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Abstrakt:
Uvazujme 2 x 2 symplekticky diferencni systém tvaru

<$k+1> _ <ak bk) <£Ek> 7 ke ()
Uk+1 e di) \ug

kde (ay), (bx), (ck) a (dg) jsou posloupnosti redlnych ¢isel s vlastnosti apdy —brcp = 1 a jeho
specialni piipad, Sturm-Liouvilleovu diferen¢ni rovnici tvaru

A(TkAxk) + qpTir1 = 0, keZ, (S—L)

kde (7%), (gx) jsou redlné posloupnosti a r; # 0. V této préaci je zavedena prvni a druhd
faze normalizované baze symplektického systému (S). Je studovan vztah mezi témito fazemi
a jejich souvislost s oscilatorickymi vlastnostmi systému (S).

Pomoci teorie fazi a Riccatiho rovnice je zkoumana konjugovanost rovnice (S-L). K to-
muto tcelu byl zaveden pojem féze libovolné baze rovnice (S-L) a nésledné formulovany
jeji vlastnosti. Kratce je studovana problematika konstrukce rovnice (S-L), jejimiz reSenimi
jsou dvé posloupnosti tvotici bazi a majici pfedepsany pocet zobecnénych nulovych bodu.

Déle je ukdzan vztah mezi symplektickym systémem (S), rovnici (S-L) v rekurentnim
tvaru

Th41Th+2 + BpTry1 + 1p2p = 0, i # 0, (R)

a tridiagonalni symetrickou matici

ﬂ() 1 0 e 0 0 0
T1 ﬁl T9 0 0 0
0 79 ﬂz 0 0 0
L= . . . . . . . 7 (,C)
0o ... 0 7rn—2 [OBn-2 TN-1
0 e 0 rN—-1 ﬁNfl

kde (ry) and (f) jsou vhodné posloupnosti redlnych ¢isel. Je studovéna transformace
rekurentni rovnice (R) na tzv. trigonometrickou rekurentni rovnici a transformace matice
(£) na tzv. trigonometrickou matici. Jsou ukdzany vztahy mezi vSemi zminénymi pojmy.

Kliéova slova: Sturm-Liouvilleova diferencni rovnice, symplekticky diferenéni systém,
faze, zobecnény nulovy bod, konjugovanost, trigonometricky symplekticky systém, trigono-
metricka rekurentni rovnice, trigonometricka matice
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Abstract:
Consider 2 x 2 symplectic difference system of the form

<$k+1> _ <ak bk) <$k> kel ()
Uk 41 c dp) \ur)’ ’

where (ag), (br), (cx) and (di) are real-valued sequences such that axdy —brcr, = 1. Consider
a special case of (S), i.e., Sturm-Liouville difference equation

A(rgAzy) + qragsr = 0, keZ, (S-L)

with real-valued sequences (1), (¢x) and r; # 0. First and second phases of a normalized
basis of (S) are introduced. The relation between both phases and its connection to the os-
cillatory properties of system (S) is shown.

By means of a phase theory and the Riccati equation the conjugacy of the equation
(S-L) is studied. To this goal it is introduced a concept of a phase of any basis of (S-L)
and its properties. A construction of the equation (S-L) is described which has two linearly
independent solutions with a prescribed number of generalized zeros.

Further, a relation is given between a symplectic system (S), a recurrence form of equa-
tion (S-L)

Thy1Tk42 + BpTrg1 + rrap = 0, e # 0, (R)

and a tridiagonal symmetric matrix

ﬁg 1 0 ce 0 0 0
rt B T 0 0 0
0 T9 62 0 0 0
0 ... 0 r~v—2 OBn-—2 TN-1
o ... 0 rN-1 Bn-1

with the suitable real-valued sequences (ry) and (). A transformation of the recurrence
relation (R) into the trigonometric recurrence relation and a transformation of the matrix
(£) into the trigonometric matrix is studied. The relations between the above concepts are
given as well.

Keywords: Sturm-Liouville difference equation, symplectic difference system, phase,
generalized zero, conjugacy, trigonometric symplectic system, trigonometric recurrence re-
lation, trigonometric matrix
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Chapter 1

Introduction

The aim of this text is to study oscillatory properties of the second order linear difference
equations and their connection to phases. The basis of this text consists of results which
were received and published in previous articles [9, 15, 28]. We put these results together
to make a compact text. Contrary to the papers it turned out more convenient to explain
some of the proofs to make the text plainer.

We consider the Sturm-Liouville difference equation
A(TkAl“k) + qxrr+1 =0, ri # 0, k ez, (1.1)

where Az := 11 — xp and (1), (gx) are real-valued sequences. This equation can be
written as a recurrence relation

Th41Tk+2 + BpTry1 + 1p2p = 0, i # 0, keZ, (R)

where O = qx — 76 — Tk+1-
We also consider the more general form of (1.1), the 2 x 2 symplectic difference system

) D)) e
Uk41 cr dig) \ug

where (ag), (br), (ck), (di) are real-valued sequences such that axdy — cxbp = 1.

The motivation of our research consists mostly of the objects and theories surveyed
in monographs [4, 7]. Especially, we were motivated by a theory of transformation of
the second order linear differential equations introduced by O. Bortuvka in [7]. The results of
his theory were extended in several directions (see e.g. [11] by O. Dosly, [24] by F. Neuman,
[29] by S. Stanék) and also to the discrete case by Z. Dosld and D. Skrabékovd in their
article [10]. Here the first phases of the normalized basis of (1.1) and (S) were defined and
the fundamental relations to their oscillatory properties were shown.

We started our investigation just by the open problems which were stated in [10]. Some
of the acquired results were published in article [28]. We formulated the definition of the
second phase of (S) and its relationship to oscillatory properties of (S) and to the reciprocal
system to (S) there.
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The main subject of our study consists of the application of the discrete phase theory,
namely of the conjugacy of the second order linear difference equations. We were inspirated
by the conjugacy criterion in [16, Theorem 1] by O. Dosly and P. Rehdk. We have shown
a slightly different proof of the generalized formulation of this criterion using phases. To this
goal we had to generalize a definition of the first phase of a normalized basis of (1.1) and
so we defined the first phase of an arbitrary basis of (1.1). We took up again by some
other conjugacy criteria, namely we extended criteria formulated in [3] to their disrete
counterparts. These results were published in article [9].

The text is organized as follows. In Chapter 2 we recall the basic concepts of oscilla-
tion theory of Sturm-Liouville difference equations and 2 x 2 symplectic difference systems.
In Chapter 3 we establish their first and second phases. Further, in Chapter 4 we in-
troduce a generalized definition of phases of Sturm-Liouville difference equations and we
show a construction of these equations with prescribed properties. The main results are
given in Chapter 5, where we introduce the conjugacy criteria of Sturm-Liouville difference
equations, which is an important application of the phase theory. Finally, in Chapter 6
we point out some algebraic aspects of symplectic systems. Among other things, we show
the connection between (R), (S), linear system Lz = 0, where

,80 1 0 0 ce 0 0 0

rn B r 0 ... 0 0 0

0 9 ﬁz 3 0 0 0
. . S . |

0 0 0 ry-3 [OBn-3 TN-2 0

0 ... rN—2 [BN-2 TN-1

0 e 0 rN—-1 ﬂNfl

T = (xk)i,\[:l, and their ”trigonometric” counterparts. Open problems are given at the end
of Chapter 3, 4 and 5.



Chapter 2

Basic Concepts of Oscillation
Theory

The main purpose of this chapter is to present a brief survey of the basic terms and results
of the discrete second order oscillation theory.

2.1 Sturm-Liouville differential equation

First of all we recall the elementary well-known concepts of oscillation theory for the Sturm-
Liouville differential equation.

By the Sturm-Liouwville differential equation we understand the equation
(r(t)x'(t)) + q(t)x(t) = 0, r(t) >0 (2.1)

with continuous functions r and ¢ in a given interval I = (a,b) C R, —co < a < b < oo and
a,b € R. The most important oscillatory properties of (2.1) are described by the so-called
Reid roundabout theorem. It shows the connection among such concepts like disconjugacy
of (2.1) on I, positive definiteness of the quadratic functional

b
Flasa,b) = / [r(8)2™() — q(t)a>(8)] dt

over the set of admissible functions z, and solvability of the Riccati equation
w
w' +q(t) + = 0

on I. A consequence of this theorem yields the Sturm separation theorem and the Sturm
comparsion theorem. For more information conserning oscillatory properties of (2.1) we
refer to e.g. [7, 19, 24, 26, 27, 30, 31].

Let us recall an important property of equation (2.1); that is, its self-reciprocity. If z is
a solution of (2.1) and ¢(t) # 0 on I, then y = r(¢)a’ is a solution of the reciprocal equation
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to (2.1)
1 ,)’ 1
— ) +—y=0. (2.2)
(q(t) r(t)
An equation that coincides with its reciprocal equation is called self-reciprocal.
Observe, that the equation (2.1) can be transformed via the transformation

x = h(t)y (2.3)
into the equation
1 ,) 1
(s?) +70 MO 24
where h(t) = \/27(t) + 23(t) and z1, x5 are two linearly independent solutions of (2.1) with

the Wronskian w
w = r(t)(1(H)ay(t) — 22(t)21 (1))
such that w = 1. Note, that equation (2.4) is self-reciprocal.

The importance of the transformation (2.3) consists in the following: We are able to
transform equation (2.1) to its ”simpler” form (2.4) which is explicitly solvable. Note that
the functions

y1(t) = cos < /tp(s) d3> and  yo(t) = sin ( /tp(s) ds>

are two linearly independent solutions of (2.4). Then in view of (2.3), a basis (x1,22)
of (2.1) takes the form

2.2 Sturm-Liouville difference equation

In the following we recall results which were obtained as the discrete counterparts of oscil-
latory concepts of equation (2.1) and play an important role in our research.

A discrete analogue of equation (2.1) is the so-called Sturm-Liouville difference equation
(1.1)
A(rgAzy) + qprge1 =0, 1 #0,

where k € Z, r and ¢ are sequences of real numbers and Azy := 1 — Tk.

Definition 1. A pair of two linearly independent solutions z!! and 22 of (1.1) with the
Casoratian w, where

w = rk(aUE]A:rLQ] — :BE]AJ:‘LI]) = rk(xg}wgrl — xf}x,ﬂl), (2.5)

is called a basis of the equation (1.1) and we denote it (M, z[?). If w = 1, we talk about
a normalized basis. The relation (2.5) is called the Wronskian identity.
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Here, let us state the definition of a generalized zero, which is a discrete analogue of
a zero of a solution of (2.1). The reason to formulate a concept of a generalized zero was to
keep the validity of Sturmian theory for second order linear difference equations (for details
see e.g. [8, 30]).

Definition 2. We say that an interval (M, M + 1], M € 7Z, contains a generalized zero of
a solution z of (1.1) if
xyp #0 and ruTypTayer <0, (2.6)

see e.g. [1, 4]. Equivalently, we say that a solution x of (1.1) has a generalized zero at M,
M € Z, if (2.6) holds.

Remark 1. If r, > 0 for every k, Definition 2 agrees with that given by P. Hartman in [18]:
We say that an integer M is a "node” for a solution x # 0 of (1.1) if either z;; = 0 or
Typ—1rym < 0.

Let us illustrate Definition 2 by the following difference equation. If z1 = x9 = 1, it
determines the so-called Fibonacci numbers.

Example 1. Consider the equation
A((-1D)FAz) + (=1)Fzpp1 =0, keN, (2.7)
which can be written as the recurrence relation
Tht2 = Tht1 + Tk, k € N. (2.8)
The characteristic equation of (2.8) is of the form
M_oA-1=0

with two roots A1 and \o, where

&

1-— 1 5}
<0, Ao = +\[

M= 2

Hence, a basis of (2.8) is given by the solutions

k k
1] (1—\/5) 2] (14—\/5)
X = E— X = .
k 9 ’ k 9

In view of the fact that r, = (—1)* we obtain

1] (1] 1] <0, k=2m
z, #0, Tk$k$k:+1{>0, k=2m—1, meN

and
2] 2 2 [ >0, k=2m
zy #0, Tkmkxk+1{<(), k=2m—1, meN.
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It means that the solution z!Y possesses a generalized zero at each even integer and x!2
at each odd integer.

Notice that by the definiton of a zero of a solution of (1.1) in Hartman’s sense zV) has
a "node” at every integer and z'2 has no "nodes”.

As a consequence of the previous definition, we introduce the following important con-
cepts:

Definition 3.

e A solution z of (1.1) is said to be oscillatory at +oc if it has infinitely many generalized
zeros in N i.e., if for infinitely many positive integer M an interval (M, M +1] contains
a generalized zero of x.

The equation (1.1) is said to be oscillatory at +oo if every solution of (1.1) is oscilla-
tory.

e A solution z of (1.1) is said to be nonoscillatory at o0 if there exists My € N such
that for every integer M > My an interval (M, M + 1] contains no generalized zero
of x.

The equation (1.1) is said to be nonoscillatory at +oo if every solution of (1.1) is
nonoscillatory.

e In a similar way, the oscillation/nonoscillation at —oc is defined. By the oscillation
of (1.1) in Z we understand oscillation of (1.1) at +o0o0 and at —oo.

Lemma 1. (See [10, Lemma 2].) If (1.1) is nonoscillatory at +o0, there exists a nontrivial
solution x of (1.1) called recessive at +oo with the property

lim =F —o

k—+o0 T

for any other linearly independent solution & of (1.1). In a similar way we define recessive
solution at —oo.

Definition 4. The nonoscillatory equation (1.1) is said to be of finite type m, m € N, if this
equation possesses solutions with m generalized zeros in Z but not with m + 1 generalized
ZEros.

Let (1.1) be of finite type m. If its recessive solutions at —oo and at +oo are linearly
dependent and have m — 1 generalized zeros in Z, it is said to be of special kind (m-special).

Let (1.1) be of finite type m. If its recessive solutions at —oo and at +oo are linearly
independent and possess m — 1 generalized zeros on Z, it is said to be of general kind
(m-general).

Notation 1. In the following text, the interval [M, N| will actually represent the discrete
set [M,N|NZ, M,N € Z, N > M.
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Definition 5. Equation (1.1) is said to be conjugate in an interval [M, N] if there exists
a solution x of (1.1) which has at least two generalized zeros in (M — 1, N + 1], i.e., if there
exists a solution z and two intervals (I — 1,1}, (m, m + 1], where [ > M, m < N, such that

21 #0, mowmz <0 and 2 #0,  rpm@mTmyr < 0.

Equation (1.1) is said to be disconjugate in [M, N] in the opposite case, i.e., if any
solution of this equation has, at most, one generalized zero in (M — 1, N + 1].

The following theorem is a discrete version of its continuous counterpart (see e.g. [27]).
It provides two powerful tools for the investigation of oscillatory properties of (1.1), namely
the Riccati technique and the variational principle. This theorem relates discrete Riccati
equation

2
Awp+qp+—k =0, ke[M,N+1] (2.9)
T + Wk

to the positivity of a discrete quadratic functional

N
fd({L'; M, N) = [rk(Aa;k)Q — qsz—i-l] (2.10)
k=M
in the class of nontrivial sequences = = (:Uk)ivjj\}l satisfying xpy = 0 = xy41 and the

disconjugacy of equation (1.1).
Using the definition of a generalized zero we can formulate the so-called Roundabout

theorem, see e.g. [4, Theorem 1.41] or [13, Theorem 3.1]. This is the main statement of
the oscillation theory of (1.1) and relates (1.1), (2.9) and (2.10).

Theorem A. (Roundabout Theorem) The following statements are equivalent:
(a) Equation (1.1) is disconjugate on [M, N].
(b) There exists a solution of (1.1) having no generalized zero in [M, N + 1].

(¢) There exists a solution w of (2.9) which is defined for every k € [M,N + 1] and
satisfies ry, +wy, > 0 for k € [M, N].

(d) The discrete quadratic functional Fq(x) given by (2.10) is positive for every nontrivial
x satisfying xpr =0 = xNy1-

As a consequence of the Roundabout theorem we easily get Sturm comparsion theorem
and Sturm separation theorem, see e.g. [4, Theorem 5.30].

Theorem B. (Sturm Separation Theorem) Let x be a solution of (1.1) which contains
consecutive generalized zeros in (M, M +1] and (N, N +1], where M, N € Z, N > M. Then
every solution of (1.1) contains exactly one generalized zero in (M, N + 1].
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Remark 2. In a view of Theorem B all solutions of (1.1) have the same oscillatory character,
that is, they all have either a finite or an infinite number of generalized zeros on N. It means
that Definition 3 can be specified in the following way: the equation (1.1) is said to be
oscillatory (of infinite type) at +oo if there exists an oscillatory solution at +oo and it is
said to be nonoscillatory (of finite type) if there exists a nonoscillatory solution of (1.1).

Remark 3. Note that equation (1.1) is nonoscillatory at +oo if and only if there exists
an integer M such that (1.1) is disconjugate in [M, 400).

Let us illustrate some of the previous concepts by the following examples:

Example 2.

()

(i)

(iii)

The equation
A2l‘1€ + 241 =0

has two linearly independent solutions

mE] = cos %k and xf] = sin gk

Note that the infinitely many intervals (14 3m, 2+ 3m], m € Z, contain a generalized
zero of 1Y and each interval (=143m,3m], m € Z, contains a generalized zero of z2.
It implies that the equation is oscillatory and in addition, it is conjugate in [M, M + 2]
for every integer M.

The equation
A%z, =0
has two linearly independent solutions
l‘gj} =1 and CL’E] = k.
The solution xE] 15 recessive at +00 and at —oo and has no generalized zeros on Z. It

means that this equation is of type 1 of special kind (1-special).

The equation
A%y — Tr1 =0

has two linearly independent solutions

k k
1 3+V5 2] 3—v5

2]

The solution :ELI] is Tecessive at —oo and ;" 1s recessive at +oo. Both solutions have
no generalized zero, so the equation is nonoscillatory, especially of type 1 of general
kind (1-general).
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Using Theorem A, one can also obtain various oscillation criteria. One of best-known
oscillation criterion proved with the variational method is the discrete analogue of Leighton-
Wintner oscillation criterion (see e.g. [19, Chapter XI]).

Theorem C. (See [13, Theorem 3.2].) Suppose that vy > 0 for large k € Z and
+o0o

1 =
Zaz—koo, qu:+oo.

Then equation (1.1) is oscillatory at +oo.

Now let us turn our attention to the self-reciprocity of equation (1.1). Recall that the
equation (1.1) is said to be self-reciprocal, if it coincides with its reciprocal equation. The
concept of the reciprocity of (1.1) is given in the following lemma.

Lemma 2. (See [10, §2/.) Let © = (z1) be a solution of (1.1), ri, # 0 and qi # 0 for every
k € Z. Then
y=rAx

s a solution of the equation
1 1
Al —Ayi | + —yr41 = 0. (2.11)
dk Tk+1

Equation (2.11) is said to be a reciprocal equation to equation (1.1).

The form of reciprocal equation (2.11) shows that no difference equation (1.1) is self-
reciprocal except the equation A2z, + 241 = 0.

Towards this goal we study equation (1.1) in the form of two first order difference
equations called a 2 x 2 symplectic difference system.

2.3 2 x 2 symplectic difference system

In this section we recall the concept of 2 x 2 symplectic difference system. We point out its
curicular role in so-called trigonometric transformation which we state in Theorem D.

Definition 6. A 2 x 2 difference system
Tp41 ar by [Tk
(o) =G ) C) ®
Uk+1 Cr Qk) \ug
k € Z, where (ag), (br), (cx) and (dg) are sequences of real numbers, is said to be symplectic,
if the matrix § = ch b is symplectic, i.e.,

d

STzts=1, 1I-= (_01 é) : (2.12)

where T stands for the transpose of the matrix indicated. It is not difficult to verify that
the 2 x 2 matrix § is symplectic if and only if detS =1, i.e., ad — bc = 1.
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Notice that there exists a relation between system (S) and equation (1.1). Equation (1.1)
is a special case of symplectic system (S) because it can be viewed as a system of two
equations of the first order for (z,u) = (x,rAz)

1
Azxy, = Uk, Aup, = —qrpTr41
k

and, in turn, as a symplectic system
1
Tht1 1 - T
< > =1 s ( > (2.13)
Uk+1 Ak Th U

Definition 7.

e A pair of solutions 2! = (22)[”, 212 = (zz)m of (S) with the Casoratian w, where

w= a:Ll]uE} — xf} ugcl],

is said to be a basis of system (S) and we denote it (21!, 2[2). If w = 1, it is said to be
a normalized basis.

e The reciprocal system to (S) is the symplectic system with the matrix S = T-1S7,

i.e., the system
(- (4 )
Up41 —br  ag uy)’

e System (S) is said to be self-reciprocal if it coincides with its reciprocal system. Any

system of the form
Sk+1 P Gk \ (Sk
pu— 3 S
<Ck+1) (_Qk Pk) (Ck> (57)

where pi%—qi = 1is called a trigonometric system. It is easy to see that any symplectic
self-reciprocal system (S) takes the form (Sy) and vice versa.

Remark 4. If (22) is a solution of (S), then (f‘;k) is a solution of its reciprocal system (S").

Let us formulate a definition of a generalized zero of a solution of (S). This term makes
possible to describe the oscillation of (S).

Definition 8. An interval (M, M + 1], M € Z, is said to contain a generalized zero of
a solution (7) of system (S) if

T M 75 0 and beMxM+1 < 0.

Oscillation, nonoscillation, classification of nonoscillatory system (S), conjugacy, disconju-
gacy and recessive solution of (S) we establish in the same way as for (1.1) in Definition 3.
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As we claimed above, there is no self-reciprocal equation (1.1) except A?zy + x441 = 0.
Thus we study self-reciprocal symplectic systems. The next theorem shows that every sym-
plectic system (S) can be transformed by a transformation preserving oscillatory behavior
into a trigonometric system (S7) which is self-reciprocal.

Theorem D. (See [6, Theorem 3.1].) Let (z’;)m, (Z’Z)m, k € Z, be solutions of (S) which

form a normalized basis. Let
h 0
Ry = ( L ) : (2.14)
Ik e

ol

where

hg = (xp)? + (a2, (2.15)

Then the trigonometric transformation

<ii> =Ry, (i:) (2.16)

transforms (S) into the trigonometric system
Sk S
(o) = (5 2) () 51
Ck+1 —qk Pk Ck

1 1
Pk Tt (axhy + brgk), qk Tl

where pz + q,% =1 and

be (2.17)

without changing the oscillatory behavior.
The sequence h satisfying (2.15) can be chosen in such a way that q > 0 and if in
addition by, # 0, then it can be chosen in such a way that g, > 0 for k € Z.

Theorem D has been formulated by O. Dosly and M. Bohner in [6] for 2n x 2n symplectic
systems. The fact that we consider a scalar 2 x 2 symplectic systems enables to prove
Theorem D by a different, simpler way than in [6]. We give a sketch of the proof; the
details can be found in the proof of Theorem 1 in [15].

Proof of Theorem D. First we show that the transformation

) =(r D) () 1)

transforms system (S) into the system

() = (3 2 (%) -

with the sequences @, b, ¢, d given by the formulas
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G, — Pkt bege

F hit1
- b
bk - K )

hihygi1
C. = —0gk+1 (akhk + bk»gk) + hk+1(ckhk + dkgk)>
= —Gk+1b + hpy1dy
d = p :
k

Further, we show that system (2.19) is symplectic, i.e., we prove by means of (2.15) and
(S) by a direct computation the identities

a=d and b= —¢.

Finally, since hy # 0, the transformation (2.18) preserves generalized zeros of (S) and
(2.19).

Lemma 3. (See [10, Lemma 1, Lemma 6].) Let (St) be a trigonometric system associated
to (S). Then there exists a sequence ¢ = (¢r), k € Z, such that i € [0,27) for every k and
satisfies

COS Pk = Pk, sin g = qx. (2.20)

Further,

k—1 ) kfl'
() @) e

form the normalized basis of (St).



Chapter 3

Phases of Symplectic Difference
Systems and Their Properties

The aim of this chapter is to introduce a phase theory for a symplectic system (S). We start
this chapter with a short summary of the establishing of phases for the second order linear
differential equations by O. Boruvka in [7]. Then we define the first and second phases
for system (S) and we study the relations between them. Some direct consequences of the
phase theory to oscillatory properties of system (S) are pointed out as well.

3.1 Phases of Sturm-Liouville differential equations
Consider Sturm-Liouville differential equation (2.1)

(r(t)a") +q(t)xr =0, r(t) >0,

where t € I = (a,b), —00 < a < b < 0.

The first phase of (2.1) is defined in the following way, see [7, §5.3]: By first phase of
the basis (x1,x2) of the equation (2.1) with the Wronskian w = r(z12f — 2{22) we mean
any function a € C(I) which satisfies in this interval the relation

tana(t) = (3.1)

except at the zeros of x3. From the fact

I ! _ w
o) a3
it follows that «(t) of the basis (z1,z2) is increasing/decreasing accordingly as w is nega-

tive/positive.

By first phase of the equation (2.1), we mean the first phase of an arbitrary basis of
the equation (2.1).

14
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By second phase of equation (2.1) we understand the first phase of its reciprocal equation
(2.2) and we denote it by (. For a self-reciprocal equation the first and second phases
coincide.

Using the fact that if x is a solution of (2.1), then y = ra’ is a solution of (2.2), we have
for the second phase  of (2.1)

w5050

for ¢ € I except at the zeros of x5,.

3.2 First phase of symplectic difference system

In this section we present a discrete counterpart of the first phase of (2.1). We define the
first phase of system (S) and its connection to trigonometric transformation of (S) given in
Theorem D. These results already were studied in [10].

Definition 9. Let z[1 = (i )[1], 22 = (5 )[2} form a normalized basis of system (S). By
the first phase of the basis (2!, z?) we understand any sequence ¢ = (¢3), k € Z, such
that

Ay, € [0,71')

and
[2]

O = arctan z[—:l] if xL” # 0, (3.3)
odd multiple of if mgj} = 0.

The first phase of system (S) is any first phase of a normalized basis of this system.

Remark 5. Obviously, if ¢ is the first phase of the basis (zm, 2[2]) then ¢ + km, k € Z, is
the first phase of this basis as well. Conversely, if ¥, 2 are two first phases of the basis
(z11, 221) then [ — ¢ = 0 (mod 7). Note that in Definition 9 a first phase of (S) is
introduced as a nondecreasing sequence. In addition, contary to papers [9, 10, 28] it turned
out more convenient to define a first phase of (S) just by the relation (3.3).

Notation 2. In the paper [10] a phase is understood as a first phase. Here we will also use
a phase if it is evident that we mean the first phase.

Notation 3. By the functions arctan and arccot we understand multivalued functions.
The function Arctan will denote a particular branch of the function arctan with the image
(—m/2,7/2) and by the function Arccot will represent the particular branch of arccot with
the image (0, ), respectively.

In the following theorem we give a relation for a difference of a first phase v of system (S).
The proof is based on the trigonometric transformation of (S) explained in Theorem D and
in Lemma 3.
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Theorem E. (See [10, Theorem 1].) Let 21 = (i’;)m and 22 = (2)? form the nor-

k

malized basis of (S), let 1 be the first phase of this basis and (St) trigonometric system
associated to (S) with p, q satisfying (2.17) and g > 0, k € Z. Then

sin Ay = qi, cos Ay, = py,
that 1is,

Arceot 2= 7 0,
Aty = { " fa 7 (3.4)

0 if g =0
for k e Z.

Lemma 4. Let a sequence (i) be defined by (2.20) and (¢y) be the first phase of (S). Then
or = Aty (mod ), keZ, (3.5)
and @y, can be chosen from the interval [0, ).

Proof. Let (px), (gr) be sequences given by (2.17), let () be a sequence from Lemma 3
and let (¢) be the first phase of system (S) given in Definition 9, k € Z. According to
Lemma 3

Pk _ COS Py
gk sinpy
and by Theorem E
pr_ cos Ay,
qik N sin Aﬂ)k ’

Hence
cot @ = cot Ay,

which implies (3.5), i.e, ¢ = Aty + mm, where m is an arbitrary integer. According to
Definition 9, Ay, € [0,7) and taking m = 0 we have ¢ € [0, 7). O

Lemma 5. Let (x/g]) and (a:E}) be the first components of a normalized basis of system (S),
let (1r) be the first phase of this basis of (S) and let (hy) be a sequence given by (2.15).
Then

ZEL}] = hy, cos Yy, and azf] = hy sin . (3.6)

Proof. According to Lemma 3 and Lemma 4 xg} and :cgf] takes the form

k—1 k—1
xgj] = hy, cos (Z goj> and ng} = hy sin (Z 90j>

and so in view of (3.5) we get (3.6). O
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Remark 6. Geometrical meaning of a first phase of (1.1) with r; > 0 is similar to a conti-
nuous case for (2.1). Let (z!Y,2) be a normalized basis of (1.1). An interval (M, M + 1]
contains no generalized zeros of the solution z!! if and only if

)f

@2n—1)2 <y < 2n+1 o M<k<M+1,

2

2]

and it contains no generalized zeros of the solution z2 if and only if

nt <Y <(n+l)m, M<EkE<M-+1,

for some n € Z. In other words, if ¥ps < (2n +1)5 and a1 > (2n + 1)F, then z! has
a generalized zero in (M, M +1] and if 1y < nm and 971 > nrr, then /2 has a generalized
zero in (M, M + 1]. From this reason the first phase is sometimes called the zero-counting
sequence.

3.3 Second phase of symplectic difference system

In this section we establish the second phase of system (S). We also study its properties
and its connection to the first phase of system (S).

Definition 10. By the second phase of system (S) we understand the first phase of the
reciprocal system (S”) to (S). We denote it by p.

Proposition 1. Let 2 = (k )[1], 212 = (g )2 form a normalized basis of system (S) and
0 = (ok) be the second phase of (S). Then

AQk € [07 7T)

and
arctan ! if ull #0

odd multiple of T if ull = 0.

Proof. According to Remark 4 sequences (_ufk )[1] and (fg’;k )[2] form a normalized basis of

(S™). Thus, by Definition 9 the first phase g of system (S"), i.e., the second phase of (S),
satisfies Agy € [0,7) and (3.7). O

Proposition 2. Let 21 = (i 2 = (ur Y& form a normalized basis of (S) and let

(1], (1] (2], [2]
. +
W= )+ ()2, =BT (58)

Ry = (Z: 3) . (3.9)

Let
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@z) =Ry (Z:) (3.10)

transforms system (S") into the trigonometric reciprocal system
Sk+1 Pk Gk [ Sk
()= 2) (@) i)
Ck+1 dk Pk Ck;

1 - 1
Pk = —(dphr — ckgr), @G =—=——
hk:—i—l( ) Pyl

Then the transformation

where ]3% + q_,% =1 and

Chs (3.11)

without changing the oscillatory behavior. The sequence (hy) satisfying (3.8) can be chosen
in such a way that g > 0 and if in addition c; # 0, then it can be chosen in such a way
that g, > 0 for k € Z.

Further, let o be the second phase of the basis (21!, 221) of (S). Then

Arccot 2= if @i # 0,
Aoy = 0 (3.12)
0 if g =0
for k e Z.
Proof. Let (z!Y,2P) be a normalized basis of (S). Then by Remark 4 z[! = (_%k)[l],
72 = (. )[2] form a normalized basis of (S"). Further, in view of Theorem D, (3.10)
transforms the reciprocal system (S”) into the trigonometric reciprocal system (S7.) without
changing the oscillatory behavior. By Proposition 1 and Theorem E we give (3.12). O

We conclude the above-explained relations between systems (S), (S"), (St) and (S7)
with a graphic schema.

Diagram 1.

Definition 7
Tk _ o Sk TE\ _ R Sk
Uk Ck U, Ck
Theorem D Proposition 2

(St) (S7)
1-st phase 2-nd phase

The matrices Z, R and R are given by the relations (2.12), (2.14) and (3.9).

In the next theorem we study the relation between first and second phases of system (S),
which is a discrete analogy of Boruvka’s result (see [7, p. 43]).
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Theorem 1. Let by, > 0, ¢, < 0, ¥» = (¢r) be the first phase of system (S) and o = (o)
the second phase of system (S). Then there exists n € NU {0} with the property

nt<|op—vYr| <(n+1l)m, kel (3.13)

Proof. Let zlV = (% ) and 22 = (&* )[2] be two solutions of (S) which form the normalized

basis of syste m (S). By Lemma 5
xLﬂ = hj cos Y, :UE] = hy sin Yy

where hz = (azg})Q + ( [2]) k € Z. Since by Remark 4 ( )[l] and (_@“k)[z} form the
normalized basis of system (S’") with the first phase p, i.e., the Second phase of (S), then
ug} = hy, cos Ok uf] = hy, sin Ok
where Bz = (ug])2 + (uf})Q, k € Z. By a direct computation we have
w = hy, cos Yhy, sin o, — hy, sin ¢1jbk Cos O =
= hihi(cos iy sin g, — sin ¥y, cos o) = hyhy, sin(or — V).

Using the fact that z[' and z[? form a normalized basis of (S), i.e., w(zl1, ) = 1, we
obtain for k € Z

. ( y ) >0 if hkﬁk > 0,
SN\ Pk — Yk _
<0 if  hihg <0,

i.e., there exists m € Z such that
2mm < o — Y < (2m+ 1)m.
This means that there exists n € NU {0} with the property (3.13). O

3.4 Oscillation and nonoscillation in terms of phases

In this section we state the relationship between phases and oscillatory properties of (S).

Theorem 2. The following statements are equivalent:

(a
(b
(c

) (S) is oscillatory in Z.
)

)
(d) (S) is oscillatory in Z.
)

)

(S") is oscillatory in Z.

(St ) is oscillatory in Z.

e) The first phase 1 of (S) satisfies limy_. oo Y = +00 and limg_, o Y = —00.

(
(f) The second phase o of (S) satisfies limg_, 1 o0 0k = +00 and limy_, o, 0 = —00.
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(g) There exist kg € N and —ly € N such that

k<lo, q>0

Z Arccot— +00, Z Arccot 2% = —
T Ak

k>Fko, q.>0

where p, q are given by (2.17).

Proof. The oscillation in Z is defined as oscillation at +00 and —oo, see Definition 3. We
prove this statement for the oscillation at +o0o, by the similar argument the oscillation at
—oo follows.
”(a) < (e) & (g)”: See [10, Theorem 3].
7 (a ) (c)”: Tt follows from Theorem D.

”(b) < (d)”: It follows from Proposition 2.

"(e) = (f)”: Suppose that ox > Y, k € Z. (In the opposite case the proof is analogous.)
Let limg_, 4o ¥ = +00. By Theorem 1 we have nm + 9y, < gx for n € NU {0} and by our
assumption limy_, 4 o (N7 + ¥y) = +00. This means that limg_ o 0 = +o0.

7(f) = (e)”: Suppose that or > ¥k, k € Z. (In the opposite case the proof is analogous.)
Let limg_, 4 o0 0 = +00. By Theorem 1 we have g — (n + 1)7m < 9y for n € N and taking
into account our assumption limg_ o (0x — (n 4+ 1)m) = +o00. From here it follows that
limg_, 4 o0 Vg = +00.

”(f) < (b)”: It follows from [10, Theorem 3] and from the fact that g is the first phase
of (87).

O
Corollary 1. The following statements are equivalent:
(a) System (S) is of finite type.
(b) The first phase v of system (S) is bounded on Z.
(¢) The second phase o of (S) is bounded on Z.
Proof. It directly follows from Theorem 2, part (a), (e) and (f). O

The following theorem is given in [10, Theorem 4] and describes nonoscillatory properties
of symplectic system (S).
Theorem F. The following statements are equivalent:
(a) Symplectic system (S) is of type m and of special kind on Z.

(b) Any trigonometric system (Sr) associated to system (S) is of type m and of special
kind on Z.

(¢) Recessive solutions of (S) at oo are linearly dependent and possess m —1 generalized
zeros.
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(d) Any first phase ¢ of system (S) satisfies

(e) Any trigonometric system (St) associated to system (S) satisfies

—+00

Z Arccot Pk _ mr.

k=—00, qx>0 ar

We now illustrate the above-mentioned results by a few examples.

Example 3. Consider the recurrence relation
T2+ 2 =0
which can be written as the Sturm-Liouville equation
A’y + 2zp41 =0,

or as the 2 x 2 symplectic system

(zZi) N (—12 —11> (2:) . kel (3.14)

This system has two solutions ( W and (uk 2 where

:L'E] = Coskg =(0,-1,0,1,...),

u,[:] = rkAxLl] = —cos kg — sinkg =(-1,1,1,-1,...),
22 = sinkzg =(1,0,-1,0,...),

uE] = rkAa:E] = cos kg — sinkg =(-1,-1,1,1,...),

which form a normalized basis.
Using Definition 9 and Proposition 1 the first phase ¥ and the second phase o satisfy

s 7r 0
=k— =—+k— keN
d}k‘ 97 Ok 4 + 97 SEAN
respectively. Obviously,
lim ), = 400 and lim o = 400,
k——+o00 k—+o0

i.e., according to Theorem 2 system (3.14) is oscillatory at +oco. Further,

T
ok — k| = 1
for all k € N. This fact illustrates the validity of Theorem 1.
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Example 4. The recurrence relation

Tpy2 + 221 + 2 =0

can be viewed as the Sturm-Liouville equation
AQQ?k +4xk41 =0

or as the symplectic system

Tr4+1) 1 1 Tk
()= ) () wen

A normalized basis of this system form two solutions (3~ )[1] and (4* )[2] , where

1 2
= kDY, o= (-1,
V= @+ DD W = (1R,
The first phase 1 satisfies
arctan 1 if keZ-—{0},
Yy = k {03 and Ay € [0,7),
5 if k=0
i.e.,
Arctan § + kr if kelZg,
=14 3 if k=0,
Arctan + + (k+ )7 if kelZ_.
The second phase o satisfies
= ) A
0, = arctan 1 with, ok € [0,7),
that 1is,
o — Arctan Q,fﬁ + km if ke Zyu{0},
g Arctan 2k2ﬁ +(k+1m if kelZ_.
Obuviously,
lim 4, = +oo, lim 4 = —0 and lim o = 400,
k——+00 k——oco k—+o00

i.e., according to Theorem 2, system (3.15) is oscillatory in Z. Further,

Arctan Til — Arctan %
Ok — Vi =
Arctan 2 — g

if
if

k e Z — {0},
k=0.

Hence 0 < |or — Yx| < m, which illustrates the validity of Theorem 1.

22

(3.15)

lim g = —00
k——o0
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Example 5. The recurrence relation
Tgt2 — 2241 + 2 = 0,
i.e., the Sturm-Liouville equation
A%z, =0

can be viewed as the symplectic system

@i) - <(1) 1) (ZZ) ., keZ (3.16)

This system has two solutions (3 )W and (ur )& with

ZL‘E] = 1, xE] = k,
ugj] = 0, uf] = 1,

which form a normalized basis. The first and second phases

1, = arctan k and Ok = g
satisfy 0 < |or — Yx| < 7 and in addition, they are bounded on Z. This fact agrees with

Corollary 1; i.e., system (3.16) is of finite type on Z.

Open problems.

¢ In a continuous case there exists another relation between the first phase o and second
phase [ of equation (2.1) with r(¢) =1 on I. In [7, p.45] the following equivalence is
described: Two sufficiently smooth functions « and § defined on I represent a first
and second phase of equation (2.1) if and only if

/1y
0 = a + Arccot = <) .
2\«

It remains an open problem if there exists a discrete analogue of this theorem for
symplectic system (S) or at least for equation (1.1) for such k € Z that satisfy ry = 1.

o Other ways of the investigation could consist in finding applications of a definition and
properties of the second phase of system (S). Further, one could investigate hyperbolic
phases of system (S) as a discrete analogue of hyperbolic phases of equation (2.1)
studied in [22, 23]. By means of hyperbolic phases of (S), asymptotic properties of (S)
could be described.



Chapter 4

Phases of Sturm-Liouville
Difference Equations with Nonzero
Casoratian

In this chapter we extend a definition of a first phase of (1.1). Using this, we study some
properties and applications of a first phase, especially a construction of second order linear
difference equations.

4.1 Extension of phases for difference equations with nonzero
Casoratian

First, we establish a first phase of any basis with an arbitrary nonzero Casoratian of equa-
tion (1.1). In the next lemma we continue by a trigonometric transformation of (1.1) for
an arbitrary basis of (1.1). Finally, by means of that lemma we express the difference of
the first phase of an arbitrary basis of (1.1).

Definition 11. By the first phase of the basis (x!Y,2P) of (1.1) with Casoratian w we
mean any sequence 1 = (1), k € Z, such that
[2]
O = arctan 2[—:1] if :EECH # 0,
odd multiple of if xg} =0,

where
[0, ) it w> 0,

A
wke{ (=m0  ifw<0.

Lemma 6. Let (z[1, 212 be the basis of (1.1) with the Casoratian w and let

[ A1 2] A2
h? = (xg])Q + (xf])Q, and  gp = Wi Aw’“h+ Ay ) (4.1)
k

24
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Then there exists a solution (&) of the system (Sr) with p,q satisfying p: + q; = 1 such

th(lt
7]§AIE£€H gk hic Sk ’ ’IkASL'Eg] 9k hi Ck ) .

Moreover, p,q in (St) are given by relations

1] [ 2] [2
hihis1 Tihehg i1
Proof. Consider such sequences s = (s;) and ¢ = (¢x) that
S = h;le], cr = h,;lmg]. (4.4)
First we show that () is a solution of (Sr). Denote
A, . [2]
2L = Cp + 1Sk = M (45)
b
Then
:ELIJ]rl + ia:,[f]H x,[cl] + ia;E]
Rk+1 — Rk = h - h =
k+1 k
. 1 2 1 P 1 . [2
xE] + zxf} (g;/url + za:LJ]rl)hk Y (xL-]H + zxul)hk(m‘k] — zxgcl) _1
hi, (@l + iz hg A
Hence AR e
i = Ty Tpyq + &) Tpyq + Z%z
1=
* hihgy1
Put
pr =N <zk+1> and ¢ =S <Zk+1> . (4.6)
2k Rk

Then zx+1 = (px + iqx )2k and using (4.5) we have

k1 + iskr1 = (P + iqx) (ck + isk).

From here we get that () is the solution of (Sy) and (4.3) holds. Since s} + ¢; = 1 for
k € Z, we have from (Sr) that p7 + ¢ = 1.
Using (St), (4.6) and (4.4) we have

rpAzll! = Tk(ﬂ?;ﬂrl — 2y = r(hpsrcrin — hier) =

= rihg1(—qrsk + prck) — rhpcr =

(1],.[1] 2], .[2]

w Ty Tpiq T T Ty
=rih (— cr ) — rghgcr =
T gy hihye+ g RO
_ v "'k [] (1] 2 (2] 2y _ W
= —h—ksk + ﬁck(mk Tyt — hy) = _stk + grCi.
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Similarly,
TkAUCEf] = T’k(ﬂﬁf]ﬂ - wf]) = r(hry1Ske1 — hsk) =
= Tl (PrSk + qrer) — Tehgsy =
(1], 1] (2], [2]
. 1(% Tpi1 T T Ty . w Ck) s =
+ hkhk—I—l Tkhkhk+1

_ Tk (1], [1] (2], [2] 2 w o w

= h—ksk(:ck Tpgq T T Ty — hi) + h—kck = grSk + h—kck
and (4.2) holds. O

Remark 7. Lemma 6 extends similar results given for a normalized basis of (S) formulated
in Theorem D. Note that we prove this lemma by a completely different way than that
given in [6] or [10].

Theorem 3. Let (z!, 212 be the basis of (1.1) with the Casoratian w and let ¢ = (y) be
the first phase of this basis. Then for k € Z

(1] [1] [2],[2]
Telx X —i—x T
Arccot £(2h Thpr PO Ty

Ay, = @
Vi (el 202
Arccot

if w >0,

Ty T T Ty
w

-7 if w < 0.

Proof. Let (M, 2P) be the basis of (1.1) with the Casoratian w and 1 be the phase of
(2!, 2Pl). By Lemma 6 there exists a solution () of trigonometric system (St) associated
to (1.1) such that (4.2) and (4.3) hold. By Lemma 3 and periodicity of the functions cos
and sin there exists ¢y € [—m, ), k € Z, such that the sequences p, ¢ in (St) take the form

COSpp = pPr, SN = g (4.7)
By Lemma 4 ¢ = Aty (mod 7). Using this fact, (4.7) gives

cos Ay, = pr, sin Ay, = qg,

ie.,
cot Ay, = P
dk
fw>0o0rw<0,ie Ay €[0,7)or Ay € [—7,0), then
Ay, = Arccot Pe o Ay, = Arccot Pk _ T, (4.8)
dk dk
respectively. Substituting (4.3) into (4.8), the conclusion follows. O

Remark 8. Theorem 3 is a discrete version of a known formula for a phase « of differential
equation (2.1), namely
, —w

af(t) +23(t)’

where w is a Wronskian of solutions x; and x2, see [7, §5.5].
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4.2 Construction of Sturm-Liouville difference equations with
prescribed properties

In this section we construct a Sturm-Liouville difference equation of which the solutions
have a prescribed number of generalized zeros.

Theorem 4. Let ¢!l = (acg}), 2l = (.%'E) be sequences with the Casoratian w # 0 such
that M has m — 1 generalized zeros on Z and

(1] L
lim “£ =0, lim “£ =0.
k—+oco xf] k——00 xf]

Then 211 and =2 are linearly independent solutions of equation (1.1) with

w

"t AL (49
1

e = 5[_A(7“kAwg])7°k+1A$EL—i—A(rkAwE])rkHAxﬂl}_ (4.10)

Such an equation is of type m and of special kind on Z. Moreover, if w = 1, sequences !,
22 and r satisfy

Z Alrccot[r/yg(ac,g]mgj_]H + xE]xﬂl)] = mm. (4.11)

Proof. If 2!l and 22 are solutions of (1.1), then

A(rkAxg])—i—qug_l =0 (4.12)
A(TkACUEE])*'%ff_{_l = 0. (4.13)

According to the Wronskian identity for (1.1)
w=ry (Z‘E]Al‘f] - AZL‘Q]I‘E]) (4.14)

it holds (4.9). Let us add (rkHAxg_l)—multiple of equation (4.12) to (—rkHAxEJ]rl)-
multiple of equation (4.13). Using (4.14) we obtain (4.10).

According to Lemma 1, 21 is a recessive solution at +co0. By Theorem F equation (1.1)
is of special kind. Since z!!l posseses m — 1 generalized zeros, (1.1) is of type m on Z.
Finally, (6.11) follows from part (d) of Theorem F and from Theorem 3. O

Example 6.

(i) Let k € Z. Consider the sequences

1
a:L” =1 and xf} =k+ 3
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with the Casoratian w = 1. Obviously, =Y has no generalized zeros in 7 and
(1]

limg 400 % =limg_ 4 H% = 0. By Theorem 4 sequences M and 22 are linearly
z, 3

independent solutions of equation

AQ:CL.I] =0,

which is of type 1 and of the special kind on Z. Moreover, since w =1

+oo

7
Z Arccotg (k2 + 2k + 4) =T.

k=—00

(ii) Now choose

xLﬂ :k+1, xl[f] = <k+1> <k—1> and w=1.

2 2 2
. 1 . . . ol . 1
Notice that M has a zero point in Z and limg_ 400 ~fyr = limg 100 T = 0. By
xk )

Theorem 4, 1 and @ form the basis of the equation

1 1] 2 1]
Al ————-Az, | + T, =0,
((k+§><k+;) ’“) (k+3)(k+3)2(k+ )

which is of type 2 and of the special kind in Z. Moreover, we have
+00 3
Z Arccotg (k:2 + 4) = 2.
k=—o00

(iii) More generally, put

1 (m—1) 1 (m)
$L1] = (k‘ + 2) , xf] = <k: + 2) and w=1,

where m > 3. Then x has m — 1 zero points and is the recessive solution at +oo.
By Theorem 4, 1 and 212 form the basis of equation

L (1]
A Ax +
(e am oy
m! o
k+3)k+3)2 . (k—m+D)2(k—m+3) k+1 )

_|_

(
which is of type m and of the special kind in Z. In addition, we have
+oo

9 9 19
Z Arccotg [/{ + (4 —-2m)k +m* —4m + 4} = mm.

k=—o00
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Open problems.

¢ Theorem 4 can be generalized for a construction of a symplectic system (S) which is
disconjugate or m-special on Z.

o It may be interesting to study a connection between any disconjugate symplectic
system and so-called continuous fractions (for details about continuous fractions see
[4, Chapter 2]).



Chapter 5

Conjugacy of Sturm-Liouville
Difference Equations

In this chapter we show an application of the phase theory of (1.1) established in Chapter 4.
Namely, we investigate conjugacy properties of Sturm-Liouville difference equations (1.1)
by means of a first phase of any basis of (1.1). Throughout the whole chapter we suppose

rp >0

for every considered integer k.

5.1 Conjugacy on a finite interval

Let us establish a conjugacy criterion for a finite interval of equation (1.1) using the first
phase 1 given by Definition 11 and the Riccati difference equation (2.9). The conjugacy of
the equation (1.1) on an interval [M, N]| is given by Definition 5.

Theorem 5. Suppose that there exist real numbers e1 > 0, €2 > 0 and XA > 0 such that

E Arccot % > Ll (5.1)
€1 4
k=0
and
0 3 .
g Arccot =28 > = (5.2)
£9 4
k=M

where N > 1 and M < —1 are arbitrary fixed integers,

a0251+)\+T0,

2

k—1 - Jj—1
1
ak:<)\+51_ZQi+Tk>H2<)\+51_Z%+Tj> , 1<k<N (5.3)
=0 J

=0 i=0

30
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and
Bo=¢e2—A—q-1+r_1,

2

1 1 1
1
ﬂk=<€2>\ > Qi+rk—1)||72 82*)\*2%7““]' ;
i=j

i=k—1 j=k J

Then equation (1.1) is conjugate in [M, N].

Proof. Let z be the solution of (1.1) given by the initial conditions

To =1, $1:1—|—i, A>0. (55)
To
We will show that x has a generalized zero in the intervals [2, N] and [M, —2].

First, consider the interval [2, N]. We will show that there exists m € [2, N] such that
Tm # 0 and z,xme1 < 0. Suppose, by contradiction, that x has no generalized zero
in [2, N], i.e., x; > 0 for k € [2, N + 1]. Let y be another independent solution given by the
initial conditions

Ate
Yo = 1, y1 =1+ 1.
To

Then the Casoratian of solutions x and y is
w(z,y) = ro(zoy1 — yor1) = €1 > 0.
By the Sturm separation theorem we have
yp > x>0 for2<k<N+1. (5.6)

Let 9 be the first phase of the solutions x and y, i.e.,

1 = arctan Ik and Ay € [0, ).

Tk

By Theorem 3 we obtain

Aty = Arccot Tk(TeTh41 + YkYk+1)
€1

Taking into account 1y = 7/4 and using (5.6) we get

n—1 n—1

Te(TkTh+1 + YkYk+1 us
k=0 k=0

>

n—1

2rgYkYk+1 | T
> Arccot ———"= + —. (5.7
kZO r -, T 67
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Next, by means of the Riccati equation, we will estimate the term 2r,yiyxrr1 for & > 0.

Denote A
wy, = K29k (5.8)
Yk

a solution of Riccati equation (2.9). Then
Yo
wo=A+e1, Y= 7()\4-61 +70),
0

and
yk—ZUOH (wj+71;), 2<k<N. (5.9)
j=0'7

Since 7 + wy > 0, we have from (2.9) that Awy + g < 0. Thus

k—1 k—1
wkﬁwo—zqg‘z)\-F&l—qu’, 1<EkE<N.
§=0 §=0
From here and (5.9) we get
j—1
k<ZUOH >\+51_ZQi+Tj), 2<k<N.
=0 =0
Consequently,
27’0y0y1 = 2()\ + €1 + 7“()) = 2a0
and
-1y j—1 kg j—1
2reyryr+1 < 21y H ()\+€1 — Zqi —l—Tj) H - (/\+€1 — Zqi -I—T]) =
7=0 " =0 7=0 J =0
— 9%, 1<k<N.
Substituting this estimation to (5.7) we obtain
Tpn+1>ZArCCOt?+Z (OS”SN)

k=0

From here and (5.1) we get ¥y 41 > /2. On the other hand, since y has no generalized
zero in [0, N], we have ¢y41 < 7, a contradiction. We have proved that = has a generalized
zero in [2, N].

Now we will show that the solution z satisfying (5.5) has a generalized zero in [M, —2],
i.e. there exists [, M <[ <0, such that ;1 # 0 and z;_12; < 0. Since z is the solution of
(1.1), that is, of the equation

Tht1(Tht2 — Thp1) — Te(Tp1 — k) + Qg1 = 0,
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we have for k£ = —1
At

r—1

r_1 = 1
Let g be another independent solution of (1.1) given by the initial conditions

B A+qg.1—é9
r—1 '

Yo = 1a Yy-1= 1
The Casoratian of solutions x and ¥ is

(D(.%,g) = T’_1(x_1y0 — y_lscg) = —g9 < 0.

Suppose, by contradiction, that z has no generalized zero in [M,—2], i.e., ¢ > 0 for
k € [M —1,—2]. Then by the Sturm separation theorem g > xy for M — 1 < k < =2,
again.
Let v be the first phase of solutions = and 7, i.e.,
1y, = arctan z—k and Ay, € (—,0].
k

By Theorem 3 it holds

- r(TpT YrY
Ady = Arceot k(TrTh1 + UkUbe1)
—E9

Define the backward difference operator A by Axj = x_1 — x. Then
Al’k = —Al‘k,1

and equation (1.1) takes the form A(rp_1Axy) + qr_2xk_1 = 0.
Taking into account 1y = 7/4 we get

0
o= > Afp+do=— > Apy+o=

k=n-+1 k=n-+1
0 o
_ Z [Arccot =1 (Tr—12k + Yp—1Yk) W} L+
—E&2 4
k=n-+1
0 Th—1(Th—12k + Yp—1Yr) | T
= Z Arccot + - >
£9 4
k=n-+1

0 _ _
2751 Yk—
E AI‘CCOt w + E
€9 4
k=n+1

Similarly as in the previous part of the proof, we estimate the term 2719 _1yx by means
of the Riccati equation for k& < 0. The sequence

Th—1AGy,

- (5.10)

Wg =
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satisfies the Riccati equation
=2

_ w
Awy + gr—2 + —r =0,
Th—1 + Wk

Since Awy, < —q_o and
Wy = €2 — A —q_1,
we have

0 0

W <wo— Y, g2=(2—A—q-1)— > qi—2=
j=k+1 Jj=k+1
1
j=k—1

Hence, from here and (5.10) we get

_ Yo , _ Yo
g1 =——(Wo+r_1)= (62— A —q-1+7_1),
r—1 r—1
and
—1 —1 —1
ykzyof[;(wjﬂwj) syoH; 52—)\—2%"1‘7”]' , M<k<-2
j=k 7 j=k 7 i=j
Consequently,
2r 19150 =2(e2 — A —q-1+7-1) = 25
and

2rg1Yk—19k <

Thus
2
ﬂ +

0
Vn1 > ZArccot - % (M <n<0).

k=n

From here and (5.2) we get Yar—1 > m/2. Since 7 has no generalized zero on [M, 0], we have
Yp-1 < 5, a contradiction. This completes the proof. O

Remark 9. A closer examination of the proof of Theorem 5 reveals that Theorem 5 can be
modified for an arbitrary interval [A, B], where A, B € Z, A < B.
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5.2 Conjugacy on Z

Now we state some conjugacy criteria which follow from Theorem 5. They describe the
conjugacy of (1.1) on Z. First, putting N — +o0o and M — —oo in Theorem 5, we directly
obtain a conjugacy criterion of equation (1.1) in Z.

Corollary 2. Suppose that there exist real numbers €1 > 0, e > 0 and A > 0 such that

> 20 ™
) Arccot —£ > = k>0 (5.11)
€1 4
k=0
and
0 2 T
Y Arccot £ > = k<0, (5.12)
g9 4
k=—00

where sequences (ay) or (Bx) are given by (5.3) or (5.4), respectively. Then (1.1) is conju-
gate in 7.

From Corollary 2 the following conjugacy criterion follows:

Corollary 3. Let

—1
Z?:o (% >0 Qi>

lim inf =: 0 5.13
S “on o1
liminf —— T = >0 (5.14)
n——oo . _
Jj=n r;
and
%) r 0 r
E Arccot i = 00, g Arccot ol = 00. (5.15)
k—1 1 -1 1
k=1 eXp (01 ijo 7].) k=—o0 exp <C2 Ej:k 7].)

Then equation (1.1) is conjugate in Z.

Proof. First, we show that conditions (5.13) and (5.15) imply the validity of (5.11).
According to (5.13) there exists m € Z such that

> —cy1, whenever n >m.

4

Hence
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which yields
n 1 7j—1 7]

0< eXpZ — <01 qu> < 1.
—o L™ 0o /|

Consequently,

NIy
0< — | Ze — < 1. 5.16
jl;[oeXp ” <4C1 ;%) (5.16)

Let d > m + 1. Obviously,

¢ 2«
A t — > A t ——
Z rcco . Z rcco -

k=0 k=m-+1
By (5.3) we have
k—1 -1y j—1
ap = (>\+€1+qu+7“1€ 7()\4-51 qu—l-r] =
=0 7=0 ] =0
Eoq j—1 -1 j—1
= rk[[T—j(AJral—Zqﬁrj H—A+51—Zqi+rj)§

< 1 H exp

i=0 =0 T i=0

)\—l—el Zqzrﬂ )\+51 ZqZ].

Putting A +¢; = %017 we get

b 13 1 Y 13 1
ap <1 [Jexp [“(461 =Y - 261)] exp [r(401 =Y ai- 201)]

i=0
and using (5.16)

k-1 k-1

1
ak<rkHexp—Hexp—c<rkexp -1y —
7=0 j=0"7
Letting d — oo and taking into account (5.15), (5.11) is satisfied.

By a similar way one can check that (5.14) and (5.15) implies the validity of (5.12). The
details are omitted. Now, the conclusion follows from Corollary 2. O

Remark 10. If 1, = 1 and A = 0, then Corollary 2 reduces to [16, Theorem 1]. In addition,
(5.15) is satisfied and Corollary 3 reduces to [16, Corollary 1].
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Corollary 4. Suppose, that a sequence (r;) is bounded in Z and

lim inf Z q; > 0. (5.17)

n1——00, Ng—~+00
J=n1

Then (1.1) is conjugate in Z.

Proof. Assume (5.17). Then there exists a real-valued sequence (@;) such that Q; < ¢; for
every j € Z and

+oo n2
;= lim inf E i
Z QJ ni1——o00, ng—-+400 - q]

j=—00 J=n1

Hence there exists m € N such that
+o0 m—1
ZQj>O and ZQ]‘>0.
j=m j=—o00

From here and applying Stolze theorem (see e.g. [1]) we have

n(Lyitlo; n
lim inf 2= mz<,? Zl = qz) = Elllilgof ijm;:;j 221:0 © ) > nlingo 2 Q; >0,

n—-+00
j=m 7"]

i.e., (5.13) holds.
Similarly, one can verify that (5.14) is satisfied. Since (r;) is bounded, (5.15) holds
as well. By Corollary 3 equation (1.1) is conjugate in Z. O

Remark 11. The previous criterion follows from Corollary 3 and is a discrete analogue of
the Miiller-Pfeiffer criterion for differential equation (2.1) with r(¢) > 0, see e.g. [1, Re-

mark 4.1.2]:
1
[ ==l
r(t

If
to
lim inf / q(t) dt >0

t1——o00, tg—+00 t1

with ¢(t) # 0 on R, then (2.1) is conjugate on R.

and

Example 7. Consider the equation

! 2
: <(’“‘)<’”)Mk> MCERICERETE:

with k € Z. By Corollary 4 this equation is conjugate in Z. In addition, one can check that

1 1 1
G I CHICS)

Tkt = 0 (5.18)
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form the basis of (5.18). Since the intervals (—1,0] and (0, 1] contain generalized zeros of vy,
by Definition 5 equation (5.18) is conjugate in [—1,1].

Remark 12. The conjugacy criterion stated in Theorem 5 is based on the existence of focal
points in [M, N]. Thus using phases we get focality criterion for (1.1): If (5.1) holds with
A =0, then (1.1) has a solution x such that 2o = x; = 1 having a generalized zero in [0, N].

Open problem. In Corollary 4, can the boundedness of r = (r) be replaced by weaker

. co 1 _ -1 1 _ ?
assumptions ijo 7 =00 and ijfoo r, — O0F



Chapter 6

Algebraic Aspects of Symplectic
Difference Systems

The aim of the chapter is to show the relation between the symplectic system
(wkﬂ) _ (ak bk) <$k>
Uk+1 Ck dk Uk ’

Th1Tht2 + BpTry1 + 1Rxp = 0, i # 0,

the recurrence relation

and the tridiagonal symmetric matrix

Bo mm 0O 0 ... 0 0 0

sl 51 79 0 . 0 0 0

0 9 ,32 rs3 0 0 0
Lo . . . |

0 e 0 rN—3 ﬂN_?, N—2 0

0 ... 0 r~v—2 Bn-2 TN-1

0o ... 0 rN_1 ON-1

where (ag), (br), (cx), (di), (rx) and (Bx) are suitable real-valued sequences.

6.1 Trigonometric recurrence relations and matrices

In this section we introduce a concept of trigonometric recurrence relation and trigonometric
matriz and we study transformations among (S), (R) and (£) on a finite interval [0, N].

First we formulate a statement which relates (S), (R) and (£).

39
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Proposition 3. The following statements are equivalent:

(a) A sequence x = (xk)fcvz'gl with boundary conditions xo = 0 = xn41 15 a solution of

recurrence relation (R).
b) There exists a sequence u = (uy)~' such that (“*) solves (S) with
k=0 U

1
ap=1, by=—, cx=—Tpr1—71k—Or and dp=1+ ka (6.1)
Tk Tk

(¢) A sequence x = (xk),ivzl solves the linear system

Lxr=0.

Proof.
(a) = (b): Suppose that a sequence z = (a:k)kN:JE)l, xog = 0 = xy41 is a solution of
recurrence relation (R) with r # 0. Then

Th41Th+2 = —BrThy1 — TkTh
= (Phy1 + 7% — The1 — Tk — Br)Thi1
—(Th1 + 7%+ Bk + 7k — Tht1 — Tk — Bi) Tk

Put ¢ := —rgyr1 — 7 — Br. Then we get
T Ck Tk B Tk Ck
Thi2 = (1 + + ) Tht1 — (1 + + + + ) T
Tk+1 Tk+1 Tk+1 Tk+1 Tk+1 Tk+1

1 1 Ck
= Tp+1+ 7(—7‘]“_1 — T — ﬂk)xk + — <1 + > Tk(xk-&-l — xk)
Tk+1 Tk+1 Tk

Hence, putting
ug = rE(Thr1 — Tg) (6.2)

C
Thyo = Tyl + (—=Tky1 — 1k — Br)r + <1 + Tl;> Uk] . (6.3)

TEk+1

Since (6.2) holds for every integer k, then xpi o = xp41 + ﬁukﬂ. Comparing the last
relation with (6.3) we get

C
U1 = (—Thy1 — Tk — Br)ak + (1 + r;i) U (6.4)

From (6.2) and (6.4) it follows that (*) is a solution of the system

Uk

Ther) _ (L i Ty,
Uk+1 ce 1+ 7] \uy
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which is symplectic. Putting a, := 1, by := i and d ;= 1+ ﬁ—z we get the conclusion.

(b) = (c): If (¢ ’;) is a solution of (S) with the sequences given by (6.1), then by a direct

computation we prove that the sequence (xk)iv:ﬁ)l is a solution of (R). We get the system

of N equations

rixe + Gory = 0
roxg + f1xo + 111 =

TN—1TN + BN—2ZN_1 + TN_2TN_2

Byn-1ZN +TN-—1ZN-1 = O,

which means that (zj)Y_; solves the system Lz = 0, where £ is given by (L).
(¢) = (a): This implication follows immediately by a direct computation. O

Let us define trigonometric concepts which are important to describe transformations
of (R) and (£). Trigonometric transformation of system (S) has already been described in
Theorem D.

Definition 12. A three-term recurrence relation (R) is said to be trigonometric, if
lri| > 1

for k=0,...,N — 1, and there exists a sequence e = {ek},ivzo, er € {—1,1}, such that

B = —€k+1w/7"1%+1 — lsgnrgyq — ek\/r% — lsgnry. (6.5)

A tridiagonal matrix £ of the form (1) is said to be trigonometric, if there exist
©0,-..,¢Nn € (0,27), ¢; #m, j=0,...,N, such that

B = —cotg 1 — cotgpr and 1 = Sinlgok' (6.6)
Now we relate the concepts involved in the previous definition.
Theorem 6. The following statements are equivalent:
(a) The recurrence relation (R) is trigonometric.
(b) The symplectic difference system (St ) is trigonometric.
(¢) The tridiagonal matriz (L) is trigonometric.
Proof.
(a) = (b): Suppose that (R) is trigonometric and put
2
qk ! y Pk ey (6.7)
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Then obviously pi + q,% =1 and

/12 /12
Ck+1Tk+1 ’I“k+1 —1 €kTkA/ T — 1
Zﬂ + ]& — + — _ﬁk;

dk+1 9k |7ht1] k|

i.e., (R) can be written in the form

1 Pk+1 | Pk 1
—— Ty — <+ + = | Tpqy1 + —a1 = 0. (6.8)
dk+1 qk+1 qk qk

Put u, = é (Tkr1 — PExg), 1.€., Thi1 = PETk + qruk, and using (6.8)

1
Upy1 = K(«TkJrZ_karlkarl)
+
Dk 1
= T4l — Tk
qk qk

Dk 1
= — (ppor + qrur) — —Tk
dk qk

2
pr—1
= -k T + Pruk
qdk

= —qrTk + Pruk,

S0, (2) is a solution of (Sy) with p, ¢ given by (6.7).

(b) = (c): System (Sr) with gx # 0 is trigonometric if and only if p? +¢? = 1, i.e., there
exists i € (0,27), ¢ # 7, such that sin g = g, cos pr = px. In the previous part of the
proof we have shown that if (¥) is a solution of (Sr) with g # 0 then z = (z)N solves

(6.8) and hence, if 29 = 0 = xn41, then x = (xk)fcvzl solves the linear system Lz = 0, where

1 1 Pk+1 Dk
Tp=— = — , PBr=——"——"—=—cotgpry1 — cotg vy,
gk S Qg qk+1 qdk

i.e., the matrix (£) is trigonometric.

(¢c) = (a): This implication is an immediate consequence of the relationship between
Jacobi matrices and three-term symmetric recurrence relations, see e.g. [21] or [32]. O

In the following diagram we summarize the above-studied concepts and their relations
to each other. By (Ry) we mean a trigonometric recurrence relation associated to (R) and
by (Lr) trigonometric matrix associated to (L).
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Diagram 2.
R) (Rr)
Proposition 3 Theorem 6
h.g
(S) - (St)
Theorem D
Proposition 3 Theorem 6
(£) (Lr)

To complete the previous diagram, in the following two theorems we study relations
between (R) and (Rr), and between (£) and (L£7). The next theorem shows that there
exists a transformation which transforms the recurrence relation (R) to the trigonometric
one.

Lemma 7. If (z!Y,21) is a normalized basis of (R), then there exist sequences ull) and
ul? such that 211 = () U gnd 22 = ) 2 form a normalized basis of (S). Vice versa, if
(21, 212y is a normalized basis of (S), then (zlV, z12) form a normalized basis of (R).

Proof.

7= If (2, 212) is a basis of (R), then by Proposition 3 there exist sequences ul!) and
ul such that 2 = ) M and 22 = ) ] are solutions of (S) with coeffiecients
satisfying (6.1). In addition, since (z!*, /%) is a normalized basis of (R), taking ul?,
i=1,2, by (6.2), we get the conclusion.

7" If (21 212 is a normalized basis of (S), then putting ull = rAzl for i = 1,2 (2!, 2?])
is a normalized basis of (R).

O

Theorem 7. Let (xg]) and (xf]) be solutions of (R) which form a normalized basis. Then
there exist o, ...,¢on € (0,27), pj #m for j =0,..., N such that the transformation

Tk = hryr,

where hy, = (CCLI])2 + (:EE€2])2 for k =0,...,N — 1, transforms (R) into the trigonometric
recurrence relation (Rr) of the form

Yk+2
2 — (cotg ki1 + COtE Pk) Y1 + = 0. (6.9)

Sin Yg41 sin g
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Proof. Let (Y, 212l) form a normalized basis of (R). By Theorem D the transformation
(2.16) transforms (S) into the trigonometric system (St). Since by Theorem 6 the recur-
rence relation (R) and tridiagonal matrix (£) is trigonometric, according to Definition 12 se-
quences r and (3 in (£) are of the form (6.6). Together with Proposition 3 it gives (6.9).

O

In the next theorem we show that any tridiagonal symmetric matrix of the form (L)
can be reduced via a diagonal transformation matrix to a trigonometric matrix.

Theorem 8. Given a tridiagonal symmetric matriz L of the form (L), there exists a se-
quence (hg)N_, such that trigonometric matriz (L) can be expressed in the form

,CT = diag{hl, .. .,hN}Ediag{hl,. . .,hN}.

Proof. Consider a symplectic difference system (S) with by # 0. From the first equation
of (S), i.e., ux = i (xg+1 — arxy) and substituting into the second equation we get the
recurrence relation

Tht2 ap+1 dk:) Ty,
- + ) a2 =0,
b1 (bkﬂ o) T b,
i.e., (R) with
1 ag+1  dg
r, = — and = — - —. 6.10
" b B b1 bk (6.10)

Now we transform (S) into the system (2.19). Applying (6.10) we give the recurrence
relation with

_ hghgy

N 1
T = a = T = hkhk+17“ka
B = -t

be+1 bg

7 (ah + b9) 1 }le(_gk-i-lbk + hig1dg)

_ _ hrgo _
brt1 b
hk+1hk+2 hkhk+1

_ B2 ak+1 B2 dy
- T4 k17

b oy,
_ 2
= Njs1Bk-

Now, by Theorem D, there exist sequences h, g such that (2.16) transforms (S) into (St)
and this fact, coupled with the statement of Theorem 6, gives the required result. O
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We conclude this section with a diagram which illustrates all relations explained above:

Diagram 3.
h
R) - (Rr)
Theorem 7
Proposition 3 Theorem 6
h.g
(S) ~ (S1)
Theorem D
Proposition 8 Theorem 6
h
(£) (Lr)
Theorem 8

6.2 Positive definiteness of trigonometric matrices

In this section we introduce the statement which is a discrete analogue of a result for
equation (2.1): The trigonometric quadratic functional (with a positive function p)

Flaia,b) = / ' L)(lt)x/2—p(t)x2] dt

is positive over the class of nontrivial differentiable functions satisfying z(a) = 0 = z(b) if
and only if

b
/ p(t)dt <,
see e.g. [7].

Theorem 9. The trigonometric matriz (L), where (By), (rx) are given by (6.6) with ¢y €
(0,7), is positive definite if and only if

N-1
YR < . (6.11)
k=0
In particular, the m-th principal minor Dy, of L, m =1,..., N — 1, is given by the formula
sin <Z;”:0 cpj>
D, = —r——~. (6.12)

Hz‘io sin ;
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Proof. The matrix is positive definite if all its principal minors are positive. First we prove
that each principal minor is given by (6.12). We proceed by induction. Denote g = sin @y,
pr = cos . Then we have

sin(po +
D = @ =+ ]2 = cotg g + cotgyy = M

q0 q1 qoq1

Suppose that (6.12) holds for any k& € N and we show that it holds for k£ + 1.
Consider the determinant of the (k+1)-th order Dy 1. Expanding Dy by the (k+1)-th
row (using the Laplace rule), we get

Pk | Pkl 1
Dy = ( + +> Dy — =Dy
dr  dk+1 q;

i k . k—1
sin (og + @py1) ° (Zj:O 803') _1sin (Ej:o 90]‘)
qrkqk+1 qo---qk q,% qQ---Qe—1

Denote Giy+1 = (qo - - qk,lq%qu)DkH. Then we have

k—1 k-1
Grir = sin(pp+@prn)sin [ Y g | —sinpgprsin [ p;
j=0 §=0
k—1 k-1
= (sin ¢y cos Y41 + oS Yk sin Yg41) |sin Z ;| cos gy + cos Z @ | singy
j=0 j=0
k—1
— sin g1 sin Z ©j
j=0
k-1
= siny cos Yk sin Z ©j | cospy
j=0
k—1 k-1
+ cos Z ©j | Sin @y, Sin @y, COS P41 + COS Y SIN P41 Sin Z ©j | cospy
j=0 j=0
k—1 k—1
+ €0s g, Sin pg41 Cos Z ©j | sin g — sin @41 sin Z ©j
Jj=0 Jj=0
k—1 k-1
= sin Z @; | singp11(cos? pr — 1) + cos Z ©; | sin? g cos g1
j=0 j=0
k-1 k-1

+ sin g €os Yg41 Sin E ©j | cos @ + CoS Y Sin Y41 COS E ;| sinpy
j=0 §=0
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k-1 k-1
= sin®¢ |—sin ©j | sinpg1 + cos Z ©; | cospri1
J=0 J=0
k—1 k—1 i
+ sin g cos @y | sin Z @; | cos i1 + cos @i | sinpgq
j=0 j=0

k-1 k—1
= sin® gy cos Z ©j + P41 | + sin gy cos g sin (Z it Prt1

j=0 j=0
k+1
= sin g sin Zgoj
j=0
It means that b1
sin PN
Dy = 22=0 %)
qo0 * " qk+1
which proves (6.12).
”=": Let matrix (£) be positive definite, i.e., for every m=1,...,N — 1
Dy, > 0. (6.13)

If for every k =0,...,N —1 ¢} € (0,7), then from (6.13) follows (6.11).

7<": Obviously, (6.11) implies (6.13) with ¢} € (0, ).



Bibliography

1]

[11]

[12]

R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applica-
tions. Second edition. Monographs and Textbooks in Pure and Applied Mathematics,
228. Marcel Dekker, Inc., New York, 2000.

R. P. Agarwal, M. Bohner, S. R. Grace, D. O’Regan, Discrete Oscillation Theory,
Hindawi Publishing Corporation, New York, 2005.

R. P. Agarwal, S. R. Grace, D. O’Regan, Oscillation Theory for Second Order Dynamic
Equations, Taylor & Francis, London, 2003.

C. D. Ahlbrandt, A. C. Peterson, Discrete Hamiltonian Systems. Difference Equations,
Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, Boston,
1996.

M. Bohner, Linear Hamiltonian difference systems: disconjugacy and Jacobi-type con-
ditions, J. Math. Anal. Appl. 199 (1996), 804-826.

M. Bohner, O. Dosly, Trigonometric transformations of symplectic difference systems,
J. Differential Equations 163 (2000), 113-129.

O. Boruvka, Linear Differential Transformations of the Second Order, The English
Universities Press, Ltd., London, 1971.

M. Boécher, The theorems of oscillation of Sturm and Klein: I, II, Bull. Amer. Math.
Soc. 4 (1897), 295-313, 365-376.

Z. Dosla, S. Pechancovd, Conjugacy and phases of second order difference equations,
Comput. Math. Appl., to appear.

Z. Dosla, D. Skrabékové, Phases of linear difference equations and symplectic systems,
Math. Bohemica 128 (2003), 293-308.

O. Dosly, Phase matrix of linear differential systems, Casopis Pést. Mat. 110 (1985),
no. 2, pp. 183-192, 208.

O. Dosly, Oscillation theory of linear difference equations, Arch. Math. (Brno) 36
(2000), 329-342.

48



BIBLIOGRAPHY 49

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

O. Dosly, Oscillation Theory of Linear Differential and Difference Equations, Proceed-
ings of Seminar in Differential Equations, Pavlov, May 27-31, 2002, 5-71.

O. Dosly, R. Hilscher, Linear Hamiltonian difference systems: transformations, reces-
sive solutions, generalized reciprocity, Dynam. Systems Appl. 8 (1999), 401-420.

0. Dogly, S. Pechancové, Trigonometric Recurrence Relations and Tridiagonal Trigono-
metric Matrices, Int. J. Difference Equ. 1 (2006), 19-29.

0. Dosly, P. Rehék, Conjugacy criteria for second-order linear difference equations,
Arch. Math. (Brno) 34 (1998), no. 2, 301-310.

S. Elaydi, An Introduction to Difference Equations. Third edition. Undergraduate Texts
in Mathematics. Springer, New York, 2005.

P. Hartman, Difference equations: disconjugacy, Green’s functions, complete mono-
tonicity, Trans. Amer. Math. Soc. 246 (1978), 1-30.

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York,
1964.

J. Henderson, A. Peterson, Ch. Tisdell, On the existence and uniqueness of solutions
to boundary value problems on time scales, Adv. Difference Equ. (2004), no. 2, 93-109.

W. G. Kelley, A. C. Peterson, Difference Equations, An Introduction with Applications.
Second edition. Harcourt/Academic Press, San Diego, 2001.

J. Krbil’a, The algebraic structure of the set of principal hyperbolic phases of the
differential equations 3 = ¢(t)y in the interval (—oo, 00) (Slovak), Mat. Casopis Sloven.
Akad. Vied 20 (1970), 195-204.

J. Krbil’a, The existence of principal hyperbolic phases for the differential equation
y" = q(t)y (Slovak), Sb. Praci Vys. Skoly Doprav. v Ziliné¢ a Vijzkum. Ustav. Doprav.
v Praze 34 (1970), 75-83.

F. Neuman, Global Properties of Linear Ordinary Differential Equations, Mathematics
and Its Applications, Kluwer Academic Publishers Group, Dordrecht, 1991.

F. Neuman, Smooth and discrete systems - algebraic, analytic, and geometrical repre-
sentations, Adv. Difference Equ. (2004), no. 2, 111-120.

W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, Inc., New York,
1971.

W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag,
New York, 1980.

S. Ryzi, On the first and second phases of 2 x 2 symplectic difference systems, Stud.
Univ. Zilina Math. Ser. 17 (2003), 129-136.



BIBLIOGRAPHY 50

[29] S. Stanék, On transformation of solutions of the differential equation y” = Q(t)y with
a complex coeflicient of a real variable, Acta Univ. Palack. Olomouc. Fac. Rerum Natur.
Math. 26 (1987), 57-83.

[30] J. C. F. Sturm, Mémorie sur le équations differentielles linéaries du second ordre,
J. Math. Pures Appl. (9) 1 (1836), 106-186.

[31] C. A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations,
Academic Press, New York, 1968.

[32] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, American
Mathematical Society, New York, 2000.



