). Using the compactness of the interval [0, ps], (1.84), and Theorem 1.3, we get that
{F2(k/p)}k∈Z is almost periodic. The almost periodicity of {F2(k/p)}k∈N0 is now obvious.

Suppose, by contradiction, that {xk} ≡ {Pk x0} is a nontrivial almost periodic solution
of S. We mention that there exists δ > 0 satisfying that, for any nonzero v ∈ Rm, one can
find j ∈ N such that there exists a positive number ϑ(v) for which

ϑ(v) ≤ d

(
F2

(
j

p
+ t

)
· v, v

)
, t ∈ (−δ, δ), (1.86)

because
{F2(k/p); k ∈ N} is dense in {F2(t); t ∈ R} (1.87)

which is proved (for a continuous periodic function F2 satisfying (1.84) with the smallest
period s > 0 that is an irrational number) in detail, e.g., in [165, pp. 44–46]. Evidently,
(1.87) gives that

{F2(k/p); k ∈ N} is dense in {F2(t); t ∈ R} (1.88)

for any set N what is relative dense in N.
Since the multiplication of matrices is continuous, there exists ε > 0 which satisfies

that every vector u with the property d(u, x0) < ε determines the same j in (1.86) as x0

and one can find

ϑ(u) ≥
ϑ(x0)

2
. (1.89)

From (1.84), we see that

xk = F2

(
k−1∑

i=0

i

p

)
· x0, k ∈ N. (1.90)

Let l be an arbitrary positive (ϑ(x0)/2)-translation number of {xk}, thus, let

d(xk+l, xk) <
ϑ(x0)

2
for all k ∈ N, (1.91)

and let N be the set of all positive ε-translation numbers of {xk}. Since

k+l−1∑

i=0

i

p
=

k−1∑

i=0

i

p
+
kl

p
+
l(l − 1)

2p
, k ∈ N,

for all k ∈ N , we have (see again (1.84))

d(xk+l, xk) = d

(
F2

(
kl

p
+
l(l − 1)

2p

)
· F2

(
k−1∑

i=0

i

p

)
· x0, F2

(
k−1∑

i=0

i

p

)
· x0

)
. (1.92)

From (1.88), if we replace 1/p by l/p, we get the choice of k ∈ N such that

∣∣∣∣
j

p
−
kl

p
−
l(l − 1)

2p

∣∣∣∣ < δ (mod s) (1.93)
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for j in (1.86) determined by x0. From (1.86), (1.89) (consider the definition of ε), (1.90),
(1.92), and (1.93), we have

d(xk+l, xk) ≥
ϑ(x0)

2

for at least one k ∈ N. But, at the same time, we have (1.91). This contradiction gives that
{xk} cannot be almost periodic. See also the proof of the first part of [158, Proposition 2],
where almost periodic unitary systems are studied.

At the end, we remark that the last considered system S (in Example 1.29) has no
physical interpretations in any technical applications if we consider directly the sequence
{k/p}; in contrast to S2 and S̃2 (the sequence {ak}). In applications, the following can
be utilized: Let {uk}k∈Z (or {uk}k∈N0) be a sequence of arbitrary values and let the below
considered function ϕ be defined on the set {uk; k ∈ Z} or {uk; k ∈ N0}. If we extend the
definition of the discrete almost periodicity so that ϕ is almost periodic if for every ε > 0,
one can find p (ε) ∈ N0 with the property that any set, in the form {k0, . . . , k0 + p (ε)},
k0 ∈ Z (or k0 ∈ N0), contains a number l satisfying the inequality

d (ϕ(uk+l), ϕ(uk)) < ε

for all k ∈ Z (or k ∈ N0), then all results (mentioned in this chapter) about almost periodic
sequences are still valid.

In this chapter, we considered almost periodic sequences, their main properties (espe-
cially, the Bochner condition), and almost periodic solutions of almost periodic difference
equations in pseudometric spaces. Analogously, the Bohr and the Bochner almost periodic
random sequences are defined, their properties investigated, and almost periodic solutions
of almost periodic random difference equations are discussed in [80].



Chapter 2

Almost periodic homogeneous linear
difference systems

We will consider almost periodic solutions of almost periodic linear difference systems.
Our aim is to analyse the systems which have no nontrivial almost periodic solution. We are
motivated by the paper [158], where unitary systems (determined by unitary matrices) are
studied. One of the main statements of [158] says that the systems whose solutions are
not almost periodic form an everywhere dense subset in the space of all considered unitary
systems. We also note that important partial cases of the theorem and the process are
mentioned in [151] and [57], [96], [154], respectively.

In the proof of this result, it is substantially used that the group of considered matrices
is not commutative. Thus, e.g., the dimension of the systems has to be at least two. We
will use methods based on our general constructions because we want to generalize the
result also for commutative groups of matrices (especially, for the scalar case). It implies
that we can treat the problem in a general setting. Scalar sequences will attain values in
a complete metric space on an infinite field with continuous operations with respect to the
metric similarly as scalar discrete processes in [38], where the main results are proved for
real or complex entries (see the below given Theorem 2.14).

The almost periodicity of solutions of almost periodic linear difference equations is also
studied in [4] and [175] (nonhomogeneous systems). We can refer to the known article [38]
again. Explicit almost periodic solutions are obtained for a class of these equations in [76].
For difference systems of general forms, criteria of the existence of almost periodic solutions
are presented in [21], [144], [173], [176]. The existence of an almost periodic sequence of
solutions for an almost periodic difference equation is discussed in [83] (and [79] as in [176]).
Concerning the existence theorems for almost periodic solutions of almost periodic delay
difference systems, see [68] or [177] (methods and techniques from that paper are similarly
used and developed in [178]).

This chapter is organized as follows. We begin with notations which are used through-
out this chapter. Then we introduce general homogeneous linear difference systems and
a metric in the space of all these almost periodic systems.

Since every nontrivial almost periodic solution of a homogeneous linear difference sys-
tem is bounded and does not have a subsequence converging to the zero vector (see the
below given Lemma 2.18), it is interesting to consider only groups of matrices with eigen-

36
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values having absolute value 1 in the complex case and corresponding generalizations. To
formulate our results in a simple and consistent form, we introduce the concepts of trans-
formable and then strongly transformable groups of matrices. One of the conditions in
the definition of transformable groups means that it is possible to transform any matrix
into any other using finitely many arbitrarily small “jumps” in the complex case (for usual
metrics on the group of considered matrices). We remark that the group has to be infinite
because we study solutions which are not periodic.

In the second section, there is also shown that the group of all unitary matrices, the
group of all orthogonal matrices of a dimension at least two with determinant 1, and some
their subgroups are strongly transformable. In addition, the subgroups from Examples 2.4
and 2.6 are commutative.

In Section 2.3, we present conditions for strongly transformable and then transformable
groups ensuring that, in any neighbourhood of every considered system, there exists a sys-
tem which does not possess an almost periodic solution other than the trivial one. Es-
pecially, it is proved as Theorem 2.11 (consider also Theorem 2.20) that, for a strongly
transformable group, this condition is the existence of matrices M1, . . . ,Mj, . . . from the
group with the property that, for any nonzero vector x, one can find j ∈ N such that
Mj x 6= x. In each case, the corresponding corollary about the Cauchy problem is explicit-
ly formulated.

2.1 Preliminaries

We will use the following notations: N0 for the set of positive integers including the zero;
R+ for the set of all positive reals; R+

0 for the set of all nonnegative real numbers; and
“i” for the imaginary unit. Let F = (F,⊕,�) be an infinite field with a unit and a zero
denoted as e1 and e0, respectively, and let m ∈ N be arbitrarily given. Hereafter, we will
consider m as the dimension of difference systems under consideration.

The symbol Mat(F,m) will denote the set of all m ×m matrices with elements from
F and Fm the set of all m× 1 vectors with entries attaining values from F . As usual, we
define the identity matrix I and the zero matrix O. Analogously, for the trivial vector, we
put o := [e0, e0, . . . , e0]

T ∈ Fm. Since F is a field, we have the notion of the nonsingular
matrices from Mat(F,m). For any invertible matrix U , we denote the inverse matrix as
U−1. For arbitrary Uj, . . . , Uj+n ∈ Mat(F,m), j ∈ Z, n ∈ N, we define

j+n∏

i=j

Ui := Uj · Uj+1 · · ·Uj+n,

j∏

i=j+n

Ui := Uj+n · Uj+n−1 · · ·Uj.

Let % be a metric on F and suppose that the operations ⊕ and � are continuous
with respect to % and that the metric space (F, %) is complete. The metric % induces
the metrics in Fm and Mat(F,m) as the sum of m and m2 nonnegative numbers given
by % in F , respectively. We will also denote these metrics as %. For any ε > 0 and α
from a metric space, the ε-neighbourhood of α will be denoted by O%

ε(α). Note that the
continuity of ⊕ and � implies that the multiplication · of matrices from Mat(F,m) (and
U · v, U ∈ Mat(F,m), v ∈ Fm) is continuous.

All sequences, which we will consider, will be defined for k ∈ Z (or i, j ∈ N) and will
attain values in one of the metric spaces F , Fm, Mat(F,m) (or C). The vector (and scalar)
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valued sequences will be denoted by the lower-case letters, the matrix valued sequences by
the capital letters, and each one of the scalar, vector, and matrix valued sequences by the
symbols {ϕk}, {ψk}, {χk}.

2.2 General homogeneous linear difference systems

We will consider m-dimensional homogeneous linear difference equations of the form

xk+1 = Ak · xk, k ∈ Z, (2.1)

where {Ak} is an almost periodic sequence of nonsingular matrices from a given infinite
set X ⊂ Mat(F,m). We need the set of all considered Ak to form the set X which has
the below given properties. The set of all these almost periodic systems will be denoted
by the symbol AP (X ).

We will identify the sequence {Ak} with the system (2.1) which is determined by {Ak}.
In the space AP (X ), we introduce the metric

σ ({Ak}, {Bk}) := sup
k∈Z

% (Ak, Bk) , {Ak}, {Bk} ∈ AP (X ).

For ε > 0, the symbol Oσ
ε ({Ak}) denotes the ε-neighbourhood of {Ak} in AP (X ).

2.2.1 Transformable groups

Definition 2.1. We say that the infinite set X ⊂ Mat(F,m) is transformable if the
following conditions are fulfilled:

(i) For all U, V ∈ X , it holds
U · V ∈ X , U−1 ∈ X .

(ii) For any L ∈ R+ and ε > 0, there exists p = p(L, ε) ∈ N with the property that,
for any n ≥ p (n ∈ N) and any sequence {C0, C1, . . . , Cn} ⊂ X , L ≤ % (Ci, O),
i ∈ {0, 1, . . . , n}, one can find a sequence {D1, . . . , Dn} ⊂ X for which

Di ∈ O
%
ε(Ci), 1 ≤ i ≤ n, Dn · · ·D2 ·D1 = C0.

(iii) The multiplication of matrices is uniformly continuous on X and has the Lipschitz
property on a neighbourhood of I in X . Especially, for every ε > 0, there exists
η = η(ε) > 0 such that

C ·D, D · C ∈ O%
ε(C) if C ∈ X , D ∈ O%

η(I) ∩ X ;

and there exist ζ > 0 and P ∈ R+ such that

C ·D, D · C ∈ O%
εP (C) if C ∈ O%

ζ (I) ∩ X , D ∈ O%
ε(I) ∩ X , ε ∈ (0, ζ).

(iv) For any L ∈ R+, there exists Q = Q(L) ∈ R+ with the property that, for every ε > 0
and C,D ∈ X rO%

L(O) satisfying C ∈ O%
ε(D), it is valid that

C−1 ·D, D · C−1 ∈ O%
εQ(I).
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For simplicity, in the below mentioned examples, we will consider only the complex or
real case and we will speak about the classical case. Henceforth, we will use known results
of matrix analysis which can be found, e.g., in [74], [75], [84], [98].

If

((F,⊕,�), %(·, ·)) = ((C,+, ·), | · − · |) or ((F,⊕,�), %(·, ·)) = ((R,+, ·), | · − · |)),

then, evidently, the multiplication of matrices satisfies the Lipschitz condition on any set
O%

K(O). For an arbitrary matrix norm8 (especially, for the l1 norm) denoted by || · ||, we
have ∣∣∣∣A−1 − (A+ E)−1

∣∣∣∣ ≤ ||A−1 · E ||

1− ||A−1 ·E ||

∣∣∣∣A−1
∣∣∣∣ (2.2)

for any matrices A,E such that A is invertible and ||A−1E || < 1. If we have a bounded
group X ⊂Mat(C, m), then from (2.2) it follows that the map C 7→ C−1, C ∈ X has the
Lipschitz property too. Hence, the condition (iv) is satisfied.

Finally, the conditions (iii) and (iv) are fulfilled for any bounded group X ⊂Mat(C, m).
Further, for any bounded group X , there exists ε > 0 for which X ∩ O%

ε(O) = ∅. At the
same time, from the condition (ii), we know that X ∩ O%

1(O) = ∅ for any transformable
set X ⊂ Mat(C, m). Indeed, it suffices to consider C0 = I and the constant sequence
{C1, . . . , Cn} given by a matrix C such that ||C || < 1.

Let ε > 0, a bounded group X ⊂ Mat(C, m), and C0, C1, . . . , Cn ∈ X be arbitrarily
given. The uniform continuity of the multiplication of matrices on X implies the existence
of η = η(ε) > 0 such that C D,DC ∈ O%

ε(C) if D ∈ O%
η(I) ∩ X , C ∈ X (see (ii)). We

define the maps H1, H2 on X × X by

H1 ((C,D)) := C ·D · C−1, H2 ((C,D)) := C−1 ·D · C.

Since H1, H2 satisfy the Lipschitz condition, there exists R ∈ R+ such that the images of
{C} × O%

η/R(I) ∩ X in both of H1 and H2 are subsets of O%
η(I) for all C ∈ X .

If we replace
1∏

i1=n

Fi1 ·
n∏

i2=1

Ci2 by
n∏

i=1

Ei · Ci,

where

F1 = H1 ((I, E1)) , F2 = H1 ((E1 · C1, E2)) ,

. . . Fn = H1 ((E1 · C1 · · ·En−1 · Cn−1, En)) ,

we see that Fi ∈ O
%
η/R(I) ∩ X , i ∈ {1, . . . , n}, implies Ei ∈ O

%
η(I), i ∈ {1, . . . , n}. Thus,

from the existence of matrices F1, . . . , Fn ∈ O
%
η/R(I) ∩ X for which

1∏

i1=n

Fi1 ·
n∏

i2=1

Ci2 = C0,

it follows the existence of matrices D1, . . . , Dn ∈ X satisfying

Di ∈ O
%
ε(Ci), 1 ≤ i ≤ n, Dn · · ·D2 ·D1 = C0.



2.2 General homogeneous linear difference systems 40

It means that a bounded group X ⊂Mat(C, m) is transformable if for any sufficiently
small ε > 0, there exists p (ε) ∈ N such that, for all n ≥ p (ε) (n ∈ N), any matrix from
X can be expressed as a product of n matrices from O%

ε(I) ∩ X . We remark that several
processes in the proofs of the below given results can be simplified in the classical case. For
example, in the proofs of Lemma 2.10 and Lemma 2.18, one can use that, for any ε > 0,
K ∈ R+, and n ∈ N, there exists ξ = ξ(ε,K, n) > 0 for which

% (M1 ·M2 · · ·Mn, O) < ε, M1,M2, . . . ,Mn ∈ O
%
K(O)

and
% (M1 · · ·Mn · u, o) < ε, M1, . . . ,Mn ∈ O

%
K(O), u ∈ O%

K(o)

if we have Mi ∈ O
%
ξ (O) for at least one i ∈ {1, . . . , n} and u ∈ O%

ξ (o), respectively.

2.2.2 Examples of transformable groups

Now we mention the most important examples of transformable groups:

Example 2.2. The group of all unitary matrices is transformable. Obviously, it suffices to
show that, for every ε > 0, any unitary matrix can be obtained as the n-th power of some
unitary matrix from the ε-neighbourhood of I for all sufficiently large n ∈ N. To show this,
let ε > 0, n ∈ N, and a m×m unitary matrix U with eigenvalues exp (iλ1) , . . . , exp (iλm),
where λ1, . . . , λm ∈ [−π, π), be arbitrarily given. We have

U = W · J ·W ∗ for some unitary matrix W = W (U),

where J = diag [exp (iλ1) , . . . , exp (iλm)] and W ∗ denotes the conjugate transpose of W .
We find a unitary matrix V for which V n = U . By

W ∗ · V n ·W = (W ∗ · V ·W )n = J,

we obtain
V = W · diag [exp (iλ1/n) , . . . , exp (iλm/n)] ·W ∗.

Since the multiplication of matrices is uniformly continuous on the set of all unitary ma-
trices, it remains to consider sufficiently large n ∈ N.

Example 2.3. Let m ≥ 2 and F = R. Now we will show that the group of m×m ortho-
gonal matrices with determinant 1 is transformable. Analogously as for unitary matrices,
it is enough to prove that any orthogonal matrix U for which det U = 1 is products of
n ≥ p (ε), n ∈ N orthogonal matrices from the ε-neighbourhood of I for arbitrary ε > 0 and
some p (ε) ∈ N. Indeed, it is seen that there exists a neighbourhood of I which contains
only orthogonal matrices with determinant 1.

Let m = 2. Observe that a two-dimensional orthogonal matrix has the form
[

cosα − sinα
sinα cosα

]
,

where α ∈ [−π, π), if and only if its determinant is 1. It can be easily computed that
[

cosα1 − sinα1

sinα1 cosα1

]
·

[
cosα2 − sinα2

sinα2 cosα2

]
=

[
cos (α1 + α2) − sin (α1 + α2)
sin (α1 + α2) cos (α1 + α2)

]
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for α1, α2 ∈ R and that, consequently, any this matrix (for some α ∈ [−π, π)) can be
obtained as the n-th power of the orthogonal matrix of this type given by the argument
α/n for all n ∈ N.

Now we use the induction principle with respect to m. Assume that the statement is
true for m− 1 ≥ 2 and prove it for m. Let U be an orthogonal m×m matrix which is not
in any one of the forms [

1 oT

o V

]
,

[
V o
oT 1

]
, (2.3)

where V is an orthogonal matrix of dimension m − 1, o ∈ Fm−1, and suppose that U has
the element on the position (1, m) different from 0 (in the second case, we put U2 := U in
the below given process). We multiply U from the left by an orthogonal matrix U1 which
is in the second form from (2.3) and satisfies that U2 := U1 ·U has 0 on the position (1, m).
For U2, we define an orthogonal matrix U3 so that the m-th row of U3 is the last column
of U2 and so that the first column and the first row of U3 are zero except the number 1 on
the position (1, 1). Obviously, the product U4 := U3 ·U2 is equal to a matrix which has the
second form from (2.3). Summarizing, we get U = UT

1 ·U
T
3 ·U4. Thus, one can express any

orthogonal matrix U as a product of at most three matrices of the forms given in (2.3).
Further, the matrices of this product can be evidently chosen so that the determinant of all
of them is 1 if the determinant of the given matrix is 1 too. Now the induction hypothesis
gives the validity of the above statement.

In the complex case, i.e., for m ≥ 2 and F = C, the group of all m × m unitary
matrices with determinant 1 is transformable as well. It suffices to consider Example 2.2
and diagonalizations of unitary matrices.

Example 2.4. Let a unitary matrix S be given. Let XS be the set of the unitary matrices
which are simultaneously diagonalizable for the single similarity matrix S, i.e., let

XS =
{
S−1 · diag [exp (iλ1) , . . . , exp (iλm)] · S; λ1, . . . , λm ∈ [−π, π)

}
.

Obviously, XS is a subgroup of the m×m unitary group (different from the group if m ≥ 2).
Since diagonalizable (normal) matrices are simultaneously (unitarily) diagonalizable if and
only if they commute under multiplication, XS is a commutative group. Analogously as
in Example 2.2, one can show that XS is transformable. Further, XS is transformable also
for arbitrary nonsingular matrix S. Especially, a transformable set does not need to be
a subgroup of the m×m unitary group.

Example 2.5. Now we consider the set of the unitary matrices with the determinant in the
form exp (ir), r ∈ Q or r ∈ Z. Evidently, these matrices form a group as well. Considering
diagonalizations of unitary matrices and the uniform continuity of the multiplication of
unitary matrices, we get that this group is dense in the group of all unitary matrices. Thus
(see Example 2.2), it satisfies the condition (ii). Finally, it is transformable. In general,
any dense subgroup of a transformable set is transformable as well.

Example 2.6. Let a unitary matrix S be given. Analogously as in Example 2.4 and
Example 2.5, we can show that the group

{S∗ · diag [exp (iλ1) , . . . , exp (iλm)] · S; λ1, . . . , λm ∈ Q}
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is transformable. In general, the matrices with eigenvalues in the form exp (ir), where
r ∈ Q or r ∈ Z, from a given commutative transformable subgroup of the m×m unitary
group form transformable set if it is infinite. Indeed, if complex matrices A, B commute
and have eigenvalues λ1, . . . , λm and µ1, . . . , µm, respectively, then the eigenvalues of AB
are λ1µj1, λ2µj2, . . . , λmµjm

for some permutation j1, . . . , jm of the indices 1, . . . , m.

2.2.3 Strongly transformable groups

Lemma 2.7. If X is transformable, then, for any {Li}i∈N ⊂ R+ and j ≥ 2, j ∈ N, one
can find {εi}i∈N ≡ {εi({Li}, j)}i∈N ⊂ R+ satisfying

∞∑
i=1

εi <∞,

ji ≥ p
(
Lg(i), εi

)
for infinitely many i ∈ N, some g(i) ∈ N, (2.4)

where g(i) →∞ as i→∞.

Proof. The lemma follows directly from (ii). Indeed, one can put

εi := 2−k, i = f(k) for some k ∈ N;

εi := 2−i, i /∈ {f(k); k ∈ N}, i ∈ N

for arbitrarily given increasing discrete function f : N → N with the property that

jf(k) ≥ p
(
Lk, 2

−k
)
, k ∈ N,

whose inverse function is considered in (2.4) as g.

Of course, the inequality (2.4) does not need to be true for all i ∈ N or for a set
of i which is relative dense in N. This fact motivates the next definition.

Definition 2.8. The set X is strongly transformable if it is transformable and if for any
L ∈ R+, there exist j = j(L) ∈ N and a sequence {εi}i∈N ≡ {εi(L)}i∈N ⊂ R+ such that

∞∑

i=1

εi <∞, (2.5)

ji ≥ p (L, εi) for all i ∈ N. (2.6)

Example 2.9. Since we considered only maps which satisfy the Lipschitz condition in the
above examples (in the classical case) and since we can choose

p (L, ε,m+ 1) ≤ 3p (L, ε,m)

in (ii) when using the induction principle with respect to m (see Example 2.3), all trans-
formable sets of matrices mentioned in Examples 2.2–2.6 are actually strongly trans-
formable.

In the next section, we will construct almost periodic sequences by Theorem 1.16 and
we will use (2.4) or (2.6) in the constructions.9
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2.3 Systems without almost periodic solutions

Now we can consider the gist of this chapter.

Lemma 2.10. If an almost periodic sequence of nonsingular Ak ∈ Mat(F,m) is such
that, for any ε > 0, there exists i = i(ε) ∈ Z for which % (O,Ai) < ε, then the system
xk+1 = Ak xk, k ∈ Z does not have a nontrivial almost periodic solution.

Proof. By contradiction, suppose that we have an almost periodic sequence {Ak}, a se-
quence {hi}i∈N ⊆ Z satisfying

% (O,Ahi
) <

1

i
, i ∈ N, (2.7)

and a nontrivial almost periodic solution {xk} of the system xk+1 = Ak xk. Using Corol-
lary 1.4, we obtain uniformly convergent common subsequences

{{Ak+h̃i
}k∈Z}i∈N and {{xk+h̃i

}k∈Z}i∈N

of the sequences {{Ak+hi
}k∈Z}i∈N and {{xk+hi

}k∈Z}i∈N, respectively. The limits will be
denoted as {Bk} and {yk}.

We put ε := % (x0, o) /2 > 0. Because of the almost periodicity of {xk}, there exists
some p (ε) from Definition 1.1. We will consider the sets Ni := {i + 1, i+ 2, . . . , i + p (ε)}
for i ∈ Z. Any one of the sets Ni contains a number l ∈ T ({xk}, ε). Thus,

xl /∈ O
%
ε(o). (2.8)

From (2.7) it follows that B0 = O. Since the multiplication of matrices is continuous, one
can find ϑ > 0 for which

Cj · · ·C0 · y ∈ O
%
ε(o), j = 0, 1, . . . , p (ε)− 1

if y ∈ O%
ϑ(y0) and Ci ∈ O

%
ϑ(Bi), i ∈ {0, . . . , j}. There exists i ∈ N such that

%
(
Ak+h̃i

, Bk

)
< ϑ, %

(
xk+h̃i

, yk

)
< ϑ, k ∈ Z.

Therefore,
xj+h̃i

∈ O%
ε(o), j = 1, . . . , p (ε) . (2.9)

Indeed, it is valid

xj+h̃i
= Aj+h̃i−1 · · ·Ah̃i

· xh̃i
, j = 1, . . . , p (ε) .

This contradiction (compare (2.8) with (2.9)) gives the proof.

Theorem 2.11. Let X be strongly transformable. Let {Ak} ∈ AP(X ) and ε > 0 be
arbitrarily given. If there exist L ∈ R+ and {Mi}i∈N such that

Mi, M
−1
i ∈ X rO%

L(O), i ∈ N (2.10)

and that, for any nonzero vector u ∈ Fm, one can find i = i(u) ∈ N with the property that
Mi u 6= u, then there exists {Bk} ∈ O

σ
ε ({Ak}) which does not possess a nontrivial almost

periodic solution.
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Proof. If {Ak} has a nontrivial almost periodic solution, then there exists K ∈ R+ such
that % (Ak, O) > K for all k. Indeed, it follows from Lemma 2.10. Since it suffices to
consider only very small ε > 0, we can assume without loss of the generality that

L+ ε < % (I, O) , L + ε < % (Ak, O) , k ∈ Z; (2.11)

otherwise we can put Bk := Ak, k ∈ Z.
Let η = η(ε/2), ζ, P and Q = Q(L) be from (iii) and (iv), respectively. Further, let

η < ε < ζ and let {εi}i∈N ⊂ R+, n ∈ N, and j ≥ 2 (j ∈ N) satisfy

∞∑

i=1

εi <
η

PQ
, (2.12)

ji(n+ 1) ≥ p (L, εi) for all i ∈ N. (2.13)

The inequality (2.12) follows from (2.5) if we omit finitely many values of εi, and (2.13)
from the fact that n and j can be arbitrarily large and from (2.6). We remark that P,Q ≥ 1.

We put
Bk := Ak, Ck := I for k ∈ {0, 1, . . . , n}

and we choose

Bk = Ak · Ck for some Ck ∈ O
%
ε2Q

(
Ck−(n+1)

)
∩ X , k ∈ {n+ 1, . . . , 2(n+ 1)− 1},

...

Bk = Ak · Ck, Ck ∈ O
%
ε2Q

(
Ck−j4(n+1)

)
∩ X , k ∈ {j4(n+ 1), . . . , (j4 + 1)(n+ 1)− 1}

arbitrarily such that

n+1∏

k=(j2+1)(n+1)−1

Bk = M1,

n+1∏

k=(j3+j2)(n+1)−1

Bk =

n+1∏

k=(j4+1)(n+1)−1

Bk = I.

For
C1, . . . , Cn, D1, . . . , Dn ∈ X , Di ∈ O

%
ϑ(Ci),

where ϑ > 0, L + ϑ ≤ % (Ci, O), i ∈ {1, . . . , n}, and n ≥ p (L, ϑ), we can express

Dn · · ·D2 ·D1 = Cn ·
(
C−1

n ·Dn

)
· · ·C1 ·

(
C−1

1 ·D1

)
,

where
(C−1

i ·Di) ∈ O
%
ϑQ (I) , i ∈ {1, . . . , n}.

Using this fact and considering (2.10), (2.11), and (2.13), we get the existence of the above
matrices Ck.

In the second step, we put

Bk := Ak · Ck+(j4+1)(n+1), k ∈ {−(j4 + 1)(n+ 1), . . . ,−1},

...

Bk := Ak · Ck+j4(j4+1)(n+1), k ∈ {−j
4(j4 + 1)(n+ 1), . . . ,−(j4 − 1)(j4 + 1)(n+ 1)− 1}
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and we denote

Ck := A−1
k ·Bk, k ∈ {−j4(j4 + 1)(n+ 1), . . . ,−1}.

Now we choose

Bk = Ak · Ck, Ck ∈ O
%
ε4PQ

(
Ck−(j4+1)2(n+1)

)
∩ X ,

k ∈ {(j4 + 1)(n+ 1), . . . , (j4 + 1)(n+ 1) + (j4 + 1)2(n+ 1)− 1},

...

Bk = Ak · Ck, Ck ∈ O
%
ε4PQ

(
Ck−j4(j4+1)2(n+1)

)
∩ X ,

k ∈ {(j4 + 1 + (j4 − 1)(j4 + 1)2)(n+ 1), . . . , (j4 + 1 + j4(j4 + 1)2)(n + 1)− 1}

arbitrarily such that

(j4+1)(n+1)∏
k=j7(n+1)−1

Bk = M1,
(j4+1)(n+1)∏

k=(j7+j6−j0)(n+1)−1

Bk = I,

(j4+1)(n+1)∏
k=j8 (n+1)−1

Bk = M1,
(j4+1)(n+1)∏

k=(j8+j6−j3)(n+1)−1

Bk = I,

(j4+1)(n+1)∏
k=j9 (n+1)−1

Bk = M2,
(j4+1)(n+1)∏

k=(j9+j6−j0)(n+1)−1

Bk = I,

(j4+1)(n+1)∏
k=j10(n+1)−1

Bk = M2,
(j4+1)(n+1)∏

k=(j10+j6−j3)(n+1)−1

Bk = I,

(j4+1)(n+1)∏
k=(j4+1)(n+1)+j4(j4+1)2(n+1)−1

Bk = I.

Such matrices Ck exist. Indeed, we can transform

B̃k := Ak · Ck−(j4+1)2(n+1),

k ∈ {(j4 + 1)(n+ 1), . . . , (j4 + 1)(n+ 1) + (j4 + 1)2(n+ 1)− 1},

...

B̃k := Ak · Ck−j4(j4+1)2(n+1),

k ∈ {(j4 + 1 + (j4 − 1)(j4 + 1)2)(n+ 1), . . . , (j4 + 1 + j4(j4 + 1)2)(n + 1)− 1}

into Bk by

Bk = Ak · Ck−(j4+1)2(n+1) · C̃k,

k ∈ {(j4 + 1)(n+ 1), . . . , (j4 + 1)(n+ 1) + (j4 + 1)2(n+ 1)− 1},

...
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Bk = Ak · Ck−j4(j4+1)2(n+1) · C̃k,

k ∈ {(j4 + 1 + (j4 − 1)(j4 + 1)2)(n+ 1), . . . , (j4 + 1 + j4(j4 + 1)2)(n+ 1)− 1},

where C̃k ∈ O
%
ε4Q (I) for all considered k (see the condition (iv)), and hence we have (see

the condition (iii) and also the below given (2.17) and (2.18))

Ck−(j4+1)2(n+1) · C̃k ∈ O
%
ε4PQ

(
Ck−(j4+1)2(n+1)

)
,

k ∈ {(j4 + 1)(n+ 1), . . . , (j4 + 1)(n+ 1) + (j4 + 1)2(n+ 1)− 1},

...

Ck−j4(j4+1)2(n+1) · C̃k ∈ O
%
ε4PQ

(
Ck−j4(j4+1)2(n+1)

)
,

k ∈ {(j4 + 1 + (j4 − 1)(j4 + 1)2)(n+ 1), . . . , (j4 + 1 + j4(j4 + 1)2)(n+ 1)− 1}.

Thus, we can obtain Ck from the previous step and from the above C̃k.
We put

Bk := Ak · Ck+(j4+1)3(n+1),

k ∈ {−(j4 + 1)3(n+ 1)− j4(j4 + 1)(n+ 1), . . . ,−j4(j4 + 1)(n+ 1)− 1},

...

Bk := Ak · Ck+j4(j4+1)3(n+1),

k ∈ {−j4(j4 + 1)3(n+ 1)− j4(j4 + 1)(n+ 1), . . . ,

− (j4 − 1)(j4 + 1)3(n+ 1)− j4(j4 + 1)(n+ 1)− 1}

and we denote

Ck := A−1
k ·Bk,

k ∈ {−j4(j4 + 1)3(n + 1)− j4(j4 + 1)(n+ 1), . . . ,−j4(j4 + 1)(n+ 1)− 1}.

We proceed further in the same way. In the (2i− 1)-th step, we choose

Bk = Ak · Ck, Ck ∈ O
%
ε2iPQ

(
Ck−(j4+1)2i−2(n+1)

)
∩ X ,

k ∈ {(j4 + 1)(n+ 1) + j4(j4 + 1)2(n + 1) + · · ·+ j4(j4 + 1)2i−4(n + 1),

. . . , (j4 + 1)(n+ 1) + j4(j4 + 1)2(n + 1)+

· · ·+ j4(j4 + 1)2i−4(n+ 1) + (j4 + 1)2i−2(n+ 1)− 1},

...

Bk = Ak · Ck, Ck ∈ O
%
ε2iPQ

(
Ck−j4(j4+1)2i−2(n+1)

)
∩ X ,

k ∈ {(j4 + 1)(n+ 1) + j4(j4 + 1)2(n+ 1) + · · ·+ j4(j4 + 1)2i−4(n+ 1)+

(j4 − 1)(j4 + 1)2i−2(n+ 1), . . . , (j4 + 1)(n+ 1) + j4(j4 + 1)2(n+ 1)+

· · ·+ j4(j4 + 1)2i−4(n+ 1) + j4(j4 + 1)2i−2(n+ 1)− 1}

such that
q(i)∏

k=p0
1−1

Bk = M1,
q(i)∏

k=p0
1+(j3i−j0)(n+1)−1

Bk = I,
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q(i)∏
k=p1

1−1

Bk = M1,
q(i)∏

k=p1
1+(j3i−j3)(n+1)−1

Bk = I,

...

q(i)∏
k=pi−1

1 −1

Bk = M1,
q(i)∏

k=pi−1
1 +(j3i−j3(i−1))(n+1)−1

Bk = I,

...

q(i)∏
k=p0

i−1

Bk = Mi,
q(i)∏

k=p0
i +(j3i−j0)(n+1)−1

Bk = I,

q(i)∏
k=p1

i−1

Bk = Mi,
q(i)∏

k=p1
i +(j3i−j3)(n+1)−1

Bk = I,

...

q(i)∏
k=pi−1

i −1

Bk = Mi,
q(i)∏

k=pi−1
i +(j3i−j3(i−1))(n+1)−1

Bk = I,

and
q(i)∏

k=p(i)

Bk = I,

where p0
1, . . . , p

i−1
1 , . . . , p0

i , . . . , p
i−1
i are arbitrary positive integers for which

q(i) + j2i (n+ 1) ≤ p0
1

and

p0
1 + (j2i + j3i)(n+ 1) ≤ p1

1, . . . pi−2
1 + (j2i + j3i)(n + 1) ≤ pi−1

1 ,

pi−1
1 + (j2i + j3i)(n+ 1) ≤ p0

2,

...

p0
i + (j2i + j3i)(n+ 1) ≤ p1

i , . . . pi−2
i + (j2i + j3i)(n + 1) ≤ pi−1

i ,

pi−1
i + (j2i + j3i)(n+ 1) ≤ p(i)

if
q(i) = (j4 + 1)(n+ 1) + j4(j4 + 1)2(n+ 1) + · · ·+ j4(j4 + 1)2i−4(n+ 1),

p(i) = (j4 + 1)(n+ 1) + j4(j4 + 1)2(n+ 1) + · · ·+ j4(j4 + 1)2i−2(n+ 1)− 1.

The existence of these numbers follows from

p(i)− q(i) = j4(j4 + 1)2i−2(n+ 1)− 1 ≥ (j2i + j3i)(i2 + 1)(n+ 1),

i, j ≥ 2 (i, j ∈ N), n ∈ N
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and the existence of the above matrices Bk follows from (2.13) and from

j3i − j3(i−k) ≥ j2i, k ∈ {1, . . . , i}, i ∈ N, j ≥ 2 (j ∈ N) .

In the 2i-th step, we put

Bk := Ak · Ck+(j4+1)2i−1(n+1),

k ∈ {−((j4 + 1)2i−1 + · · ·+ j4(j4 + 1)3 + j4(j4 + 1))(n+ 1),

. . . ,−(j4(j4 + 1)2i−3 + · · ·+ j4(j4 + 1)3 + j4(j4 + 1))(n+ 1)− 1},

...

Bk := Ak · Ck+j4(j4+1)2i−1(n+1),

k ∈ {−j4((j4 + 1)2i−1 + · · ·+ (j4 + 1)3 + (j4 + 1))(n+ 1),

. . . ,−((j4 − 1)(j4 + 1)2i−1 + · · ·+ j4(j4 + 1)3 + j4(j4 + 1))(n+ 1)− 1}

and we denote

Ck := A−1
k ·Bk, k ∈ {−(j4(j4 + 1)2i−1 + · · ·+ j4(j4 + 1)3 + j4(j4 + 1))(n+ 1),

. . . ,−(j4(j4 + 1)2i−3 + · · ·+ j4(j4 + 1)3 + j4(j4 + 1))(n+ 1)− 1}.

Using this construction, we obtain the sequence {Bk}k∈Z ⊆ X .
We will consider the system

xk+1 = Bk · xk, k ∈ Z. (2.14)

Suppose that there exists a nonzero vector u ∈ Fm for which the solution {xk} of (2.14)
satisfying xn+1 = u is almost periodic. We know that

xk =

n+1∏

i=k−1

Bi · u for k > n+ 1, k ∈ N. (2.15)

If we choose {hi}i∈N ≡ {j
3(i−1)(n+ 1)}i∈N for {ϕk} ≡ {xk} in Corollary 1.4 (see also Theo-

rem 1.3), then, for any ϑ > 0, we get the existence of an infinite set N = N(ϑ) ⊆ N0 such
that

%
(
xk+j3i1(n+1), xk+j3i2 (n+1)

)
< ϑ, k ∈ Z, i1, i2 ∈ N. (2.16)

Thus, for every ϑ > 0, there exist infinitely many ϑ-translation numbers in the form
(j3i1 − j3i2)(n + 1), where i1 > i2 (i1, i2 ∈ N). For some i ∈ N with the property that
Mi u 6= u, we choose ϑ < % (Mi u, u) and the above i1 > i2 > i (i1, i2 ∈ N) arbitrarily. We
have (see (2.16))

%
(
xk+(j3i1−j3i2 )(n+1), xk

)
< ϑ, k ∈ Z.

From (2.15) and the construction of {Bk}, we obtain

%
(
xk+(j3i1−j3i2 )(n+1), xk

)
> ϑ for at least one k ∈ N.

This contradiction gives that {xk} cannot be almost periodic. It means that system (2.14)
does not have a nontrivial almost periodic solution.

Now it suffices to show that {Bk} ∈ O
σ
ε ({Ak}); i.e., that Bk ∈ O

%
ε̃(Ak) for all k and

some ε̃ ∈ (0, ε) and that {Bk} is almost periodic. It is seen that
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Ck ∈ O
%
ε2Q(I), k ∈ {−j4(j4 + 1)(n+ 1), . . . , 0, . . . , (j4 + 1)(n + 1)− 1},

Ck ∈ O
%
(ε2+ε4)PQ(I),

k ∈ {(j4 + 1)(n+ 1), . . . , (j4 + 1 + j4(j4 + 1)2)(n+ 1)− 1},

Ck ∈ O
%
(ε2+ε4)PQ(I),

k ∈ {−j4(j4 + 1)3(n+ 1)− j4(j4 + 1)(n+ 1), . . . ,−j4(j4 + 1)(n+ 1)− 1}

and that, for all i ≥ 3 (i ∈ N), it is valid

Ck ∈ O
%
(ε2+ε4+···+ε2i)PQ(I),

k ∈ {(j4 + 1)(n+ 1) + j4(j4 + 1)2(n+ 1) + · · ·+ j4(j4 + 1)2i−4(n + 1), . . . ,

(j4 + 1)(n+ 1) + j4(j4 + 1)2(n+ 1) + · · ·+ j4(j4 + 1)2i−2(n+ 1)− 1},

Ck ∈ O
%
(ε2+ε4+···+ε2i)PQ(I),

k ∈ {−(j4(j4 + 1)2i−1 + · · ·+ j4(j4 + 1)3 + j4(j4 + 1))(n+ 1), . . . ,

− (j4(j4 + 1)2i−3 + · · ·+ j4(j4 + 1)3 + j4(j4 + 1))(n+ 1)− 1}.

Thus, we have (see (2.12))
Ck ∈ O

%
η(I), k ∈ Z, (2.17)

and hence (see (iii))
Bk ∈ O

%
ε/2(Ak), k ∈ Z. (2.18)

Indeed,
Bk = Ak · Ck for all k ∈ Z. (2.19)

From Theorem 1.16 it follows that the sequence {Ck} is almost periodic. Using Co-
rollary 1.11 and the almost periodicity of {Ak}, we see that the set

T ({Ak}, δ) ∩ T ({Ck}, δ) is relative dense in Z (2.20)

for any δ > 0. Since the multiplication of matrices is uniformly continuous on X , consi-
dering (2.19), we have

T ({Ak}, δ(ϑ)) ∩ T ({Ck}, δ(ϑ)) ⊆ T ({Bk}, ϑ) (2.21)

for arbitrary ϑ > 0, where δ(ϑ) > 0 is the number corresponding to ϑ from the definition
of the uniform continuity of the multiplication of two matrices. Finally, (2.20) and (2.21)
give the almost periodicity of {Bk} which completes the proof.

Example 2.12. All groups of matrices from Examples 2.2–2.6 (except the general case in
Example 2.6) satisfy the requirements of Theorem 2.11.

From the proof of the above theorem, we get the following result:

Corollary 2.13. Let X be strongly transformable. Let {Ak} ∈ AP(X ), ε > 0, and u 6= o,
u ∈ Fm be given. If there exists a matrix M ∈ X such that M u 6= u, then there exists
{Bk} ∈ O

σ
ε ({Ak}) for which the solution of

xk+1 = Bk · xk, k ∈ Z, x0 = u

is not almost periodic.
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Note that, in Theorem 2.11, the condition (2.10) can be omitted, i.e., we can put
L = 0. We will obtain this fact from the below given Theorem 2.20. Now, for the later
comparison, let us recall a statement from [38], see also [1, Theorem 2.10.1], and one of its
known consequences.10

Theorem 2.14. Let (F, %(·, ·)) = (C, | · − · |). If a vector valued sequence {bk} is almost
periodic and a matrix A ∈ Mat(C, m) nonsingular, then a solution of

xk+1 = A · xk + bk, k ∈ Z

is almost periodic if and only if it is bounded.

Corollary 2.15. Let (F, %(·, ·)) = (C, | · − · |). Let a periodic sequence {Ak} of m × m
nonsingular matrices with complex elements be given. Then, a solution of the system
xk+1 = Ak xk, k ∈ Z is almost periodic if and only if it is bounded.

Proof. Every almost periodic sequence is bounded, and hence we need only to show that the
boundedness of a solution implies its almost periodicity. Assume that we have a periodic
system xk+1 = Ak xk, k ∈ Z and its bounded solution {xk}. Let n ∈ N be a period of {Ak}.
Applying Theorem 2.14, we get that the sequence {y1

k} ≡ {xnk}; i.e.,

y1
0 = x0, y1

k =
0∏

i=nk−1

Ai · x0, k ∈ N, y1
k =

−1∏

i=nk

A−1
i · x0, k ∈ Z r N;

is almost periodic. Indeed, {y1
k} is a bounded solution of the constant system

yk+1 = An−1 · · ·A1 · A0 · yk, k ∈ Z.

Analogously, one can show that the sequences {yj
k} ≡ {xnk+j−1}, j ∈ {2, 3, . . . , n} are

almost periodic as well. The almost periodicity of {xk} follows from Corollary 1.9.

Remark 2.16. We add that it is possible to obtain several modifications of Corollary 2.15
for nonhomogeneous systems if the nonhomogeneousness is almost periodic. Let mention at
least the most important one—the continuous version for differential systems. If a complex
matrix valued function A(t), t ∈ R, is periodic and a complex vector valued function
b(t), t ∈ R, is almost periodic, then any solution of x′(t) = A(t) x(t) + b(t), t ∈ R is
almost periodic if and only if it is bounded. See introduction of Chapter 4 or, e.g., [69,
Corollary 6.5], and [115] for generalizations and supplements.

Example 2.17. Consider again (F, %(·, ·)) = (C, | ·−·|). We want to document that Corol-
lary 2.15 is no longer true if {Ak} is only almost periodic. It was shown (see Lemma 1.20
and consider the second part of Corollary 1.15) that the real sequence {ak} defined by the
recurrent formula

a0 := 1, a1 := 0, a2n+k := ak −
1

2n
, n ∈ N, k = 0, . . . , 2n − 1 (2.22)

on N0 and by the prescription

ak := −a−k−1 for k ∈ Z r N0 (2.23)
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is almost periodic and that it satisfies (see Lemma 1.23)

2n−1∑

k=0

ak = 1,

2n+j+2n−1∑

k=0

ak = 2−
1

2j
, n ∈ N0, j ∈ N. (2.24)

Let X be the set of all m×m diagonal matrices with numbers on the diagonal which has
absolute value 1. (It is easily seen that, in this case, X is strongly transformable. See also
Examples 2.4 and 2.9.) All solutions of the system of the form (2.1) given by the almost
periodic (see Theorem 1.5) sequence {Ak} ≡ diag [exp (iak) , . . . , exp (iak)] are obviously
bounded but we will show that they are not almost periodic (except the trivial one).

It suffices to consider the scalar case, i.e., m = 1. Assume that the system has an
almost periodic solution {xk}. We have

xk = exp

(
i

k−1∑

j=0

aj

)
· x0, k ∈ N.

Especially (see (2.24)),

x2n = exp (i) · x0, x2n+j+2n = exp
(
2i− 2−ji

)
· x0, n ∈ N0, j ∈ N. (2.25)

Using Corollary 1.4 (or Theorem 1.3) for the sequence {2j}j∈N, for any ε > 0, we get an
infinite set N = N(ε) ⊆ N such that

|xk+2j(1) − xk+2j(2) | < ε for all k ∈ Z, j(1), j(2) ∈ N.

For some j(1) ∈ N , the choice k = 2j(1) and (2.25) give
∣∣ exp (i)− exp

(
2i− 2j(1)−j(2)i

) ∣∣ · | x0 | < ε, j(1) < j(2), j(1), j(2) ∈ N.

Since ε can be arbitrarily small and j(2) > j(1) can be found for every ε > 0, we obtain
x0 = 0. Thus, the system does not have a nontrivial almost periodic solution.

In the above example, we see that the boundedness is necessary to the almost periodi-
city of solutions of considered almost periodic systems but not sufficient. Now we prove
a more important necessary (also not sufficient, see again Example 2.17) condition about
the limitation of almost periodic solutions in the next lemma.11

Lemma 2.18. Let an almost periodic sequence of nonsingular Ak ∈ Mat(F,m) be given.
Let {xk} be an almost periodic solution of the system xk+1 = Ak xk, k ∈ Z. Then, it is
valid either xk = o, k ∈ Z or

inf
k∈Z

% (xk, o) > 0.

Proof. Suppose that an almost periodic solution {xk} of a system satisfies inf
k∈Z

% (xk, o) = 0.

Let {hi}i∈N ⊆ Z be such that
lim
i→∞

% (xhi
, o) = 0. (2.26)

Considering Corollary 1.4 and Theorems 1.6 and 1.7, we get a subsequence {h̃i} of {hi}
for which there exist almost periodic sequences {Bk}, {yk} satisfying

lim
i→∞

Ak+h̃i
= Bk, lim

i→∞
Bk−h̃i

= Ak, lim
i→∞

xk+h̃i
= yk, lim

i→∞
yk−h̃i

= xk,
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where the convergences can be uniform with respect to k ∈ Z (see Remark 1.8). We
have yk+1 = Bk yk, k ∈ Z and y0 = o (see (2.26)). Thus, {yk} ≡ {o}. Consequently,
xk = limi→∞ yk−h̃i

= o for k ∈ Z.

Example 2.19. Applying Theorem 1.16 for n = 0, ϕ0 = 2, j = 1, and ri = 3/2i, i ∈ N,
we construct the everywhere nonzero almost periodic sequence

b0 := 2, b1 := 2− 1, b−2 := 2− 1
2
, b−1 := 1− 1

2
,

...

bk := bk+22i−1 − 1
22i−1 , k ∈ {−22i−1 − · · · − 23 − 2, . . . ,−22i−3 − · · · − 23 − 2− 1},

bk := bk−22i − 1
22i , k ∈ {2 + 22 + · · ·+ 22i−2, . . . , 2 + 22 + · · ·+ 22i−2 + 22i − 1},

...

in the space (R, | · − · |). Since

lim
i→∞

b 20−21+22−23+···+(−2)i = 0,

the equation xk+1 = bk xk, k ∈ Z does not have a nontrivial almost periodic solution (see
Lemma 2.10) and the vector valued sequence {bk u}, where u 6= o, u ∈ Rm, is not a solution
of an almost periodic homogeneous linear difference system.

Moreover, for any bounded countable set of real numbers, it is shown in [70] that there
exists an almost periodic sequence whose range is the set. It means that there exists
a large class of almost periodic sequences which cannot be solutions of any almost periodic
system (2.1).

Theorem 2.20. Let X be transformable and let {Ak} ∈ AP(X ) and ε > 0 be arbitrary. If
there exists a matrix M(ϑ) ∈ O%

ϑ(O)∩X for any ϑ > 0, then there exists {Bk} ∈ O
σ
ε ({Ak})

which does not have an almost periodic solution other than the trivial one.12

Proof. We put Li := % (Mi, O) for matrices Mi ∈ X , i ∈ N such that

lim
i→∞

Li = 0, Li+1 < Li, i ∈ N. (2.27)

Let η = η(ε/2), ζ, and P and Q = Q(L1) be from the conditions (iii) and (iv), respectively.
As in the proof of Theorem 2.11, we can assume (or choose {Bk} ≡ {Ak}) that

η < ε < ζ, L1 + ε < % (Ak, O) , k ∈ Z

and that (see also Lemma 2.7) we have {εi}i∈N ⊂ R+, j ≥ 2 (j ∈ N), and n ∈ N satisfying

∞∑

i=1

εi <
η

PQ
,

ji(n + 1) ≥ p
(
Lg(i), εi

)
for infinitely many odd i ∈ N, (2.28)
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where g(i) is from Lemma 2.7 too.
The set of all i 6= 1 (i ∈ N), which are not divisible by 2 and for which (2.28) is valid,

will be denoted by N . Let N = {i1, i2, . . . , il, . . . }, where il < il+1, l ∈ N. Since we can
redefine Li (choose other Mi), we can also assume that g(il) ≥ l, l ∈ N. We will construct
sequences {Bk} and {Ck} as in the proof of Theorem 2.11 for j4 replaced by j. First of all
we put

pl := (j + 1 + j(j + 1)2 + · · ·+ j(j + 1)il−3)(n + 1), l ∈ N,

ql := (j + 1 + j(j + 1)2 + · · ·+ j(j + 1)il−1)(n+ 1)− 1, l ∈ N.

Before the i1-th step (for k ≤ p1 − 1), we choose the matrices Ck (consequently Bk)
arbitrarily. We will obtain Bk and define

J1 :=

0∏

k=p1

Bk, J2 :=

0∏

k=p2

Bk, . . .

In the i1-th step, we choose the matrices Ck arbitrarily if J1 ∈ O
%
L1

(O), and so that

0∏

k=q1

Bk = M1 if J1 /∈ O
%
L1

(O).

Between the i1-th step and the i2-th step, we choose them again arbitrarily. In the i2-th
step, we choose them arbitrarily if J2 ∈ O

%
L2

(O), and so that

0∏

k=q2

Bk = M2 if J2 /∈ O
%
L2

(O).

If we proceed further in the same way, then we get matrices Ck, Bk for all k ∈ Z.
Analogously as in the proof of Theorem 2.11, we can prove that {Bk} ∈ O

σ
ε ({Ak}). We

have

%

(
0∏

k=rl

Bk, O

)
≤ Ll for rl ∈ {pl, ql}, l ∈ N. (2.29)

Evidently, for any u ∈ Fm and µ > 0, there exists δ = δ (u, µ) > 0 with the property
that % (C u, o) < µ if C ∈ O%

δ (O). Using this, from (2.27), (2.29), and Lemma 2.18, we get
that all nontrivial solutions of the system of the form (2.1) given by {Bk} are not almost
periodic.

Corollary 2.21. Let X be transformable, {Ak} ∈ AP(X ), nonzero u ∈ Fm, and ε > 0 be
arbitrary. If there exists a sequence {Mi}i∈N ⊆ X with the property that lim

i→∞
% (Mi u, o) = 0,

then there exists {Bk} ∈ O
σ
ε ({Ak}) for which the solution of

xk+1 = Bk · xk, k ∈ Z, x0 = u

is not almost periodic.

Proof. It suffices to consider Lemma 2.18, the construction from the proof of Theorem 2.11,
and the sequence {Bk} from the proof of Theorem 2.20.
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Combining of Theorems 2.11 and 2.20, we obtain:

Theorem 2.22. Let X be strongly transformable and have a dense countable subset. Let
{Ak} ∈ AP(X ) and ε > 0 be arbitrarily given. If for any vector u 6= o, u ∈ Fm, there
exists M(u) ∈ X for which

M(u) · u 6= u,

then there exists {Bk} ∈ O
σ
ε ({Ak}) which does not have almost periodic solutions.

It remains to examine the case for transformable X when there exists L ∈ R+ for which
X ∩O%

L(O) = ∅.

Theorem 2.23. Let X be transformable and let {Ak} ∈ AP(X ) and ε > 0 be arbitrary. If
there exist a precompact transformable set X0 ⊆ X and M ∈ X0 for which % (M u, u) > 0
for all u 6= o, u ∈ Fm, and if there exists {ui}i∈N ⊆ Fm such that, for any ϑ > 0 and
u 6= o, u ∈ Fm, it is possible to find δ = δ(u, ϑ) > 0 and i = i(u) ∈ N with the property
that, for every C ∈ X rO%

ϑ(I), one can choose N(ui, C) ∈ X satisfying

% (N(ui, C) · u, C ·N(ui, C) · u) > δ, (2.30)

then there exists {Bk} ∈ Oσ
ε ({Ak}) which does not possess an almost periodic solution

other than the trivial one.

Proof. From Theorem 2.20 it follows that, without loss of the generality, we can assume the
existence of L ∈ R+ such that X ∩O%

L(O) = ∅. From (ii) for C0 = M , Ci = I, i ∈ {1, . . . , n}
and (iii), we get that, for every ϑ(1) > 0, there exist matrices D1(1), . . . , Dn(1)(1) ∈ X0

satisfying

D1(1) ∈ O%
ϑ(1)(I), Dn(1)(1) ∈ O%

ϑ(1)(M),

Di(1) ∈ O%
ϑ(1)(Di+1(1)), i ∈ {1, . . . , n(1)− 1}.

We put D0(1) := I, Dn(1)+1(1) := M . For every number ϑ(2) ∈ (0, ϑ(1)) and each
i ∈ {1, . . . , n(1) + 1}, analogously (consider C0 = Di(1), C1 = Di−1(1), Cl = I for each
l ∈ {2, . . . , n}), there exist matrices D1(2, i), . . . , Dn(2)(2, i) ∈ X0 satisfying

D1(2, i) ∈ O
%
ϑ(2)(Di−1(1)), Dn(2)(2, i) ∈ O

%
ϑ(2)(Di(1)),

Dl(2, i) ∈ O
%
ϑ(2)(Dl+1(2, i)), l ∈ {1, . . . , n(2)− 1}.

Since we can proceed in the same way for a sequence of positive numbers ϑ1 > ϑ2 > · · · >
ϑn > · · · converging to 0, X0 is precompact, and since the space Mat(F,m) is complete,
there exists a continuous map F : [0, 1] →Mat(F,m) such that

F (0) = I, F (1) = M, the set F ([0, 1]) ∩ X is dense in F ([0, 1]). (2.31)

Let T denote the set of all t ∈ [−1, 1] for which F (| t |) ∈ X . If we extend the domain of
definition of F by the formula F (−t) := (F (t))−1, t ∈ T ∩ (0, 1], then we get continuous
F : T → X . Indeed, the map C 7→ C−1, C ∈ X is uniformly continuous—consider the
conditions (iii) and (iv) and the composition C 7→ C−1D 7→ C−1DD−1 for given D ∈ X
from a neighbourhood of C.
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Let the almost periodic sequence {ak} be from Example 2.17. Directly from (2.22)
and (2.23), it is seen that {ak; k ∈ Z} ⊂ [−1, 1]. We can assume that ak ∈ T for all k
(consider (2.31)). From Theorem 1.26, we know that the system {F (ak)} does not have
a nonzero almost periodic solution. (We remark that the almost periodicity of {F (ak)}
follows from Theorem 1.5.)

Suppose that there exists p ∈ N satisfying Ak+p−1 · · ·Ak+1·Ak = I for all k. Let ñ ∈ N be
such that F (a) ∈ O%

ε/2(F (b)) if | a− b | ≤ 21−ñ, a, b ∈ T . From the condition (ii), we obtain

the existence of a number l ∈ N for which we can construct periodic {Ãk} ∈ O
σ
ε/2({Ak})

with a period 2ñlp and with the property that

0∏

k=lp−1

Ãk = F (a0),

lp∏

k=2lp−1

Ãk = F (a1), . . .

(2ñ−1)lp∏

k=2ñlp−1

Ãk = F (a2ñ−1).

Now we change the matrices Ãklp−1 to Bklp−1 for k ∈ Z in order that

(i−1)lp∏

k=ilp−1

Bk = F (ai−1), i ∈ Z.

We define Bk := Ãk for the other numbers k. Considering (2.22) and (2.23), consequently
| ak − ak+i2ñ | ≤ 21−ñ, i, k ∈ Z, we have

Bk ∈ O
%
ε/2

(
Ãk

)
, k ∈ Z.

Thus, Bk ∈ O
%
ε̃ (Ak) for all k and some ε̃ < ε. From Corollaries 1.9 and 1.11, the almost

periodicity of {F (ak)} and {Ãk}, and the conditions (iii) and (iv), we get the almost
periodicity of {Bk}. We emphasize that {F (ak)} does not have a nonzero almost periodic
solution. Finally, {Bk} ∈ O

σ
ε ({Ak}) and this system cannot have nontrivial almost periodic

solutions.
We put ϑ := η(ε/2)/Q(L). If Ak+p−1 · · ·Ak+1Ak ∈ O

%
ϑ(I), k ∈ Z for some p ∈ N, it

suffices to replace matrices Akp−1 by Bkp−1 for k ∈ Z so that

Bkp−1 · Akp−2 · · ·Akp−p = I, k ∈ Z.

Indeed, considering the conditions (iii), (iv) and

Bkp−1 = A−1
kp−p · · ·A

−1
kp−2 · A

−1
kp−1 ·Akp−1, k ∈ Z, (2.32)

we have that Bkp−1 ∈ O
%
ε/2(Akp−1), k ∈ Z; the almost periodicity of {A−1

kp−p · · ·A
−1
kp−2A

−1
kp−1}

and, consequently (see also (2.32)), the almost periodicity of the obtained sequence follow
from Corollaries 1.9 and 1.11, the almost periodicity of {Ak}, the uniform continuity of the
multiplication of matrices on X and the map C 7→ C−1, C ∈ X , and from Theorem 1.5.

It remains to consider the case that Ak+p−1 · · ·Ak+1Ak /∈ O%
ϑ/2(I) for all p ∈ N and

infinitely many k ∈ N which depend on p. (It has to be valid for infinitely many k, not
finitely many only, because sequence {Ak} is almost periodic.) Now we can construct
{Bk} ∈ O

σ
ε/3({Ak}) as in the proof of Theorem 2.11. Since X is only transformable, we can

get matrices Bk having certain properties generally in infinitely many steps as in the proof
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of Theorem 2.20 (see also Lemma 2.7) for arbitrarily given j ≥ 2 (j ∈ N) and n ∈ N. If
we obtain Bk+p−1 · · ·Bk+1Bk ∈ O

%
ϑ(I) for all k and some p after finitely many steps of the

process, then we can use the above mentioned construction. Thus, we can assume without
loss of the generality that we can choose matrices Bk in odd steps i1, . . . , il, . . . so that

0∏
k=p1

1−1

Bk = N(u1, C
1
1), Bp1

1
= C1

1 /∈ O%
ϑ/2(I),

...

0∏
k=p1

l
−1

Bk = N(u1, C
1
l ),

p1
l∏

k=p1
l
+l−1

Bk = C1
l /∈ O%

ϑ/2(I),

...

0∏
k=pl

l
−1

Bk = N(ul, C
l
l ),

pl
l∏

k=pl
l
+l−1

Bk = C l
l /∈ O

%
ϑ/2(I),

...

where p1
l , . . . , p

l
l are positive integers for which

p1
l + l + jil(n + 1) ≤ p2

l , . . . , p
l−1
l + l + jil(n + 1) ≤ pl

l.

Suppose now that the solution {xk} of xk+1 = Bk xk, k ∈ Z, x0 = u is almost periodic
for some u 6= o, u ∈ Fm. Let δ and i be the numbers corresponding to u from the
statement of the theorem. Immediately, from the above construction and from (2.30) it
follows that the set T ({xk}, δ) contains of numbers less than i. This contradiction proves
the theorem.

Example 2.24. Obviously, the m × m unitary group and the group of all orthogonal
matrices of dimension m ≥ 2 with determinant 1 satisfy the conditions of Theorem 2.23
(as any dense transformable subset of one of them). The groups from Examples 2.4 and 2.6
do not satisfy the conditions for m ≥ 2; consider, e.g., S = I,

u =
[
1, oT

]T
, C =

[
I o
oT exp (i)

]
,

where o and I have dimension m−1. We add that we can obtain examples of transformable
sets which are not strongly transformable using changes of the metric in Examples 2.2–2.6.

Corollary 2.25. Let X be transformable and such that X ∩O%
L(O) = ∅ for some L ∈ R+,

and let {Ak} ∈ AP(X ), u 6= o, u ∈ Fm, and ε > 0 be arbitrary. If there exist a precompact
transformable set X0 ⊆ X and M ∈ X0 satisfying % (M u, u) > 0 and if there exists δ > 0
and, for any C ∈ X rO%

η(ε/2)/2Q(L)(I), there exists N(C) ∈ X with the property that

% (N(C) · u, C ·N(C) · u) > δ,

then there exists {Bk} ∈ O
σ
ε ({Ak}) for which the solution of

xk+1 = Bk · xk, k ∈ Z, x0 = u

is not almost periodic.
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Proof. It follows from the proof of Theorem 2.23 and from Remark 1.27.

At the end, we say that it is possible to obtain various generalizations and modifications
of results presented in this section. For simplicity, we considered only sufficiently general
and, at the same time, more important cases. Especially, in Chapter 1, the constructions
are used for a ring with a pseudometric. For almost periodic sequences defined for k ∈ N

(or k ∈ N0), it suffices to replace Corollary 1.4 by Remark 1.2 (or to apply [92]) and
Theorem 1.16 by Theorem 1.12. The basic theory of almost periodic sequences on N is
established, e.g., in [51].

Again for simplicity, we required in the condition (ii) that matrices D1, . . . , Dn with
the given property exist for all n ≥ p, not only for an infinite set of n (relative dense in N).
Hence, the group of all real orthogonal matrices of dimension m ≥ 2 is not transformable.
Indeed, one can find ε > 0 such that, in the ε-neighbourhood of an orthogonal matrix,
there are only orthogonal matrices with the same determinant. Let an almost periodic
sequence of orthogonal matrices Ak be given. Using the fact that the sequence of det Ak is
periodic, we can modify the proof of Theorem 2.11 and get the statement of this theorem.

In this chapter, we studied non-almost periodic solutions of almost periodic difference
equations. We considered homogeneous linear difference systems all of whose solutions can
be almost periodic (e.g., unitary systems) in a general setting when coefficients belong to
a complete metric field. We found classes of these systems such that, in any neighbourhood
of an arbitrary system, there exists a system from the same class which does not possess
any nontrivial almost periodic solution. Note that an analogous general statement for
differential equations is not known.



Footnotes to Part I

1 In fact, asymptotically almost periodic sequences are considered in [63] based on the
Fréchet concept from [71], [72]. Note that, in Banach spaces, a sequence {ϕn}n∈N

is asymptotically almost periodic if and only if it is the sum of an almost periodic
sequence and a sequence which approaches zero as n → ∞; a function defined for
t ∈ R is asymptotically almost periodic if and only if it can be expressed as the sum
of an almost periodic function and a continuous function which approaches zero as
t → +∞. One finds that these representations are unique. Here, we can also refer
to [136], [170].

2 Using a combination of the methods mentioned in the proofs of Theorems 1.3 and 3.4,
it is possible to prove that, for a continuous function f : G → X with G an abelian
topological group and X a complete metric space, the definitions of almost periodicity
in the sense of Bohr and Bochner are equivalent. For other equivalent definitions (e.g.,
the von Neumann and the Maak definition) of almost periodicity, see [108], [114]. For
the first time, almost periodic functions on groups with values in Banach spaces were
studied by S. Bochner and J. von Neumann in [19], [20].

We warn that the so-called Levitan definition is not equivalent with the Bohr one (see
[109]). Every Bohr almost periodic sequence or function is Levitan almost periodic
and, moreover, every almost automorphic sequence or function (see Remark 1.8)
is Levitan almost periodic (see [9]). Generally speaking, the inverses are not true
because Levitan almost periodic sequences and functions may be unbounded.

3 This implication follows from the corresponding part of the proof of Theorem 3.4
(mentioned in Footnote 5 in Part II) as well. We have to consider only that the
argument of the considered function ψ is no longer a real number, but an integer.

4 It is also proved in [70] that, for any bounded countable set of real numbers which
is dense in itself, there exists a one-to-one function from Z onto the set with the
property of being an almost periodic sequence.

5 The function F1 exists if, e.g., the pseudometric d : X×X → R+
0 is such that the map

U 7→ U−1 is continuous on X, and there exists a continuous function G : [0, 1] → X
which satisfies that at least one of matrices G−1(0)G(1), G(1)G−1(0) does not have
an e1-eigenvector.
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6 The conditions in (1.57) are realized if, e.g., the map U 7→ U−1 is continuous on X
and there exist continuous functions G1, . . . , Gq : [0, 1] → X such that

G−1
j (0) ·Gj

(
p∑

i=1

si

)
=

p∏

i=1

G−1
j (0) ·Gj (si)

and (
Gj

(
p∑

i=1

si

)
·Gj(0)

)−1

=

p∏

i=1

G−1
j (0) ·G−1

j (si)

or

Gj

(
p∑

i=1

si

)
·G−1

j (0) =

p∏

i=1

Gj (si) ·G
−1
j (0)

and (
Gj(0) ·Gj

(
p∑

i=1

si

))−1

=

p∏

i=1

G−1
j (si) ·G

−1
j (0),

where
j ∈ {1, . . . , q}, p ∈ N, s1, . . . , sp ∈ [0, 1] ;

for all j1, j2 ∈ {1, . . . , q}, one can find r = r (j1, j2) ∈ (0, 1] with at least one property
from

G−1
j1

(0) ·Gj1(1) = G−1
j2

(0) ·Gj2(r), G−1
j2

(0) ·Gj2(1) = G−1
j1

(0) ·Gj1(r)

or
Gj1(1) ·G−1

j1
(0) = Gj2(r) ·G

−1
j2

(0), Gj2(1) ·G−1
j2

(0) = Gj1(r) ·G
−1
j1

(0);

and the condition on arbitrary v ∈ Rm is the same as in (1.57), where

F2(t), t ∈ (max{0, tj − δ},min{tj + δ, 1})

is replaced by
G−1

j (0) ·Gj(1) or Gj(1) ·G−1
j (0).

7 Here we comment our assumptions on R and X: Because of (1.52), the requirement
for the existence of δ > 0 (in (1.57)) can be dropped. Note that R does not need to
be commutative. Thus, the set of all solutions of (1.49) is not generally a modulus
over R with the scalar multiplication given by

r



x1

k
...
xm

k


 :=



r � x1

k
...

r � xm
k


 ,

where {(x1
k, . . . , x

m
k )T} is a solution of (1.49), r ∈ R, k ∈ Z (k ∈ N0). Indeed, the

following does not need to hold

Pk ·



x1

0
...
xm

0


 = x1

0 · (Pk)1 + · · ·+ xm
0 · (Pk)m
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for some considered k and a solution {xk} of (1.49) (see (1.50)).

For the main requirements, consider two results concerning the existence, the unique-
ness (and the uniform asymptotic stability) of an almost periodic solution of the
almost periodic real (non)homogeneous linear system (1.49) for k ∈ Z in the ar-
ticle [175] or directly the simple example: Let R := R, m := 2,

X1 :=

{(
0 10l

10−l 0

)
; l ∈ Z

}
,

X2 :=

{(
0 10l

10−l 0

)
; l ∈ Z

}
∪

{(
10l 0
0 10−l

)
; l ∈ Z

}

with the usual metric on R. For X1, every S ∈ X has all solutions almost periodic
and, at the same time, for X2, it is easy to find a system from X which has only one
almost periodic solution—the trivial one.

8 The l1 norm is the corresponding matrix norm to the absolute norm

|| x ||1 :=
m∑

j=1

| xj |, x = (x1, . . . , xm)T ∈ Cm.

See also Footnote 13 in Part II.

9 In concrete computations, it is useful to consider Theorem 1.18 and sequences

{εi}i∈N ≡ {εi(L)}i∈N ⊂ R+, {ji}i∈N ≡ {ji(L)}i∈N ⊆ N

for which
∞∑

i=1

εi ji <∞

and
qi ≥ p (L, εi) for infinitely many i ∈ N

if X is transformable, or for all sufficiently large i ∈ N if X is strongly transformable,
where

q1 := 1, qi+1 := (2ji + 1) qi, i ∈ N.

10 Several modifications and generalizations of Theorem 2.14 are known. The first
theorem of the type as Theorem 2.14 was established by E. Esclangon (in [61]) for
quasiperiodic (see Footnote 12 in Part II) solutions of linear differential equations of
higher orders. It was extended by H. Bohr and O. Neugebauer (in [26]) to the form
mentioned in Remark 2.16. In [133], Theorem 2.14 is proved if A ∈ Mat(R, m) and
{bk} is almost periodic in various metrics.

11 Similarly as for Corollary 2.15, modifications of Lemma 2.18 can be proved. For
example, it is possible to prove the almost automorphic version of the result (consider
Remark 1.8); i.e., if {xk} is almost automorphic, then the conclusion of Lemma 2.18
is true.
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12 The condition of Theorem 2.20 cannot be satisfied if % (in Mat(F,m)) is given by
a matrix norm (see (ii)). Of course, there exist transformable sets which satisfy the
condition. It is seen if, e.g., one considers “large” fields as the field of all meromorphic
functions on a connected open set or the field of all rational functions on a variety.
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PART II

CONSTRUCTIONS OF ALMOST

PERIODIC FUNCTIONS

AND

HOMOGENEOUS LINEAR

DIFFERENTIAL SYSTEMS



Abstracts of Part II

Chapter 3: We define almost periodic functions with values in a pseudometric space X .
We mention the Bohr and the Bochner definition of almost periodicity and properties
of almost periodic functions. We present one modifiable method for constructing almost
periodic functions in X . Using this method, we find almost periodic functions whose ranges
contain or consist of given subsets of X .

Chapter 4: Applying a construction from Chapter 3, we prove that, in any neighbourhood
of an almost periodic skew-Hermitian linear differential system, there exists an almost pe-
riodic skew-Hermitian system which does not possess a nontrivial almost periodic solution.
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Chapter 3

Constructions of almost periodic
functions with given properties

This chapter is analogous to Chapter 1 where almost periodic sequences are considered.
Here we will consider almost periodic functions. Our aim is to show a way one can generate
almost periodic functions with several prescribed properties. Since our process can be used
for generalizations of classical (complex valued) almost periodic functions, we introduce the
almost periodicity in pseudometric spaces and we present our method for almost periodic
functions with values in a pseudometric space X as in Chapter 1.

Note that we obtain the most important case if X is a Banach space, and that the
theory of almost periodic functions of real variable with values in a Banach space, given by
S. Bochner in [17], is in its essential lines similar to the theory of classical almost periodic
functions which is due to H. Bohr in [24], [25]. We introduce almost periodic functions in
pseudometric spaces using a trivial extension of the Bohr concept, where the modulus is
replaced by the distance. In the classical case, we refer to the monographs [13], [69], and
[114]; for functions with values in Banach spaces, to [6], [39], [108]; for other extensions1,
to [8], [10], [14], [15], [28], [73], [77], [91], [167]; for modifications, to [39], [78] and the
references cited therein2; for applications3, to [29], [40], [141].

Necessary and sufficient conditions for a continuous function with values in a Banach
space to be almost periodic may be no longer valid for continuous functions in general
metric spaces. For the approximation condition, it is seen that the completeness of the
space of values is necessary and H. Tornehave (in [159]) also required the local connection by
arcs of the space of values. In the Bochner condition, it suffices to replace the convergence
by the Cauchy condition. Since we need the Bochner concept as well, we recall that the
Bochner condition means that any sequence of translates of a given continuous function
has a subsequence which converges, uniformly on the domain of the function. The fact,
that this condition is equivalent with the Bohr definition of almost periodicity in Banach
spaces, was proved by S. Bochner in [17].

The above mentioned Bohr definition and Bochner condition are formulated in Sec-
tion 3.2 (with some basic properties of almost periodic functions). In this section, processes
from [39] are generalized. Analogously, the theory of almost periodic functions of real
variable with fuzzy real numbers as values is developed in [11] (see also [139]). We add
that fuzzy real numbers form a complete metric space.
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3.1 Preliminaries 65

In Section 3.3, we mention the way one can construct almost periodic functions with
prescribed properties in a pseudometric space. We present it in Theorems 3.12, 3.13, 3.15.
Note that it is possible to obtain many modifications and generalizations of our process.
A special construction of almost periodic functions with given properties is published (and
applied) in [93]. Finally, in Section 3.4, we use Theorem 3.13 to construct almost periodic
functions with prescribed values.

3.1 Preliminaries

Let X be an arbitrary pseudometric space with a pseudometric %; i.e., let (see Section 1.1)

% (x, x) = 0, % (x, y) = % (y, x) ≥ 0, % (x, y) ≤ % (x, z) + % (z, y)

for all x, y, z ∈ X . The symbol Oε(x) will denote the ε-neighbourhood of x in X for
arbitrary ε > 0, x ∈ X . The set of all nonnegative real numbers will be denoted by R+

0 .

3.2 Almost periodic functions in pseudometric spaces

We introduce the almost periodicity in X . Observe that we are not able to distinguish
between x ∈ X and y ∈ X if % (x, y) = 0.

3.2.1 The Bohr definition

Definition 3.1. A continuous function ψ : R → X is almost periodic if for any ε > 0,
there exists a number p (ε) > 0 with the property that any interval of length p (ε) of the
real line contains at least one point s such that

% (ψ(t+ s), ψ(t)) < ε, t ∈ R.

The number s is called an ε-translation number and the set of all ε-translation numbers
of ψ is denoted by T (ψ, ε).

3.2.2 The Bochner definition

If X is a Banach space, then a continuous function ψ is almost periodic if and only if
any set of translates of ψ has a subsequence, uniformly convergent on R in the sense of
the norm. See, e.g., [39, Theorem 6.6]. Evidently, this result cannot be longer valid if the
space of values is not complete. Nevertheless, we prove the below given Theorem 3.4, where
the convergence is replaced by the Cauchy condition. Before proving this statement, we
mention two simple lemmas. Their proofs can be easily obtained by modifying the proofs
of [39, Theorem 6.2] and [39, Theorem 6.5], respectively.4

Lemma 3.2. An almost periodic function with values in X is uniformly continuous on the
real line.

Lemma 3.3. The set of all values of an almost periodic function ψ : R → X is totally
bounded in X .
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Theorem 3.4. Let ψ : R → X be a continuous function. Then, ψ is almost periodic if and
only if from any sequence of the form {ψ(t+ sn)}n∈N

, where sn are real numbers, one can
extract a subsequence {ψ (t+ rn)}n∈N

satisfying the Cauchy uniform convergence condition
on R, i.e., for any ε > 0, there exists l(ε) ∈ N with the property that

% (ψ(t+ ri), ψ(t+ rj)) < ε, t ∈ R

for all i, j > l(ε), i, j ∈ N.

Proof. The sufficiency of the condition can be proved using a simple extension of the
argument used in the proof of [39, Theorem 1.10]. In that proof, it is only supposed, by
contradiction, that any sequence of translates of ψ has a subsequence which satisfies the
Cauchy uniform convergence condition, and that ψ is not almost periodic. Thus, it suffices
to replace the modulus by the distance in the proof of [39, Theorem 1.10].5

To prove the converse implication, we will assume that ψ is an almost periodic function,
and we will apply the well-known method of diagonal extraction and modify the proof of
[39, Theorem 6.6].

Let {tn; n ∈ N} be a dense subset of R and {sn}n∈N
⊂ R be an arbitrarily given

sequence. From the sequence {ψ(t1 + sn)}n∈N
, using Lemma 3.3, we choose a subsequence

{ψ(t1 + r1
n)}n∈N

such that, for any ε > 0, there exists l1(ε) ∈ N with the property that

%
(
ψ
(
t1 + r1

i ), ψ(t1 + r1
j

))
< ε, i, j > l1(ε), i, j ∈ N.

Such a subsequence exists because infinitely many values ψ(t1 + sn) is in a neighbourhood
of radius 2−i for all i ∈ N (consider the method of diagonal extraction). Analogously, from
the sequence {ψ(t2 + r1

n)}n∈N
, we get {ψ(t2 + r2

n)}n∈N
such that, for any ε > 0, there exists

l2(ε) ∈ N for which

%
(
ψ(t2 + r2

i ), ψ(t2 + r2
j )
)
< ε, i, j > l2(ε), i, j ∈ N.

We proceed further in the same way. We obtain {rk
n} ⊆ · · · ⊆ {r

1
n}, k ∈ N.

Let ε > 0 be arbitrarily given, p = p (ε/5) be from Definition 3.1, δ = δ (ε/5) correspond
to ε/5 from the definition of the uniform continuity of ψ (see Lemma 3.2) and let a finite
set {t1, . . . , tj} ⊂ {tn; n ∈ N} satisfy

min
i∈{1,...,j}

| ti − t | < δ, t ∈ [0, p].

Obviously, there exists l ∈ N such that, for all integers n1, n2 > l, it is valid

%
(
ψ(ti + rn1

n1
), ψ(ti + rn2

n2
)
)
<
ε

5
, i ∈ {1, . . . , j}.

Let t ∈ R be given, s = s(t) ∈ [−t,−t + p] be an (ε/5)-translation number of ψ, and
ti = ti(s) ∈ {t1, . . . , tj} be such that | t+ s− ti | < δ. Finally, we have

%
(
ψ(t+ rn1

n1
), ψ(t+ rn2

n2
)
)
≤ %

(
ψ(t+ rn1

n1
), ψ(t+ rn1

n1
+ s)

)

+ %
(
ψ(t+ rn1

n1
+ s), ψ(ti + rn1

n1
)
)

+ %
(
ψ(ti + rn1

n1
), ψ(ti + rn2

n2
)
)

+ %
(
ψ(ti + rn2

n2
), ψ(t+ rn2

n2
+ s)

)
+ %

(
ψ(t + rn2

n2
+ s), ψ(t+ rn2

n2
)
)
.

Thus, we obtain

%
(
ψ(t+ rn1

n1
), ψ(t+ rn2

n2
)
)
<
ε

5
+
ε

5
+
ε

5
+
ε

5
+
ε

5
= ε (3.1)

for all t ∈ R, n1, n2 > l, n1, n2 ∈ N. Evidently, (3.1) completes the proof of the theorem if
we put rn := rn

n, n ∈ N.
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3.2.3 Properties of almost periodic functions

Analogously as for complex valued almost periodic functions or almost periodic sequences
in Chapter 1, one can prove many properties of almost periodic functions with values in
a pseudometric space.

Theorem 3.5. Let X1,X2 be pseudometric spaces and Φ : X1 → X2 be a uniformly con-
tinuous map. If ψ : R → X1 is almost periodic, then Φ ◦ ψ is almost periodic as well.

Proof. We can proceed similarly as in the proof of Theorem 1.5. If δ(ε) > 0 is the number
corresponding to arbitrary ε > 0 from the definition of the uniform continuity of Φ, then
it is valid

T (ψ, δ(ε)) ⊆ T (Φ ◦ ψ, ε)

which proves the theorem.

Theorem 3.6. The limit of a uniformly convergent sequence of almost periodic functions
is almost periodic.

Proof. It is possible to prove the theorem using the process from the proof of [39, Theo-
rem 6.4].

Directly from Theorem 3.4, we obtain the following corollaries.

Corollary 3.7. Let X be a Banach space. The sum of two almost periodic functions with
values in X is an almost periodic function.

Corollary 3.8. If X1, . . . , Xn are pseudometric spaces and ψ1, . . . , ψn are arbitrary almost
periodic functions with values in X1, . . . ,Xn, respectively, then the function ψ, with values
in X1 × · · · × Xn given by ψ := (ψ1, . . . , ψn), is almost periodic.

We add that one can use Corollary 3.8 to obtain simple modifications of the below pre-
sented method of constructions of almost periodic functions. Moreover, from Corollary 3.8,
we get:

Corollary 3.9. The set

T (ψ1, ε) ∩ T (ψ2, ε) ∩ · · · ∩ T (ψn, ε)

is relative dense in R for arbitrary almost periodic functions ψ1, ψ2, . . . , ψn and any ε > 0.6

To conclude this section we establish theorems which show how almost periodic func-
tions can be characterized by almost periodic sequences.7

Theorem 3.10. A uniformly continuous function ψ : R → X is almost periodic if and
only if there exists a sequence of positive numbers rn, n ∈ N, satisfying rn → 0 as n→∞,
such that the sequence {ψ(rnk)}k∈Z

is almost periodic for all n ∈ N.

Proof. One can prove the theorem using a corresponding extension of the proof of [39,
Theorem 1.29].
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Theorem 3.11. Let X be a Banach space. A necessary and sufficient condition for a se-
quence {ϕk}k∈Z

⊆ X to be almost periodic is the existence of an almost periodic function
ψ : R → X for which ψ(k) = ϕk, k ∈ Z.

Proof. The sufficiency of the condition follows directly from Definitions 1.1 and 3.1. Con-
versely, assume that an almost periodic sequence {ϕk}k∈Z

is given. We define

ψ(t) := ϕk + (t− k)(ϕk+1 − ϕk), k ≤ t < k + 1, k ∈ Z. (3.2)

Evidently, ψ : R → X is continuous and ψ(k) = ϕk, k ∈ Z. The almost periodicity of ψ
follows from

T
(
{ϕk} ,

ε

3

)
⊆ T (ψ, ε)

which can be proved using (3.2).

3.3 Constructions of almost periodic functions

Now we present the way one can generate almost periodic functions with given properties
in the next theorem.

Theorem 3.12. For arbitrary a > 0, any continuous function ψ : R → X such that

ψ(t) ∈ Oa (ψ(t− 1)) , t ∈ (1, 2],

ψ(t) ∈ Oa (ψ(t+ 2)) , t ∈ (−2, 0],

ψ(t) ∈ Oa/2 (ψ(t− 4)) , t ∈ (2, 6],

ψ(t) ∈ Oa/2 (ψ(t+ 8)) , t ∈ (−10,−2],

ψ(t) ∈ Oa/4

(
ψ(t− 24)

)
, t ∈ (2 + 22, 2 + 22 + 24],

ψ(t) ∈ Oa/4

(
ψ(t+ 25)

)
, t ∈ (−25 − 23 − 2,−23 − 2],

...

ψ(t) ∈ Oa 2−n

(
ψ(t− 22n)

)
, t ∈ (2 + 22 + · · ·+ 22n−2, 2 + 22 + · · ·+ 22n−2 + 22n],

ψ(t) ∈ Oa 2−n

(
ψ(t+ 22n+1)

)
, t ∈ (−22n+1 − · · · − 23 − 2,−22n−1 − · · · − 23 − 2],

...

is almost periodic.

Proof. Let ε > 0 be arbitrary and k = k(ε) ∈ N be such that 2k > 8a/ε. We have to prove
that the set of all ε-translation numbers of ψ is relative dense in R. We will obtain this
from the fact that l 22k is an ε-translation number of ψ for any integer l.

First we define

ϕ(t) := ψ(t), t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2].
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We see that

ψ(t) ∈ Oε/8

(
ψ(t− 22k)

)
, t ∈ [2 + 22 + · · ·+ 22k−2, 2 + 22 + · · ·+ 22k],

ψ(t) ∈ Oε/8

(
ϕ(t− 22k)

)
, t ∈ [2 + 22 + · · ·+ 22k−2, 2 + 22 + · · ·+ 22k],

ψ(t) ∈ Oε/8

(
ψ(t + 22k+1)

)
, t ∈ [−22k+1 − · · · − 23 − 2,−22k−1 − · · · − 23 − 2],

ψ(t) ∈ Oε/16

(
ψ(t− 22k+2)

)
, t ∈ [2 + 22 + · · ·+ 22k, 2 + 22 + · · ·+ 22k+2],

ψ(t) ∈ Oε/16

(
ψ(t+ 22k+3)

)
, t ∈ [−22k+3 − · · · − 23 − 2,−22k+1 − · · · − 23 − 2],

...

In a pseudometric space X , it implies

ψ(t+ 22k) ∈ Oε/8 (ϕ(t)) , t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

ψ(t− 22k+1) ∈ Oε/8 (ϕ(t)) , t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

ψ(t− 22k) ∈ Oε/8+ε/8 (ϕ(t)) , t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

ψ(t+ 22k+1) ∈ Oε/8+ε/16 (ϕ(t)) , t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

ψ(t+ 3 22k) ∈ Oε/8+ε/8+ε/16 (ϕ(t)) , t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

ψ(t+ 22k+2) ∈ Oε/16 (ϕ(t)) , t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

ψ(t+ 22k + 22k+2) ∈ Oε/8+ε/16 (ϕ(t)) , t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

...

Since
ε

8
+
ε

8
+

ε

16
+

ε

16
+

ε

32
+

ε

32
+ · · · =

ε

2
,

we have
ψ(t+ l 22k) ∈ Oε/2 (ϕ(t)) ,

t ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2], l ∈ Z.
(3.3)

We express any t ∈ R as the sum of numbers p(t) and q(t) for which

p(t) ∈ [−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2],

q(t) ∈ Z and q(t) = j22k for some j ∈ Z.

Using (3.3), we obtain

%
(
ψ(t), ψ(t + l 22k)

)
≤ % (ψ(p(t) + q(t)), ϕ(p(t)))

+ %
(
ϕ(p(t)), ψ(p(t) + (j + l) 22k)

)
<
ε

2
+
ε

2
= ε

(3.4)

for any t ∈ R, l ∈ Z, which terminates the proof.

The process mentioned in the previous theorem is easily modifiable. We illustrate this
fact by the following two theorems.
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Theorem 3.13. Let M > 0, x0 ∈ X , and j ∈ N be given. Let ϕ : [0,M ] → X satisfy
ϕ (0) = ϕ (M) = x0. If {rn}n∈N ⊂ R+

0 has the property that

∞∑

n=1

rn <∞, (3.5)

then an arbitrary continuous function ψ : R → X , ψ|[0,M ] ≡ ϕ for which

ψ (t) = x0, t ∈ {iM, 2 ≤ i ≤ j + 1} ∪ {−i(j + 1)M, 1 ≤ i ≤ j}
∞⋃

n=1

{((j + 1) + · · ·+ j(j + 1)2n−2 + i(j + 1)2n)M ; 1 ≤ i ≤ j}

∞⋃

n=1

{−((j + 1) + · · ·+ j(j + 1)2n−1 + i(j + 1)2n+1)M ; 1 ≤ i ≤ j}

and, at the same time, for which it is valid

ψ(t) ∈ Or1 (ψ(t−M)) , t ∈ (M, 2M),

...

ψ(t) ∈ Or1 (ψ(t− jM)) , t ∈ (jM, (j + 1)M) ,

ψ(t) ∈ Or2 (ψ(t+ (j + 1)M)) , t ∈ (−(j + 1)M, 0) ,

...

ψ(t) ∈ Or2 (ψ(t + j(j + 1)M)) , t ∈ (−j(j + 1)M,−(j − 1)(j + 1)M) ,

ψ(t) ∈ Or3

(
ψ(t− (j + 1)2M)

)
, t ∈

(
(j + 1)M, ((j + 1) + (j + 1)2)M

)
,

...

ψ(t) ∈ Or3

(
ψ(t− j(j + 1)2M)

)
,

t ∈
(
((j + 1) + (j − 1)(j + 1)2)M, ((j + 1) + j(j + 1)2)M

)
,

...

ψ(t) ∈ Or2n

(
ψ(t + (j + 1)2n−1M)

)
,

t ∈
(
− ((j + 1)2n−1 + j(j + 1)2n−3 + · · ·+ j(j + 1)3 + j(j + 1))M,

− (j(j + 1)2n−3 + · · ·+ j(j + 1)3 + j(j + 1))M
)
,

...

ψ(t) ∈ Or2n

(
ψ(t+ j(j + 1)2n−1M)

)
,

t ∈
(
− (j(j + 1)2n−1 + j(j + 1)2n−3 + · · ·+ j(j + 1)3 + j(j + 1))M,

− ((j − 1)(j + 1)2n−1 + j(j + 1)2n−3 + · · ·+ j(j + 1)3 + j(j + 1))M
)
,
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ψ(t) ∈ Or2n+1

(
ψ(t− (j + 1)2nM)

)
,

t ∈
(
((j + 1) + j(j + 1)2 + · · ·+ j(j + 1)2n−2)M,

((j + 1) + j(j + 1)2 + · · ·+ j(j + 1)2n−2 + (j + 1)2n)M
)
,

...

ψ(t) ∈ Or2n+1

(
ψ(t− j(j + 1)2nM)

)
,

t ∈
(
((j + 1) + j(j + 1)2 + · · ·+ j(j + 1)2n−2 + (j − 1)(j + 1)2n)M,

((j + 1) + j(j + 1)2 + · · ·+ j(j + 1)2n−2 + j(j + 1)2n)M
)
,

...

is almost periodic.

Proof. We can prove this theorem analogously as Theorem 3.12. Let ε be a positive number
and let an odd integer n(ε) ≥ 2 have the property (see (3.5)) that

∞∑

n=n(ε)

rn <
ε

2
. (3.6)

We will prove that l(j+1)n(ε)−1M is an ε-translation number of ψ for all l ∈ Z. Arbitrarily
choosing l ∈ Z and t ∈ R, if we put

s := l(j + 1)n(ε)−1M, (3.7)

then it suffices to show that the inequality

d (ψ(t), ψ(t+ s)) < ε (3.8)

holds; i.e., this inequality proves the theorem.
We can write t as the sum of numbers t1 and t2, where

t1 ≥ −
(
j(j + 1)n(ε)−2 + · · ·+ j(j + 1)3 + j(j + 1)

)
M,

t1 ≤
(
j + 1 + j(j + 1)2 + · · ·+ j(j + 1)n(ε)−3

)
M

(3.9)

and
t2 = i(j + 1)n(ε)−1M for some i ∈ Z. (3.10)

Now we have (see (3.9) and the proof of Theorem 3.12)

% (ψ(t), ψ(t + s)) ≤ % (ψ(t1 + t2), ψ(t1)) + % (ψ(t1), ψ(t1 + t2 + s))

<

n(ε)+p−1∑

n=n(ε)

rn +

n(ε)+q−1∑

n=n(ε)

rn.
(3.11)

Indeed, we can express (consider (3.7) and (3.10))

t2 =
(
i1(j + 1)n(ε)−1 + i2(j + 1)n(ε) + · · ·+ ip(j + 1)n(ε)+p−1

)
(m+ 1),
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t2 + s =
(
l1(j + 1)n(ε)−1 + l2(j + 1)n(ε) + · · ·+ lq(j + 1)n(ε)+q−1

)
(m+ 1),

where i1, . . . , ip, l1, . . . , lq ⊆ {−j, . . . , 0, . . . , j} satisfy

i1 ≥ 0, i2 ≤ 0, · · · (−1)p ip ≤ 0, l1 ≥ 0, l2 ≤ 0, · · · (−1)q lq ≤ 0.

It is sure that (3.6) and (3.11) give (3.8).

For j = 1, we get the most important case of Theorem 3.13:

Corollary 3.14. Let M > 0 and x0 ∈ X be given and let ϕ : [0,M ] → X be such that

ϕ(0) = ϕ(M) = x0.

If {εi}i∈N ⊂ R+
0 satisfies

∞∑

i=1

εi <∞, (3.12)

then any continuous function ψ : R → X , ψ|[0,M ] ≡ ϕ for which

ψ (t) = x0, t ∈ {2M,−2M} ∪ {(2 + 22 + · · ·+ 22(i−1) + 22i)M ; i ∈ N}

∪ {−(2 + 23 + · · ·+ 22i−1 + 22i+1)M ; i ∈ N}
(3.13)

and, at the same time, for which it is valid

ψ(t) ∈ Oε1 (ψ(t−M)) , t ∈ (M, 2M),

ψ(t) ∈ Oε2 (ψ(t + 2M)) , t ∈ (−2M, 0),

ψ(t) ∈ Oε3

(
ψ(t− 22M)

)
, t ∈ (2M, (2 + 22)M),

ψ(t) ∈ Oε4

(
ψ(t + 23M)

)
, t ∈ (−(23 + 2)M,−2M),

ψ(t) ∈ Oε5

(
ψ(t− 24M)

)
, t ∈ ((2 + 22)M, (2 + 22 + 24)M),

...

ψ(t) ∈ Oε2i

(
ψ(t+ 22i−1M)

)
, t ∈ (−(22i−1 + · · ·+ 2)M,−(22i−3 + · · ·+ 2)M),

ψ(t) ∈ Oε2i+1

(
ψ(t− 22iM)

)
, t ∈ ((2 + 22 + · · ·+ 22i−2)M, (2 + 22 + · · ·+ 22i)M),

...

is almost periodic.

Theorem 3.15. Let ϕ : (−r, r] → X , {rn}n∈N ⊂ R+
0 , and {jn}n∈N ⊆ N be arbitrary such

that
∞∑

n=1

rnjn <∞ (3.14)

holds, and let a function ψ : R → X satisfy ψ|(−r,r] ≡ ϕ and

ψ(t) ∈ Or1 (ϕ(t− 2r)) , t ∈ (r, r + 2r] ,
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...

ψ(t) ∈ Or1 (ϕ(t− 2r)) , t ∈ (r + (j1 − 1)2r, r + j12r] ,

ψ(t) ∈ Or1 (ϕ(t+ 2r)) , t ∈ (−2r − r,−r] ,

...

ψ(t) ∈ Or1 (ϕ(t+ 2r)) , t ∈ (−j12r − r,−(j1 − 1)2r − r] ,

...

ψ(t) ∈ Orn
(ϕ(t− pn)) , t ∈ (p1 + · · ·+ pn−1, p1 + · · ·+ pn−1 + pn] ,

...

ψ(t) ∈ Orn
(ϕ(t− pn)) , t ∈ (p1 + · · ·+ pn−1 + (jn − 1)pn, p1 + · · ·+ pn−1 + jnpn] ,

ψ(t) ∈ Orn
(ϕ(t+ pn)) , t ∈ (−pn − pn−1 − · · · − p1,−pn−1 − · · · − p1] ,

...

ψ(t) ∈ Orn
(ϕ(t+ pn)) , t ∈ (−jnpn − pn−1 − · · · − p1,−(jn − 1)pn − pn−1 − · · · − p1] ,

...

where
p1 := r + j12r, p2 := 2(r + j12r),

p3 := (2j2 + 1)p2, . . . pn := (2jn−1 + 1)pn−1, . . .

If ψ is continuous on R, then it is almost periodic.

Proof. It is not difficult to prove Theorem 3.15 analogously as Theorems 3.12 and 3.13.
For given ε > 0, let an integer n(ε) ≥ 2 satisfy

∞∑

n=n(ε)

rn jn <
ε

4
.

One can prove the inclusion
{l pn(ε); l ∈ Z} ⊆ T (ψ, ε) (3.15)

which yields the almost periodicity of ψ.

Remark 3.16. From the proofs of Theorems 3.12, 3.13, 3.15 (see (3.4), (3.7) and (3.8),
(3.15)), we get an important property of the set of all ε-translation numbers of the resulting
function ψ. For any ε > 0, there exists nonzero c ∈ R for which

{l c; l ∈ Z} ⊆ T (ψ, ε).

Hence, applying the method from the above theorems, one cannot construct almost periodic
functions without this property.8
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3.4 Almost periodic functions with given values

We prove two theorems for almost periodic functions corresponding to Theorem 1.19, where
it is proved that, for any countable and totally bounded set, there exists an almost periodic
sequence whose range is the set. In the first theorem, we need that the totally bounded
set is the range of a uniformly continuous function ϕ for which the set {ϕ(k); k ∈ Z} is
finite. We also use the result for sequences to construct an almost periodic function whose
range contains an arbitrarily given totally bounded sequence if one requires the connection
by arcs of the space of values (see the below mentioned Theorem 3.19).

Concerning a continuous counterpart of Theorem 1.19 (or Definition 3.1 and Lem-
ma 3.3), the given set of values has to be the totally bounded graph of a continuous function.
In addition, any almost periodic function is uniformly continuous (see Lemma 3.2). Con-
sidering these facts, we formulate the following theorem.

Theorem 3.17. Let ϕ : R → X be any uniformly continuous function such that the set
{ϕ(k); k ∈ Z} is finite and the set {ϕ(t); t ∈ R} is totally bounded. There exists an almost
periodic function ψ with the property that

{ψ(k); k ∈ Z} = {ϕ(k); k ∈ Z}, {ψ(t); t ∈ R} = {ϕ(t); t ∈ R} (3.16)

and that, for any l ∈ Z, there exists q(l) ∈ N for which

ψ(l + s) = ψ(l + s+ jq(l)), j ∈ Z, s ∈ [0, 1). (3.17)

Proof. We will construct ψ : R → X applying Corollary 3.14 similarly as {ψk} applying
Corollary 1.17 in the proof of Theorem 1.19. Considering that the set {ϕ(k); k ∈ Z} is
finite, let sufficiently large M,N ∈ Z have the property that ϕ(M) = ϕ(N) and that, for
any l ∈ Z, there exists j(l) ∈ {N,N + 1, . . . ,M − 1} for which

ϕ(l) = ϕ(j(l)), ϕ(l + 1) = ϕ(j(l) + 1). (3.18)

Without loss of the generality, we can assume that N = 0 because, if N < 0, then we can
redefine finitely many the below given εi and put ψ ≡ ϕ on a sufficiently large interval.

Since ϕ is uniformly continuous with totally bounded range (see also (3.18)), for arbi-
trarily small ε > 0, there exist l1(ε), . . . , lm(ε)(ε) ∈ Z such that, for any l ∈ Z, we have

% (ϕ(l + s), ϕ(li + s)) < ε, s ∈ [0, 1]

for at least one integer li ∈ {l1(ε), . . . , lm(ε)(ε)}. We put εi := 2−i, i ∈ N, i.e.,

li1 := l1(2
−i), . . . , lim(i) := lm(2−i)

(
2−i
)
, i ∈ N.

In addition, we will assume that

{lij; j ∈ {1, . . . , m(i)}, i ∈ N} = Z. (3.19)

First we define
ψ(t) := ϕ(t), t ∈ [0,M ]. (3.20)
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We choose arbitrary n(1) ∈ N for which 22n(1)M > m(1). There exist (see (3.18))

j1
1 , j

1
2 , . . . , j

1
m(1) ∈ {0, 1, . . . ,M − 1}

such that
ϕ(l11) = ψ(j1

1), ϕ(l11 + 1) = ψ(j1
1 + 1),

ϕ(l12) = ψ(j1
2), ϕ(l12 + 1) = ψ(j1

2 + 1),

...

ϕ(l1m(1)) = ψ(j1
m(1)), ϕ(l1m(1) + 1) = ψ(j1

m(1) + 1).

We define
ψ(s+M + j1

1) := ϕ(s+ l11), s ∈ [0, 1],

ψ(t) := ψ(t−M), t ∈ (M, 2M ] r [M + j1
1 ,M + j1

1 + 1],

ψ(s+ 2M + j1
2) := ϕ(s+ l12), s ∈ [0, 1],

ψ(t) := ψ(t− 2M), t ∈ (2M, 3M ] r [2M + j1
2 , 2M + j1

2 + 1],

...

ψ(s+m(1)M + j1
m(1)) := ϕ(s+ l1m(1)), s ∈ [0, 1],

ψ(t) := ψ(t−m(1)M), t ∈ (m(1)M, (m(1) + 1)M ] r [m(1)M + j1
m(1), m(1)M + j1

m(1) + 1]

and we define ψ as periodic with period M on

[−(22n(1)−1 + · · ·+ 23 + 2)M, (2 + 22 + · · ·+ 22n(1))M ] r (M, (m(1) + 1)M).

It is easily to see that we construct ψ as in Corollary 3.14 for

εi := L, i ∈ {1, . . . , 2n(1) + 1} (3.21)

if L > 0 is sufficiently large.
In the second step, we choose n(2) > n(1) +m(2) (n(2) ∈ N) and we put

ψ(t) := ψ(t+ 22n(1)+1M), t ∈ [−(22n(1)+1 + · · ·+ 2)M, · · · ,−(22n(1)−1 + · · ·+ 2)M),

ψ(t) := ψ(t− 22n(1)+2M), t ∈ ((2 + · · ·+ 22n(1))M, . . . , (2 + · · ·+ 22n(1)+2)M ],

...

ψ(t) := ψ(t+ 22n(2)−1M), t ∈ [−(22n(2)−1 + · · ·+ 2)M, · · · ,−(22n(2)−3 + · · ·+ 2)M)

and
εi := 0, i ∈ {2n(1) + 2, . . . , 2n(2)}, ε2n(2)+1 := 2−1. (3.22)

From n(2) > n(1) + m(2) and the above construction, we see that, for each integer j,
1 ≤ j ≤ m(1), there exist at least 2m(2) + 2 intervals of the form

[a, a+ 1] ⊂ [−(22n(2)−1 + · · ·+ 2)M, . . . , (22n(2)−2 + · · ·+ 2)M ]
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such that a ∈ Z and

ψ|[a,a+1] ≡ ϕ|[l1j ,l1j +1], i.e., ψ(s+ a) = ϕ(s+ l1j ), s ∈ [0, 1].

It implies that we can define continuous

ψ(t) ∈ Oε2n(2)+1

(
ψ(t− 22n(2)M)

)
, t ∈ ((2 + · · ·+ 22n(2)−2)M, . . . , (2 + · · ·+ 22n(2))M ]

for which
ψ|[22n(2)M,22n(2)M+1] ≡ ψ|[0,1],

ψ|[k,k+1] ≡ ψ|[0,1] for some k,

k ∈ {(2 + · · ·+ 22n(2)−2)M, . . . , (2 + · · ·+ 22n(2))M − 1}r {22n(2)M}

and

ψ|[l,l+1] ≡ ϕ|[j(l),j(l)+1], l ∈ {(2 + · · ·+ 22n(2)−2)M, . . . , (2 + · · ·+ 22n(2))M − 1},

some j(l) ∈ {0, . . . ,M − 1, l11, . . . , l
1
m(1), l

2
1, . . . , l

2
m(2)},

{ϕ(t); t ∈ [l11, l
1
1 + 1] ∪ · · · ∪ [l1m(1), l

1
m(1) + 1] ∪ [l21, l

2
1 + 1] ∪ · · · ∪ [l2m(2), l

2
m(2) + 1]}

⊆ {ψ(t); t ∈ [(2 + · · ·+ 22n(2)−2)M, . . . , (2 + · · ·+ 22n(2))M ]}.

In the third step, we choose n(3) > n(2) +m(3) (n(3) ∈ N) and we construct ψ for

εi := 0, i ∈ {2n(2) + 2, . . . , 2n(3)}, ε2n(3)+1 := 2−2. (3.23)

We have continuous

ψ(t) ∈ Oε2n(3)+1

(
ψ(t− 22n(3)M)

)
, t ∈ ((2 + · · ·+ 22n(3)−2)M, . . . , (2 + · · ·+ 22n(3))M ]

satisfying

ψ|[l,l+1] ≡ ϕ|[j(l),j(l)+1], l ∈ {(2 + · · ·+ 22n(3)−2)M, . . . , (2 + · · ·+ 22n(3))M − 1},

at least one j(l) ∈ {0, . . . ,M − 1, l11, l
1
2, . . . , l

3
m(3)},

{ϕ(t); t ∈ [l11, l
1
1 + 1] ∪ [l12, l

1
2 + 1] ∪ · · · ∪ [l3m(3), l

3
m(3) + 1]}

⊆ {ψ(t); t ∈ [(2 + · · ·+ 22n(3)−2)M, . . . , (2 + · · ·+ 22n(3))M ]}.

In addition, we have

ψ|[l,l+1] ≡ ψ|[0,1], l ∈{j 22n(2)M ; j ∈ Z}

∩ {−(22n(3)−1 + · · ·+ 2)M, . . . , (2 + · · ·+ 22n(3))M − 1},

ψ|[22n(3)M+1,22n(3)M+2] ≡ ψ|[1,2], ψ|[22n(3)M−1,22n(3)M] ≡ ψ|[−1,0],

ψ|[k,k+1] ≡ ψ|[1,2] for some k,

k ∈ {(2 + · · ·+ 22n(3)−2)M, . . . , (2 + · · ·+ 22n(3))M − 1}r {22n(3)M + 1}

ψ|[k,k+1] ≡ ψ|[−1,0] for some k,

k ∈ {(2 + · · ·+ 22n(3)−2)M, . . . , (2 + · · ·+ 22n(3))M − 1}r {22n(3)M − 1}.
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Continuing in the same manner, in the i-th step, we choose n(i) > n(i − 1) + m(i)
(n(i) ∈ N) and we construct ψ for

εk := 0, k ∈ {2n(i− 1) + 2, . . . , 2n(i)}, ε2n(i)+1 := 2−i+1. (3.24)

For simplicity, let i− 2 < 22n(2)M (see also the proof of Theorem 1.19 for j 22n(2) replaced
by [j 22n(2)M, j 22n(2)M + 1], 1 + j 22n(3) by [1 + j 22n(3)M, 1 + j 22n(3)M + 1], and so on).
Again, for each j(1) ∈ {1, . . . , i−1}, j(2) ∈ {1, . . . , m(j(1))}, there exist at least 2m(i)+2
integers

l ∈{−(22n(i)−1 + · · ·+ 2)M, . . . , (2 + · · ·+ 22n(i)−2)M − 1}

r ({j 22n(2)M ; j ∈ Z} ∪ {1 + j 22n(3)M ; j ∈ Z} ∪ {−1 + j 22n(3)M ; j ∈ Z}∪

· · · ∪ {i− 3 + j 22n(i−1)M ; j ∈ Z} ∪ {3− i + j 22n(i−1)M ; j ∈ Z})

such that
ψ|[l,l+1] ≡ ϕ|h

l
j(1)
j(2)

,l
j(1)
j(2)

+1
i.

Thus, we can define continuous

ψ(t) ∈ Oε2n(i)+1

(
ψ(t− 22n(i)M)

)
, t ∈ ((2 + · · ·+ 22n(i)−2)M, . . . , (2 + · · ·+ 22n(i))M ]

satisfying

ψ|[l,l+1] ≡ ϕ|[j(l),j(l)+1], l ∈ {(2 + · · ·+ 22n(i)−2)M, . . . , (2 + · · ·+ 22n(i))M − 1},

at least one j(l) ∈ {0, . . . ,M − 1, l11, l
1
2, . . . , l

i
m(i)},

{ϕ(t); t ∈ [l11, l
1
1 + 1] ∪ [l12, l

1
2 + 1] ∪ · · · ∪ [lim(i), l

i
m(i) + 1]}

⊆ {ψ(t); t ∈ [(2 + · · ·+ 22n(i)−2)M, . . . , (2 + · · ·+ 22n(i))M ]}.
(3.25)

In addition, we can define ψ so that

ψ|[l,l+1] ≡ ψ|[0,1], l ∈{j 22n(2)M ; j ∈ Z}

∩ {−(22n(i)−1 + · · ·+ 2)M, . . . , (2 + · · ·+ 22n(i))M − 1},

ψ|[l,l+1] ≡ ψ|[1,2], l ∈{1 + j 22n(3)M ; j ∈ Z}

∩ {−(22n(i)−1 + · · ·+ 2)M, . . . , (2 + · · ·+ 22n(i))M − 1},

ψ|[l,l+1] ≡ ψ|[−1,0], l ∈{−1 + j 22n(3)M ; j ∈ Z}

∩ {−(22n(i)−1 + · · ·+ 2)M, . . . , (2 + · · ·+ 22n(i))M − 1},

...

ψ|[l,l+1] ≡ ψ|[i−3,i−2], l ∈{i− 3 + j 22n(i−1)M ; j ∈ Z}

∩ {−(22n(i)−1 + · · ·+ 2)M, . . . , (2 + · · ·+ 22n(i))M − 1},

ψ|[l,l+1] ≡ ψ|[3−i,4−i], l ∈{3− i+ j 22n(i−1)M ; j ∈ Z}

∩ {−(22n(i)−1 + · · ·+ 2)M, . . . , (2 + · · ·+ 22n(i))M − 1},

ψ|[22n(i)M+i−2,22n(i)M+i−1] ≡ ψ|[i−2,i−1], ψ|[22n(i)M+2−i,22n(i)M+3−i] ≡ ψ|[2−i,3−i],
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ψ|[k,k+1] ≡ ψ|[i−2,i−1] for some k,

k ∈ {(2 + · · ·+ 22n(i)−2)M, . . . , (2 + · · ·+ 22n(i))M − 1}r {22n(i)M + i− 2},

ψ|[k,k+1] ≡ ψ|[2−i,3−i] for some k,

k ∈ {(2 + · · ·+ 22n(i)−2)M, . . . , (2 + · · ·+ 22n(i))M − 1}r {22n(i)M + 2− i}.

Evidently, it is valid

% (ϕ(i), ϕ(j)) ≥ 2−K or % (ϕ(i), ϕ(j)) = 0

for all i, j ∈ Z and some K ∈ N. If we begin the construction by

lK1 := l1
(
2−K

)
, . . . , lKm(K) := lm(2−K )

(
2−K

)
,

then we have to obtain
ψ(k) = ψ(k +M), k ∈ Z.

Hence, we can construct the above ψ in order that the sequence {ψ(k)}k∈Z is periodic with
period M which gives (3.13) and the continuity of ψ. We construct ψ using the process
from Corollary 3.14 for all i ∈ N and we obtain an almost periodic function ψ : R → X .
Indeed, we have (3.20) and, summarizing (3.21), (3.22), (3.23), . . . , (3.24), . . . , we get
(3.12) (see also (1.48)). For periodic {ψ(k)}k∈Z, the first identity in (3.16) follows from
(3.18) and (3.20) and the second one from the construction, (3.19), and (3.25). As in the
proof of Theorem 1.19, we see that, for any l ∈ Z, there exists i(l) ∈ N satisfying

ψ|[k,k+1] ≡ ψ|[l,l+1], k ∈ {l + j 22n(i(l))M ; j ∈ Z}.

It gives (3.17) for q(l) = 22n(i(l))M .

As an example which illustrates the previous theorem, we mention the following state-
ment:

Corollary 3.18. For any continuous function F : [0, 1] → X , there exists an almost
periodic function ψ with the property that

{ψ(t); t ∈ R} = {F (t); t ∈ (0, 1)}.

Proof. It suffices to show that there exists a uniformly continuous function ϕ : R → X for
which {ϕ(k); k ∈ Z} = {F (1/2)} and {ϕ(t); t ∈ R} = {F (t); t ∈ (0, 1)}, and to apply
Theorem 3.17. For example, one can put

ϕ(k + s) := F

(
1

2
+ s

)
, k ∈ N, s ∈

[
0,

k

2k + 1

)
,

ϕ(k + s) := F

(
1

2
+

k

2k + 1

)
, k ∈ N, s ∈

[
k

2k + 1
, 1−

k

2k + 1

)
,

ϕ(k + s) := F

(
1

2
+ 1− s

)
, k ∈ N, s ∈

[
1−

k

2k + 1
, 1

)
;

ϕ(k + s) := F

(
1

2
− s

)
, k ∈ Z r N, s ∈

[
0,

k

2k − 1

)
,
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ϕ(k + s) := F

(
1

2
−

k

2k − 1

)
, k ∈ Z r N, s ∈

[
k

2k − 1
, 1−

k

2k − 1

)
,

ϕ(k + s) := F

(
1

2
+ s− 1

)
, k ∈ Z r N, s ∈

[
1−

k

2k − 1
, 1

)
.

In Theorem 3.17, we have constructed an almost periodic function ψ for which the set
{ψ(k); k ∈ Z} has to be finite. Now we use Theorem 1.19 to obtain an almost periodic
function with infinitely many given values on Z. We proved as Theorem 3.11 that, for any
almost periodic sequence {ϕk}k∈Z in a Banach space X , there exists an almost periodic
function ψ : R → X for which ψ(k) = ϕk, k ∈ Z. Since Theorem 3.11 does not need to be
true in a metric space, we require a condition about the local connection by arcs of given
values.9

Theorem 3.19. Let any countable and totally bounded set X ⊆ X be given. If all x, y ∈ X
can be connected in X by continuous curves which depend uniformly continuously on x
and y, then there exists an almost periodic function ψ : R → X such that

{ψ(k); k ∈ Z} = X (3.26)

and that, for any l ∈ Z, there exists q(l) ∈ N for which

ψ(l + s) = ψ(l + s+ jq(l)), j ∈ Z, s ∈ [0, 1).

Proof. Using Theorem 1.19, we get an almost periodic sequence {ψk}k∈Z satisfying (1.27).
Let continuous functions fk : [0, 1] → X , k ∈ Z for which fk(0) = ψk, fk(1) = ψk+1 be
from the statement of the theorem. Obviously, the function

ψ(k + s) := fk(s), k ∈ Z, s ∈ [0, 1)

defined on R is continuous and (3.26) is satisfied. From the proof of Theorem 1.19, it
follows (see (1.47)) that, for any l ∈ Z, there exist r(l, 1), r(l, 2) ∈ N with the property
that

ψl = ψl+j 2r(l,1) , ψl+1 = ψl+1+j 2r(l,2) , j ∈ Z.

Thus, for any l ∈ Z, there exists r(l) ∈ N such that

ψ(l) = ψ(l + j 2r(l)), ψ(l + 1) = ψ(l + 1 + j 2r(l)), j ∈ Z

which implies
ψ(l + s) = ψ(l + s+ j 2r(l)), j ∈ Z, s ∈ [0, 1].

It remains to show that ψ is almost periodic. Let ε > 0 be arbitrary and let δ > 0
be the number corresponding to ε from the definition of the uniform continuity of the
connections of the values ϕi, i ∈ N. Let l ∈ Z be a δ-translation number of {ψk}, i.e., let

% (ψk+l, ψk) < δ, k ∈ Z. (3.27)

By the definition of the function ψ, we have

% (ψ(t + l), ψ(t)) < ε, t ∈ R.

Indeed, it suffices to consider (3.27) for k and k+1. Since any δ-translation number of {ψk}
is an ε-translation number of ψ : R → X and since the set of all δ-translation numbers of
almost periodic {ψk} is relative dense in Z, function ψ is almost periodic as well.
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From Theorem 3.19, one can easily obtain the following result which also follows from
the approximation theorem (mentioned in introduction of this chapter) or from Theo-
rems 1.19 and 3.11 (see also the proof of Theorem 3.11).

Corollary 3.20. Let X be a Banach space. If X ⊆ X is countable and totally bounded,
then there exists an almost periodic function ψ : R → X such that

{ψ(k); k ∈ Z} = X

and that, for any l ∈ Z, there exists q(l) ∈ N for which

ψ(l + s) = ψ(l + s+ jq(l)), j ∈ Z, s ∈ [0, 1).

Note that interesting open problems about general almost periodic functions are men-
tioned in [43] (see also [69]).



Chapter 4

Almost periodic homogeneous linear
differential systems

We will analyse almost periodic solutions of almost periodic linear differential systems.
Sometimes this field is called the Favard theory what is based on the Favard contributions
in [65] (see also [31, Theorem 1.2], [40, Chapter 5], [69, Theorem 6.3] or [127, Theorem 1];
for homogeneous case, see [36], [64]).10 In this context, sufficient conditions for the existence
of almost periodic solutions are mentioned in [35], [47], [88] (for generalizations, see [41],
[42], [67], [82], [85], [86], [90], [97], [107], [110], [121], [140], [142], [143]; for other extensions
and supplements of the Favard theorem, see [2], [17], [31], [32], [44], [45], [46], [48], [49], [69]
with the references cited therein, [87], [111]). Certain sufficient conditions, under which
homogeneous systems that have nontrivial bounded solutions also have nontrivial almost
periodic solutions, are given in [128].

It is a corollary of the Favard (and the Floquet) theory that any bounded solution of an
almost periodic linear differential system is almost periodic if the matrix valued function,
which determines the system, is periodic (see [69, Corollary 6.5]; for a generalization in the
homogeneous case, see [81]). This result is no longer valid for systems with almost periodic
coefficients. There exist systems for which all solutions are bounded, but none of them is
almost periodic (see [94], [95], [127], [137]). Homogeneous systems have the zero solution
which is almost periodic, but do not need to have an other almost periodic solution. We
note that the existence of a homogeneous system, which has bounded solutions (separated
from zero) and, at the same time, all systems from some neighbourhood of it do not have
any nontrivial almost periodic solution, is proved in [153].

We will consider the set of all almost periodic skew-Hermitian differential systems with
the uniform topology of matrix functions on the real axis.11 In [152], it is proved that the
systems, all of whose solutions are almost periodic, form a dense subset of the set of all
considered systems. We add that special cases of this result are proved in [104], [105].12

For systems whose solutions are not almost periodic, we refer to [154].
Using the method for constructing almost periodic functions from Chapter 3, we will

prove that, in any neighbourhood of a system, there exists a system which does not possess
an almost periodic solution other than the trivial one, not only with a fundamental matrix
which is not almost periodic as in [154]. It means that, applying our method, we will
get a stronger version of a statement from [154]. We remark that constructions of almost

81
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periodic linear differential systems with given properties are used in [103], [112], [113].

4.1 Preliminaries

Let m ∈ N be arbitrarily given. In this chapter, we will use the following notations: Im(ϕ)
for the range of a function ϕ, Mat(C, m) for the set of all m ×m matrices with complex
elements, U(m) ⊂Mat(C, m) for the group of all unitary matrices of dimension m, A∗ for
the conjugate transpose of A ∈ Mat(C, m), I for the identity matrix, O for the zero matrix,
and “i” for the imaginary unit.

4.2 Skew-Hermitian systems without almost periodic

solutions

We will study systems of m homogeneous linear differential equations of the form

x′(t) = A(t) · x(t), t ∈ R, (4.1)

where A is an almost periodic function with Im(A) ⊂ Mat(C, m) and with the property
that A(t) + A∗(t) = O for any t ∈ R, i.e., A : R → Mat(C, m) is an almost periodic
function of skew-Hermitian (skew-adjoint) matrices. Let S be the set of all systems (4.1).
We will identify the function A with the system (4.1) which is determined by A. Especially,
we will write A ∈ S and O ∈ S will denote the system (4.1) given by A(t) = O, t ∈ R.

In the vector space Cm, we will consider the absolute norm || · ||1 (one can also consider
the Euclidean norm or the maximum norm). Let || · || be the corresponding matrix norm.13

Considering that every almost periodic function is bounded (see Lemma 3.3), the distance
between two systems A,B ∈ S is defined by the norm of the matrix valued functions A,
B, uniformly on R; i.e., we introduce the metric

σ (A,B) := sup
t∈R

||A(t)− B(t) || , A, B ∈ S.

For ε > 0, the symbol Oσ
ε (A) will denote the ε-neighbourhood of A in S.

Now we recall the notion of the frequency module and its rational hull which can be
introduced for all almost periodic function with values in a Banach space.14 The frequency
module F of an almost periodic function A : R →Mat(C, m) is the Z-module of the real
numbers, generated by the numbers λ such that

lim
T→+∞

1

T

T∫

0

e2πiλt A(t) dt 6= O.

The rational hull of F is the set

{λ/l; λ ∈ F , l ∈ Z}.

For the frequency modules of almost periodic linear differential systems and their solutions,
we refer to [69, Chapters 4, 6], [127].
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In [152], it is proved that, in any neighbourhood of a system (4.1) with frequency mo-
dule F , there exists a system with a frequency module contained in the rational hull of F
possessing all almost periodic solutions with frequencies belonging to the rational hull of F
as well. From [156, Theorem 1] it follows that there exists a system (4.1) which cannot be
approximated by the so-called reducible systems15 with frequency module F (there exists
an open set of irreducible systems with a fixed frequency module—see [155] for the real
case); i.e., a neighbourhood of a system (4.1) with frequency module F may not contain
a system with almost periodic solutions and frequency module F . In this case, see also
[56] and [157] for reducible constant systems and systems reducing to diagonal form by
Lyapunov transformation with frequency module F , respectively.

In addition, for k ∈ N, it is proved in [154] that the systems with k-dimensional
frequency basis of A, having solutions which are not almost periodic, form a subset of the
second category of the space of all considered systems with k-dimensional frequency basis
of A. Thus, it is known (see also [152, Corollary 1]) that the systems with k-dimensional
frequency basis of A and with an almost periodic fundamental matrix form a dense set of
the first category in the space of all systems (4.1) with k-dimensional frequency basis.

In this context, we formulate the following result that the systems having no nontrivial
almost periodic solution form a dense subset of S.

Theorem 4.1. For any A ∈ S and ε > 0, there exists B ∈ Oσ
ε (A) which does not have an

almost periodic solution other than the trivial one.

Proof. Let A,C ∈ S and ε > 0 be arbitrary. Since the sum of skew-Hermitian matrices
is also skew-Hermitian and since the sum of two almost periodic functions is almost pe-
riodic (see Corollary 3.7), we have that A + C ∈ S. Let XA(t), t ∈ R and XC(t), t ∈ R

be the principal (i.e., XA(0) = XC(0) = I) fundamental matrices of A ∈ S and C ∈ S,
respectively. If the matrices C(t), XA(t) commute for all t ∈ R, then the matrix valued
function XA(t)XC(t), t ∈ R is the principal fundamental matrix of A + C ∈ S. Indeed,
from X ′

A(t) = A(t)XA(t), X ′
C(t) = C(t)XC(t), t ∈ R, we obtain

(XA(t) ·XC(t))′ = A(t) ·XA(t) ·XC(t) +XA(t) · C(t) ·XC(t) =

A(t) ·XA(t) ·XC(t) + C(t) ·XA(t) ·XC(t) = (A+ C)(t) ·XA(t) ·XC(t), t ∈ R.

It gives that it suffices to find C ∈ Oσ
ε (O) for which all matrices C(t), t ∈ R have the

form diag [ia, . . . , ia], a ∈ R and for which the vector valued function XA(t)XC(t) u, t ∈ R

is not almost periodic for any vector u ∈ Cm, || u ||1 = 1.
We will construct such an almost periodic function C using Theorem 3.12 for a = ε/4.

First of all we put
C(t) ≡ O, t ∈ [0, 1].

Then, in the first step of our construction, we define C on (1, 2] arbitrarily so that it is
constant on [1+1/4, 1+3/4] and ||C(t) || < ε/4 for t from this interval, C(2) := C(1) = O,
and it is linear between values O, C(3/2) on [1, 1 + 1/4] and [1 + 3/4, 2].

In the second step, we define continuous C satisfying ||C(t)− C(t+ 2) || < ε/4 for
t ∈ [−2, 0) arbitrarily so that it is constant on

[−2 + 1/16,−2 + 1− 1/16], [−2 + 1 + 1/4 + 1/16,−2 + 1 + 3/4− 1/16];
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at the same time, we put

C(−2) := C(0) = O, C(−1 + 1/4) := C(1 + 1/4) = C(3/2),

C(−1) := C(1) = O, C(−1/4) := C(2− 1/4) = C(3/2),

and

C(t) ≡ C(3/2)/2, t ∈ [−1 + 1/16,−1 + 1/4− 1/16] ∪ [−1/4 + 1/16,−1/16]

and we define C so that it is linear on

[−2,−2 + 1/16], [−1− 1/16,−1], [−1,−1 + 1/16],

[−1 + 1/4− 1/16,−1 + 1/4], [−1 + 1/4,−1 + 1/4 + 1/16],

[−1/4− 1/16,−1/4], [−1/4,−1/4 + 1/16], [−1/16, 0].

Analogously, in the third step, we get C on (2, 6] for which we can choose constant
values on

[4− 2 + 1/16 + 8−1/16, 4− 2 + 1− 1/16− 8−1/16],

[4− 2 + 1 + 1/4 + 1/16 + 8−1/16, 4− 2 + 1 + 3/4− 1/16− 8−1/16],

[4− 1 + 1/16 + 8−1/16, 4− 1 + 1/4− 1/16− 8−1/16],

[4− 1/4 + 1/16 + 8−1/16, 4− 1/16− 8−1/16],

[4 + 8−1/16, 4 + 1− 8−1/16], [4 + 1 + 1/4 + 8−1/16, 4 + 1 + 3/4− 8−1/16]

arbitrarily so that ||C(t)− C(t− 4) || < ε/8, t ∈ (2, 6]; at the same time, we put

C(4− 2 + 1/16) := C(−2 + 1/16) = C(−3/2),

C(4− 2 + 1− 1/16) := C(−1− 1/16) = C(−3/2),

C(4− 1) := C(−1) = O,

C(4− 1 + 1/16) := C(−1 + 1/16) = C(3/2)/2,

C(4− 1 + 1/4− 1/16) := C(−1 + 1/4− 1/16) = C(3/2)/2,

C(4− 1 + 1/4) := C(−1 + 1/4) = C(3/2),

C(4− 2 + 1 + 1/4 + 1/16) := C(−2 + 1 + 1/4 + 1/16) = C(−1/2),

C(4− 2 + 1 + 3/4− 1/16) := C(−2 + 1 + 3/4− 1/16) = C(−1/2),

C(4− 1/4) := C(−1/4) = C(3/2),

C(4− 1/4 + 1/16) := C(−1/4 + 1/16) = C(3/2)/2,

C(4− 1/16) := C(−1/16) = C(3/2)/2,

C(4) := C(0), C(4 + 1) := C(1),

C(4 + 1 + 1/4) := C(1 + 1/4) = C(3/2),

C(4 + 1 + 3/4) := C(1 + 3/4) = C(3/2),
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C(4 + 2) := C(2) = C(0) = O,

C(t) ≡ C(−3/2)/2, t ∈ [4− 2 + 8−1/16, 4− 2 + 1/16− 8−1/16]

∪ [4− 1− 1/16 + 8−1/16, 4− 1− 8−1/16],

C(t) ≡ C(3/2)/4, t ∈ [4− 1 + 8−1/16, 4− 1 + 1/16− 8−1/16]

∪ [4− 1/16 + 8−1/16, 4− 8−1/16],

C(t) ≡ 3C(3/2)/4, t ∈ [4− 1 + 1/4− 1/16 + 8−1/16, 4− 1 + 1/4− 8−1/16]

∪ [4− 1/4 + 8−1/16, 4− 1/4 + 1/16− 8−1/16],

C(t) ≡ (C(3/2) + C(−1/2))/2, t ∈ [4− 1 + 1/4 + 8−1/16, 4− 1 + 1/4 + 1/16− 8−1/16]

∪ [4− 1/4− 1/16 + 8−1/16, 4− 1/4− 8−1/16],

C(t) ≡ (8C(4 + 1) + 1C(4 + 1 + 1/4))/9,

t ∈ [4 + 1 + 8−1/16, 4 + 1 + 8−1/16 · 3],

C(t) ≡ (7C(4 + 1) + 2C(4 + 1 + 1/4))/9,

t ∈ [4 + 1 + 8−1/16 · 5, 4 + 1 + 8−1/16 · 7],

...

C(t) ≡ (1C(4 + 1) + 8C(4 + 1 + 1/4))/9,

t ∈ [4 + 1 + 8−1/16 · 29, 4 + 1 + 8−1/16 · 31],

C(t) ≡ (8C(4 + 1 + 3/4) + 1C(4 + 2))/9,

t ∈ [4 + 1 + 3/4 + 8−1/16, 4 + 1 + 3/4 + 8−1/16 · 3],

C(t) ≡ (7C(4 + 1 + 3/4) + 2C(4 + 2))/9,

t ∈ [4 + 1 + 3/4 + 8−1/16 · 5, 4 + 1 + 3/4 + 8−1/16 · 7],

...

C(t) ≡ (1C(4 + 1 + 3/4) + 8C(4 + 2))/9,

t ∈ [4 + 1 + 3/4 + 8−1/16 · 29, 4 + 1 + 3/4 + 8−1/16 · 31]

and we define continuous C so that it is linear on the rest of subintervals.
If we denote

a1
1 := 0, b11 := 0, c11 := 1,

a1
2 := 1, b12 := 1 + 1/4, c12 := 1 + 3/4, a1

3 := 2

and (compare with the situation after the second step)

a2
1 := −2, b21 := −2, c21 := −2,

a2
2 := −2, b22 := −2 + 1/16, c22 := −1− 1/16,

a2
3 := −1, b23 := −1, c23 := −1,

a2
4 := −1, b24 := −1 + 1/16, c24 := −1 + 1/4− 1/16,

a2
5 := −1 + 1/4, b25 := −1 + 1/4 + 1/16, c25 := −1 + 3/4− 1/16,

a2
6 := −1 + 3/4, b26 := −1 + 3/4 + 1/16, c26 := −1/16,
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we see that C does not need to be constant only on

[a1
j − 2, a1

j − 2 + 4−2], [b12 − 2− 4−2, b12 − 2], [b1j − 2, b1j − 2 + 4−2],

[c1j − 2− 4−2, c1j − 2], [c1j − 2, c1j − 2 + 4−2], [a1
j+1 − 2− 4−2, a1

j+1 − 2]

for j ∈ {1, 2}, i.e., on

[a2
j , b

2
j ], j ∈ {1, . . . , 6}, [c2j , a

2
j+1], j ∈ {1, . . . , 5}, [c26, 0],

and it has to be constant on each one of the intervals

[a1
2 − 2 + 4−2, b12 − 2− 4−2], [c12 − 2 + 4−2, a1

3 − 2− 4−2],

[b1j − 2 + 4−2, c1j − 2− 4−2], j ∈ {1, 2},

i.e., on
[b2j , c

2
j ], j ∈ {1, . . . , 6}.

It is also seen that

a2
1 = d1

1, b21 = d1
2, c21 = d1

3, a2
2 = d1

4, · · · c26 = d1
18,

where d1
1, d

1
2, . . . , d

1
18 is the nondecreasing sequence of all numbers

a1
j − 2, b1j − 2, c1j − 2,

min{a1
j − 2 + 4−2, b1j − 2}, max{a1

j − 2, b1j − 2− 4−2},

min{c1j − 2, b1j − 2 + 4−2}, max{c1j − 2− 4−2, b1j − 2},

min{c1j − 2 + 4−2, a1
j+1 − 2}, max{c1j − 2, a1

j+1 − 2− 4−2}

for j ∈ {1, 2}. We put a2
7 := 0.

Let d2
1, d

2
2, . . . , d

2
168 be the nondecreasing sequence of all numbers

b11 + 4, b11 + 4, b11 + 4, b11 + 4, b11 + 4, b11 + 4,

b11 + 4, b11 + 4, b11 + 4, b11 + 4, b11 + 4, b11 + 4,

c11 + 4, min{c11 + 4, b11 + 4 + 8−1/16}, max{c11 + 4− 8−1/16, b11 + 4},

c12 + 4, min{c12 + 4, b12 + 4 + 8−1/16}, max{c12 + 4− 8−1/16, b12 + 4},

a1
1 + (4k + 1)(b11 − a1

1)/32 + 4, a1
1 + (4k + 3)(b11 − a1

1)/32 + 4,

a1
1 + (4k + 4)(b11 − a1

1)/32 + 4, k ∈ {0, 1, . . . , 7},

c11 + (4k + 1)(a1
2 − c11)/32 + 4, c11 + (4k + 3)(a1

2 − c11)/32 + 4,

c11 + (4k + 4)(a1
2 − c11)/32 + 4, k ∈ {0, 1, . . . , 7},

a1
2 + (4k + 1)(b12 − a1

2)/32 + 4, a1
2 + (4k + 3)(b12 − a1

2)/32 + 4,

a1
2 + (4k + 4)(b12 − a1

2)/32 + 4, k ∈ {0, 1, . . . , 7},

c12 + (4k + 1)(a1
3 − c12)/32 + 4, c12 + (4k + 3)(a1

3 − c12)/32 + 4,
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c12 + (4k + 4)(a1
3 − c12)/32 + 4, k ∈ {0, 1, . . . , 7}

and
a2

j+1 + 4, b2j + 4, c2j + 4,

min{a2
j + 4 + 8−1/16, b2j + 4}, max{a2

j + 4, b2j + 4− 8−1/16},

min{c2j + 4, b2j + 4 + 8−1/16}, max{c2j + 4− 8−1/16, b2j + 4},

min{c2j + 4 + 8−1/16, a2
j+1 + 4}, max{c2j + 4, a2

j+1 + 4− 8−1/16}

for j ∈ {1, . . . , 6}. We denote

a3
1 := 2, b31 := d2

1, c31 := d2
2, a3

2 := d2
3, · · · a3

57 := d2
168.

We remark that, in the sequences of dl
j, l ∈ N, values are a number of time.

In the fourth step, we define C so that

∣∣∣∣C(t)− C(t + 23)
∣∣∣∣ < ε

23
, t ∈ [−23 − 2,−2).

We consider the nondecreasing sequence d3
1, d

3
2, . . . , d

3
21·82 of

a3
j − 23, b3j − 23, c3j − 23,

min{a3
j − 23 + 8−2/16, b3j − 23}, max{a3

j − 23, b3j − 23 − 8−2/16},

min{c3j − 23, b3j − 23 + 8−2/16}, max{c3j − 23 − 8−2/16, b3j − 23},

min{c3j − 23 + 8−2/16, a3
j+1 − 23}, max{c3j − 23, a3

j+1 − 23 − 8−2/16}

for j ∈ {1, . . . , 7 · 8}, 144 numbers b11 − 23, and

c11 − 23, min{c11 − 23, b11 − 23 + 8−2/16}, max{c11 − 23 − 8−2/16, b11 − 23},

c12 − 23, min{c12 − 23, b12 − 23 + 8−2/16}, max{c12 − 23 − 8−2/16, b12 − 23},

min{a1
1 + (k − 1)(b11 − a1

1)/(8 · 4)− 23 + 8−2/16, a1
1 + k(b11 − a1

1)/(8 · 4)− 23},

max{a1
1 + (k − 1)(b11 − a1

1)/(8 · 4)− 23, a1
1 + k(b11 − a1

1)/(8 · 4)− 23 − 8−2/16},

a1
1 + k(b11 − a1

1)/(8 · 4)− 23, k ∈ {1, . . . , 8 · 4},

min{c11 + (k − 1)(a1
2 − c11)/(8 · 4)− 23 + 8−2/16, c11 + k(a1

2 − c11)/(8 · 4)− 23},

max{c11 + (k − 1)(a1
2 − c11)/(8 · 4)− 23, c11 + k(a1

2 − c11)/(8 · 4)− 23 − 8−2/16},

c11 + k(a1
2 − c11)/(8 · 4)− 23, k ∈ {1, . . . , 8 · 4},

min{a1
2 + (k − 1)(b12 − a1

2)/(8 · 4)− 23 + 8−2/16, a1
2 + k(b12 − a1

2)/(8 · 4)− 23},

max{a1
2 + (k − 1)(b12 − a1

2)/(8 · 4)− 23, a1
2 + k(b12 − a1

2)/(8 · 4)− 23 − 8−2/16},

a1
2 + k(b12 − a1

2)/(8 · 4)− 23, k ∈ {1, . . . , 8 · 4},

min{c12 + (k − 1)(a1
3 − c12)/(8 · 4)− 23 + 8−2/16, c12 + k(a1

3 − c12)/(8 · 4)− 23},

max{c12 + (k − 1)(a1
3 − c12)/(8 · 4)− 23, c12 + k(a1

3 − c12)/(8 · 4)− 23 − 8−2/16},

c12 + k(a1
3 − c12)/(8 · 4)− 23, k ∈ {1, . . . , 8 · 4},
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c21 − 23, min{c21 − 23, b21 − 23 + 8−2/16}, max{c21 − 23 − 8−2/16, b21 − 23},

c22 − 23, min{c22 − 23, b22 − 23 + 8−2/16}, max{c22 − 23 − 8−2/16, b22 − 23},

c23 − 23, min{c23 − 23, b23 − 23 + 8−2/16}, max{c23 − 23 − 8−2/16, b23 − 23},

c24 − 23, min{c24 − 23, b24 − 23 + 8−2/16}, max{c24 − 23 − 8−2/16, b24 − 23},

c25 − 23, min{c25 − 23, b25 − 23 + 8−2/16}, max{c25 − 23 − 8−2/16, b25 − 23},

c26 − 23, min{c26 − 23, b26 − 23 + 8−2/16}, max{c26 − 23 − 8−2/16, b26 − 23},

min{a2
1 + (k − 1)(b21 − a2

1)/8− 23 + 8−2/16, a2
1 + k(b21 − a2

1)/8− 23},

max{a2
1 + (k − 1)(b21 − a2

1)/8− 23, a2
1 + k(b21 − a2

1)/8− 23 − 8−2/16},

a2
1 + k(b21 − a2

1)/8− 23, k ∈ {1, . . . , 8},

min{c21 + (k − 1)(a2
2 − c21)/8− 23 + 8−2/16, c21 + k(a2

2 − c21)/8− 23},

max{c21 + (k − 1)(a2
2 − c21)/8− 23, c21 + k(a2

2 − c21)/8− 23 − 8−2/16},

c21 + k(a2
2 − c21)/8− 23, k ∈ {1, . . . , 8},

...

min{a2
6 + (k − 1)(b26 − a2

6)/8− 23 + 8−2/16, a2
6 + k(b26 − a2

6)/8− 23},

max{a2
6 + (k − 1)(b26 − a2

6)/8− 23, a2
6 + k(b26 − a2

6)/8− 23 − 8−2/16},

a2
6 + k(b26 − a2

6)/8− 23, k ∈ {1, . . . , 8},

min{c26 + (k − 1)(a2
7 − c26)/8− 23 + 8−2/16, c26 + k(a2

7 − c26)/8− 23},

max{c26 + (k − 1)(a2
7 − c26)/8− 23, c26 + k(a2

7 − c26)/8− 23 − 8−2/16},

c26 + k(a2
7 − c26)/8− 23, k ∈ {1, . . . , 8}.

We put

a4
1 := d3

1, b41 := d3
2, c41 := d3

3, · · · c47·82 := d3
21·82 , a4

7·82+1 := −2.

We recall that C can be increasing or decreasing only on

[a4
j , b

4
j ], [c4j , a

4
j+1], j ∈ {1, . . . , 7 · 82}.

We proceed further in the same way (as in the third and the fourth step). In the 2n-th
step, we define continuous C so that

∣∣∣∣C(t)− C(t+ 22n−1)
∣∣∣∣ < ε

2n+1
, t ∈ [−22n−1 − · · · − 2,−22n−3 − · · · − 2).

We get the nondecreasing sequence {d2n−1
l } from

a2n−1
j − 22n−1, b2n−1

j − 22n−1, c2n−1
j − 22n−1,

min{a2n−1
j −22n−1 +82−2n/16, b2n−1

j −22n−1}, max{a2n−1
j −22n−1, b2n−1

j −22n−1−82−2n/16},

min{c2n−1
j −22n−1, b2n−1

j −22n−1 +82−2n/16}, max{c2n−1
j −22n−1−82−2n/16, b2n−1

j −22n−1},
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min{c2n−1
j −22n−1 +82−2n/16, a2n−1

j+1 −22n−1}, max{c2n−1
j −22n−1, a2n−1

j+1 −22n−1−82−2n/16}

for j ∈ {1, . . . , 7 · 82n−3}, from

c11− 22n−1, min{c11− 22n−1, b11− 22n−1 +82−2n/16}, max{c11− 22n−1− 82−2n/16, b11− 22n−1},

c12− 22n−1, min{c12− 22n−1, b12− 22n−1 +82−2n/16}, max{c12− 22n−1− 82−2n/16, b12− 22n−1},

min{a1
1 +(k− 1)(b11− a

1
1)/(8 · 4

2n−3)− 22n−1 +82−2n/16, a1
1 + k(b11− a

1
1)/(8 · 4

2n−3)− 22n−1},

max{a1
1 +(k− 1)(b11−a

1
1)/(8 · 4

2n−3)− 22n−1, a1
1 +k(b11−a

1
1)/(8 · 4

2n−3)− 22n−1− 82−2n/16},

a1
1 + k(b11 − a1

1)/(8 · 4
2n−3)− 22n−1, k ∈ {1, . . . , 8 · 42n−3},

min{c11 + (k− 1)(a1
2− c

1
1)/(8 · 4

2n−3)− 22n−1 + 82−2n/16, c11 + k(a1
2− c

1
1)/(8 · 4

2n−3)− 22n−1},

max{c11 +(k− 1)(a1
2− c

1
1)/(8 · 4

2n−3)− 22n−1, c11 + k(a1
2− c

1
1)/(8 · 4

2n−3)− 22n−1− 82−2n/16},

c11 + k(a1
2 − c11)/(8 · 4

2n−3)− 22n−1, k ∈ {1, . . . , 8 · 42n−3},

min{a1
2 +(k− 1)(b12− a

1
2)/(8 · 4

2n−3)− 22n−1 +82−2n/16, a1
2 + k(b12− a

1
2)/(8 · 4

2n−3)− 22n−1},

max{a1
2 +(k− 1)(b12−a

1
2)/(8 · 4

2n−3)− 22n−1, a1
2 +k(b12−a

1
2)/(8 · 4

2n−3)− 22n−1− 82−2n/16},

a1
2 + k(b12 − a1

2)/(8 · 4
2n−3)− 22n−1, k ∈ {1, . . . , 8 · 42n−3},

min{c12 + (k− 1)(a1
3− c

1
2)/(8 · 4

2n−3)− 22n−1 + 82−2n/16, c12 + k(a1
3− c

1
2)/(8 · 4

2n−3)− 22n−1},

max{c12 +(k− 1)(a1
3− c

1
2)/(8 · 4

2n−3)− 22n−1, c12 + k(a1
3− c

1
2)/(8 · 4

2n−3)− 22n−1− 82−2n/16},

c12 + k(a1
3 − c12)/(8 · 4

2n−3)− 22n−1, k ∈ {1, . . . , 8 · 42n−3},

c21− 22n−1, min{c21− 22n−1, b21− 22n−1 +82−2n/16}, max{c21− 22n−1− 82−2n/16, b21− 22n−1},

...

c26− 22n−1, min{c26− 22n−1, b26− 22n−1 +82−2n/16}, max{c26− 22n−1− 82−2n/16, b26− 22n−1},

min{a2
1 +(k− 1)(b21− a

2
1)/(8 · 4

2n−4)− 22n−1 +82−2n/16, a2
1 + k(b21− a

2
1)/(8 · 4

2n−4)− 22n−1},

max{a2
1 +(k− 1)(b21−a

2
1)/(8 · 4

2n−4)− 22n−1, a2
1 +k(b21−a

2
1)/(8 · 4

2n−4)− 22n−1− 82−2n/16},

a2
1 + k(b21 − a2

1)/(8 · 4
2n−4)− 22n−1, k ∈ {1, . . . , 8 · 42n−4},

min{c21 + (k− 1)(a2
2− c

2
1)/(8 · 4

2n−4)− 22n−1 + 82−2n/16, c21 + k(a2
2− c

2
1)/(8 · 4

2n−4)− 22n−1},

max{c21 +(k− 1)(a2
2− c

2
1)/(8 · 4

2n−4)− 22n−1, c21 + k(a2
2− c

2
1)/(8 · 4

2n−4)− 22n−1− 82−2n/16},

c21 + k(a2
2 − c21)/(8 · 4

2n−4)− 22n−1, k ∈ {1, . . . , 8 · 42n−4},

...

min{a2
6 +(k− 1)(b26− a

2
6)/(8 · 4

2n−4)− 22n−1 +82−2n/16, a2
6 + k(b26− a

2
6)/(8 · 4

2n−4)− 22n−1},

max{a2
6 +(k− 1)(b26−a

2
6)/(8 · 4

2n−4)− 22n−1, a2
6 +k(b26−a

2
6)/(8 · 4

2n−4)− 22n−1− 82−2n/16},

a2
6 + k(b26 − a2

6)/(8 · 4
2n−4)− 22n−1, k ∈ {1, . . . , 8 · 42n−4},

min{c26 + (k− 1)(a2
7− c

2
6)/(8 · 4

2n−4)− 22n−1 + 82−2n/16, c26 + k(a2
7− c

2
6)/(8 · 4

2n−4)− 22n−1},

max{c26 +(k− 1)(a2
7− c

2
6)/(8 · 4

2n−4)− 22n−1, c26 + k(a2
7− c

2
6)/(8 · 4

2n−4)− 22n−1− 82−2n/16},

c26 + k(a2
7 − c26)/(8 · 4

2n−4)− 22n−1, k ∈ {1, . . . , 8 · 42n−4},
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...

c2n−2
1 − 22n−1, min{c2n−2

1 − 22n−1, b2n−2
1 − 22n−1 + 82−2n/16},

max{c2n−2
1 − 22n−1 − 82−2n/16, b2n−2

1 − 22n−1},

...

c2n−2
7·82n−4 − 22n−1, min{c2n−2

7·82n−4 − 22n−1, b2n−2
7·82n−4 − 22n−1 + 82−2n},

max{c2n−2
7·82n−4 − 22n−1 − 82−2n/16, b2n−2

7·82n−4 − 22n−1},

min{a2n−2
1 +(k−1)(b2n−2

1 −a2n−2
1 )/8−22n−1 +82−2n/16, a2n−2

1 +k(b2n−2
1 −a2n−2

1 )/8−22n−1},

max{a2n−2
1 +(k−1)(b2n−2

1 −a2n−2
1 )/8−22n−1, a2n−2

1 +k(b2n−2
1 −a2n−2

1 )/8−22n−1−82−2n/16},

a2n−2
1 + k(b2n−2

1 − a2n−2
1 )/8− 22n−1, k ∈ {1, . . . , 8},

min{c2n−2
1 +(k−1)(a2n−2

2 −c2n−2
1 )/8−22n−1 +82−2n/16, c2n−2

1 +k(a2n−2
2 −c2n−2

1 )/8−22n−1},

max{c2n−2
1 +(k−1)(a2n−2

2 −c2n−2
1 )/8−22n−1, c2n−2

1 +k(a2n−2
2 −c2n−2

1 )/8−22n−1−82−2n/16},

c2n−2
1 + k(a2n−2

2 − c2n−2
1 )/8− 22n−1, k ∈ {1, . . . , 8},

...

min{a2n−2
7·82n−4 + (k − 1)(b2n−2

7·82n−4 − a2n−2
7·82n−4)/8− 22n−1 + 82−2n/16,

a2n−2
7·82n−4 + k(b2n−2

7·82n−4 − a2n−2
7·82n−4)/8− 22n−1},

max{a2n−2
7·82n−4 + (k − 1)(b2n−2

7·82n−4 − a2n−2
7·82n−4)/8− 22n−1,

a2n−2
7·82n−4 + k(b2n−2

7·82n−4 − a2n−2
7·82n−4)/8− 22n−1 − 82−2n/16},

a2n−2
7·82n−4 + k(b2n−2

7·82n−4 − a2n−2
7·82n−4)/8− 22n−1, k ∈ {1, . . . , 8},

min{c2n−2
7·82n−4 + (k − 1)(a2n−2

7·82n−4+1 − c2n−2
7·82n−4)/8− 22n−1 + 82−2n/16,

c2n−2
7·82n−4 + k(a2n−2

7·82n−4+1 − c2n−2
7·82n−4)/8− 22n−1},

max{c2n−2
7·82n−4 + (k − 1)(a2n−2

7·82n−4+1 − c2n−2
7·82n−4)/8− 22n−1,

c2n−2
7·82n−4 + k(a2n−2

7·82n−4+1 − c2n−2
7·82n−4)/8− 22n−1 − 82−2n/16},

c2n−2
7·82n−4 + k(a2n−2

7·82n−4+1 − c2n−2
7·82n−4)/8− 22n−1, k ∈ {1, . . . , 8},

and from a number of b11 − 22n−1 such that the total number of d2n−1
l is 21 · 82n−2. We

denote
a2n

1 := d2n−1
1 , b2n

1 := d2n−1
2 , c2n

1 := d2n−1
3 , · · ·

c2n−1
7·82n−2 := d3

21·82n−2 , a2n−1
7·82n−2+1 := −22n−3 − · · · − 2.

In the (2n+ 1)-th step, we define continuous C so that

∣∣∣∣C(t)− C(t− 22n)
∣∣∣∣ < ε

2n+2
, t ∈ (2 + · · ·+ 22n−2, 2 + · · ·+ 22n].

Now C has constant values on [b2n+1
j , c2n+1

j ], j ∈ {1, . . . , 7 · 82n−1}, where we put

a2n+1
1 := 2 + 22 + · · ·+ 22n−2
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and we obtain
b2n+1
1 , c2n+1

1 , a2n+1
2 , · · · c2n+1

7·82n−1 , a2n+1
7·82n−1+1

from the nondecreasing sequence of

a2n
j+1 + 22n, b2n

j + 22n, c2n
j + 22n,

min{a2n
j + 22n + 81−2n/16, b2n

j + 22n}, max{a2n
j + 22n, b2n

j + 22n − 81−2n/16},

min{c2n
j + 22n, b2n

j + 22n + 81−2n/16}, max{c2n
j + 22n − 81−2n/16, b2n

j + 22n},

min{c2n
j + 22n + 81−2n/16, a2n

j+1 + 22n}, max{c2n
j + 22n, a2n

j+1 + 22n − 81−2n/16}

for j ∈ {1, . . . , 7 · 82n−2} and

c11 + 22n, min{c11 + 22n, b11 + 22n + 81−2n/16}, max{c11 + 22n − 81−2n/16, b11 + 22n},

c12 + 22n, min{c12 + 22n, b12 + 22n + 81−2n/16}, max{c12 + 22n − 81−2n/16, b12 + 22n},

min{a1
1 + (k − 1)(b11 − a1

1)/(8 · 4
2n−2) + 22n + 81−2n/16, a1

1 + k(b11 − a1
1)/(8 · 4

2n−2) + 22n},

max{a1
1 + (k − 1)(b11 − a1

1)/(8 · 4
2n−2) + 22n, a1

1 + k(b11 − a1
1)/(8 · 4

2n−2) + 22n − 81−2n/16},

a1
1 + k(b11 − a1

1)/(8 · 4
2n−2) + 22n, k ∈ {1, . . . , 8 · 42n−2},

min{c11 + (k − 1)(a1
2 − c11)/(8 · 4

2n−2) + 22n + 81−2n/16, c11 + k(a1
2 − c11)/(8 · 4

2n−2) + 22n},

max{c11 + (k − 1)(a1
2 − c11)/(8 · 4

2n−2) + 22n, c11 + k(a1
2 − c11)/(8 · 4

2n−2) + 22n − 81−2n/16},

c11 + k(a1
2 − c11)/(8 · 4

2n−2) + 22n, k ∈ {1, . . . , 8 · 42n−2},

min{a1
2 + (k − 1)(b12 − a1

2)/(8 · 4
2n−2) + 22n + 81−2n/16, a1

2 + k(b12 − a1
2)/(8 · 4

2n−2) + 22n},

max{a1
2 + (k − 1)(b12 − a1

2)/(8 · 4
2n−2) + 22n, a1

2 + k(b12 − a1
2)/(8 · 4

2n−2) + 22n − 81−2n/16},

a1
2 + k(b12 − a1

2)/(8 · 4
2n−2) + 22n, k ∈ {1, . . . , 8 · 42n−2},

min{c12 + (k − 1)(a1
3 − c12)/(8 · 4

2n−2) + 22n + 81−2n/16, c12 + k(a1
3 − c12)/(8 · 4

2n−2) + 22n},

max{c12 + (k − 1)(a1
3 − c12)/(8 · 4

2n−2) + 22n, c12 + k(a1
3 − c12)/(8 · 4

2n−2) + 22n − 81−2n/16},

c12 + k(a1
3 − c12)/(8 · 4

2n−2) + 22n, k ∈ {1, . . . , 8 · 42n−2},

c21 + 22n, min{c21 + 22n, b21 + 22n + 81−2n/16}, max{c21 + 22n − 81−2n/16, b21 + 22n},

...

c26 + 22n, min{c26 + 22n, b26 + 22n + 81−2n/16}, max{c26 + 22n − 81−2n/16, b26 + 22n},

min{a2
1 + (k − 1)(b21 − a2

1)/(8 · 4
2n−3) + 22n + 81−2n/16, a2

1 + k(b21 − a2
1)/(8 · 4

2n−3) + 22n},

max{a2
1 + (k − 1)(b21 − a2

1)/(8 · 4
2n−3) + 22n, a2

1 + k(b21 − a2
1)/(8 · 4

2n−3) + 22n − 81−2n/16},

a2
1 + k(b21 − a2

1)/(8 · 4
2n−3) + 22n, k ∈ {1, . . . , 8 · 42n−3},

min{c21 + (k − 1)(a2
2 − c21)/(8 · 4

2n−3) + 22n + 81−2n/16, c21 + k(a2
2 − c21)/(8 · 4

2n−3) + 22n},

max{c21 + (k − 1)(a2
2 − c21)/(8 · 4

2n−3) + 22n, c21 + k(a2
2 − c21)/(8 · 4

2n−3) + 22n − 81−2n/16},

c21 + k(a2
2 − c21)/(8 · 4

2n−3) + 22n, k ∈ {1, . . . , 8 · 42n−3},
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...

min{a2
6 + (k − 1)(b26 − a2

6)/(8 · 4
2n−3) + 22n + 81−2n/16, a2

6 + k(b26 − a2
6)/(8 · 4

2n−3) + 22n},

max{a2
6 + (k − 1)(b26 − a2

6)/(8 · 4
2n−3) + 22n, a2

6 + k(b26 − a2
6)/(8 · 4

2n−3) + 22n − 81−2n/16},

a2
6 + k(b26 − a2

6)/(8 · 4
2n−3) + 22n, k ∈ {1, . . . , 8 · 42n−3},

min{c26 + (k − 1)(a2
7 − c26)/(8 · 4

2n−3) + 22n + 81−2n/16, c26 + k(a2
7 − c26)/(8 · 4

2n−3) + 22n},

max{c26 + (k − 1)(a2
7 − c26)/(8 · 4

2n−3) + 22n, c26 + k(a2
7 − c26)/(8 · 4

2n−3) + 22n − 81−2n/16},

c26 + k(a2
7 − c26)/(8 · 4

2n−3) + 22n, k ∈ {1, . . . , 8 · 42n−3},

...

c2n−1
1 + 22n, min{c2n−1

1 + 22n, b2n−1
1 + 22n + 81−2n/16},

max{c2n−1
1 + 22n − 81−2n/16, b2n−1

1 + 22n},

...

c2n−1
7·82n−3 + 22n, min{c2n−1

7·82n−3 + 22n, b2n−1
7·82n−3 + 22n + 81−2n/16},

max{c2n−1
7·82n−3 + 22n − 81−2n/16, b2n−1

7·82n−3 + 22n},

min{a2n−1
1 + (k − 1)(b2n−1

1 − a2n−1
1 )/8 + 22n + 81−2n/16, a2n−1

1 + k(b2n−1
1 − a2n−1

1 )/8 + 22n},

max{a2n−1
1 + (k− 1)(b2n−1

1 − a2n−1
1 )/8 + 22n, a2n−1

1 + k(b2n−1
1 − a2n−1

1 )/8 + 22n − 81−2n/16},

a2n−1
1 + k(b2n−1

1 − a2n−1
1 )/8 + 22n, k ∈ {1, . . . , 8},

min{c2n−1
1 + (k − 1)(a2n−1

2 − c2n−1
1 )/8 + 22n + 81−2n/16, c2n−1

1 + k(a2n−1
2 − c2n−1

1 )/8 + 22n},

max{c2n−1
1 + (k − 1)(a2n−1

2 − c2n−1
1 )/8 + 22n, c2n−1

1 + k(a2n−1
2 − c2n−1

1 )/8 + 22n − 81−2n/16},

c2n−1
1 + k(a2n−1

2 − c2n−1
1 )/8 + 22n, k ∈ {1, . . . , 8},

...

min{a2n−1
7·82n−3 + (k − 1)(b2n−1

7·82n−3 − a2n−1
7·82n−3)/8 + 22n + 81−2n/16,

a2n−1
7·82n−3 + k(b2n−1

7·82n−3 − a2n−1
7·82n−3)/8 + 22n},

max{a2n−1
7·82n−3 + (k − 1)(b2n−1

7·82n−3 − a2n−1
7·82n−3)/8 + 22n,

a2n−1
7·82n−3 + k(b2n−1

7·82n−3 − a2n−1
7·82n−3)/8 + 22n − 81−2n/16},

a2n−1
7·82n−3 + k(b2n−1

7·82n−3 − a2n−1
7·82n−3)/8 + 22n, k ∈ {1, . . . , 8},

min{c2n−1
7·82n−3 + (k − 1)(a2n−1

7·82n−3+1 − c2n−1
7·82n−3)/8 + 22n + 81−2n/16,

c2n−1
7·82n−3 + k(a2n−1

7·82n−3+1 − c2n−1
7·82n−3)/8 + 22n},

max{c2n−1
7·82n−3 + (k − 1)(a2n−1

7·82n−3+1 − c2n−1
7·82n−3)/8 + 22n,

c2n−1
7·82n−3 + k(a2n−1

7·82n−3+1 − c2n−1
7·82n−3)/8 + 22n − 81−2n/16},

c2n−1
7·82n−3 + k(a2n−1

7·82n−3+1 − c2n−1
7·82n−3)/8 + 22n, k ∈ {1, . . . , 8},

and the corresponding number of b11 + 22n.
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Using this construction, we get a continuous function C on R. From Theorem 3.12 it
follows that C is almost periodic. Since

||C(t) || = 0, t ∈ [0, 1], ||C(t) || < ε/4, t ∈ (1, 2],

||C(t)− C(t + 2) || < ε/4, t ∈ [−2, 0), ||C(t)− C(t− 4) || < ε/8, t ∈ (2, 6],

...
∣∣∣∣C(t)− C(t+ 22n−1)

∣∣∣∣ < ε/2n+1, t ∈ [−22n−1 − · · · − 23 − 2,−22n−3 − · · · − 23 − 2),
∣∣∣∣C(t)− C(t− 22n)

∣∣∣∣ < ε/2n+2, t ∈ (2 + 22 + · · ·+ 22n−2, 2 + 22 + · · ·+ 22n],

we see that

||C(t) || <
∞∑

j=1

2ε

2j+1
= ε, t ∈ R.

We denote
In := [2 + 22 + · · ·+ 22n−2, 2 + 22 + · · ·+ 22n].

We will prove that we can choose constant values of C(t), t ∈ In on subintervals with the
total length denoted by r2n+1 which is grater than 22n−1 for all n ∈ N. We can choose
values of C on

[4− 2 + 1/16 + 8−1/16, 4− 2 + 1− 1/16− 8−1/16] ⊂ [2, 6],

[4− 2 + 1 + 1/4 + 1/16 + 8−1/16, 4− 2 + 1 + 3/4− 1/16− 8−1/16] ⊂ [2, 6],

[4 + 8−1/16, 4 + 1− 8−1/16], [4 + 1 + 1/4 + 8−1/16, 4 + 1 + 3/4− 8−1/16] ⊂ [2, 6].

Hence,
r3 ≥ 55/64 + 23/64 + 63/64 + 31/64 = 43/16, (4.2)

i.e., the statement is valid for n = 1. We use the induction principle with respect to n.
Assume that the statement is true for 1, 2, . . . , n − 1 and prove it for n. Without loss
of the generality (consider the below given process), we can also assume that the estima-
tion r2j > 22(j−1) is valid for j ∈ {1, . . . , n} (note that r2 = 5/4 > 20) if we use analogous
notation.

In view of the construction, we see that we can choose C on any interval

[s + 22n + 81−2n/16, t+ 22n − 81−2n/16]

if we can choose C on [s, t], where s = blj < clj = t, l < 2n + 1. Especially, we can choose
function C on

[22n + 81−2n/16, 1 + 22n − 81−2n/16],

[1 + 1/4 + 22n + 81−2n/16, 1 + 3/4 + 22n − 81−2n/16],

[−2 + 1/16 + 22n + 81−2n/16,−2 + 1− 1/16 + 22n − 81−2n/16],

[−2 + 1 + 1/4 + 1/16 + 22n + 81−2n/16,−2 + 1 + 3/4− 1/16 + 22n − 81−2n/16]
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and on less than 7 · 82n−1 − 4 subintervals of In. Expressing

In = [0 + 22n, 1 + 22n] ∪ [1 + 22n, 2 + 22n] ∪ [−2 + 22n, 0 + 22n] ∪ · · ·

∪ [2 + 22 + · · ·+ 22n−4 + 22n, 2 + 22 + · · ·+ 22n−2 + 22n]

∪ [−22n−1 − · · · − 23 − 2 + 22n,−22n−3 − · · · − 23 − 2 + 22n]

and using the induction hypothesis, the construction, and (4.2), we obtain that we can
choose C on intervals of the lengths grater than or equal to

1− 2 · 81−2n/16, 1/2− 2 · 81−2n/16,

1− 1/8− 2 · 81−2n/16, 1/2− 1/8− 2 · 81−2n/16,

43/16 + 22 + 23 + · · ·+ 22n−3 + 22n−2 − 2 · 81−2n/16 ·
(
7 · 82n−1 − 4

)
.

Summing, we get

r2n+1 ≥ 1 +
1

2
+

7

8
+

3

8
+

11

16
+ 22n−1 − 2−

7

8
> 22n−1, (4.3)

which is the above statement. Analogously, we can prove

r2n > 22n−2, n ∈ N. (4.4)

Now we describe the principal fundamental matrix XC on In for arbitrary n ∈ N.
Since C is constant a has the form diag [ia, ia, . . . , ia] for some a ∈ R on each interval
[b2n+1

j , c2n+1
j ], j ∈ {1, . . . , 6 · 42n−1}, from

XC(t2)−XC(t1) =

∫ t2

t1

C(τ) ·XC(τ) dτ, t1, t2 ∈ R,

we obtain
∣∣∣∣XC(t)−X2n+1

C (t)
∣∣∣∣ ≤

k∑

j=1

(∫ b2n+1
j

a2n+1
j

||C(τ) ·XC(τ) || dτ +

∫ a2n+1
j+1

c2n+1
j

||C(τ) ·XC(τ) || dτ

)
(4.5)

if t ≤ a2n+1
k+1 , t ∈ In, where

X2n+1
C (t) := XC(2 + 22 + · · ·+ 22n−2), t ∈ [2 + 22 + · · ·+ 22n−2, b2n+1

1 ],

X2n+1
C (t) := exp

(
C(b2n+1

1 )(t− b2n+1
1 )

)
·X2n+1

C (b2n+1
1 ), t ∈ (b2n+1

1 , c2n+1
1 ],

X2n+1
C (t) := XC

2n+1(c2n+1
1 ), t ∈ (c2n+1

1 , b2n+1
2 ],

...

X2n+1
C (t) := exp

(
C(b2n+1

7·82n−1)(t− b2n+1
7·82n−1)

)
·X2n+1

C (b2n+1
7·82n−1), t ∈ (b2n+1

7·82n−1 , c
2n+1
7·82n−1 ],

X2n+1
C (t) := X2n+1

C (c2n+1
7·82n−1), t ∈ (c2n+1

7·82n−1 , 2 + 22 + · · ·+ 22n].
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It is seen that XC is bounded (see also the below given, where it is shown that XC(t) ∈
U(m) for all t) as almost periodic C. Any interval

[2 + · · ·+ 22n−2 + l − 1, 2 + · · ·+ 22n−2 + l], l ∈ {1, . . . , 22n}, n ∈ N

contains at most 42n+1 subintervals where C can be linear. Indeed, it suffices to consider
the construction. We repeat that the length of each one of the considered subintervals is
81−2n/16 which implies that the total length of them on

J l
n := [2 + 22 + · · ·+ 22n−2, 2 + 22 + · · ·+ 22n−2 + 22n−l], l ∈ {1, . . . , n}

is less than 21−l. Thus (consider also (4.5)), there exists K ∈ R such that

∣∣∣∣XC(t)−X2n+1
C (t)

∣∣∣∣ ≤ K

2l
, t ∈ J l

n, l ∈ {1, . . . , n}, n ∈ N. (4.6)

From the form diag [ia(t), . . . , ia(t)] of all matrices C(t), we see that

||C(t) || = | a(t) |, t ∈ R.

For simplicity, let a(t) ≥ 0, t ∈ R. Let an
j ∈ R, j ∈ {1, . . . , n} be arbitrarily chosen.

Considering the construction and combining (4.3) and (4.4), we get that we can choose
constant values of

C(t), t ∈ [2 + · · ·+ 22n−2 + (l − 1) 2n, 2 + · · ·+ 22n−2 + l 2n]

on subintervals with the total length grater than 2n−2 for each l ∈ {1, . . . , 2n} and all
sufficiently large n ∈ N. Since we choose C only so that

∣∣∣∣C(t)− C(t− 22n)
∣∣∣∣ < ε

2n+2
, t ∈ In,

we see that we can obtain

X2n+1
C (tnj ) = diag

[
exp

(
ian

j

)
, . . . , exp

(
ian

j

)]

for arbitrary tnj such that

tn1 ≥ 2 + 22 + 24 + · · ·+ 22n−2 + 3n − 30, tn2 ≥ tn1 + 3n − 31,

· · · tnn ≥ tnn−1 + 3n − 3n−1, 2 + 22 + 24 + · · ·+ 22n ≥ tnn
(4.7)

because we have

4n > n(3n − 30) > 3n − 30 > · · · > 3n − 3n−1 > 22n−k+1

for sufficiently large n ∈ N and some k = k(n) ∈ {1, . . . , n} satisfying

22n−k−2 · ε · 2−n−2 > 2π.

We recall that we need to prove the existence of such C, given by the above construction,
for which the vector valued function XA(t)XC(t) u, t ∈ R is not almost periodic for any
u ∈ Cm, ||u ||1 = 1. Since

(XA(t) ·X∗
A(t))′ = A(t) ·XA(t) ·X∗

A(t)−XA(t) ·X∗
A(t) · A(t), t ∈ R
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and since the constant function given by I is a solution of X ′ = AX − X A, X(0) = I,
we have XA(t) ∈ U(m) for all t. Thus, XC(t) ∈ U(m), t ∈ R as well. We add that
XA(t)X∗

A(t) = I, t ∈ R implies A∗(t) + A(t) = O, t ∈ R.
Let c ∈ C, | c | = 1, and N ∈ U(m) be arbitrarily given. Obviously, for any M ∈ U(m),

we can choose a number a(M, c) ∈ [0, 2π) in order that all eigenvalues of matrix

P := M · diag [exp (ia(M, c)) , . . . , exp (ia(M, c))]

are not in the neighbourhood of c with a given radius which depends only on dimension m.
Indeed, if M has eigenvalues λ1, . . . , λm, then the eigenvalues of P are λ1 exp (ia(M, c)),
. . . , λm exp (ia(M, c)). Considering P u−N u and expressing vectors u ∈ Cm, || u ||1 = 1, as
linear combinations of the eigenvectors of P , we see that P u cannot be in a neighbourhood
of N u for some c ∈ C, | c | = 1. Thus (the considered multiplication of matrices and
vectors is uniformly continuous), there exist ϑ > 0 and ξ > 0 such that, for any matrices
M,N ∈ U(m), one can find a(M,N) ∈ (0, 2π) satisfying

||M · diag [exp (iã) , . . . , exp (iã)] · u −N · u ||1 > ϑ,

u ∈ Cm, ||u ||1 = 1, ã ∈ (a(M,N)− ξ, a(M,N) + ξ) .
(4.8)

We showed that we can construct C so that we obtain

X2n+1
C (tnj ) = diag

[
exp

(
ian

j

)
, . . . , exp

(
ian

j

)]

for arbitrarily given an
j ∈ [0, 2π) and any tnj satisfying (4.7) if n ∈ N is sufficiently large

and j ∈ {1, . . . , n}. Especially, for sufficiently large n ∈ N and for

tn1 := 2 + 22 + 24 + · · ·+ 22n−2 + 3n − 30,

tn2 := tn1 + 3n − 31, · · · tnn := tnn−1 + 3n − 3n−1,
(4.9)

we can choose all X2n+1
C (tnj ) in the form without any conditions. Hence, we obtain diagonal

matrices X2n+1
C (tnj ), j ∈ {1, . . . , n}, determined by numbers

exp
(
ia
(
XA(tnj ), XA(tnj − 3n + 3j−1) ·XC(tnj − 3n + 3j−1)

))

on their diagonals.
It is seen from (4.9) that each

tnj ∈ [2 + 22 + · · ·+ 22n−2, 2 + 22 + · · ·+ 22n−2 + n3n].

Thus (see (4.6)), for any η > 0, we have

∣∣∣∣XC(tnj )−X2n+1
C (tnj )

∣∣∣∣ < η (4.10)

for sufficiently large n = n(η) ∈ N and j ∈ {1, . . . , n}. From (4.8) and (4.10) it follows
that

∣∣∣∣XA(tnj ) ·XC(tnj ) · u−XA(tnj − 3n + 3j−1) ·XC(tnj − 3n + 3j−1) · u
∣∣∣∣

1
> ϑ (4.11)

for any u ∈ Cm, ||u ||1 = 1, sufficiently large n ∈ N, and j ∈ {1, . . . , n}.
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By contradiction, suppose that there exists u ∈ Cm, ||u ||1 = 1, with the property that
XA(t)XC(t) u, t ∈ R is almost periodic. Applying Theorem 3.4 for

ψ(t) = XA(t) ·XC(t) · u, t ∈ R, sn = 3n, n ∈ N, ε = ϑ,

we get

||XA(t+ 3n1) ·XC(t+ 3n1) · u −XA(t+ 3n2) ·XC(t+ 3n2) · u ||1 < ϑ, t ∈ R (4.12)

for all n1, n2 from an infinite subset of N. If we rewrite (4.12) as follows

||XA(t) ·XC(t) · u −XA(t + 3n2 − 3n1) ·XC(t+ 3n2 − 3n1) · u ||1 < ϑ, t ∈ R,

then it is easy to see that (4.11) is not valid for infinitely many n ∈ N. This contradiction
proves the theorem.

In Chapters 3 and 4, we studied the Bohr almost periodic functions, we modified the
Bochner definition, we mentioned main properties of almost periodic functions and we con-
sidered almost periodic solutions of almost periodic skew-Hermitian differential equations.
Analogously, it is possible to obtain (by simple modifications of our processes) the corres-
ponding results for pseudo almost periodic functions (see [50], [53]). Note that a function,
defined for t ∈ R with values in a Banach space, is pseudo almost periodic if and only if it
can be represented as the sum of an almost periodic function and a continuous function f
satisfying

lim
T→+∞

1

T

T∫

−T

|| f(t) || dt = 0.



Footnotes to Part II

1 There exist definitions of almost periodic functions defined on various sets. For almost
periodic functions defined on the torus (on the annuloid), see [122], [135]; on a tube,
see [66]; on a circle, see [27].

2 The bibliography of 137 items can be useful for many readers. We add that it
includes 18 papers by A. Kovanko whose important results about (the Besicovitch, the
Muckenhoupt, the Stepanov, and the Weyl) types of almost periodic functions are not
mentioned in this work. See also bibliographical notes in [39] (704 items) and directly
[7], [108]. Other interesting types of almost periodic functions (e.g., asymptotic, the
Eberlein, pseudo, and weakly almost periodic functions) are investigated in [172].
Very special types can be found in [27], [146].

3 Theory of almost periodic functions has been one of the most interesting topics in
analysis for its significance in the physical sciences (see, e.g., [147]). There exist many
remarkable books (see [37], [69], [171] and the papers cited therein as well) concerning
almost periodic solutions of ordinary (or functional) differential equations (in appli-
cations).

4 Since the Bochner definition is very important (in this work), we mention the proofs
of Lemmas 3.2 and 3.3 in the full version:

Proof of Lemma 3.2. Let an almost periodic function ψ : R → X be given and let
p = p (ε/3), where ε > 0 is arbitrary, be from Definition 3.1. Since ψ is uniformly
continuous on the interval I := [−1, 1 + p], there exists δ = δ(ε) ∈ (0, 1) such that

% (ψ(t1), ψ(t2)) <
ε

3
, t1, t2 ∈ I, | t1 − t2 | < δ.

Let t1, t2 ∈ R satisfying | t1− t2 | < δ be arbitrary and s = s(t1, δ) ∈ [−t1,−t1 + p] be
an (ε/3)-translation number of ψ. Evidently, t1 + s ∈ I, t2 + s ∈ I. Finally, we have

% (ψ(t1), ψ(t2)) ≤ % (ψ(t1), ψ(t1 + s)) + % (ψ(t1 + s), ψ(t2 + s))

+ % (ψ(t2 + s), ψ(t2)) <
ε

3
+
ε

3
+
ε

3
= ε,

which terminates the proof.
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Proof of Lemma 3.3. Let p = p (ε/2) be from Definition 3.1 for arbitrarily given
ε > 0. Obviously, the set of all values of ψ on [0, p] is a subset of a finite number
of neighbourhoods of radius ε/2. Let us denote by x1, x2, . . . , xq the centres of these
neighbourhoods that cover the set {ψ(t); t ∈ [0, p]}. For an arbitrary t ∈ R, we
take an (ε/2)-translation number s = s(t) ∈ [−t,−t + p] of ψ. Thus, t + s ∈ [0, p].
Let x(t) ∈ {x1, x2, . . . , xq} be the centre of the neighbourhood of radius ε/2 which
contains ψ(t+ s). We get

% (x(t), ψ(t)) ≤ % (x(t), ψ(t+ s)) + % (ψ(t + s), ψ(t)) <
ε

2
+
ε

2
= ε.

It shows that, for any ε > 0, the set of all values of ψ is covered by a finite number
of neighbourhoods of radius ε.

5 Now we will prove that any Bochner almost periodic function ψ : R → X is Bohr
almost periodic:

Assume, on the contrary, that ψ is not Bohr almost periodic. Then, there exists
a number ε > 0 such that, for any p ∈ N, one can find an interval of length p which
does not contain any ε-translation number of ψ. Consider an arbitrary number l1 ∈ N

and an interval (a1, b1) ⊆ R of the length greater than 2(l1 + 1) which contains no
ε-translation number of ψ. We choose l2 ∈ Z such that l2− l1 ∈ (a1, b1). Thus, l2− l1
is not an ε-translation number of ψ. Next, there exists an interval (a2, b2) ⊆ R of
the length greater than 2(l1 + l2 + 1) such that there exists no ε-translation number
of ψ in (a2, b2). We can also find l3 ∈ Z for which l3 − l1, l3 − l2 ∈ (a2, b2), and hence
l3 − l1, l3 − l2 cannot be ε-translation numbers of ψ.

Proceeding in a similar way, we get a sequence {ln}n∈N satisfying that none of the
numbers ln1 − ln2, where n1 6= n2 (n1, n2 ∈ N), is an ε-translation number of ψ.
Therefore, we obtain

% (ψ(t + ln1 − ln2), ψ(t)) ≥ ε

for all n1 6= n2 (n1, n2 ∈ N) and at least one t ∈ R. This contradiction proves that ψ
is Bohr almost periodic.

6 For the first time, Corollary 3.9 was proved for almost periodic functions with values
in an arbitrary metric space in [134].

7 Such theorems (which show how almost periodic functions can be characterized by
almost periodic sequences) are also used to study almost periodic solutions of dif-
ferential equations. Especially, general examples of differential equations, for which
a solution x(t) defined for t ∈ R is almost periodic if and only if {x(k)}k∈Z is an
almost periodic sequence, are mentioned in [3], [119], [126].

8 An important class of almost periodic functions is the class of limit-periodic functions.
To this class belong the uniform limits of sequences of periodic continuous functions
(in general, having different periods). Note that these functions can be defined by
their Fourier exponents (see [25]). It is seen that, using the constructions mentioned
in Section 3.3, we obtain limit-periodic functions.
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9 We remark that the first interesting generalization of the approximation theorem for
a complete metric space is due to H. Tornehave and it can be found in [159]. It is
required there that, for every compact subset S, there exists a positive number d such
that any points x, y ∈ S with distance less than d can be connected by a continuous
curve which depends continuously on x and y and which reduces to x for x = y. This
requirement motivates the main condition of Theorem 3.19.

10 The first important result about almost periodic solutions of linear equations, in the
general case when each coefficient can be almost periodic, was proved by R. Cameron
(in [30]). But R. Cameron considered only the scalar case. His result was extended
to linear (and quasi-linear) systems by J. Massera (in [116]).

11 The importance of skew-Hermitian systems may be illustrated by the well-known
Cameron-Johnson theorem states that any almost periodic homogeneous linear dif-
ferential system can be reduced by a Lyapunov transformation to a skew-symmetric
system if all solutions of the given system and all of its limit equations are bounded
in R (for this result and its generalizations, see [34]).

12 In [104] and [105], the result is proved for systems which have a frequency basis
of dimension two or three (see introduction of Section 4.2). We remark that an
almost periodic function with a finite frequency basis is called quasiperiodic (see also
[49], [154]) and that the quasiperiodic functions as a special class of functions were
studied by P. Bohl and E. Esclangon (see [22], [58], [60], [62]). They also showed the
applications of these functions to the theory of differential equations before H. Bohr
introduced the classical almost periodic functions (see [23], [59]).

13 In the vector space Cm, the following three norms are in common use: the Euclidean
norm

|| x ||2 :=

√√√√
m∑

j=1

| xj |2;

the absolute norm

||x ||1 :=

m∑

j=1

| xj |;

and the maximum norm
||x ||∞ := max

1≤j≤m
| xj |,

where x = (x1, . . . , xm)T ∈ Cm. The space Mat(C, m) can be considered as equi-
valents to Cm2

. Thus, a matrix norm || · || should satisfy the usual three conditions
and, in addition, we require

||A ·B || ≤ ||A || ||B || , A, B ∈ Mat(C, m)

and the compatibility with || · ||p, p ∈ {1, 2,∞}, i.e.,

||A · x ||p ≤ ||A || || x ||p
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for all x ∈ Cm and any A ∈ Mat(C, m). Once, in Cm, a norm || · ||p (p ∈ {1, 2,∞})
is defined, then the corresponding matrix norm || · || is given by

||A || := sup
x6=0

||A · x ||p
||x ||p

, A ∈ Mat(C, m).

14 The definition of the frequency module (and, consequently, its rational hull) for
almost periodic sequences and functions in Banach spaces is introduced in [169].

15 Reducible systems and irreducible systems (in this context) are introduced and in-
vestigated in [56], [102], [129].
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[70] Flor, P.: Über die Wertmengen fastperiodischer Folgen. Monatsh. Math. 67 (1963),
12–17.
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[109] Levitan, B.M.; Žikov, V.V.: Almost Periodic Functions and Differential Equations.
Cambridge University Press, Cambridge (New York), 1982.
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Dobrovol’skĭı, S.M., 25
Du, Y. F., 97
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