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ASYMPTOTIC PROPERTIES
OF SECOND ORDER

DIFFERENTIAL EQUATION

WITH p-LAPLACIAN

Dissertation

MASARYK UNIVERSITY
Faculty of Science

Department of Mathematics and Statistics

Supervisor: Prof. RNDr. Miroslav Bartušek, DrSc. Brno 2009
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Introduction

In the last time the second ordinary differential equations with p-Laplacian and

their applications are studied.

The goal of the dissertation is an investigation of sufficient conditions under

the validity of that either every solution y of these differential equations is con-

tinuable or a solution with special Cauchy conditions is continuable, to generalize

known results to a system of differential equations and to study a problem of the

asymptotic behaviour of continuable solutions.

The thesis consists of five chapters. The first one includes the problem de-

scription, introduces and explains new results which are obtained. Chapters 2–5

involves the new results and they are composed by four author’s articles, see

[P1], [P2], [P3] and [P4], respectively.
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History and summary
of the results 1
1.1 History and basic concepts

In two last decades the existence / the nonexistence of noncontinuable solutions

are investigated for differential equation

y(n) = f(t, y, . . . , y(n−1)) (1.1)

and it special cases where n ≥ 2, f is a continuous function on R+ × R
n,

R+ := [0,∞), R := (−∞,∞).

Definition 1.1. Let y be a solution of (1.1) defined on [T, τ) ⊂ R+. Then y is called

noncontinuable (singular of 2-nd kind) if T < ∞ and lim supt→T
−

|y(n−1)(t)| <∞.

If T = ∞, y called continuable (global).

It is important to study the existence / nonexistence of noncontinuable so-

lutions. They appear e.g. in water flow models in one space dimension (flood

waves, a flow in sewerage systems); their existence very often mean that models

failed and they have been much more precise, see e.g. [16].

Sometimes, the noncontinuability is very important in a definition of some

problems. For example, the limit-circle/limit-point problem for (1.1) has an old

history, see e.g. the monograph [7] and [8, 9, 10, 11, 12].

Definition 1.2. Let α ∈ {−1, 1} and αf(t, x0, . . . , xn−1), x0 ≥ 0 on R+ × R
n. Equa-

tion (1.1) is said to be of the nonlinear limit-circle type if for any solution y defined

on R+ and
∫ ∞

0

y(t)f(t, y, . . . , y(n−1)(t)) dt <∞

holds. Equation (1.1) is said to be of the nonlinear limit-point type if there exists

a solution y of (1.1) defined on R+ such that

∫ ∞

0

y(t)f(t, y, . . . , y(n−1)(t)) dt = ∞. (1.2)

According to Definition 1.2 it is necessary to know if a solution y defined on

R+ and satisfying (1.2) exists. The following example is very instructive.
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1. History and summary of the results

Example 1.1. Consider the differential equation

y′′ = tα|y|λ sgn y (1.3)

with λ > 1 and α ∈ R.

(i) Then exists ε > 0 such that every solution y of (1.3) with Cauchy initial

conditions |y(0)| ≤ ε, |y′(0)| ≤ ε is continuable if and only if α < −λ− 1 (see

[13]). Hence, if α < −λ− 1 then (1.3) is of the nonlinear limit-point type.

(ii) If α ≥ −λ − 1, then every solution of (1.3) satisfying y(τ)y′(τ) > 0 at some

τ ∈ R+ is noncontinuable (see [11, Lemma 5]). Moreover, if α ≥ 0, then (1.3)

is of the nonlinear limit-circle type (see [11, Theorem 4]).

It is important to study the nonexistence of noncontinuable solutions from

the mathematical point of view. Example 1.1(ii) shows that all nonoscillatory so-

lutions of (1.3) are Kneser ones, i.e. y(t)y′(t) < 0 for large t holds. In this case

it is a nonsense to investigate asymptotic properties of positive increasing solu-

tions. As concern to problems in Example 1.1(ii) for (1.1), see e.g. [11, Theorem 4]

(n = 2), [12, Theorem 6] (n is even), [10, Theorem 6] (n = 4).

The first results for the nonexistence of noncontinuable solutions of (1.1) (or

its special cases) are given by Wintner, see [20] or [31]. Other results are obtained

e.g. in [5, 12, 14, 22, 29, 30, 32, 35, 36], see references therein, too. Existence results

can be found e.g. in [2, 5, 15, 19, 20, 32, 39].

In the last decade a lot of papers are devoted to the study of a differential

equation with p-Laplacian (see e.g. [28])

(a(t)|y′|p−1y′)′ + r(t)g(y) = 0 (1.4)

where p > 0, r ∈ C0(R+), g ∈ C0(R) and g(x)x ≥ 0 on R.

In sublinear case, if M > 0 and

|g(x)| ≤M |x|p for large |x|,

then every solution y of (1.4) is continuable, see [39, Theorem 1.1]. Furthermore,

if g(x) = |x|λ sgn x, λ > p, K2 > 0, r > 0 for large t and

∫ ∞

0

a−
1
p (s) ds = ∞, r(t)

∫ t

0

a−
1
p (s) ds ≥ K2a

− 1
p (t) for large t,

then every solution y with y(τ)y′(τ) at some τ ∈ R+ is noncontinuable; i.e. y is

Kneser solution. A similar result for (1.4) with forcing term is in [11, Lemma 5].

So it is convenient to investigate the more general equation

(a(t)|y′|p−1
y′)′ + b(t)g(y′) + r(t)f(y) = e(t) (1.5)

8



1. History and summary of the results

where p > 0, a ∈ C0(R+), b ∈ C0(R+), r ∈ C0(R+), e ∈ C0(R+), f ∈ C0(R),

g ∈ C0(R) and a > 0 on R+.

The p-Laplace differential equation

div(‖∇v‖)p−2∇v) = h(‖x‖, v) (1.6)

plays an important role in the theory of partial differential equations (see e.g.

[41]), where ∇ is the gradient, p > 0 and ‖x‖ is a norm of x ∈ R
n and h(y, v)

is a nonlinear function on R × R. Radially symmetric solutions of the equation

(1.6) depend on the scalar variable r = ‖x‖ and they are solutions of the ordinary

differential equation

r1−n(rn−1|v′|)′ = h(r, v) (1.7)

where v′ = dv
dr

and p > 1. If p 6= n then the change of variables r = t
p−1
p−n transforms

the equation (1.7) into the equation

(Ψp(u
′))′ = f(t, u)

where Ψp(u
′) = |u′|p−2u′ is so called one-dimensional, or scalar p-Laplacian [41]

and

f(t, u) =
∣

∣

∣

p− 1

p− n

∣

∣

∣

p

t
p−n

p(1−n)h(t
p−1
p−n , u) .

In [44] the existence of periodic solutions of the system

(Φp(u
′))′ +

d

dt
∇F (u) + ∇G(u) = e(t)

is studied where

Φp : R
n → R

n, Φp(u) = (|u1|p−2u1, . . . , |un|p−2un)T .

The operator Φp(u
′) is called multidimensional p-Laplacian. The study of radially

symmetric solutions of the system of p-Laplace equations

div(‖∇vi‖p−2∇vi) = hi(‖x‖, v1, v2, . . . , vn), i = 1, 2, . . . , n, p > 1

leads to the system of ordinary differential equations

(|u′i|p−2u′i)
′ = fi(t, u1, u2, . . . , un), i = 1, 2, . . . , n, p 6= n

where

fi(t, u1, u2, . . . , un) =
∣

∣

∣

p− 1

p− n

∣

∣

∣

p

t
p−n

p(1−n)hi(t
p−1
p−n , u1, u2, . . . , un).

This system can be written in the form

(Φp(u
′))′ = f(t, u)
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1. History and summary of the results

where f = (f1, f2, . . . , fn)T and Φp(u
′) is the n-dimensional p-Laplacian. We will

consider the operator Φp+1 with p > 0 and for the simplicity we denote it as Φp,

i. e.

Φp(u) = (|u1|p−1u1, |u2|p−1u2, . . . , |un|p−1un).

So it is reasonable to shall study the initial value problem

(A(t)Φp(y
′))′ +B(t)g(y′) +R(t)f(y) = e(t), (1.8)

y(0) = y0, y′(0) = y1 (1.9)

where p > 0, y0, y1 ∈ R
n, A(t), B(t), R(t) are continuous, matrix-valued functions

on R+, A(t) is regular for all t ∈ R+ , e : R+ → R
n and f, g : R

n → R
n are

continuous mappings.

The equation (1.8) with n = 1 has been studied in Chapter 2. Many papers are

devoted to the study of the existence of periodic solutions of scalar differential

equation with p−Laplacian and in some of them it is assumed that A(0) = 0. We

study the system without this singularity. From the recently published papers

and books see e.g. [33, 34, 41, 44]. The problems treated in Chapter 3 are close to

those studied in [3, 4, 5, 6, 17, 18, 26, 27, 31, 39, 40, 41, 44].

We also study asymptotic properties of the second order differential equation

with p-Laplacian

(|u′|p−1u′)′ + f(t, u, u′) = 0, p ≥ 1. (1.10)

In the sequel, it is assumed that all solutions of the equation (1.10) are con-

tinuously extendable throughout the entire real axis. We shall prove sufficient

conditions under which all global solutions are asymptotic to at + b, as t→ +∞
where a, b are real numbers. The problem for ordinary second order differential

equations without p−Laplacian has been studied by many authors, e.g. [23, 24,

25, 37, 38, 42, 43, 45, 46]. Our results are more close to these obtained in the pa-

pers [42, 43]. The main tool of the proofs are the Bihari’s and Dannan’s integral

inequalities. We remark that sufficient conditions on the existence of continuable

solutions for second order differential equations and second order functional-

differential equations with p−Laplacian are proved in the papers [3, 4, 13]. Many

references concerning differential equations with p−Laplacian can be found in

the paper [41], where boundary value problems for such equations are treated.

Let

u(t0) = u0, u′(t0) = u1 (1.11)

where u0, u1 ∈ R be initial condition for solutions of (1.10).
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1. History and summary of the results

1.2 The main results

The goal of the thesis is

• an investigation of sufficient conditions under the validity of that either ev-

ery solution y of (1.5) or a solution with special Cauchy conditions is con-

tinuable,

• to generalize known results to a system of differential equations of the form

(1.8),

• to study a problem of the asymptotic behaviour of continuable solutions.

In the second chapter, we study the existence of continuable solutions of a forced

second order nonlinear differential equation of the form (1.5).

A special case of equation (1.5) is the unforced equation

(a(t)|y′|p−1
y′)′ + b(t)g(y′) + r(t)f(y) = 0. (1.12)

We will often use of the following assumptions

f(x)x ≥ 0 on R (1.13)

and

g(x)x ≥ 0 on R+. (1.14)

Definition 1.3. A solution y of (1.5) is called proper if it is defined on R+ and

supt∈[τ,∞)|y(t)| > 0 for every τ ∈ (0,∞). A proper solution y is called nonoscil-

latory if y 6= 0 in a neighbourhood of ∞; it is called weakly oscillatory if it is

nonoscillatory and y′ has a sequence of zeros tending to ∞. A solution y of (1.5)

is called singular of the 1-st kind if it is defined on R+, there exists τ ∈ (0,∞)

such that y ≡ 0 on [τ,∞) and supT≤t≤τ |y(t)| > 0 for every T ∈ [0, τ). It is called

noncontinuable (singular of the 2-nd kind) if it is defined on [0, τ), τ < ∞ and

sup0≤t<τ |y′(t)| = ∞.

We define the function R : R+ → R by R(t) = a
1
p (t)r(t).

The following theorem gives a nonexistence result for noncontinuable solu-

tion.

Theorem 1.1. Let M > 0 and |g(x)| ≤ |x|p and |f(x)| ≤ |x|p for |x| ≥ M .

Then there exist no noncontinuable solution y of (1.5) and all solutions of (1.5) are de-

fined on R+.

Remark 1.1. The result of Theorem 1.1 for Equation (1.5) with p ≤ 1 and without

the damping (b ≡ 0) is a generalization of the well-known Wintner’s Theorem,

see e.g. [20, Theorem 11.5] or [31, Theorem 6.1].
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1. History and summary of the results

The following result shows that noncontinuable solutions of (1.5) do not exist if

r > 0 and R is smooth enough under weakened assumptions on f .

Theorem 1.2. Let (1.13), R ∈ C1(R+), r > 0 on R+ and let either

(i) M ∈ (0,∞) exist such that |g(x)| ≤ |x|p for |x| ≥M

or

(ii) (1.14) hold and b(t) ≥ 0 on R+.

Then all solutions of (1.5) are defined on R+.

Remark 1.2. Note that the condition |g(x)| ≤ |x|p in (i) can not be improved.

Example 1.2. Let ε ∈ (0, 1). Then the function y =
(

1
1−t

)
1−ε

ε is a noncontinuable

solution of the equation

y′′ − |y′|εy′ + C|y| 1+ε
1−ε sgn y = 0

on [0, 1) with C =
(

1−ε
ε2

)ε+1 − 1−ε
ε2 .

Remark 1.3.

(i) The result of Theorem 1.2 is obtained in [9] in case b ≡ 0 using a the similar

method.

(ii) Note that Theorem 1.2 is not valid if R 6∈ C1(R+); see [3] or [21] for the case

g ≡ 0.

Remark 1.4. Theorem 1.2 is not valid if r < 0 on an interval of a positive measure,

see e.g. [20, Theorem 11.3] (for (1.4) and p = 1). The existence of noncontinuable

solutions for (1.5) with r > 0 is an open problem.

The following lemma shows that e(t) has to be trivial in a neighbourhood of ∞
if Equation (1.5) has a singular solution of the first kind.

Lemma 1.1. Let y be a singular solution of the first kind of (1.5). Then e(t) ≡ 0

in a neighbourhood ∞.

In what follows, we will only consider the equation (1.12).

Theorem 1.3. Let M > 0 and

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for |x| ≤M.

Then there exist no singular solution of the first kind of Equation (1.12).

12



1. History and summary of the results

Theorem 1.4. Consider (1.13), R ∈ C1(R+), r > 0 on R+ and let either

(i) M ∈ (0,∞) exist such that |g(x)| ≤ |x|p for |x| ≤M

or

(ii) (1.14) and b(t) ≤ 0 on R+.

Then Equation (1.12) has no singular solution of the first kind.

Remark 1.5. Theorem 1.3 generalize results of [39, Theorem 1.2], obtained in case

b ≡ 0. Results of [31, Theorem 9.4] with (b ≡ 0, f(x) = |x|p sgn x) and of [3,

Theorem 1] (b ≡ 0) are special cases of Theorem 1.1 here.

Remark 1.6. Theorem 1.4 is not valid if r < 0 on an interval of positive measure;

see e.g. [20, Theorem 11.1] (for (1.4) and p = 1). The existence of singular solutions

of the first kind of (1.12) is an open problem.

Remark 1.7. If R 6∈ C1(R+), then the statement of Theorem 1.4 does not hold (see

[3] for g ≡ 0 or [22]).

Note that condition (i) in Theorem 1.4 can not be improved.

Example 1.3. Let ε ∈ (0, 1). Then function y = (1 − t)(1+ 1
ε
) for t ∈ [0, 1] and y ≡ 0

on (1,∞) is a singular solution of the first kind of the equation

y′′ +

(

1 +
1

ε
+

1

ε2

)(

1 +
1

ε

)ε−1

|y′|1−ε sgn y′ + |y| 1−ε
1+ε = 0.

Note that p = 1 in this case.

Theorems 1.1, 1.2, 1.3 and 1.4 give us sufficient conditions for all nontrivial

solutions of (1.12) to be proper.

Corollary 1.1. Let |g(x)| ≤ |x|p and |f(x)| ≤ |x|p for x ∈ R. Then every nontrivial

solution y of (1.12) is proper.

Corollary 1.2. Let (1.13), R ∈ C1(R+), r > 0 on R+ and |g(x)| ≤ |x|p on R hold. Then

every nontrivial solution y of (1.12) is proper.

Remark 1.8. The results of Corollary 1.1 and Corollary 1.2 are obtained in [3] for

b ≡ 0.

In the last part of Chapter 2, simple asymptotic properties of solutions of (1.12)

are studied. Mainly, sufficient conditions are given under which zeros of a non-

trivial solutions are simple and zeros of a solution and its derivative separate

from each other.

13



1. History and summary of the results

Corollary 1.3. Let the assumptions either of Theorem 1.3 or of Theorem 1.4 hold. Then

any nontrivial solution of (1.12) has no double zeros on R+.

Corollary 1.4. Let f(x)x > 0 for x 6= 0 and one of the following possibilities hold:

(i) r 6= 0 on R+ and

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for x ∈ R;

(ii) R ∈ C1(R+), r > 0 on R+ and

|g(x)| ≤ |x|p for |x| ∈ R;

(iii) R ∈ C1(R+), b ≤ 0 on R+, r > 0 on R+, g(x)x ≥ 0 on R+ and M > 0 exists such

that

|g(x)| ≥ |x|p for |x| ≥M ;

(iv) R ∈ C1(R+), r > 0 on R+, b ≥ 0 on R+, g(x)x ≥ 0 on R and M exists such that

|g(x)| ≤ |x|p for |x| ≤M.

Then the zeros of y and y′ (if any) separate from each other, i.e. between two consecutive

zeros of y (y′) there is the only zero of y (y′).

Theorem 1.5. Let g(0) = 0, r 6= 0 on R+ and f(x)x > 0 for x 6= 0. Then (1.12) has

no weakly oscillatory solution and every nonoscillatory solution y of (1.12) has a limit as

t→ ∞.

The following examples show that some of the assumptions of Theorem 1.5

cannot be omitted.

Example 1.4. The function y = 2 + sin t, t ∈ R+ is a weakly oscillatory solution of

the equation

y′′ − y′ +
sin t+ cos t

2 + sin t
y = 0.

In this case r 6= 0, Theorem 1.5 is not valid.

Example 1.5. The function y = 2 + sin t, t ∈ R+ is a weakly oscillatory solution of

the equation

y′′ − g(y′) + 2y = 0 with g(x) =

{

4 +
√

1 − x2 for |x| ≤ 1;

4 for |x| > 1.

In this case g(0) 6= 0, Theorem 1.5 is not valid.

14



1. History and summary of the results

Remark 1.9. If g ≡ 0, the result of Theorem 1.5 is known, see e.g. [39, Lemma

5.1].

In Chapter 3, the problem of the existence of continuable solutions of the sys-

tem (1.8), (1.9) is studied. In this chapter ‖x‖, x ∈ R
n is the Euclidean norm.

Definition 1.4. A solution y(t), t ∈ [0, T ) of the initial value problem (1.8), (1.9) is

called nonextendable to the right if either T <∞ and

lim sup
t→T−

[‖y(t)‖ + ‖y′(t)‖] = ∞

or T = ∞, i. e. y(t) is defined on R+. In the first (second) case y(t) is called

noncontinuable (continuable).

The main result is the following theorem.

Theorem 1.6. Let p > 0, A(t), B(t), R(t) be continuous matrix-valued functions on

R+, A(t) be regular for all t ∈ R+, e : R+ → R
n, f, g : R

n → R
n be continuous

mappings and y0, y1 ∈ R
n. Let

∫ ∞

0

‖R(s)‖sm−1 ds <∞

and there exist constants K1, K2 > 0 such that

‖g(u)‖ ≤ K1‖u‖m, ‖f(v)‖ ≤ K2‖v‖m, u, v ∈ R
n. (1.15)

Then the following assertions hold:

1. If 1 < m ≤ p, then any nonextendable to the right solution y(t) of the initial value

problem (1.8), (1.9) is continuable.

2. Let m > p,m > 1,

A∞ := sup
0≤t<∞

‖A(t)−1‖ <∞, R0 =

∫ ∞

0

‖R(s)‖ ds,

E∞ := sup
0≤t<∞

‖
∫ t

0

e(s) ds‖ <∞, Q(s) :=

∫ ∞

s

‖R(σ)‖σm−1 dσ

and

n
p

2
m− p

p
D

m−p
p A∞ sup

0≤t<∞

∫ t

0

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

ds < 1

for all t ∈ [0,∞) where

D = n
p

2A∞

(

‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR0 + E∞

)

.

Then any nonextendable to the right solution y(t) of the initial value problem (1.8),

(1.9) is continuable.
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1. History and summary of the results

In Chapter 2, sufficient conditions for all solution of (1.8) with n = 1 to be

defined on R+ are given. The method of proofs is not applicable in the case n > 1.

Our proof of Theorem 1.6 is completely different from those applied in Chapter

2. The main tool of our proof is the discrete and also continuous versions of the

Jensen’s inequality, Fubini theorem and a generalization of the Bihari theorem.

The application of the Jensen’s inequality is possible only under the assumption

m > 1. Therefore we do not study the case 0 < m ≤ 1. Note, that the case m ≤ 1

is studied in [13] where our method of the proof is used.

Let y(t) be a solution of the initial value problem (1.8), (1.9) defined on an in-

terval [0, T ), 0 < T ≤ ∞. If we denote u(t) = y′(t), then y(t) = y0 +
∫ t

0
u(s) ds and

the equation (1.8) can be rewritten as the following integro-differential equation

for u(t):

(

A(t)Φp(u(t))
)′

+B(t)g(u(t)) +R(t)f
(

y0 +

∫ t

0

u(s) ds
)

= e(t) (1.16)

with

u(0) = y1. (1.17)

The following theorem is the main tool for the proof of Theorem 1.6 and the

obtained estimates may be important for further investigations of solutions, too.

Theorem 1.7. Let p > 0, A(t),B(t),R(t) be continuous matrix-valued functions on R+,

A(t) regular for all t ∈ R+, e : R+ → R
n, f, g : R

n → R
n be continuous mappings on

R+, y0, y1 ∈ R
n,
∫∞
0

‖R(s)‖sm−1 ds < ∞ and 0 < T < ∞. Let the condition (1.15)

be satisfied and let u : [0, T ) → R
n be a solution of the equation (1.16) satisfying the

condition (1.17). Let R0 :=
∫∞
0

‖R(s)‖ ds.

Then the following assertions hold:

1. If m = p > 1, then

‖u(t)‖ ≤ dT e
∫ t

0 FT (s) ds, 0 ≤ t ≤ T

where

FT (t) := n
p

2ET

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

,

Q(s) =

∫ ∞

s

‖R(σ)‖σm−1 dσ,

ET := max
0≤t≤T

‖E(t)‖, E(t) :=

∫ t

0

e(s) ds,

dT = n
p

2AT

(

‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR0 + ET

)

,

AT = max
0≤t≤T

‖A(t)−1‖.
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2. If 1 < m < p, then

‖u(t)‖ ≤
(

d
p−m

p

T +
p−m

p
dT

∫ t

0

FT (s) ds
)

1
p−m

.

3. Let m > p, m > 1 and

A∞ := sup
0≤T<∞

AT <∞, E∞ := sup
0≤t≤∞

‖E(t)‖ <∞,

n
p

2
m− p

p
D

m−p

p A∞ sup
0≤t<∞

∫ t

0

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

ds < 1

where

D = n
p

2A∞

(

‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR0 + E∞

)

.

Then

‖u(t)‖ ≤ D
1
p

(

1 − n
p

2
m− p

p
A∞D

m−p

p

∫ t

0

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

ds
)− 1

m−p

where 0 ≤ t ≤ ∞.

The fourth chapter studies the estimates from bellow of norms of a noncon-

tinuable solution of (1.8) and its derivative. Estimates of solutions are important

e. g. in proofs of the existence of such solutions, see e. g. [4], [5] for (1.1). For

generalized Emden-Fowler equation of the form (1.1), some estimates are proved

in [1].

We will derive estimates for a noncontinuable solution y on the fixed defini-

tion interval [T, τ) ⊂ R+, τ < ∞. Note, that the results of Theorem 1.6 are the

basic tool of proofs of the following two theorems.

Theorem 1.8. Let y be a noncontinuable solution of system (1.8) on [T, τ) ⊂ R+,

τ − T ≤ 1,

A0 := max
T≤t≤τ

‖A(t)‖−1, B0 := max
T≤t≤τ

‖B(t)‖,

R0 := max
T≤t≤τ

‖R(t)‖, E0 := max
T≤t≤τ

‖e(t)‖

and let there exist positive constants K1, K2 and m > p such that

‖g(u)‖ ≤ K1‖u‖m, ‖f(v)‖ ≤ K2‖v‖m, u, v ∈ R
n.

(i) If p > 1 and M = 22m+1(2m+3)
(m+1)(m+2)

, then

‖A(t)Φp(y
′(t))‖ + 2m−1K2‖y(t)‖mR0 + E0(τ − t) ≥ C1(τ − t)−

p
m−p

for t ∈ [T, τ) where

C1 = n
− pm

2(m−p)A
− p

m−p

0

(m− p

p

)− p

m−p
[3

2
K1B0 +MK2R0

]− p

m−p

.
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(ii) If p ≤ 1, then

‖A(t)Φp(y
′(t))‖ + 2mK1B0‖y′(t)‖m + 22m+1K2R0‖y(t)‖m+

+E0(τ − t) ≥ C2(τ − t)−
p

p−m

for t ∈ [T, τ) where

C2 = 2−
p(m+1)

m−p A
− m

m−p

0

(m− p

p

)− p

m−p
[3

2
K1B0 +MK2R0

]− p

m−p

.

Now consider special case of equation (1.8)

(A(t)Φp(y
′))′ +R(t)f(y) = 0. (1.18)

In this case a better estimation can be proved.

Theorem 1.9. Letm > p and y be a noncontinuable solution of system (1.18) on interval

[T, τ) ⊂ R+. Let there exist constant K2 > 0 such that

‖f(v)‖ ≤ K2‖v‖m, v ∈ R
n.

Let A0, R0 and M be given by Theorem 1.8. Then

‖A(t)Φp(y
′(t))‖ + 2m+2K2‖y(t)‖mR0 ≥ C1(τ − t)−

p(m+1)
m−p

where

C1 = n
− pm

2(m−p)A
− p

m−p

0

(

m− p

p

)− p

m−p
[

MK2R0

]− p
m−p in case p > 1

and

‖A(t)Φp(y
′)‖ + 22m+1K2‖y(t)‖mR0 ≥ C2(τ − t)−

p(m+1)
m−p

with

C2 = 2−
p(m+1)

m−p A
− m

m−p

0

(m− p

p

)− p

m−p [

MK2R0

]− p

m−p in case p ≤ 1.

We can prove more results for a scalar differential equation

(a(t)Φp(y
′))′ + r(t)f(y) = 0 (1.19)

where p > 0, a(t), r(t) are continuous functions on R+, a(t) > 0 for t ∈ R+,

f : R → R is a continuous mapping and Φp(u) = |u|p−1u.

Definition 1.5. A noncontinuable solution y of (1.19) defined on [0, τ) is called

oscillatory if there exists a sequence {tk}∞k=1, tk ∈ [0, τ) of its zeros such that

limk→∞ tk = τ ; otherwise it is called nonoscillatory.
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Theorem 1.10. Let y be a noncontinuable oscillatory solution of equation (1.19) defined

on [T, τ). Let there exist constant K2 > 0 such that

|f(v)| ≤ K2|v|m, v ∈ R. (1.20)

Let {tk}∞1 and {τk}∞1 be the increasing sequences of all local extremes of solution y and

y[1] = a(t)Φp(y
′) on [T, τ), respectively. Then constants C1 and C2 exist such that

|y(tk)| ≥ C1(τ − tk)
− p(m+1)

m(m−p)

and in the case r 6= 0 on R+ and f(x)x > 0 for x 6= 0.

|y[1](τk)| ≥ C2(τ − τk)
− p(m+1)

m−p

for k ≥ 1, 2, . . . .

Example 1.6. Consider (1.19) and (1.20) with m = 2, p = 1 and a ≡ 1. Then from

Theorem 1.10 we obtain the following estimates

|y(tk)| ≥ C1(τ − tk)
− 3

2 , |y[1](τk)| ≥ C2(τ − τk)
−3

where M = 56
3

, C1 =
√

42
448K2r0

and C2 = 3
448K2r0

.

Example 1.7. Consider (1.19) and (1.20) with m = 3, p = 2 and a ≡ 1. Then from

Theorem 1.10 we obtain the following estimates

|y(tk)| ≥ C1(τ − tk)
− 8

3 , |y[1](τk)| ≥ C2(τ − τk)
−8

where M = 288
5

, C1 = 1
32K2r0

(

10
9

)
2
3 and C2 =

(

5
144K2r0

)2
.

Now, let us turn our attention to nonoscillatory solutions of (1.19).

Theorem 1.11. Let m > p and M ≥ 0 hold such that

|f(x)| ≤ |x|m for |x| ≥M.

If y be a nonoscillatory noncontinuable solution of (1.19) defined on [T, τ), then constants

C, C0 and a left neighborhood J of τ exist such that

|y′(t)| ≥ C(τ − t)−
p(m+1)
m(m−p) , t ∈ J.

Let, moreover, m < p+
√

p2 + p. Then

|y(t)| ≥ C0(τ − t)m1 , with m1 =
m2 − 2mp− p

m(m− p)
< 0.
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Our last application is devoted to the equation

y′′ = r(t)|y|m sgn y (1.21)

where r ∈ C0(R+) and m > 1.

Theorem 1.12. Let τ ∈ (0,∞), T ∈ [0, τ) and r(t) > 0 on [t, τ ].

(i) Then (1.21) has a nonoscillatory noncontinuable solution which is defined in a left

neighbourhood of τ .

(ii) Let y be a nonoscillatory noncontinuable solution of (1.21) defined on [T, τ). Then

constants C, C1, C2 and a left neighbourhood I of τ exists such that

|y(t)| ≤ C(τ − t)−
2(m+3)

m−1 and |y′(t)| ≥ C1(τ − t)
− m+1

m(m−1) , t ∈ I.

If, moreover, m < 1 +
√

2, then

|y(t)| ≤ C2(τ − t)m1 with m1 =
m2 − 2m− 1

m(m− 1)
< 0.

In the fifth chapter, we study asymptotic properties of the initial value prob-

lem (1.10), (1.11).

Definition 1.6. We say that a solution u(t) of (1.10) possesses the property (L) if

u(t) = at+ b+ o(t) as t→ ∞, where a, b are real constants.

Theorem 1.13. Let p ≥ 1, r > 0 and t0 > 0. Suppose that the following conditions are

satisfied:

(i) f(t, u, v) is a continuous function in D = {(t, u, v) : t ∈ [t0,∞), u, v ∈ R} where

t0 > 0;

(ii) there exist continuous functions h, g : R+ → R+ such that

|f(t, u, v)| ≤ h(t)g

(

[ |u|
t

]r
)

|v|r, (t, u, v) ∈ D

where for s > 0, the function g(s) is positive and nondecreasing,
∫ ∞

t0

h(s) ds <∞

and if we denote

G(x) =

∫ x

t0

ds

s
r
p g(s

r
p )
,

then

G(∞) =

∫ ∞

t0

ds

s
r
p g(s

r
p )

=
p

r

∫ ∞

a

τ
p

r
−2

g(τ)
dτ = ∞

where a = (t0)
r
p .
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Then any continuable solution u(t) of the equation (1.10) possesses the property (L).

Example 1.8. Let t0 = 1, p ≥ r > 0, p ≥ 1

f(t, u, u′) = η(t)t1−αe−t

(

u

t

)p−r

ln

[

2 +

( |u|
t

)r]

(u′)r, t ≥ 1

where 0 < α < 1 and η(t) is a continuous function on interval [1,∞) with

K = supt≥1 |η(t)| <∞. Then all conditions of Theorem 1.13 are satisfied for ev-

ery continuable solution u(t) of the initial value problem (1.10), (1.11) there exist

numbers a, b such that u(t) = at+ b+ o(t) as t→ ∞.

Theorem 1.14. Let p ≥ 1, r > 0 and t0 > 0. Suppose the following conditions are

satisfied:

(i) The function f(t, u, v) is continuous in D = {(t, u, v) : t ∈ [t0,∞), u, v ∈ R};

(ii) there exist continuous functions h1, h2, h3, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h1(t)g1

(

[ |u|
t

]r
)

+ h2(t)g2(|v|r) + h3(t), (t, u, v) ∈ D

for s > 0 the functions g1(s), g2(s) are nondecreasing and if

G(x) =

∫ x

t0

ds

g1(s
r
p ) + g2(s

r
p )
,

then

G(∞) =

∫ ∞

t0

ds

g1(s
r
p ) + g2(s

r
p )

=
p

r

∫ ∞

a

τ
p

r
−1 dτ

g1(τ) + g2(τ)
= ∞

where a = (t0)
r
p .

Then any continuable solution u(t) of the equation (1.10) possesses the property (L).

Example 1.9. Let t0 = 1, p ≥ r > 0, p ≥ 1

f(t, u, v) = η1(t)t
1−α1e−t

(

u

t

)p−r

ln
[

2 +

(

u

t

)r
]

+ η2(t)t
1−α2e−tvp−r ln(3 + vr) + η3(t)t

1−α3e−t

where 0 < αi < 1 and ηi(t) are continuous functions on interval [1,∞) with

Ki = supt≥1 |ηi(t)| <∞, i = 1, 2, 3.

Then all assumptions of Theorem 1.14 are satisfied and thus any continuable

solution u(t) of the equation (1.10) possesses the property (L).

Theorem 1.15. Let t0 > 0. Suppose that the following assumptions hold:
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(i) There exist nonnegative continuous functions h1, h2, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h1(t)g1

(

[ |u|
t

]r
)

+ h2(t)g2(|v|r);

(ii) for s > 0 the functions g1(s), g2(s) are nondecreasing and

g1(αu) ≤ ψ1(α)g1(u), g2(αu) ≤ ψ2(α)g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for α ≥ 1;

(iii)
∫∞

t0
hi(s) ds = Hi <∞, i = 1, 2. Assume that there exists a constant K ≥ 1 such

that

K−1(ψ1(K) + ψ2(K))2p−1(H1 +H2) ≤
∫ +∞

t0

ds

g1(s
r
p ) + g2(s

r
p )

=
p

r

∫ +∞

a

τ
p

r
−1 dτ

g1(τ) + g2(τ)

where a = (t0)
r
p .

Then any continuable solution u(t) of the equation (1.10) with initial data u(t0) = u0,

u′(t0) = u1 such that (|u0| + |u1|)p ≤ K possesses the property (L).

Example 1.10. Let t0 > 0. Consider the equation (1.10) with p ≥ 1, p
r

= 2,

f(t, u, v) = h1(t)u
2 + h2(t)v

2

where h1(t) = η1(t)
t2
t1−α1e−t, h2(t) = η2(t)t

1−α2e−t, 0 < αi ≤ 1, ηi(t), i = 1, 2 are

continuous functions on the interval [0,∞) with Ki = supt≥t0 |ηi(t)| <∞. Then all

assumptions of Theorem 1.15 are satisfied and therefore any continuable solution

u(t) of the equation (1.10) (independently on the initial values u0, u1) possesses

the property (L).

Theorem 1.16. Let t0 > 0. Suppose that the asumptions (i) and (iii) of Theorem 1.15

hold, while (ii) is replaced by

(ii’) for s > 0 the functions g1(s), g2(s) are nonnegative, continuous and nondecreas-

ing, g1(0) = g2(0) = 0 and satisfy a Lipschitz condition

|g1(u+ v) − g1(u)| ≤ λ1v, |g2(u+ v) − g2(u)| ≤ λ2v

where λ1, λ2 are positive constants.

Then any continuable solution u(t) of the equation (1.10) with initial data u(t0) = u0,

u′(t0) = u1 such that |u0|p + |u1|p ≤ K possesses property (L).
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Theorem 1.17. Let t0 > 0. Suppose that there exist continuous functions h : R+ → R+,

g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h(t)g1

(

[ |u|
t

]r
)

g2(|v|r)

where for s > 0 the functions g1(s), g2(s) are nondecreasing;

∫ ∞

t0

h(s) ds <∞

and if we denote

G(x) =

∫ x

t0

ds

g1(s
r
p )g2(s

r
p )
,

then G(+∞) = p
r

∫∞
a

τ
p
r −1

g1(τ)g2(τ)
dτ = +∞ where a = (t0)

r
p .

Then any continuable solution u(t) of the equation (1.10) possesses the property (L).

Example 1.11. Let t0 = 1, p ≥ r > 0,

f(t, u, v) = η(t)t1−αe−t

[(

u

t

)p−r

ln
[

2 +

(

u

t

)r
]

]
3
4

·
[

vp−r ln(2 + vr)

]
1
4

where η(t) is a continuous function on [1,∞) with K = supt∈〈1,∞) η(t) <∞.

Then all assumptions of Theorem 1.17 are satisfied and this means that any con-

tinuable solution of the equation (1.10) possesses the property (L).

Theorem 1.18. Let t0 > 0. Suppose that the following conditions hold:

(i) there exist nonnegative continuous functions h, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h(t)g1

([ |u(t)|
t

]r)

g2(|v|r);

(ii) for s > 0 the functions g1(s), g2(s) are nondecreasing and

g1(αu) ≤ ψ1(α)g1(u), g2(αu) ≤ ψ2(α)g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for α ≥ 1;

(iii)
∫∞

t0
h(s) ds = H < +∞. Assume also that there exists a constant K ≥ 1 such

that

K−1Hψ1(K)ψ2(K) ≤
∫ ∞

1

ds

g1(s
r
p )g2(s

r
p )

=
p

r

∫ ∞

a

τ
p

r
−1 dτ

g1(τ)g2(τ)

where a = (t0)
r
p .
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Then any continuable solution u(t) of the equation (1.10) with initial data u(t0) = u0,

u′(t0) = u1 such that 2p−1(|u0|p + |u1|p) ≤ K possesses the property (L).

Theorem 1.19. Let t0 > 0. Suppose that the assumptions (i) and (iii) of Theorem 1.18

hold, while (ii) is replaced by

(ii’) for s > 0 the functions g1(s), g2(s) are continuous and nondecreasing,

g1(0) = g2(0) = 0 and satisfy a Lipschitz condition

|g1(u+ v) − g1(u)| ≤ λ1v, |g2(u+ v) − g2(u)| ≤ λ2v

where λ1, λ2 are positive constants.

Then any continuable solution u(t) of the equation (1.10) with initial data u(t0) = u0,

u′(t0) = u1 such that |u0|p + |u1|p ≤ K possesses the property (L).

Note, that the methods of proof in [P2] are used to other types of differential

equations, see. e.g. [13, 15].
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[8] Bartušek, M., Graef, J. R., On the Limit-Point/Limit-Circle Problem for Second

Order Nonlinear Equations, Nonlinear Studies 9, No. 1 (2006), 361–369.

25



References
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[28] Došlý, O., Řehák, P., Half-Linear Differential Equations, Math. Studies 202, El-

sevier, Amsterodam-Boston-New York etc., 2005.

[29] Graef, J. R. and Spikes, P. W., Asymptotic Behaviour of Solutions of a Second

Order Nonlinear Differential Equation, J. Differential Equations 17 (1975), 461–

476.

[30] Graef, J. R. and Spikes, P. W., On the Nonlinear Limit-Point/Limit-Circle Prob-

lem, Nonlinear Anal. 7 (1983), 851–871.

[31] Hartman, P., Ordinary Differential Equations. John-Wiley & Sons, New York-

London-Sydney, 1964.
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On existence of proper solutions
of quasilinear second order
differential equations 2
2.1 Introduction

In this chapter, we study the existence of proper solutions of a forced second

order nonlinear differential equation of the form

(a(t)|y′|p−1
y′)′ + b(t)g(y′) + r(t)f(y) = e(t) (2.1)

where p > 0, a ∈ C0(R+), b ∈ C0(R+), r ∈ C0(R+), e ∈ C0(R+), f ∈ C0(R),

g ∈ C0(R), R+ = [0,∞), R = (−∞,∞) and a > 0 on R+.

A special case of Equation (2.1) is the unforced equation

(a(t)|y′|p−1
y′)′ + b(t)g(y′) + r(t)f(y) = 0. (2.2)

We will often use of the following assumptions

f(x)x ≥ 0 on R (2.3)

and

g(x)x ≥ 0 on R+. (2.4)

Definition 2.1. A solution y of (2.1) is called proper if it is defined on R+ and

supt∈[τ,∞)|y(t)| > 0 for every τ ∈ (0,∞). It is called singular of the 1-st kind

if it is defined on R+, there exists τ ∈ (0,∞) such that y ≡ 0 on [τ,∞) and

supT≤t≤τ |y(t)| > 0 for every T ∈ [0, τ). It is called singular of the 2-nd kind if

it is defined on [0, τ), τ <∞ and sup0≤t<τ |y′(t)| = ∞.

Note, that a singular solution y of the 2-nd kind is sometimes called noncon-

tinuable.

Definition 2.2. A proper solution y of (2.1) is called oscillatory if there exists a se-

quence of its zeros tending to ∞. Otherwise, it is called nonoscillatory. A solution

y of (2.1) is called weakly oscillatory if there exists a sequence of zeros of y′ tend-

ing to ∞.

29



2. On existence of proper solutions of quasilinear second ODE

It is easy to see that (2.1) can be transformed into the system

y′1 = a(t)−
1
p |y2|

1
p sgn y2,

y′2 = −b(t)g(a(t)− 1
p |y2|

1
p sgn y2) − r(t)f(y1) + e(t); (2.5)

the relation between a solution y of (2.1) and a solution of (2.5) is y1(t) = y(t),

y2(t) = a(t)|y′(t)|p−1y′(t).

An important problem is the existence of solutions defined on R+ or of proper

solutions (for Equation (2.2)). Their asymptotic behaviour is studied by many

authors (see e.g. monographs [7], [9] and [10], and the references therein). So, it

is very important to know conditions under the validity of which all solutions of

(2.1) are defined on R+ or are proper. For a special type of the equation of (2.2),

for the equation

(a(t)|y′|p−1
y′)′ + r(t)f(y) = 0, (2.6)

sufficient conditions for all nontrivial solutions to be proper are given e.g. in [1],

[8], [9] and [10]. It is known that for half-linear equations, i.e., if f(x) = |x|p sgn x,

all nontrivial solutions of (2.4) are proper, see e.g. [6]. For the forced equation

(2.1) with (2.3) holding, a ∈ C1(R+), a
1
p r ∈ AC1

loc(R+) and b ≡ 0, it is proved in [2]

that all solutions are defined on R+, i.e., the set of all singular solutions of the

second kind is empty. On the other hand, in [4] and [5] examples are given for

which Equation (2.6) has singular solutions of the first and second kinds (see [1],

as well). Moreover, Lemma 4 in [3] gives sufficient conditions for the equation

(a(t)y′)′ + r(t)f(y) = 0

to have no proper solutions.

In the present paper, these problems are solved for (2.1). Sufficient conditions

for the nonexistence of singular solutions of the first and second kinds are given,

and so, sufficient conditions for all nontrivial solutions of (2.2) to be proper are

given. In the last section, simple asymptotic properties of solutions of (2.2) are

given.

Note that it is known that Equation (2.6) has no weakly oscillatory solutions

(see e.g. [10]), but as we will see in Section 4, Equation (2.1) may have them.

It will be convenient to define the following constants:

γ =
p+ 1

p(λ+ 1)
, δ =

p+ 1

p
.

We define the function R : R+ → R by R(t) = a
1
p (t)r(t).

For any solution y of (2.1), we let

y[1](t) = a(t)|y′(t)|p−1y′(t)
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2. On existence of proper solutions of quasilinear second ODE

and if (2.3) and r > 0 on R+ hold, let us define

V (t) =
a(t)

r(t)
|y′(t)|p+1 + γ

∫ y(t)

0

f(s) ds

=
|y[1](t)|δ
R(t)

+ γ

∫ y(t)

0

f(s) ds ≥ 0. (2.7)

For any continuous function h : R+ → R, we let h+(t) = max {h(t), 0} and

h−(t) = max {−h(t), 0} so that h(t) = h+(t) − h−(t).

2.2 Singular solutions of the second kind

In this section, the nonexistence of singular solutions of the second kind will be

studied. The following theorem is a generalization of the well-known Wintner’s

Theorem to (2.1).

Theorem 2.1. Let M > 0 and |g(x)| ≤ |x|p and |f(x)| ≤ |x|p for |x| ≥ M. Then

there exist no singular solution y of the second kind of (2.1) and all solutions of (2.1) are

defined on R+.

Proof. Let, to the contrary, y be a singular solution of the second kind defined on

[0, τ), τ <∞. Then,

sup
0≤t<τ

|y′(t)| = ∞ and sup
0≤t<τ

|y[1](t)| = ∞. (2.8)

The assumptions of the theorem yield

|f(x)| ≤ M1 + |x|p and |g(x)| ≤M2 + |x|p (2.9)

with M1 = max|s|≤M |f(s)| and M2 = max|s|≤M |g(s)|. Let t0 ∈ [0, τ) be such that

τ − t0 ≤ 1,

∫ τ

t0

a−1(s)|b(s)| ds ≤ 1

2
(2.10)

and

2p max
0≤s ≤τ

|r(s)|
(

∫ τ

t0

a−
1
p (s) ds

)p

≤ 1

3
. (2.11)

Using system (2.5), by an integration we obtain

|y1(t)| ≤ |y1(t0)| +
∫ t

t0

a−
1
p (s)|y2(s)|

1
p ds (2.12)
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2. On existence of proper solutions of quasilinear second ODE

and

|y2(t)| ≤ |y2(t0)|

+

∫ t

t0

(

|b(s)g(a(s)− 1
p |y2(s)|

1
p sgn y2(s))| + |r(s)||f(y1(s))| + |e(s)|

)

ds. (2.13)

Hence, using (2.9), (2.10) and (2.12), we have for t ∈ [t0, τ)

|y2(t)| ≤ |y2(t0)| +
∫ t

t0

|b(s)|[M2 + a−1(s)|y2(s)|] ds

+

∫ t

t0

|r(s)|[M1 + |y1(s)|p] ds+

∫ t

t0

|e(s)| ds

≤M3 +
1

2
max

t0≤s ≤t
|y2(s)| ds

+

∫ t

t0

|r(s)|[|y1(t0)| +
∫ s

t0

a
− 1

p (σ)|y2(σ)| 1
p dσ]p ds (2.14)

with M3 = |y2(t0)| +M2

∫ τ

t0
|b(s)| ds+M1

∫ τ

t0
|r(s)| ds +

∫ τ

t0
|e(s)| ds.

Denote v(t0) = |y2(t0)| and v(t) = maxt0≤s≤t |y2(s)|, t ∈ (t0, τ). Then (2.10), (2.12)

and (2.14) yield

v(t) ≤M3 +
1

2
v(t) +

∫ t

t0

|r(s)|[|y1(t0)| +M4v(s)
1
p ]p ds

≤M3 +
1

2
v(t) + 2pM5

∫ t

t0

[yp
1(t0) +M

p
4 v(s)] ds

≤M3 +
1

2
v(t) + 2pM5y

p
1(t0) + 2pM

p
4M5v(t)

with M4 =
∫ τ

t0
a−

1
p (σ)dσ, M5 = max0≤s≤τ |r(s)|.

From this and from (2.11), we have

1

6
v(t) ≤M3 + 2pM5y

p
1(t0), t ∈ [t0, τ).

But this inequality contradicts (2.8) and the definition of v.

Remark 2.1. The results of Theorem 2.1 for Equation (2.1) with p ≤ 1 and without

the damping (b ≡ 0) is a generalization of the well-known Wintner’s Theorem,

see e.g. [9, Theorem 11.5.] or [7, Theorem 6.1.].

The following result shows that singular solutions of the second kind of (2.1) do

not exist if r > 0 and R is smooth enough under weakened assumptions on f .
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2. On existence of proper solutions of quasilinear second ODE

Theorem 2.2. Let (2.3), R ∈ C1(R+), r > 0 on R+ and let either

(i) M ∈ (0,∞) exist such that |g(x)| ≤ |x|p for |x| ≥M

or

(ii) (2.4) holds and b(t) ≥ 0 on R+.

Then Equation (2.1) has no singular solution of the second kind and all solutions of (2.1)

are defined on R+.

Proof. Suppose y is a singular solution of the second kind defined on I = [0, τ).

Then supt∈[0,τ)|y′(t)| = ∞ and (2.7) yields

V ′(t) =

(

1

R(t)

)′

|y[1](t)|δ +
δ

r(t)
y′(t)(y[1](t))′ + δf(y(t))y′(t)

=

(

1

R(t)

)′

|y[1](t)|δ +
δ

r(t)
y′(t)[e(t) − b(t)g(y′(t))

− r(t)f(y(t))] + δf(t)y′(t)

or

V ′(t) =

(

1

R(t)

)′

|y[1](t)|δ +
δ

r(t)
y′(t)e(t) − δb(t)g(y′(t))y′(t)

r(t)
(2.15)

for t ∈ I . We will estimate the summands in (2.15). We have
(

1

R(t)

)′

|y[1](t)|δ =
−R′(t)

R(t)

|y[1](t)|δ
R(t)

≤ R′
−(t)

R(t)
V (t) (2.16)

on I .

From |x| ≤ |x|s + 1 for s ≥ 1 and x ∈ R, we get
∣

∣

∣

∣

∣

δe(t)

r(t)
y′(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

δe(t)a
1
p (t)y′(t)

R(t)

∣

∣

∣

∣

∣

(2.17)

≤ δ|e(t)|a 1
p (t)

|y′(t)|p+1 + 1

R(t)

=
δ|e(t)||y[1](t)|δ
a(t)R(t)

+
δ|e(t)|
r(t)

≤ δ|e(t)|V (t)

a(t)
+
δ|e(t)|
r(t)

on I . Furthermore, in case (ii), we have

−δb(t)g(y
′(t))y′(t)

r(t)
≤ v(t) +

δ|b(t)||y′(t)|p+1

r(t)

= v(t) +
δ|b(t)||y[1](t)|δ
a(t)R(t)

≤ v(t) +
δ|b(t)|V (t)

a(t)
(2.18)
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2. On existence of proper solutions of quasilinear second ODE

with

v(t) =
δ|b(t)|
r(t)

max
|s|≤M

|sg(s)|.

Due to the fact that b ≥ 0, inequality (2.18) holds in case (i) with v(t) ≡ 0. From

this and (2.15), (2.16) and (2.17), we obtain

V ′(t) ≤
[

R′
−(t)

R(t)
+

δ

a(t)
[|e(t)| + |b(t)|]

]

V (t) +
δ|e(t)|
r(t)

+ v(t). (2.19)

The integration of (2.19) on [0, t] ∈ I yields

V (t) − V (0) ≤
∫ t

0

[

R′
−(s)

R(s)
+

δ

a(s)
[|e(s)| + |b(s)|]

]

V (s) ds

+

∫ τ

0

[

δ|e(t)|
r(t)

+ v(t)

]

dt.

Hence, Gronwall’s inequality yields

0 ≤ V (t) ≤
[

V (0) +

∫ τ

0

[δ|e(t)|
r(t)

+ v(t)
]

dt

]

× exp

∫ τ

0

[

R′
−(t)

R(t)
+

δ

a(t)
[|e(t)| + |b(t)|]

]

dt. (2.20)

Now V (t) is bounded from above on I since I is a bounded interval, so (2.7) yields

that |y[1](t)|δ and |y′(t)| are bounded above on I . But this inequality contradicts

(2.8).

Remark 2.2. It is clear from the proof of Theorem 2.2 (ii) that if b ≡ 0, then as-

sumption (2.4) is not needed in case (ii).

Remark 2.3. Note that the condition |g(x)| ≤ |x|p in (i) can not be improved upon

even for Equation (2.2).

Example 2.1. Let ε ∈ (0, 1). Then the function y =
(

1
1−t

)
1−ε

ε is a singular solution

of the second kind of the equation

y′′ − |y′|εy′ + C|y| 1+ε
1−ε sgn y = 0

on [0, 1) with C =
(

1−ε
ε2

)ε+1 − 1−ε
ε2 .

Remark 2.4.

(i) The result of Theorem 2.2 is obtained in [2] in case b ≡ 0 using a the similar

method.
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2. On existence of proper solutions of quasilinear second ODE

(ii) Note that Theorem 2.2 is not valid if R 6∈ C1(R+); see [1] or [4] for the case

g ≡ 0.

Remark 2.5. Theorem 2.2 is not valid if r < 0 on an interval of positive measure,

see e.g. [9, Theorem 11.3.] (for (2.6) and p = 1). The existence of singular solutions

of the second kind for (2.1) with r > 0 is an open problem.

2.3 Singular solutions of the first kind

In this section, the nonexistence of singular solutions of the first kind mainly for

(2.2) will be studied. The following lemma shows that e(t) has to be trivial in a

neighbourhood of ∞ if Equation (2.1) has a singular solution of the first kind.

Lemma 2.1. Let y be a singular solution of the first kind of (2.1). Then e(t) ≡ 0 in

a neighbourhood ∞.

Proof. Let y be a singular solution of (2.1) and τ the number from its domain of

definition. Then y ≡ 0 on [τ,∞) and Equation (2.1) yields e(t) ≡ 0 on [τ,∞).

In what follows, we will only consider Equation (2.2).

Theorem 2.3. Let M > 0 and

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for |x| ≤M. (2.21)

Then there exist no singular solution of the first kind of Equation (2.2).

Proof. Assume that y is a singular solution of the first kind and τ is the number

from Definition 2.1. Using system (2.5), we have y1 ≡ y2 ≡ 0 on [τ,∞). Let

0 ≤ T < τ be such that

|y1(t)| ≤M, |y2(t)| ≤M on [T, τ ] (2.22)

and
∫ τ

T

a(s)|b(s)| ds+

(
∫ τ

T

a−
1
p (s) ds

)p ∫ τ

T

|r(s)| ds ≤ 1

2
. (2.23)

Define I = [T, τ ] and

v1(t) = max
t≤s ≤τ

|y1(s)|, t ∈ I , (2.24)

v2(t) = max
t≤s ≤τ

|y2(s)|, t ∈ I. (2.25)

From the definition of τ , (2.22), (2.24) and (2.25), we have
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2. On existence of proper solutions of quasilinear second ODE

0 < v1(t) ≤M, 0 < v2(t) ≤M on [T, τ). (2.26)

An integration of the first equality in (2.5) and (2.25) yield

|y1(t)| ≤
∫ τ

t

a−
1
p (s)|y2(s)|

1
p ds ≤

∫ τ

t

a−
1
p (s)|v2(s)|

1
p ds

≤ |v2(t)|
1
p

∫ τ

t

a−
1
p (s) ds (2.27)

on I . If M1 =
∫ τ

T
a
− 1

p (s) ds, then

|y1(t)| ≤M1|v2(t)|
1
p (2.28)

and from (2.24) we obtain

v1(t) ≤M1|v2(t)|
1
p , t ∈ I. (2.29)

Similarly, an integration of the second equality in (2.5) and (2.21) yield

|y2(t)| ≤
∫ τ

t

∣

∣

∣

∣

b(s)g
(

a
1
p (s)|y2(s)|

1
p sgn y2(s)

)

∣

∣

∣

∣

ds

+

∫ τ

t

|r(s)f(y1(s))| ds

≤
∫ τ

t

|b(s)|(a 1
p (s)|v2(s)|

1
p )p ds +

∫ τ

t

|r(s)|y1(s)|p ds. (2.30)

Hence, from this, (2.21), (2.23) and (2.28)

|y2(t)| ≤ v2(t)

[
∫ τ

T

a(s)|b(s)| ds+ v
p
1(t)

∫ τ

T

|r(s)| ds
]

≤ v2(t)

[
∫ τ

T

a(s)|b(s)| ds+M
p
1

∫ τ

T

|r(s)| ds
]

≤ v2(t)

2
. (2.31)

Hence v2(t) ≤ v2(t)
2

and so v2(t) ≡ 0 on I . The contradiction with (2.26) proves the

conclusion.

Theorem 2.4. Consider (2.3), R ∈ C1(R+), r > 0 on R+ and let either

(i) M ∈ (0,∞) exist such that |g(x)| ≤ |x|p for |x| ≤M

or

(ii) (2.4) and b(t) ≤ 0 on R+.

Then Equation (2.2) has no singular solution of the first kind.
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Proof. Let y(t) be singular solution of the first kind of (2.2). Then there exists

τ ∈ (0,∞) such that y(t) ≡ 0 on [τ,∞) and supT≤s<τ |y(s)| > 0 for T ∈ [0, τ).

Then, similar to the proof of Theorem 2.2, (2.15) and the equality in (2.16) hold

with e ≡ 0. From this we have

V ′(t) =

(

1

R(t)

)′
|y[1](t)|δ − δb(t)g(y′(t))y′(t)

r(t)

≥ −R
′
+(t)

R2(t)
aδ(t)|y′(t)|p+1 − δa

1
p (t)b(t)g(y′(t))y′(t)

R(t)
. (2.32)

Let (i) be valid. Let T ∈ [0, τ) be such that |y′(t)| ≤ M on [T, τ ], and let ε > 0 be

arbitrary. Then,

V ′(t)

V (t) + ε
≥ − |y′(t)|p+1

R(t)[V (t) + ε]

(

aδ(t)
R′

+(t)

R(t)
+ δa

1
p (t)|b(t)|

)

≥ − V (t)

V (t) + ε

(

aδ(t)
R′

+(t)

R(t)
+ δa

1
p (t)|b(t)|

)

≥ −
(

aδ(t)
R′

+(t)

R(t)
+ δa

1
p (t)|b(t)|

)

. (2.33)

An integration on the interval [t, τ ] ⊂ [T, τ ] yields

ε

V (t) + ε
=
V (τ) + ε

V (t) + ε
≥ exp

{

−
∫ τ

t

[

aδ(s)
R′

+(s)

R(s)
+ δa

1
p (s)|b(s)|

]

ds

}

.

As ε > 0 is arbitrary, we have

0 ≥ V (t) exp

{

−
∫ τ

t

[

aδ(s)
R′

+(s)

R(s)
+ δa

1
p (s)b(s)

]

ds

}

, t ∈ [T, τ ].

Hence, V (t) ≡ 0 on [T, τ ] and (2.7) yield y(t) = 0 on [T, τ ]. The contradiction to

supt∈[T,τ ] |y(t)| > 0 proves that the conclusion holds in this case.

Let (ii) hold; then from (2.7) and (2.32) we have

V ′(t)

V (t) + ε
≥
{

− aδ(t)
R′

+(t)

R2(t)
|y′(t)|p+1 − δa

1
p (t)b(t)g(y′(t))y′(t)

R(t)

}

× (V (t) + ε)−1

≥ − V (t)

V (t) + ε
aδ(t)

R′
+(t)

R(t)
≥ −aδ(t)

R′
+(t)

R(t)
(2.34)

for t ∈ [0, τ ]. Hence, we have a similar situation to that in (2.33) and the proof is

similar to case (i).
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2. On existence of proper solutions of quasilinear second ODE

Remark 2.6. Theorem 2.3 generalized results of [10, Theorem 1.2.], obtained in

case b ≡ 0. Results of [7, Theorem 9.4.] with (b ≡ 0, f(x) = |x|p sgn x) and of [1,

Theorem 1] (b ≡ 0) are special cases of Theorem 2.1 here.

Remark 2.7. Theorem 2.4 is not valid if r < 0 on an interval of positive measure;

see e.g. [9, Theorem 11.1.] (for (2.6) and p = 1). The existence of singular solutions

of the first kind of (2.2) is an open problem.

Remark 2.8. If R 6∈ C1(R+), then the statement of Theorem 2.4 does not hold (see

[1] for g ≡ 0 or [5]).

Note, that condition (i) in Theorem 2.4 can not be improved.

Example 2.2. Let ε ∈ (0, 1). Then function y = (1 − t)(1+ 1
ε
) for t ∈ [0, 1] and y ≡ 0

on (1,∞) is a singular solution of the first kind of the equation

y′′ +

(

1 +
1

ε
+

1

ε2

)(

1 +
1

ε

)ε−1

|y′|1−ε sgn y′ + |y| 1−ε
1+ε = 0.

Note that p = 1 in this case.

Theorems 2.1, 2.2, 2.3 and 2.4 gives us sufficient conditions for all nontrivial

solutions of (2.2) to be proper.

Corollary 2.1. Let |g(x)| ≤ |x|p and |f(x)| ≤ |x|p for x ∈ R. Then every nontrivial

solution y of (2.2) is proper.

Corollary 2.2. Let (2.3), R ∈ C1(R+), r > 0 on R+ and |g(x)| ≤ |x|p on R hold. Then

every nontrivial solution y of (2.2) is proper.

Remark 2.9. The results of Corollary 2.1 and Corollary 2.2 are obtained in [1]

for b ≡ 0.

2.4 Further properties of solutions of (2.2)

In this section, simple asymptotic properties of solutions of (2.2) are studied.

Mainly, sufficient conditions are given under which zeros of a nontrivial solu-

tions are simple and zeros of a solution and its derivative separate from each

other.

Corollary 2.3. Let the assumptions either of Theorem 2.3 or of Theorem 2.4 hold. Then

any nontrivial solution of (2.2) has no double zeros on R+.
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2. On existence of proper solutions of quasilinear second ODE

Proof. Let y be a nontrivial solution of (2.2) defined on R+ with a double zero

at τ ∈ R+, i.e. y(τ) = y′(τ) = 0. Then it is clear that the function

ȳ(t) = y(t) on [0, τ ], ȳ(t) = 0 for t > τ

is also solution of (2.2). As ȳ is a singular solution of the first kind, we obtain

contradiction with either Theorem 2.3 or with Theorem 2.4.

Lemma 2.2. Let g(0) = 0, r 6= 0 on R+, and f(x)x > 0 for x 6= 0. Let y be a nontrivial

solution of (2.2) such that y′(t1) = y′(t2) = 0 with 0 ≤ t1 < t2 < ∞. Then there exists

t3 ∈ [t1, t2] such that y(t3) = 0.

Proof. We may suppose without loss of generality that t1 and t2 are consecutive

zeros of y′; if t1 or t2 is an accumulation point of zeros of y′, the result holds. If we

define z(t) = y[1](t), t ∈ R+, then

z(t1) = z(t2) = 0 and z(t) 6= 0 on (t1, t2). (2.35)

Suppose, contrarily, that y(t) 6= 0 on (t1, t2). Then either

y(t1)y(t2) > 0 on [t1, t2] (2.36)

or

y(t1)y(t2) = 0 (2.37)

holds. If (2.36) is valid, then (2.2) and the assumptions of the lemma yields

sgn z′(t1) = sgn z′(t2) 6= 0

and the contradiction with (2.35) proves the statement in this case.

If (2.37) holds the conclusion is valid.

Corollary 2.4. Let f(x)x > 0 for x 6= 0 and one of the following possibilities hold:

(i) r 6= 0 on R+ and

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for x ∈ R;

(ii) R ∈ C1(R+), r > 0 on R+ and

|g(x)| ≤ |x|p for |x| ∈ R;

(iii) R ∈ C1(R+), b ≤ 0 on R+, r > 0 on R+, g(x)x ≥ 0 on R+ and M > 0 exists

such that

|g(x)| ≥ |x|p for |x| ≥M ;
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2. On existence of proper solutions of quasilinear second ODE

(iv) R ∈ C1(R+), r > 0 on R+, b ≥ 0 on R+, g(x)x ≥ 0 on R and M exists such that

|g(x)| ≤ |x|p for |x| ≤M.

Then the zeros of y and y′ (if any) separate from each other, i.e. between two consecutive

zeros of y (y′) there is the only zero of y (y′).

Proof. Accounting to our assumptions, Corollary 2.3 holds and hence all zeros of

any nontrivial solution y of (2.2) are simple, there exists no accumulation point

of zeros of y on R+, and there exists no interval [α, β] ∈ R+, α < β of zeros of y.

Then, the statement follows from Lemma 2.2 and Rolle’s Theorem.

Theorem 2.5. Let g(0) = 0, r 6= 0 on R+ and f(x)x > 0 for x 6= 0. Then (2.2) has

no weakly oscillatory solution and every nonoscillatory solution y of (2.2) has a limit as

t→ ∞.

Proof. Let y be a weakly oscillatory solution of (2.2). Then there exist t0, t1 and t2

such that 0 ≤ t0 < t1 < t2, y(t) 6= 0 on [t0,∞) and y′(t1) = y′(t2) = 0. But this fact

contradicts Lemma 2.2.

The following examples show that some of the assumptions of Theorem 2.5

cannot be omitted.

Example 2.3. The function y = 2 + sin t, t ∈ R+ is a weakly oscillatory solution

of the equation

y′′ − y′ +
sin t+ cos t

2 + sin t
y = 0.

In this case r 6= 0, Theorem 2.5 is not valid.

Example 2.4. The function y = 2 + sin t, t ∈ R+ is a weakly oscillatory solution

of the equation

y′′ − g(y′) + 2y = 0 with g(x) =

{

4 +
√

1 − x2 for |x| ≤ 1;

4 for |x| > 1.

In this case g(0) 6= 0, Theorem 2.5 is not valid.

Remark 2.10. If g ≡ 0, the result of Theorem 2.5 is known, see e.g. [10, Lemma

5.1.] or a direct application of (2.5).
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Existence of global solutions
for systems of second order
differential equations
with p-Laplacian 3
3.1 Introduction

The p-Laplace differential equation

div(‖∇v‖)p−2∇v) = h(‖x‖, v) (3.1)

plays an important role in the theory of partial differential equations (see e.g.

[21]) where ∇ is the gradient, p > 0 and ‖x‖ is the Euclidean norm of x ∈ R
n,

n > 1 and h(y, v) is a nonlinear function on R × R. Radially symmetric solutions

of the equation (3.1) depend on the scalar variable r = ‖x‖ and they are solutions

of the ordinary differential equation

r1−n(rn−1|v′|)′ = h(r, v) (3.2)

where v′ = dv
dr

and p > 1. If p 6= n then the change of variables r = t
p−1
p−n transforms

the equation (3.2) into the equation

(Ψp(u
′))′ = f(t, u) (3.3)

where Ψp(u
′) = |u′|p−2u′ is so called one-dimensional, or scalar p-Laplacian [21]

and

f(t, u) =
∣

∣

∣

p− 1

p− n

∣

∣

∣

p

t
p−n

p(1−n)h(t
p−1
p−n , u) .

In [22] the existence of periodic solutions of the system

(Φp(u
′))′ +

d

dt
∇F (u) + ∇G(u) = e(t) (3.4)

is studied where

Φp : R
n → R

n, Φp(u) = (|u1|p−2u1, . . . , |un|p−2un)T .
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3. Existence of global solutions systems of second ODE with p-Laplacian

The operator Φp(u
′) is called multidimensional p-Laplacian. The study of radially

symmetric solutions of the system of p-Laplace equations

div(‖∇vi‖p−2∇vi) = hi(‖x‖, v1, v2, . . . , vn), i = 1, 2, . . . , n, p > 1

leads to the system of ordinary differential equations

(|u′i|p−2u′i)
′ = fi(t, u1, u2, . . . , un), i = 1, 2, . . . , n, p 6= n (3.5)

where

fi(t, u1, u2, . . . , un) =
∣

∣

∣

p− 1

p− n

∣

∣

∣

p

t
p−n

p(1−n)hi(t
p−1
p−n , u1, u2, . . . , un).

This system can be written in the form

(Φp(u
′))′ = f(t, u) (3.6)

where f = (f1, f2, . . . , fn)T and Φp(u
′) is the n-dimensional p-Laplacian. Through-

out this paper we consider the operator Φp+1 with p > 0 and for the simplicity we

denote it as Φp, i. e.

Φp(u) = (|u1|p−1u1, |u2|p−1u2, . . . , |un|p−1un).

We shall study the initial value problem

(A(t)Φp(y
′))′ +B(t)g(y′) +R(t)f(y) = e(t), (3.7)

y(0) = y0, y′(0) = y1 (3.8)

where p > 0, y0, y1 ∈ R
n, A(t), B(t), R(t) are continuous, matrix-valued functions

on R+ := [0,∞), A(t) is regular for all t ∈ R+ , e : R+ → R
n and f, g : R

n →
R

n are continuous mappings. The equation (3.7) with n = 1 has been studied

by many authors (see e. g. references in [21]). Many papers are devoted to the

study of the existence of periodic solutions of scalar differential equation with

p−Laplacian and in some of them it is assumed that A(0) = 0. We study the

system without this singularity. From the recently published papers and books

see e.g. [12, 13, 21, 22]. The problems treated in this paper are close to those

studied in [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 18, 20, 21, 22]. The aim of the paper is to

study the problem of the existence of global solutions to (3.7) in the sense of the

following definition.

Definition 3.1. A solution y(t), t ∈ [0, T ) of the initial value problem (3.7), (3.8) is

called nonextendable to the right if either T <∞ and

lim sup
t→T−

[‖y(t)‖ + ‖y′(t)‖] = ∞

or T = ∞, i. e. y(t) is defined on R+ = [0,∞). In the second case the solution y(t)

is called global.
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3. Existence of global solutions systems of second ODE with p-Laplacian

The main result of this paper is the following theorem.

Theorem 3.1. Let p > 0, A(t), B(t), R(t) be continuous matrix-valued functions

on [0,∞), A(t) be regular for all t ∈ R+, e : R+ → R
n, f, g : R

n → R
n be contin-

uous mappings and y0, y1 ∈ R
n. Let
∫ ∞

0

‖R(s)‖sm−1 ds <∞ (3.9)

and there exist constants K1, K2 > 0 such that

‖g(u)‖ ≤ K1‖u‖m, ‖f(v)‖ ≤ K2‖v‖m, u, v ∈ R
n. (3.10)

Then the following assertions hold:

1. If 1 < m ≤ p, then any nonextendable to the right solution y(t) of the initial value

problem (3.7), (3.8) is global.

2. Let m > p,m > 1,

A∞ := sup
0≤t<∞

‖A(t)−1‖ <∞, R0 =

∫ ∞

0

‖R(s)‖ ds,

E∞ := sup
0≤t<∞

‖
∫ t

0

e(s) ds‖ <∞, Q(s) :=

∫ ∞

s

‖R(σ)‖σm−1 dσ

and

n
p

2
m− p

p
D

m−p

p A∞ sup
0≤t<∞

∫ t

0

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

ds < 1

for all t ∈ [0,∞) where

D = n
p

2A∞

(

‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR0 + E∞

)

.

Then any nonextendable to the right solution y(t) of the initial value problem (3.7),

(3.8) is global.

In [5] a solution u : [0, T ) → R
n with 0 < T < ∞ of the equation (3.7) with

n = 1 is called singular of the second kind, if sup0<t<T |y′(t)| = ∞. By [5, Theorem

1] if m = p > 0 (we need to assume m > 1) and the condition (3.10) is fulfilled

then there exists no singular solution of the second kind of (3.7) and all solutions

of (3.7) are defined on R+, i. e. they are global. The proof of this result is based

on the transformation y1(t) = y(t), y2(t) = A(t)|y′(t)|p−1y′(t) transforming the

scalar equation (3.7) into the form

y′1 = A(t)−
1
p |y2|

1
p sgn y2, (3.11)

y′2 = −B(t)g(A(t)−
1
p sgn y2) − R(t)f(y1) + e(t).
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An estimate of the function v(t) = max0≤s≤t |y2(s)| proves the boundedness of

|y′(t)| on any bounded interval [0, T ). By [5, Theorem 2], if n = 1, R ∈ C1(R+,R),

R(t) > 0, f(x)x > 0 for all t ∈ R+ and either |g(x)| ≤ |x|p for |x| ≥ M for some

M ∈ (0,∞) or g(x)x ≥ 0 or g(x) ≥ 0 for all x ∈ R+ then the equation (3.7) has no

singular solution of the second kind and all its solutions are defined on R+, i. e.

they are global. The method of proofs are based on the study of the boundedness

from above of the scalar function V (t) = A(t)
R(t)

|y′(t)|p+1 + p+1
p

∫ y(t)

0
f(s) ds on any

bounded interval [0, T ). We remark that in [5] the case n = 1, m = p > 0 is stud-

ied. The method of proofs applied in [5] is not applicable in the case n > 1. Our

proof of Theorem 3.1 is completely different from that applied in [5]. The main

tool of our proof is the discrete and also continuous version of the Jensen’s in-

equality, Fubini theorem and a generalization of the Bihari theorem (see Lemma),

proved in this paper. The application of the Jensen’s inequality is possible only

under the assumption m > 1. Therefore we do not study the case 0 < m < 1. This

means that the problem is open for n > 1 and 0 < m < 1. The natural problem

is to formulate sufficient conditions for the existence of solutions which are not

global, or solutions which are not of the second kind. This problem is not solved

even for the scalar case and it seems to be not simple. By [5, Remark 5] the exis-

tence of singular solutions of the second kind of (3.7) is an open problem even in

the scalar case. M. Bartušek proved (see [1, Theorem 4]) that if n = 1, 0 < p < m,

then there exists a positive function R(t), t ≥ 0 such that the scalar equation (3.7)

with A(t) ≡ 1, B(t) ≡ 0, e(t) ≡ 0 and f(y) = |y|p has a singular solution of the

second kind. The case 0 < p < m, n = 1, studied by Bartušek, corresponds to

the assertion 2 of our Theorem 3.1, however for the example given by Bartušek

in [5] the assumptions of the assertion 2 are not satisfied. The function R(t) is

constructed using a continuous, piecewise polynomial function and the integral

R0 is not finite. Let us remark that for the case p = 1, i. e. for second order

differential equations without p-Laplacian and also for higher order differential

equations some sufficient conditions for the existence of singular solutions of the

second kind are proved by Bartušek in the papers [2, 3, 4]. A result on the exis-

tence of singular solutions of the second kind for systems of nonlinear differential

equations (without the p-Laplacian) are proved by Chanturia [7, Theorem 3] and

also by Mirzov [18].
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3.2 Proof of the main result

First we shall prove the following lemma.

Lemma 3.1. Let c > 0, m > 0, p > 0, t0 ∈ R be constants, F (t) be a continuous, non-

negative function on R+ and v(t) be a continuous, nonnegative function on R+ satisfying

the inequality

v(t)p ≤ c+

∫ t

t0

F (s)v(s)m ds, t ≥ t0. (3.12)

Then the following assertions hold:

1. If 0 < m < p, then

v(t) ≤
(

c
p−m

p +
p−m

p

∫ t

t0

F (s) ds
)

1
p−m

, t ≥ t0. (3.13)

2. If m > p, m > 1 and

m− p

p
c

m−p

p sup
t0≤t<∞

∫ t

t0

F (s) ds < 1,

then

v(t) ≤ c
1
p

(

1 − m−p
p
c

m−p

p

∫ t

t0
F (s) ds

)
1

m−p

, t ≥ t0. (3.14)

Proof. LetG(t) be the right-hand side of the inequality (3.12). Then v(t)m ≤ G(t)
m
p

which yields
F (t)v(t)m

G(t)
m
p

≤ F (t),

i. e.
G′(t)

G(t)
m
p

≤ F (t).

Integrating this inequality from t0 to t we obtain

∫ t

t0

G′(s)

G(s)
m
p

ds =

∫ G(t)

G(t0)

dσ

σ
m
p

=
p

p−m

(

G(t)
p−m

p −G(t0)
p−m

p

)

≤
∫ t

t0

F (s) ds.

Since G(t0) = c we obtain

v(t) ≤ G(t)1/p ≤
(

c
p−m

p +
p−m

p

∫ t

t0

F (s) ds
)

1
p−m

.

The assertions (3.1) and (3.2) follow from this inequality.
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Remark 3.1. If p = 1, m > 0 then this lemma is a consequence of the well known

Bihari inequality (see [6]). Some results on integral inequalities with power non-

linearity on their left-hand sides can be found in the B. G. Pachpatte monograph

[19]. The idea of the proof of this lemma is based on that used in the proofs

of results on integral inequalities with singular kernels and power nonlinearities

on their left-hand sides, published in the papers [16, 17].

Let y(t) be a solution of the initial value problem (3.7), (3.8) defined on an in-

terval [0, T ), 0 < T ≤ ∞. If we denote u(t) = y′(t), then

y(t) = y0 +

∫ t

0

u(s) ds (3.15)

and the equation (3.7) can be rewritten as the following integro-differential equa-

tion for u(t):

(

A(t)Φp(u(t))
)′

+B(t)g(u(t)) +R(t)f
(

y0 +

∫ t

0

u(s) ds
)

= e(t) (3.16)

with

u(0) = y1. (3.17)

Theorem 3.2. Let p > 0, A(t),B(t),R(t) be continuous matrix-valued functions on R+,

A(t) regular for all t ∈ R+, e : R+ → R
n, f, g : R

n → R
n be continuous mappings

on R+, y0, y1 ∈ R
n,
∫∞
0

‖R(s)‖sm−1 ds < ∞ and 0 < T < ∞. Let the condition (3.10)

be satisfied and let u : [0, T ) → R
n be a solution of the equation (3.16) satisfying the

condition (3.17). Let R0 :=
∫∞
0

‖R(s)‖ ds.

Then the following assertions hold:

1. If m = p > 1, then

‖u(t)‖ ≤ dT e
∫ t

0
FT (s) ds, 0 ≤ t ≤ T

where

FT (t) := n
p

2ET

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

,

Q(s) =

∫ ∞

s

‖R(σ)‖σm−1 dσ,

ET := max
0≤t≤T

‖E(t)‖, E(t) :=

∫ t

0

e(s) ds,

dT = n
p

2AT

(

‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR0 + ET

)

,

AT = max
0≤t≤T

‖A(t)−1‖.
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2. If 1 < m < p, then

‖u(t)‖ ≤
(

d
p−m

p

T +
p−m

p
dT

∫ t

0

FT (s) ds
)

1
p−m

.

3. Let m > p, m > 1 and

A∞ := sup
0≤T<∞

AT <∞, E∞ := sup
0≤t≤∞

‖E(t)‖ <∞,

n
p

2
m− p

p
D

m−p

p A∞ sup
0≤t<∞

∫ t

0

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

ds < 1

where

D = n
p

2A∞

(

‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR0 + E∞

)

.

Then

‖u(t)‖ ≤ D
1
p

(

1 − n
p

2
m− p

p
A∞D

m−p
p

∫ t

0

(

K1‖B(s)‖ + 2m−1K2Q(s)
)

ds
)− 1

m−p

where 0 ≤ t ≤ ∞.

Proof. We shall give an explicit upper bound for the solution u(t) of the equation

(3.16), defined on the interval [0, T ), satisfying (3.17). From the equation (3.16)

and the condition (3.17) it follows that

Φp(u(t)) = A(t)−1
{

A(0)Φp(y1) −
∫ t

0

B(s)g(u(s)) ds

−
∫ t

0

R(s)f
(

y0 +

∫ s

0

u(τ) dτ
)

ds + E(t)
}

(3.18)

where E(t) =
∫ t

0
e(s) ds. This inequality together with the conditions (3.10) yield

‖A(t)−1‖−1‖Φp(u(t))‖ ≤ ‖A(0)Φp(y1)‖ +K1

∫ t

0

‖B(s)‖‖u(s)‖m ds

+K2

∫ t

0

‖R(s)‖
(

‖y0‖ +

∫ s

0

‖u(τ)‖dτ
)m

ds + ‖E(t)‖.
(3.19)

We shall use the integral version of the Jensen’ s inequality

(

∫ t

0

h(s) ds
)κ

≤ tκ−1

∫ t

0

h(s)κ ds, κ > 1, t ≥ 0 (3.20)

for h ∈ C(R+,R+) (for a more general integral Jensen’s inequality, see e. g. [15,

Chapter VIII, Theorem 2]). Also we shall use its discrete version

(A1 + A2 + · · · + Al)
κ ≤ lκ−1(Aκ

1 + Aκ
2 + · · ·+ Aκ

l ) (3.21)
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3. Existence of global solutions systems of second ODE with p-Laplacian

for A1, A2, . . . , Al ≥ 0, κ > 1 (see [15, Chapter VIII, Corollary 4]).

Let m > 1. Then using the inequalities (3.20) and (3.21) we obtain the inequal-

ity

(

‖y0‖ +

∫ s

0

‖u(τ)‖ dτ
)m

≤ 2m−1
(

‖y0‖m +
(

∫ s

0

‖u(τ)‖ dτ
)m)

≤ 2m−1
(

‖y0‖m + sm−1

∫ s

0

‖u(τ)‖m dτ
)

.

Putting this inequality into (3.19) we obtain

‖A(t)−1‖−1‖Φp(u(t))‖ ≤ ‖A(0)Φp(y1)‖+

+K1

∫ t

0

‖B(s)‖‖u(s)‖m ds + 2m−1K2‖y0‖m

∫ t

0

‖R(s)‖ ds

+ 2m−1K2

∫ t

0

(

‖R(s)‖sm−1

∫ s

0

‖u(τ)‖m dτ
)

ds + ‖E(t)‖.

(3.22)

Now we shall apply the following consequence of the Fubini theorem (see e. g.

[23, Theorem 3.10 and Exercise 3.27]): If h : [a, b] × [a, b] → R is an integrable

function, then
∫ b

a

∫ y

a

h(x, y) dx dy =

∫ b

a

∫ b

x

h(x, y) dy dx.

If h(τ, s) = ‖R(s)‖sm−1‖u(τ)‖m, a = 0, b = t, y = s, x = τ , then

∫ t

0

∫ s

0

h(τ, s) dτ ds =

∫ t

0

∫ t

τ

h(τ, s) ds dτ,

i. e.
∫ t

0

∫ s

0

‖R(s)‖sm−1‖u(τ)‖m dτ ds =

∫ t

0

(

∫ t

τ

‖R(s)‖sm−1 ds
)

‖u(τ)‖m dτ.

This yields

∫ t

0

‖R(s)‖sm−1

∫ s

0

‖u(τ)‖m dτ ds ≤
∫ t

0

Q(τ)‖u(τ)‖m dτ (3.23)

where

Q(τ) :=

∫ ∞

τ

‖R(s)‖sm−1 ds

for τ ≥ 0.

Let 0 < T <∞ and t ∈ [0, T ). From the inequalities (3.22) and (3.23) it follows

that

‖A(t)−1‖−1‖Φp(u(t))‖ ≤ cT +

∫ t

0

F0(s)‖u(s)‖m ds (3.24)
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3. Existence of global solutions systems of second ODE with p-Laplacian

where

cT = ‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR0 + ET , (3.25)

F0(s) = K1‖B(s)‖ + 2m−1K2Q(s), (3.26)

ET = max
0≤t≤T

‖E(t)‖. (3.27)

If k ∈ {1, 2, . . . , n}, then

|uk(t)|p ≤ ‖Φp(u(t))‖ =
(

|u1(t)|2p + |u2(t)|2p + · · ·+ |un(t)|2p
)

1
2

≤ AT cT +

∫ t

0

ATF0(s)‖u(s)‖m ds;

i. e.

|uk(t)|p ≤ c0T +

∫ t

0

F0T (s)‖u(s)‖m ds (3.28)

where

AT := max
0≤t≤T

‖A(t)−1‖ if T <∞, (3.29)

c0T = AT cT , F0T (t) = ATF0(t). (3.30)

This yields

‖u(t)‖ ≤ n
p

2

(

c0T +

∫ t

0

F0T (s)‖u(s)‖m ds
)

1
p

and therefore we have obtained the inequality

‖u(t)‖p ≤ dT +

∫ t

0

FT (s)‖u(s)‖m ds (3.31)

where

dT = n
p

2 c0T , FT (t) = n
p

2F0T (t). (3.32)

Now applying Lemma 3.1 (case m = p follows from the Gronwall’s lemma)

to the inequality (3.31) we obtain the assertion 1. and assertion 2. In the proof

of the assertion 3. we use the assumptions A∞ := sup0≤t<∞ ‖A(t)−1‖ <∞ and

E∞ := sup0≤t≤∞ ‖E(t)‖ <∞. From the inequality (3.31) we obtain the inequality,

‖u(t)‖p ≤ D +

∫ t

0

G(s)‖u(s)‖m ds (3.33)

where D is defined in Theorem 3.1,

G(s) := n
p

2A∞(K1‖B(s)‖ + 2m−1K2Q(s))

and Q(s) =
∫∞

s
‖R(σ)σm−1‖ dσ. Now if we put in Lemma 3.1 t0 = 0, v(t) = ‖u(t)‖,

c = D and F (t) = G(t), then we obtain the inequality from the assertion 3.
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3. Existence of global solutions systems of second ODE with p-Laplacian

Proof of Theorem 3.1. Let y : [0, T ) → R
n be a nonextendable to the right solution

of the initial value problem (3.16), (3.17) with T <∞. Then

y(t) = y0 +

∫ t

0

u(s) ds

where u(t) is a solution of the equation (3.16) satisfying the condition (3.17). From

Theorem 3.2 it follows that M = sup0≤t≤T ‖u(t)‖ < ∞ and since (3.15) yields

‖y(t)‖ ≤ ‖y0‖ + t sup0≤s≤T ‖u(s)‖ we obtain limt→T− ‖y(s)‖ < ∞. This is a contra-

diction with nonextendability of y(t).
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[5] M. Bartušek and E. Pekárková On existence of proper solutions of quasilinear

second order differential equations, Electronic Journal of Qualitative Theory of

Differential Equations, 1 (2007), 1–14.

[6] J. A. Bihari, A generalization of a lemma of Bellman and its applications to unique-

ness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956),

81–94.

[7] T. A. Chanturia, A singular solutions of nonlinear systems of ordinary differen-

tial equations, Colloquia Mathematica Society János Bolyai Differential Equa-

tions, Keszthely (Hungary), 15 (1975), 107–119.
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Estimations of noncontinuable
solutions 4
4.1 Introduction

Consider the differential equation

(A(t)Φp(y
′))′ +B(t)g(y′) +R(t)f(y) = e(t), (4.1)

where p > 0 and A(t), B(t), R(t) are continuous, matrix-valued function on

R+ := [0,∞), A(t) is regular for all t ∈ R+, e : R
n → R+ and f, g : R

n → R
n are

continuous mappings, Φp(u) = (|u1|p−1u1, . . . , |un|p−1un) for u = (u1, . . . , un) ∈ R
n.

Let u = (u1, . . . , un) ∈ R
n. Then ‖u‖ = max1≤i≤n |ui|.

Definition 4.1. A solution y of (4.1) defined on t ∈ [0, T ) is called noncontinuable

if T < ∞ and lim supt→T− ‖y′(t)‖ = ∞. The solution y is called continuable if

T = ∞.

Note, that noncontinuable solutions are called singular of the second kind,

too, see e.g. [2], [8], [13].

Definition 4.2. A noncontinuable solution y is called oscillatory if there exists an

increasing sequence {tk}∞k=1 of zeros of y such that limk→∞ tk = τ ; otherwise y is

called nonoscillatory.

In the two last decades the existence and properties of noncontinuable solu-

tions of special types of (4.1) are investigated. In the scalar case, see e.g. [2, 3, 5,

6, 9, 11, 12, 13, 15] and references therein. In particular, noncontinuable solutions

do not exist if f is sublinear in neighbourhoods of ±∞, i. e. if

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for large |x| (4.2)

with R is positive. Hence, noncontinuable solutions may exist mainly in the su-

perlinear case, i. e. if |f(x)| ≥ |x|m with m > p.

As concern to system (4.1), see papers [7], [14] where sufficient conditions are

given for (4.1) to have continuable solutions.

The scalar equation (4.1) may be applied in problems of radially symmetric

solutions of the p-Laplace differential equation, see e.g. [14]; noncontinuable so-

lutions appear e.g. in water flow problems (flood waves, a flow in sewerage

systems), see e.g. [10].
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4. Estimations of noncontinuable solutions

The present paper studies the estimations from bellow of norms of a noncon-

tinuable solution of (4.1) and its derivative. Estimations of solutions are impor-

tant e.g. in proofs of the existence of such solutions, see e.g. [3], [8] for

y(n) = f(t, y, . . . , y(n−1)) (4.3)

with n ≥ 2 and f ∈ C0(R+,R
n). For generalized Emden-Fowler equation of the

form (4.3), some estimation are proved in [1].

In the paper [14] there is studied differential equation (4.1) with initial condi-

tions

y(0) = y0, y′(0) = y1 (4.4)

where y0, y1 ∈ R
n.

We will use the following version of Theorem 1.2. from [14] and of Theo-

rem 1.2. from [7].

Theorem A. Let m > p and there exist positive constants K1, K2 such that

‖g(u)‖ ≤ K1‖u‖m, ‖f(v)‖ ≤ K2‖v‖m, u, v ∈ R
n. (4.5)

and
∫∞
0

‖R(∞)‖sm ds <∞. Denote

A∞ := sup
0≤t<∞

‖A(t)‖−1 <∞, E∞ := sup
0≤t<∞

‖
∫ t

0

e(s) ds‖ <∞,

R∞ :=

∫ ∞

0

‖R(s)‖ ds, B∞ =

∫ ∞

0

‖B(t)‖ dt.

(i) Let m > 1 and let

n
p

2
m− p

p
A∞D

m−p

p

1

∫ ∞

0

(

K1‖B(s)‖ + 2m−1K2s
m‖R(s)‖

)

ds < 1

for all t ∈ R+ where

D1 = n
p

2A∞

{

‖A(0)Φp(y1)‖ + 2m−1K2‖y0‖mR∞ + E∞

}

.

(ii) Let m ≤ 1 and let

2m+1m− p

p
A∞D

m−p

p

2

∫ ∞

0

(

K1‖B(s)‖ +K2s
m‖R(s)‖

)

ds < 1

for all t ∈ R+ where

D2 = A∞

{

‖A(0)Φp(y1)‖ + 2mK1‖y1‖mB∞ + 22m+1K2R∞‖y0‖m + E∞

}

.

Then any nonextendable to the right solution y(t) of the initial value problem

(4.1), (4.4) is continuable.
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4. Estimations of noncontinuable solutions

4.2 Main results

We will derive estimates for a noncontinuable solution y on the fixed definition

interval [T, τ) ⊂ R+, τ <∞.

Theorem 4.1. Let y be a noncontinuable solution of system (4.1) on [T, τ) ⊂ R+,

τ − T ≤ 1,

A0 := max
T≤t≤τ

‖A(t)‖−1, B0 := max
T≤t≤τ

‖B(t)‖,

R0 := max
T≤t≤τ

‖R(t)‖, E0 := max
T≤t≤τ

‖e(t)‖

and let there exist positive constants K1, K2 and m > p such that

‖g(u)‖ ≤ K1‖u‖m, ‖f(v)‖ ≤ K2‖v‖m, u, v ∈ R
n. (4.6)

(i) If p > 1 and M = 22m+1(2m+3)
(m+1)(m+2)

, then

‖A(t)Φp(y
′(t))‖ + 2m−1K2‖y(t)‖mR0 + E0(τ − t) ≥ C1(τ − t)−

p

m−p (4.7)

for t ∈ [T, τ) where

C1 = n
− pm

2(m−p)A
− p

m−p

0

(m− p

p

)− p

m−p
[3

2
K1B0 +MK2R0

]− p

m−p

.

(ii) If p ≤ 1, then

‖A(t)Φp(y
′(t))‖ + 2mK1B0‖y′(t)‖m + 22m+1K2R0‖y(t)‖m+ (4.8)

+E0(τ − t) ≥ C2(τ − t)−
p

p−m

for t ∈ [T, τ) where

C2 = 2−
p(m+1)

m−p A
− m

m−p

0

(m− p

p

)− p

m−p
[3

2
K1B0 +MK2R0

]− p

m−p

.

Proof. Let y be a singular solution of system (4.1) on interval [T, τ). We take t to

be fixed in interval [T, τ) and for simplicity sign

D = n
− pm

2(m−p)A
− p

m−p

0

(m− p

p

)− p

m−p

. (4.9)

Assume, contrarily, that

‖A(t)Φp(y
′(t))‖ + 2m−1K2‖y(t)‖mR0 + E0(τ − t) (4.10)

< D

[

3

2
K1B0 +MK2R0

]− p

m−p

(τ − t)−
p

m−p .
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4. Estimations of noncontinuable solutions

Together with the Cauchy problem

(A(x)Φp(y
′))′ +B(x)g(y′) +R(x)f(y) = e(x), x ∈ [t, τ) (4.11)

and

y(t) = y0, y′(t) = y1 (4.12)

we construct a helpful system

(Ā(s)Φp(z
′))′ + B̄(s)g(z′) + R̄(s)f(z) = ē(s), (4.13)

z(0) = z0, z′(0) = z1 (4.14)

where s ∈ R+, z0, z1 ∈ R
n, Ā(s), B̄(s), R̄(s) are continuous, matrix-valued func-

tion on R+ given by

Ā(s) =

{

A(s+ t) if 0 ≤ s < τ − t,

A(τ) if τ − t ≤ s <∞,
(4.15)

B̄(s) =















B(s + t) if 0 ≤ s < τ − t,

−B(τ−t)
τ−t

s+ 2B(τ − t) if τ − t ≤ s < 2(τ − t),

0 if 2(τ − t) ≤ s <∞,

(4.16)

R̄(s) =















R(s+ t) if 0 ≤ s < τ − t,

−R(τ−t)
τ−t

s+ 2R(τ − t) if τ − t ≤ s < 2(τ − t),

0 if 2(τ − t) ≤ s <∞,

(4.17)

ē(s) =















e(s) if 0 ≤ s < τ − t,

−e(τ−t)
τ−t

s+ 2e(τ − t) if τ − t ≤ s < 2(τ − t),

0 if 2(τ − t) ≤ s <∞.

(4.18)

We can see that Ā(s) is regular for all s ∈ R+.

Hence, systems (4.11) on [t, τ) and (4.13) on interval [0, τ − t) are equivalent

with s = x − t. Let z0 = y(t) and z1 = y′(t). Then the definitions of functions

Ā, B̄, R̄, ē give that

z(s) = y(s+ t), s ∈ [0, τ − t) is the noncontinuable solution (4.19)

of system (4.13), (4.14) on [0, τ − t). By the application of Theorem A(i) on system

(4.13), (4.14) we will see that every z satisfying

‖Ā(0)Φp(z1)‖ + 2m−1K2‖z0‖mR0 +

∫ ∞

0

‖ē(s)‖ ds (4.20)

< D

[

∫ ∞

0

(

K1‖B̄(w)‖ + 2m−1K2‖R̄(w)‖wm
)

dw

]− p

m−p
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4. Estimations of noncontinuable solutions

is continuable. Note, that according to (4.15)–(4.20) all assumptions of Theo-

rem A are valid. Furthermore, we will show that (4.10) yields (4.20).

We calculate integrals and estimate the right side of the (4.20)

G := D

[

∫ ∞

0

(

K1‖B̄(w)‖ + 2m−1K2‖R̄(w)‖wm
)

dw

]− p

m−p

≥ D

[

∫ 2(τ−t)

0

(

K1‖B̄(w)‖ + 2m−1K2‖R̄(w)‖wm
)

dw

]− p

m−p

≥ D

[

K1 max
0≤s ≤τ−t

‖B(s+ t)‖(τ − t)

+K1

∫ 2(τ−t)

τ−t

‖ −B(τ − t)

τ − t
w + 2B(τ − t) ‖ dw

+ 2m−1K2 max
0≤s ≤(τ−t)

‖R(s+ t)‖(τ − t)m+1

m+ 1
dw

+ 2m−1K2

∫ 2(τ−t)

τ−t

‖ −R(τ − t)

τ − t
w + 2R(τ − t) ‖ wm dw

]− p
m−p

,

G ≥ D

[

K1 max
T≤t≤τ

‖B(t)‖(τ − t) +
1

2
K1‖B(τ − t)‖(τ − t)

+M1K2 max
T≤t≤τ

‖R(t)‖(τ − t)m+1 +M2K2‖R(τ − t)‖(τ − t)m+1

]− p

m−p

where

M1 =
2m−1

m+ 1
and M2 = 2m−12m+2(2m+ 3) − 3m− 5

(m+ 1)(m+ 2)
.

Hence,

G > D

[

3

2
K1B0(τ − t) +MK2R0(τ − t)m+1

]− p

m−p

(4.21)

as M > M1 +M2.

As we assume that τ − t ≤ 1, (4.10) and (4.21) imply

G > D

[

3

2
K1B0 +MK2R0

]− p
m−p

(τ − t)−
p

m−p = C1(τ − t)−
p

m−p (4.22)

≥ ‖A(t)Φp(y
′(t))‖ + 2m−1K2‖y(t)‖mR0 + E0(τ − t)

= ‖Ā(0)Φp(z1)‖ + 2m−1K2‖z0‖mR0 +

∫ ∞

0

‖ē(s)‖ ds
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4. Estimations of noncontinuable solutions

where C1 = D
[

3
2
K1B0 + MK2R0

]− p

m−p

. Hence (4.20) holds and the solution z

of (4.13) satisfying the initial condition z(0) = y0 and z′(0) = y1 is continuable.

The contradiction with (4.19) proves the statement.

If m ≤ 1 then the proof is similar, we have to use Theorem A(ii) instead of

Theorem A(i).

Now consider special case of equation (4.1)

(A(t)Φp(y
′))′ +R(t)f(y) = 0 (4.23)

for all t ∈ R+. In this case a better estimation can be proved.

Theorem 4.2. Letm > p and y be a noncontinuable solution of system (4.23) on interval

[T, τ) ⊂ R+. Let there exist constant K2 > 0 such that

‖f(v)‖ ≤ K2‖v‖m, v ∈ R
n. (4.24)

Let A0, R0 and M be given by Theorem 4.1. Then

‖A(t)Φp(y
′(t))‖ + 2m+2K2‖y(t)‖mR0 ≥ C1(τ − t)−

p(m+1)
m−p (4.25)

where

C1 = n
− pm

2(m−p)A
− p

m−p

0

(

m− p

p

)− p

m−p
[

MK2R0

]− p

m−p in case p > 1

and

‖A(t)Φp(y
′)‖ + 22m+1K2‖y(t)‖mR0 ≥ C2(τ − t)−

p(m+1)
m−p

with

C2 = 2−
p(m+1)

m−p A
− m

m−p

0

(m− p

p

)− p

m−p [

MK2R0

]− p

m−p in case p ≤ 1.

Proof. Proof is similar the one of the Theorem 4.1 for B(t) ≡ 0 and e(t) ≡ 0. Let

p > 1. We do not use assumption τ − t ≤ 1, we are able to improve an exponent

of the estimation (4.7). Equation (4.22) has changed to

G ≥ C1(τ − t)−
p(m+1)

m−p

≥ ‖A(t)Φp(y
′(t))‖ + 2m−1K2‖y(t)‖mR0

≥ ‖Ā(0)Φp(z
′(0))‖ + 2m−1K2‖z(0)‖mR0

where C1 = D[MK2R0]
− p

(m−p) . If p ≤ 1, the proof is similar.

59



4. Estimations of noncontinuable solutions

4.3 Applications

In this section we study a scalar differential equation

(a(t)Φp(y
′))′ + r(t)f(y) = 0 (4.26)

where p > 0, a(t), r(t) are continuous functions on R+, a(t) > 0 for t ∈ R+,

f : R → R is a continuous mapping and Φp(u) = |u|p−1u.

Theorem 4.3. Let y be a noncontinuable oscillatory solution of equation (4.26) defined

on [T, τ). Let there exist constants K2 > 0 such that

|f(v)| ≤ K2|v|m, v ∈ R. (4.27)

Let {tk}∞1 and {τk}∞1 be increasing sequences of all local extremes of solution y and

y[1] = a(t)Φp(y
′) on [T, τ), respectively. Then constants C1 and C2 exists such that

|y(tk)| ≥ C1(τ − tk)
− p(m+1)

m(m−p) (4.28)

and in the case r 6= 0 on R+ and f(x)x > 0 for x 6= 0.

|y[1](τk)| ≥ C2(τ − τk)
− p(m+1)

m−p (4.29)

for k ≥ 1, 2, . . . .

Proof. Let m > p and y be a oscillatory noncontinuable solution of equation (4.26)

defined on [T, τ). An application of Theorem 4.2 to (4.26) gives

|y[1](t)| + 22m+1K2|y(t)|mr0 ≥ C(τ − t)−
p(m+1)

m−p (4.30)

where C is a suitable constant and r0 = maxT≤t≤τ |r(t)|. Note, that according to

(4.26), x (x[1]) has a local extreme at t0 ∈ (T, τ) if and only if x[1](t0) (x(t0) = 0).

From this an accumulation point of zeros of x (x[1]) does not exist in [T, τ). Other-

wise, it holds y(τ) = 0 and y′(τ) = 0. That is in contradiction with (4.30). If {tk}∞1
is sequence of all extremes of solution y, then y′(tk) = 0, i.e. y[1](tk) = 0. We obtain

the following estimate for y(tk) from (4.30)

|y(tk)| ≥ C1(τ − tk)
− p(m+1)

m(m−p)

where C1 = C
1
m (22m+1K2r0)

− 1
m and (4.28) is valid. If {τk}∞1 is the sequence of all

extremes of y[1](τk), then y(τk) = 0. We obtain the following estimate for y[1](τk)

from (4.30)

|y[1](τk)| ≥ C2(τ − τk)
− p(m+1)

m−p

where C2 = C and (4.29) is valid.
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4. Estimations of noncontinuable solutions

Example 4.1. Consider (4.26) and (4.27) with m = 2, p = 1 and a ≡ 1. Then from

Theorem 4.3 we obtain the following estimates

|y(tk)| ≥ C1(τ − tk)
− 3

2 , |y[1](τk)| ≥ C2(τ − τk)
−3

where M = 56
3

, C1 =
√

42
448K2r0

and C2 = 3
448K2r0

.

Example 4.2. Consider (4.26) and (4.27) with m = 3, p = 2 and a ≡ 1. Then from

Theorem 4.3 we obtain the following estimates

|y(tk)| ≥ C1(τ − tk)
− 8

3 , |y[1](τk)| ≥ C2(τ − τk)
−8

where M = 288
5

, C1 = 1
32K2r0

(

10
9

)
2
3 and C2 =

(

5
144K2r0

)2
.

The following lemma is a special case of Lemma 11.2. in [13].

Lemma 4.1. Let y ∈ C2[a, b), δ ∈ (0, 1
2
) and y′(t)y(t) > 0, y′′(t)y(t) ≥ 0 on [a, b). Then

(

y′(t)y(t)
)− 1

1−2δ ≥ ω

∫ b

t

|y′′(s)|δ|y(s)|3δ−2 ds, t ∈ [a, b) (4.31)

where ω = [(1 − 2δ)δδ(1 − δ)1−δ]−1.

Now, let us turn our attention to nonoscillatory solutions of (4.26).

Theorem 4.4. Let m > p and M ≥ 0 hold such that

|f(x)| ≤ |x|m for |x| ≥M. (4.32)

If y be a nonoscillatory noncontinuable solution of (4.26) defined on [T, τ), then constants

C, C0 and a left neighborhood J of τ exist such that

|y′(t)| ≥ C(τ − t)−
p(m+1)
m(m−p) , t ∈ J. (4.33)

Let, moreover, m < p+
√

p2 + p. Then

|y(t)| ≥ C0(τ − t)m1 with m1 =
m2 − 2mp− p

m(m− p)
< 0. (4.34)

Proof. Let y be a nonoscillatory noncontinuable solutions of (4.26) defined on in-

terval [T, τ). Then t0 ∈ [T, τ) exists such that y(t)y[1](t) > 0 for t ∈ [t0, τ). Let

y(t) > 0 and y′(t) > 0 for t ∈ J := [t0, τ);

the opposite case x < 0 and x′ < 0 can be studied similarly. As y is noncontinu-

able, limt→τ− y′(t) = ∞. Moreover, limt→∞ y(t) = ∞ as, otherwise, y[1] and y are
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4. Estimations of noncontinuable solutions

bounded on the finite interval J . Hence, t1 ∈ J exists such that y′(t) ≥ 1 for [t1, τ),

y(t) ≥M for t ≥ t1 and

y(t) = y(t0) +

∫ t

t0

y′(s) ds ≤ y(t0) + τy′(t) ≤ 2τy′(t), t ∈ [t1, τ). (4.35)

Note, that due to y ≥M it is enough to suppose (4.32) in stead of (4.24) for an ap-

plication of Theorem 4.2. Hence, Theorem 4.2 applied to (4.26), (4.35) and y′ ≥ 1

imply

C1(τ − t)−
p(m+1)

m−p ≤ a(t)(y′(t))p + C2y
m(t)

≤ a(t)(y′(t))p + C2(2τ)
m(y′(t))m

≤ C3(y
′(t))m

or

y′(t) ≥ C4(τ − t)−
p(m+1)
m(m−p) on [t1, τ)

where C1, C2, C3 and C4 are positive constants which do not depend on y. More-

over, the integration of (4.33) implies

y(t) = y(t0) +

∫ t

t0

y′(s) ds ≥ C

∫ t

t0

(τ − s)−
p(m+1)
m(m−p) ds

≥ C

|m1|
[(τ − t)m1 − (τ − t0)

m1 ] ≥ C

2|m1|
(τ − t)m1

for t lying in a left neighbourhood I1 of τ . Hence, (4.33) and (4.34) are valid.

Our last application is devoted to the equation

y′′ = r(t)|y|m sgn y (4.36)

where r ∈ C0(R+), m > 1.

Theorem 4.5. Let τ ∈ (0,∞), T ∈ [0, τ) and r(t) > 0 on [t, τ ].

(i) Then (4.36) has nonoscillatory noncontinuable solution which is defined in a left

neighbourhood of τ .

(ii) Let y be a nonoscillatory noncontinuable solution of (4.36) defined on [T, τ). Then

constants C, C1, C2 and a left neighbourhood I of τ exist such that

|y(t)| ≤ C(τ − t)−
2(m+3)

m−1 and |y′(t)| ≥ C1(τ − t)−
m+1

m(m−1) , t ∈ I.

If, moreover, m < 1 +
√

2, then

|y(t)| ≤ C2(τ − t)m1 with m1 =
m2 − 2m− 1

m(m− 1)
< 0.
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4. Estimations of noncontinuable solutions

Proof. (i) The conclusion follows from Theorem 2 in [4].

(ii) Let y be a noncontinuable solution of (4.36) defined on [T, τ). According to

Theorem 4.4 and its proof we have limt→τ− |y(t)| = ∞ and (4.33) holds. Hence,

suppose that t0 ∈ [T, τ)is such that

y(t) ≥ 1 and y′(t) > 0 on [t0, τ).

Furthermore, t1 ∈ [t0, τ) exists such that

y(t) = y(t0) +

∫ t

t0

y′(s) ds ≤ y(t0) + y′(t)(τ − t0) ≤ C3y
′(t)

for t ∈ [t1, τ) with C3 = 2(τ − t0). Now, we estimate y from bellow. Applying

Lemma 4.1 with [a, b) = [t1, τ) and δ = 2
m+3

∈ (0, 1
2
). We have δm+ 3δ− 2 = 0 and

C
m+3
m−1

3 y−
2(m+3)

m−1 (t)m ≥ (y′(t)y(t))−
1

1−2δ ≥ ω

∫ τ

t

(y′′(s))δ(y(s))3δ−2 ds

≥ C4

∫ τ

t

yδm+3δ−2(s) ds = C4(τ − t) on [t1, τ)

where C4 = ωmint0≤σ≤τ |r(σ)|. From this

y(t) ≤ C(τ − t)
− m−1

2(m+3) on [t1, τ)

with a suitable positive C. The rest of statement follows from Theorem 4.5.
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Large behavior of second order
differential equation
with p-Laplacian 5
5.1 Introduction

In this paper, we study asymptotic properties of the second order differential

equation with p-Laplacian

(|u′|p−1u′)′ + f(t, u, u′) = 0, p ≥ 1. (5.1)

In the sequel, it is assumed that all solutions of the equation (5.1) are contin-

uously extendable throughout the entire real axis. We refer to such solutions as

to global solutions. We shall prove sufficient conditions under which all global

solutions are asymptotic to at + b, as t → +∞, where a, b are real numbers. The

problem for ordinary second order differential equations without p−Laplacian

has been studied by many authors, e. g. by D. S. Cohen [6], A. Constantin [7],

F. M. Dannan [8], T. Kusano and W. F. Trench [9, 10], Y. V. Rogovchenko [13],

S. P. Rogovchenko, Y. V. Rogovchenko [14], J. Tong [15] and W. F. Trench [16]. Our

results are more close to these obtained in the papers [13, 14]. The main tool of the

proofs are the Bihari’s and Dannan’s integral inequalities. We remark that suffi-

cient conditions on the existence of global solutions for second order differential

equations and second order functional-differential equations with p−Laplacian

are proved in the papers [1, 2, 3, 4, 11]. Many references concerning differen-

tial equations with p−Laplacian can be found in the paper by I. Rachunková,

S. Staněk and M. Tvrdý [12], where boundary value problems for such equations

are treated.

Let

u(t0) = u0, u′(t0) = u1, (5.2)

where u0, u1 ∈ R be initial condition for solutions of (5.1).

Definition 5.1. We say that a solution u(t) of (5.1) possesses the property (L) if

u(t) = at+ b+ o(t) as t→ ∞, where a, b are real constants.
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5. Large behavior of second order differential equation with p-Laplacian

5.2 Main results

Theorem 5.1. Let p ≥ 1, r > 0 and t0 > 0. Suppose that the following conditions are

satisfied:

(i) f(t, u, v) is a continuous function in D = {(t, u, v) : t ∈ [t0,∞), u, v ∈ R} where

t0 > 0.

(ii) There exist continuous functions h, g : R+ = [0,∞) → R+ such that

|f(t, u, v)| ≤ h(t)g

(

[ |u|
t

]r
)

|v|r, (t, u, v) ∈ D

where for s > 0, the function g(s) is positive and nondecreasing,

∫ ∞

t0

h(s) ds <∞

and if we denote

G(x) =

∫ x

t0

ds

s
r
p g(s

r
p )
,

then

G(∞) =

∫ ∞

t0

ds

s
r
p g(s

r
p )

=
p

r

∫ ∞

a

τ
p

r
−2

g(τ)
dτ = ∞

where a = (t0)
r
p .

Then any global solution u(t) of the equation (5.1) possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. Let u(t) be a solution

of (5.1), (5.2). Then

|u′(t)|p ≤ c2 +

∫ t

1

|f(s, u(s), u′(s))| ds (5.3)

where c2 = |u1|p. Let w(t) be the right-hand side of inequality (5.3). Then

|u′(t)| ≤ w(t)
1
p

and

|u(t)| ≤ c1 +

∫ t

1

w(s)
1
p ds ≤ c1 + (t− 1)w(t)

1
p ≤ t[c1 + w(t)

1
p ] (5.4)

where c1 = |u0|, i. e.

u(t) ≤ t[c1 + w(t)
1
p ], t ≥ 1.
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5. Large behavior of second order differential equation with p-Laplacian

Applying the inequality (A+ B)p ≤ 2p−1(Ap + Bp), A,B ≥ 0 and the assumption

(ii) of Theorem 5.1 we obtain from (5.4):
( |u(t)|

t

)p

≤ 2p−1c
p
1 + 2p−1w(t) (5.5)

≤ 2p−1c
p
1 + 2p−1

(

c2 +

∫ t

1

h(s)g

(

[ |u(s)|
s

]r
)

|u′(s)|r ds

)

.

Let

d = 2p−1(cp1 + c2), H(t) = 2p−1h(t). (5.6)

Then
( |u(t)|

t

)p

≤ d+

∫ t

1

H(s)g

(

[ |u(s)|
s

]r
)

|u′(s)|r ds := z(t), (5.7)

i. e.
( |u(t)|

t

)r

≤ z(t)
r
p .

From the assumption (ii) of Theorem 5.1 and the inequality (5.3) it follows

|u′(t)|p ≤ u
p
1 +

∫ t

1

h(s)g

(

[ |u(s)|
s

]r
)

|u′(s)|r ds ≤ z(t),

i. e. we have

|u′(t)|p ≤ z(t).

Since g(s) is nondecreasing, the inequality (5.5) yields

g

(

[ |u(t)|
t

]r
)

≤ g(z(t)
r
p )

and so we conclude for t ≥ 1

z(t) ≤ d+

∫ t

1

H(s)g(z(t)
r
p )z(t)

r
p ds.

From the assumption (ii) of Theorem 5.1 it follows that the inverse G−1 of G is

defined on the interval (G(+0),∞). Applying the Bihari theorem (see [5]) we

obtain

z(t) ≤ G−1

(

G(d) + 2p−1

∫ ∞

1

h(s) ds

)

:= K <∞.

Therefore the inequality (5.6) yields

|u′(t)| ≤ L := K
1
p

and from (5.5) we have
|u(t)|
t

≤ L.
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5. Large behavior of second order differential equation with p-Laplacian

Since
∫ t

1

|f(s, u(s), u′(s))| ds ≤
∫ t

1

h(s)g

(

[ |u(s)|
s

]r
)

|u′(s)|r ds ≤ z(t) ≤ K

for t ≥ 1, the integral
∫∞
1

|f(s, u(s), u′(s))| ds exists. From (5.7) it follows that there

exists a ∈ R such that

lim
t→∞

u′(t) = a.

By the l’Hospital rule, we can conclude that

lim
t→∞

u(t)

t
= lim

t→∞

u1 +
∫ t

1
u′(τ)dτ

t
= lim

t→∞
u′(t) = a.

Therefore there exist b ∈ R such that u(t) = at+ b+ o(t).

Example 5.1. Let t0 = 1, p ≥ r > 0, p ≥ 1

f(t, u, u′) = η(t)t1−αe−t

(

u

t

)p−r

ln

[

2 +

( |u|
t

)r]

(u′)r, t ≥ 1

where 0 < α < 1 and η(t) is a continuous function on interval [1,∞) with

K = supt≥1 |η(t)| <∞.

The function f(t, u, u′) can be written in the form

f(t, u, u′) = h(t)g

(

[u

t

]r
)

(u′)r

where h(t) = η(t)t1−αe−t, g(u) = u
p
r
−1 ln(2 + |u|). Obviously g(u) is positive, con-

tinuous and nondecreasing function,
∫∞
1

|h(s)|ds < KΓ(α) = K
∫∞
0
s1−αe−s ds

and
∫ ∞

1

τ
p

r
−1dτ

τg(τ)
=

∫ ∞

1

dτ

τ ln(2 + τ)
>

∫ ∞

1

dτ

(2 + τ) ln(2 + τ)
= ∞.

Thus we have proved that all conditions of Theorem 5.1 are satisfied. This means

that for every solution u(t) of the initial value problem (5.1), (5.2) there exist num-

bers a, b such that u(t) = at+ b+ o(t) as t→ ∞.

Theorem 5.2. Let p ≥ 1, r > 0 and t0 > 0. Suppose the following conditions are

satisfied:

(i) The function f(t, u, v) is continuous in D = {(t, u, v) : t ∈ [t0,∞), u, v ∈ R}.

(ii) There exist continuous functions h1, h2, h3, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h1(t)g1

(

[ |u|
t

]r
)

+ h2(t)g2(|v|r) + h3(t), (t, u, v) ∈ D
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5. Large behavior of second order differential equation with p-Laplacian

for s > 0 the functions g1(s), g2(s) are nondecreasing and if

G(x) =

∫ x

t0

ds

g1(s
r
p ) + g2(s

r
p )
,

then

G(∞) =

∫ ∞

t0

ds

g1(s
r
p ) + g2(s

r
p )

=
p

r

∫ ∞

a

τ
p
r
−1 dτ

g1(τ) + g2(τ)
= ∞

where a = (t0)
r
p .

Then any global solution u(t) of the equation (5.1) possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. By the standard existence

results, it follows from the continuity of the function f that equation (5.1) has

solution u(t) corresponding to the initial data u(1) = u0, u′(1) = u1. Two times

of integration (5.1) from 1 to t, yields for t ≥ 1

|u′(t)|p ≤ |u1|p +

∫ t

1

|f(s, u(s), u′(s))| ds, (5.8)

|u(t)| ≤ u0 + (t− 1)

[

u
p
1 +

∫ t

1

|f(s, u(s), u′(s))| ds
]

1
p

. (5.9)

It follows from (5.8) and (5.9) that for t ≥ 1

|u′(t)| ≤ w(t)
1
p ,

|u(t)| ≤ t
(

c1 + w(t)
1
p

)

where c1 = |u0|, c2 = |u1|p, w(t) = c2 +
∫ t

1
|f(s, u(s), u′(s))| ds. Using the assump-

tion (ii) of Theorem 5.2 we obtain for t ≥ 1

|u′(t)| ≤
[

c2 +

∫ t

1

h1(s)g1

(

[ |u(s)|
s

]r
)

ds+

∫ t

1

h2(s)g2(|u′(s)|r) ds+

∫ t

1

h3(s) ds

]
1
p

,

|u(t)|
t

≤ c1+

[

c2+

∫ t

1

h1(s)g1

(

[ |u(s)|
s

]r
)

ds+

∫ t

1

h2(s)g2(|u′(s)|r) ds+

∫ t

1

h3(s) ds

]
1
p

.

Applying the inequality (A+B)p ≤ 2p−1(Ap +Bp), where A,B ≥ 0, we obtain

( |u(t)|
t

)p

≤ d+

∫ t

1

H1(s)g1

(

[ |u(s)|
s

]r
)

ds+

∫ t

1

H2(s)g2(|u′(s)|r) ds

+

∫ t

1

H3(s) ds, (5.10)

where d = 2p−1(cp1 + c2), Hi(t) = 2p−1hi(t), i = 1, 2, 3.

69



5. Large behavior of second order differential equation with p-Laplacian

Denote by z(t) the right-hand side inequality (5.10)

|u′(t)|r ≤ z(t)
r
p ,

( |u(t)|
t

)r

≤ z(t)
r
p . (5.11)

Since the function g1(s) and g2(s) are nondecreasing for s > 0, we obtain

g1

(

|u′(t)|r
)

≤ g1

(

z(t)
r
p

)

,

g1

([ |u(t)|
t

]r)

≤ g2

(

z(t)
r
p

)

.

Thus, for t ≥ 1

z(t) ≤ d+

∫ t

1

H1(s)g1(z(s)
r
p ) ds +

∫ t

1

H2(s)g2(z(s)
r
p ) ds+

∫ t

1

H3(s) ds.

Furthermore, due to evident inequality

H1(s)g1(z(s)
r
p ) +H2(s)g2(z(s)

r
p ) ≤ (H1(s) +H2(s))(g1(z(s)

r
p ) + g2(z(s)

r
p )) (5.12)

we have by (5.12)

z(t) ≤ d+ H̄3 +

∫ t

1

(H1(s) +H2(s))(g1(z(s)
r
p ) + g2(z(s)

r
p )) ds

where H̄3 =
∫ t

1
H3(s) ds. I.e.

z(t) ≤ d+ 2p−1h̄3 + 2p−1

∫ t

1

(h1(s) + h2(s))(g1(z(s)
r
p ) + g2(z(s)

r
p )) ds. (5.13)

Applying Bihari’s inequality (see [5]) to (5.13), we obtain for t ≥ 1

z(t) ≤ G−1
(

G(d+ 2p−1h̄3) + 2p−1

∫ t

1

(h1(s) + h2(s)) ds
)

where

G(x) =

∫ x

1

ds

g1(s
r
p ) + g2(s

r
p )

and G−1(x) is the inverse function for G(x) defined for x ∈ (G(+0),∞). Note that

G(+0) < 0, and G−1(x) is increasing.

Now, let

K = G(d+ 2p−1h̄3) + 2p−1(h̄1 + h̄2) <∞
where h̄i =

∫ t

1
hi(s) ds, i = 1, 2, 3. Since G−1(x) is increasing, we have

z(t) ≤ G−1(K) <∞,
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so (5.11) yields

|u(t)|
t

≤
(

G−1(K)
)

1
p and |u′(t)| ≤

(

G−1(K)
)

1
p .

Using the assumption (ii) of the Theorem 5.2, we have

∫ t

1

|f(s, u(s), u′(s))| ds ≤ h1(t)g1

(

[ |u|
t

]r
)

+ h2(t)g2(|u′(t)|r) + h3(t)

≤ z(t) ≤
(

G−1(K)
)

1
p

where t ≥ 1, the integral
∫ t

1
|f(s, u(s), u′(s))| ds converges and there exists

an a ∈ R such that

lim
t→∞

u′(t) = a.

Example 5.2. Let t0 = 1, p ≥ r > 0, p ≥ 1

f(t, u, v) = η1(t)t
1−α1e−t

(

u

t

)p−r

ln
[

2 +

(

u

t

)r
]

+ η2(t)t
1−α2e−tvp−r ln(3 + vr) + η3(t)t

1−α3e−t

where 0 < αi < 1 and ηi(t) are continuous functions on interval [1,∞) with

Ki = supt≥1 |ηi(t)| <∞, i = 1, 2, 3. Then f(t, u, u′) can be written as

f(t, u, v) = h1(t)g1

([

u

t

]r)

+ h2(t)g2(v
r) + h3(t)

where hi(t) = ηi(t)t
1−αie−t, i = 1, 2, 3, g1(u) = u

p

r ln(2 + u), g2(u) = u
p

r ln(2 + u).

Then

|f(t, u, v)| ≤ |h1(t)|g1

([

u

t

]r)

+ |h2(t)|g2(|v|r) + |h3(t)|

where (t, u, v) ∈ D = {(t, u, v) : t ∈ [1,∞), u, v ∈ R}, |hi(t)| ≤ KiΓ(αi), i = 1, 2, 3

and obviously we have

G(∞) =

∫ ∞

1

τ
p

r
−1 dτ

g1(τ) + g2(τ)
=

∫ ∞

1

τ
p

r
−1 dτ

τ
p
r [ln(2 + τ) + ln(3 + τ)]

≥ 1

2

∫ ∞

1

dτ

(3 + τ) ln(3 + τ)
= ∞.

This means that all assumptions of Theorem 5.2 are satisfied and thus any global

solution u(t) of the equation (5.1) possesses the property (L).
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Theorem 5.3. Let t0 > 0. Suppose that the following assumptions hold:

(i) there exist nonnegative continuous function h1, h2, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h1(t)g1

(

[ |u|
t

]r
)

+ h2(t)g2(|v|r);

(ii) for s > 0 the functions g1(s), g2(s) are nondecreasing and

g1(αu) ≤ ψ1(α)g1(u), g2(αu) ≤ ψ2(α)g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for α ≥ 1;

(iii)
∫∞

t0
hi(s) ds = Hi <∞, i = 1, 2. Assume that there exists a constant K ≥ 1 such

that

K−1(ψ1(K) + ψ2(K))2p−1(H1 +H2) ≤
∫ +∞

t0

ds

g1(s
r
p ) + g2(s

r
p )

=
p

r

∫ +∞

a

τ
p

r
−1 dτ

g1(τ) + g2(τ)

where a = (t0)
r
p .

Then any global solution u(t) of the equation (5.1) with initial data u(t0) = u0,

u′(t0) = u1 such that (|u0| + |u1|)p ≤ K possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. Arguing in the same

way as in Theorem 5.1, we obtain by assumption (i) of Theorem 5.3

|u′(t)| ≤
[

|u1|p +

∫ t

1

h1(s)g1

(

[u(s)

s

]r
)

ds+

∫ t

1

h2(s)g2(|u′(s)|r) ds

]
1
p

(5.14)

|u(t)|
t

≤ |u0| +
[

|u1|p +

∫ t

1

h1(s)g1

(

[u(s)

s

]r
)

ds+

∫ t

1

h2(s)g2(|u′(s)|r) ds

]
1
p

where t ≥ 1.

( |u(t)|
t

)p

≤ K + 2p−1

[

∫ t

1

h1(s)g1

(

[u(s)

s

]r
)

ds +

∫ t

1

h2(s)g2(|u′(s)|r) ds

]

(5.15)
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where K = 2p−1(|u0|p + |u1|p) ≥ (|u0|+ |u1|)p. Denoting by z(t) the right-hand side

of inequality (5.15) we have by (5.14) and (5.15)

|u′(t)|r ≤ z(t)
r
p , (5.16)

( |u(t)|
t

)r

≤ z(t)
r
p .

Since the functions g1(s), g2(s) are nondecreasing for s > 0, (5.16) yields for t ≥ 1

z(t) ≤ K + 2p−1

(
∫ t

1

h1(s)g1

(

z(s)
r
p

)

ds+

∫ t

1

h2(s)g2(z(s)
r
p )

)

ds. (5.17)

By assumption (ii) of Theorem 5.3, the functions g1(u), g2(u) belong to the class H.

Furthermore, if g1(u) and g2(u) belong to the class H with corresponding multi-

plier functions ψ1(α), ψ2(α), respectively, then the sum g1(u) + g2(u) also belongs

to the class H with corresponding multiplier function (ψ1(α) + ψ2(α)). Applying

Bihari’s Theorem (see [5]) to (5.17), we have for t ≥ 1

z(t) ≤ KW−1(K−1(ψ1(K) + ψ2(K)))2p−1

∫ t

1

(h1(s) + h2(s)) ds (5.18)

where

W (u) =

∫ u

1

ds

g1

(

s
r
p

)

+ g2

(

s
r
p

)

and W−1(u) is inverse function for W (u). Inequality (5.18) holds for all t ≥ 1

because

(K−1(ψ1(K) + ψ2(K))2p−1(H1 +H2) = L <∞.

Since W−1(u) is increasing, we get

z(t) ≤ KW−1(L) <∞,

so it follows from (5.16), (5.17) that

|u(t)|
t

≤
(

KW−1(L)
)

1
p and |u′(t)| ≤

(

KW−1(L)
)

1
p .

The rest of the proof is similar to that of Theorem 5.2 and thus it is omitted.

Example 5.3. Let t0 > 0. Consider the equation (5.1) with p ≥ 1, p
r

= 2,

f(t, u, v) = h1(t)u
2 + h2(t)v

2

where h1(t) = η1(t)
t2
t1−α1e−t, h2(t) = η2(t)t

1−α2e−t, 0 < αi ≤ 1, ηi(t), i = 1, 2 are

continuous functions on the interval [0,∞) with Ki = supt≥t0 |ηi(t)| < ∞. Then

we can write

f(t, u, v) = η1(t)t
1−α1e−t

(

u

t

)2

+ η2(t)t
1−α2e−tv2
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and

|f(t, u, u′)| ≤ K1Γ(α1)g1(u) +K2Γ(α2)g2(u
′)

where g1(u) = u2, g2(u
′) = (u′)2 . The functions g1, g2 satisfy the condition (ii) of

Theorem 5.3 with ψ1(α) = ψ2(α) = α2 and

∫ ∞

t0

τ
p

r
−1 dτ

g1(τ) + g2(τ)
=

∫ ∞

t0

dτ

τ
= ∞.

Thus all assumptions of Theorem 5.3 are satisfied and therefore any global

solution u(t) of the equation (5.1) (independently on the initial values u0, u1) pos-

sesses the property (L).

Theorem 5.4. Let t0 > 0. Suppose that the asumptions (i) and (iii) of Theorem 5.3 hold,

while (ii) is replaced by

(ii’) for s > 0 the functions g1(s), g2(s) are nonnegative, continuous and nondecreas-

ing, g1(0) = g2(0) = 0 and satisfy a Lipschitz condition

|g1(u+ v) − g1(u)| ≤ λ1v, |g2(u+ v) − g2(u)| ≤ λ2v

where λ1, λ2 are positive constants.

Then any global solution u(t) of the equation (5.1) with initial data u(t0) = u0,

u′(t0) = u1 such that |u0|p + |u1|p ≤ K possesses property (L).

Proof. Applying [8, Corollary 2] to (5.17), we have for t ≥ 1

z(t) ≤ K + 2p−1

∫ t

t0

(h1(s) + h2(s))(g1(K) + g2(K))

× exp

(

2p−1

∫ t

t0

(λ1 + λ2)(h1(τ) + h2(τ))dτ

)

ds

≤ K + 2p−1(H1 +H2)(g1(K) + g2(K)) exp

(

2p−1(λ1 + λ2)(H1 +H2)

)

< +∞.

The proof can be completed with the same argument as in Theorem 5.2.

Theorem 5.5. Let t0 > 0. Suppose that there exist continuous functions h : R+ → R+,

g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h(t)g1

(

[ |u|
t

]r
)

g2(|v|r)

where for s > 0 the functions g1(s), g2(s) are nondecreasing;
∫ ∞

t0

h(s) ds <∞
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and if we denote

G(x) =

∫ x

t0

ds

g1(s
r
p )g2(s

r
p )
,

then G(+∞) = p
r

∫∞
a

τ
p
r −1

g1(τ)g2(τ)
dτ = +∞ where a = (t0)

r
p .

Then any global solution u(t) of the equation (5.1) possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. Arguing as in the proof

of Theorem 5.2, we obtain for t ≥ 1

|u′(t)| ≤
[

|u1|p +

∫ t

1

h(s)g1

(

[u(s)

s

]r
)

g2(|u′(s)|r) ds

]
1
p

|u(t)|
t

≤ |u0| +
[

|u1|p +

∫ t

1

h(s)g1

(

[u(s)

s

]r
)

g2(|u′(s)|r) ds

]
1
p

( |u(t)|
t

)p

≤ C + 2p−1

∫ t

1

h(s)g1

(

[u(s)

s

]r
)

g2(|u′(s)|r) ds (5.19)

where C = 2p−1(|u0|p + |u1|p) ≥ (|u0| + |u1|)p. Denoting by z(t) the right-hand

side of inequality (5.19) and using the assumptions of the Theorem 5.5, we have

for t ≥ 1

z(t) ≤ 1 + C + 2p−1

∫ t

1

h(s)g1(z
r
p )g2(z

r
p ) ds. (5.20)

Applying Bihari’s inequality (see [5]) to (5.20), we obtain for t ≥ 1

z(t) ≤ G−1

(

G(1 + C) + 2p−1

∫ t

1

h(s) ds

)

≤ G−1(K)

where

G(w) =

∫ w

1

ds

g1(s
r
p )g2(s

r
p )

and G−1(w) is the inverse function for G(w). The function G−1(w) is defined

for w ∈ (G(+0),∞), where G(+0) < 0, it is increasing and

K = G(1 + C) + 2p−1

∫ ∞

1

h(s) ds <∞.

The rest of proof is similar that of Theorem 5.2 and thus is omitted.

Example 5.4. Let t0 = 1, p ≥ r > 0,

f(t, u, v) = η(t)t1−αe−t

[(

u

t

)p−r

ln
[

2 +

(

u

t

)r
]

]
3
4

·
[

vp−r ln(2 + vr)

]
1
4
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where η(t) is a continuous function on [1,∞) with K = supt∈〈1,∞) η(t) <∞. Let

g1(u) =

[

u
p

r
−1 ln(2 + u)

]
3
4

, g2(v) =

[

v
p

r
−1 ln(2 + v)

]
1
4

, h(t) = η(t)t1−αe−t.

Then

f(t, u, v) = h(t)g1

(

[u

t

]r
)

g2(v
r)

and

G(+∞) =
p

r

∫ ∞

1

τ
p

r
−1

g1(τ)g2(τ)
dτ =

p

r

∫ ∞

1

dτ

τ ln(2 + τ)

>
p

r

∫ ∞

1

dτ

(2 + τ) ln(2 + τ)
= +∞.

Obviously |f(t, u, v)| can be estimated as in Theorem 5.5. Thus all assumptions

of Theorem 5.5 are satisfied and this means that any global solution of the equa-

tion (5.1) possesses the property (L).

Theorem 5.6. Let t0 > 0. Suppose that the following conditions hold:

(i) there exist nonnegative continuous functions h, g1, g2 : R+ → R+ such that

|f(t, u, v)| ≤ h(t)g1

([ |u(t)|
t

]r)

g2(|v|r)

(ii) for s > 0 the functions g1(s), g2(s) are nondecreasing and

g1(αu) ≤ ψ1(α)g1(u), g2(αu) ≤ ψ2(α)g2(u)

for α ≥ 1, u ≥ 0, where the functions ψ1(α), ψ2(α) are continuous for α ≥ 1;

(iii)
∫∞

t0
h(s) ds = H < +∞.

Assume also that there exists a constant K ≥ 1 such that

K−1Hψ1(K)ψ2(K) ≤
∫ ∞

1

ds

g1(s
r
p )g2(s

r
p )

=
p

r

∫ ∞

a

τ
p

r
−1 dτ

g1(τ)g2(τ)
(5.21)

where a = (t0)
r
p .

Then any global solution u(t) of the equation (5.1) with initial data u(t0) = u0,

u′(t0) = u1 such that 2p−1(|u0|p + |u1|p) ≤ K possesses the property (L).
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Proof. Without loss of generality we may assume t0 = 1. With the same argument

as in Theorem 5.2, we have for t ≥ 1

|u′(t)| ≤
[

|u1|p +

∫ t

1

h(s)g1

(

[ |u(s)|
s

]r
)

g2(|u′(s)|r) ds

]
1
p

,

|u(t)|
t

≤ |u0| +
[

|u1|p +

∫ t

1

h(s)g1

(

[ |u(s)|
s

]r
)

g2(|u′(s)|r) ds

]
1
p

.

Applying the inequality (A+B)p ≤ 2p−1(Ap +Bp), A,B ≥ 0 we obtain

( |u(t)|
t

)p

≤ 2p−1(|u0|p + |u1|p) + 2p−1

[

∫ t

1

g1

(

[ |u(s)|
s

]r
)

g2(|u′(s)|r) ds

]

. (5.22)

Denoting by z(t) the right-hand side of inequality (5.22) we obtain for t ≥ 1

z(t) ≤ K +

∫ t

1

H(s)g1(z(s)
r
p )g2(z(s)

r
p ) ds (5.23)

where K = 2p−1(|u0|p + |u1|p) and H(t) = 2p−1h(t). Assumption (ii) implies that

the functions g1(u), g2(u) belong to the class H. Furthermore, it follows from

[6, Lemma 1], that if g1(u) and g2(u) belong to the class H with the correspond-

ing multiplier functions ψ1(α) and ψ2(α) respectively, then the product g1(u)g2(u)

also belongs to H and the corresponding multiplier function is ψ1(α)ψ2(α). Thus,

applying [8, Theorem 1] to (5.23), we have for t ≥ 1

z(t) ≤ KW−1

(

K−1ψ1(K)ψ2(K)

∫ t

1

H(s) ds

)

(5.24)

where

W (u) =

∫ u

1

ds

g1(s
r
p )g2(s

r
p )

and W−1(u) is the inverse function for W (u). Evidently, inequality (5.24) holds

for all t ≥ 1 since by (5.21)

K−1ψ1(K)ψ2(K)

∫ t

1

H(s) ds ∈ Dom(W−1)

for all t ≥ 1. The rest of the proof is analogous to that of Theorem 5.2 and is

omitted.

Theorem 5.7. Let t0 > 0. Suppose that the assumptions (i) and (iii) of Theorem 5.6 hold,

while (ii) is replaced by
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(ii’) for s > 0 the functions g1(s), g2(s) are continuous and nondecreasing,

g1(0) = g2(0) = 0 and satisfy a Lipschitz condition

|g1(u+ v) − g1(u)| ≤ λ1v, |g2(u+ v) − g2(u)| ≤ λ2v

where λ1, λ2 are positive constants.

Then any global solution u(t) of the equation (5.1) with initial data u(t0) = u0,

u′(t0) = u1 such that |u0|p + |u1|p ≤ K possesses the property (L).

Proof. Without loss of generality we may assume t0 = 1. Applying [8, Corollary

2] to (5.23), we have for t ≥ 1

z(t) ≤ K + g1(K)g2(K)

∫ t

1

H(s) exp

(

λ1λ2

∫ t

1

H(τ)dτ

)

ds

≤ K + H̄g1(K)g2(K) exp (λ1λ2H̄) < +∞.

The proof can be completed with the same argument as in Theorem 5.2.
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Conclusions

The main benefit of thesis is derivation the sufficient conditions for existence con-

tinuable solutions and the investigation one type of asymptotic behavior for spe-

cial type of second order differential equation with p-Laplacian. Specially, in the

Chapter 3 is used the original method in the proof Theorem 3.1.

The next research could study different kind of asymptotic formulas. Fur-

thermore, it is possible to study the same problem applied to other differential

equations, e.g. n-th differential equation, differential equation with delay which

appears in many applications (e.g. biology, chemistry).
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