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CHAPTER 1

INTRODUCTION

The principal concern of this thesis is to investigate some aspects of the qualitative the-
ory of dynamic equations on time scales. The main attention is focused to half-linear
second order dynamic equations with mixed derivatives and to even order linear dynamic
equations with mixed derivatives and their relationship to symplectic dynamic systems.

The time scales theory was introduced by Stefan Hilger in his PhD dissertation [32].
In this thesis, a “tool” which enabled unifying of discrete and continuous calculus has
been developed. Before that, there were “parallel” branches of the differential equations
and difference equations theory. In some aspects, they were very similar, in other aspects
they seemed to be completely different. Introducing the notion of time scale was an
elegant way how to unify these two theories into dynamic equations theory. The main
idea of the papers concerning dynamic equations on time scales is to prove certain result
for general time scale. If only the set of the real numbers, resp. integers, is taken into
account (as a special time scale), the general result leads to a result applicable to an
ordinary differential equation, resp. difference equation.

This thesis is divided into three parts. In the first part (Chapter 2) we define all notions
and state all basic statements, that we will need later on. Further, a brief overview of
the theory of half-linear equations and symplectic dynamic systems, which precedes the
results of this thesis, can be found here. The main two parts of the thesis are Chapter
3, where we deal with half-linear dynamic equations, and Chapter 4, where the theory of
certain type of the even order linear dynamic equation is discussed. Chapter 3 is based
on the paper [25] and Chapter 4 contains results of the papers [26] and [37].

The half-linear second order differential equation is an equation of the form
(HLD) (r(t)@(a’)) +c(t)@(z) =0, P(2) = |["~ sgn(x),p > 1,
where the functions r, ¢ are continuous and r(t) > 0. The space of all solutions of (HLD)
is just homogenous, but generally not additive. So this space has only one half of the
properties of a linear space, and this is the reason why equation (HLD) is called half-
linear. The basic qualitative theory of equation (HLD) was developed by Elbert and
Mirzov within their papers [28], [39] and a comprehensive treatment of this topic can be

found in the book [27]. Equation (HLD) has similar properties as the Sturm-Liouville
differential equation

(SLD) (r(t)z") + c(t)x =0,
which is a special case of equation (HLD) when p = 2. In particular, the Sturmian theory

extends verbatim to (HLD).
A discrete counterpart of equation (HLD) is the difference equation

(HLA) A(rp®(Azy)) + cx® (1) =0, ®(x) = |z[P tsgn (z),p > 1,
2



1. INTRODUCTION 3

where Axy = xp.1 — xy is the forward difference operator, r, ¢ are real-valued sequences
and r # 0. Properties of equation (HLA) are similar to properties of the equation

(SLA) A(TkAQ?k) + Crlgi1 = 0,

i.e., the Sturm-Liouville difference equation. The basic qualitative theory of half-linear
difference equations has been established in a series of papers of P. Rehak [40, 41, 42,
43, 44] and the results of these papers are summarized in the book [1].

Natural unifications of (HLD) and (HLA) within the theory of dynamic equations on
time scales are the equation

(HL) (r@t)@(z*))* + c(t)®(2z”) =0,
and
(HLMD) (r(t)®(z>)Y + c(t)®(x) = 0,

where A,V and o are the so-called delta derivative, nabla derivative and forward jump
operator, respectively. The basic qualitative theory of (HL) has been established in the
papers of P. Rehak [45, 46] and it is summarized in [2]. The main concern of Chapter
3 is equation (HLMD). Motivated by the results given in [2], we prove the so-called
Roundabout theorem for (HLMD) and we present oscillation and nonoscillation criteria
for this equation.

As mentioned before, Chapter 4 deals with even order dynamic equations with mixed
derivatives. A typical example of such equations are the fourth order dynamic equations

(ry=")2Y = (p()y™)Y +a(t)y =0
or

(r(t)y"2)¥2 = (p()y¥)> +q(t)y = 0.
Equations of this kind appeared only very recently in [7, 9, 30] and the basic qualitative
theory of these equations has not been elaborated yet. The main tool we use is the
relationship of even order dynamic equations with mixed derivatives to the so-called
symplectic dynamic systems.

The results presented in this thesis have been achieved under support of the research
grant 201/04/0580 of the Grant Agency of the Czech Republic.

I would like to thank my advisor Prof. Ondtej Dosly for his inexaustible willingness,
kindness and patience during the many and many hours of consultations. I am very grate-
ful for his suggestions and continuous support throughout my Ph.D. studies of Mathema-
tical Analysis at the Faculty of Science of Masaryk University over the years 2002-2007.

Brno, September 2007 Daniel Marek



CHAPTER 2

PRELIMINARIES

In this chapter we recall, for reader’s convenience, all basic facts about the topics treated
in this thesis, i.e., essentials of the time scales calculus and basic theory of half-linear equa-
tions and of symplectic systems. More specific results will be stated in those subsections,
where they are immediately used.

2.1. Time scales

A time scale T is any nonempty closed subset of the set of real numbers R. The main
examples of time scales (which will be mentioned several times) are the sets of integers Z
and the real numbers R. We define operators g,p: T — T by

o(t)=inf{s € T: s > t},
p(t) =sup{s e T: s < t}.
Operator o is called forward jump operator and operator p is called backward jump ope-

rator. We put o(M) = M, if T has a maximum M, and p(m) = m, if T has a minimum
m. The functions p, v : T — [0,00), where

are called graininess function and backward graininess function, respectively. Depending
on whether the graininess functions for ¢ € T are positive or equal to zero, we distinguish
several types of time scales points. A point ¢ € T is said to be

right dense, if u(t) =0,

left dense, if v(t) = 0,

right scattered, if u(t) > 0,

left scattered, if v(t) > 0 and

dense, if t is left dense or right dense.

We will use the abbreviations rd, ld, rs, Is-point, respectively. If a time scale T has
a left scattered maximum M (right scattered minimum m), then we define T" = T\ {M}
(T, =T\ {m}), otherwise T* =T (T, = T).

We define the delta and nabla derivatives as follows

. f&-f®) =
(2.1) A = limy, ===, if u(t) =0,
W if pu(t) >0,

) f(s)—f(t) ; =
22) oo - {0 =0
f(t)+t()p<t>) if v(t) > 0.
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It is obvious that f2(¢) = f'(t) = fV(t) if T =R, and f2(t) = Af(t) = f(t+ 1) — f(2),
fY(t) = f(t) = f(t—1)if T =Z. By f° and f? we denote the composition f o ¢ and
f o p, respectively. Provided that f is a A-differentiable function, resp. V-differentiable
function, i.e., f2, resp. fV exists, then

fo(t) = f(t) +ufa(t), resp.
fo(e) = f(t) —vfY(t)

holds. All basic differential formulas can be generalized also for the case of time scales,
e.g., the product of two A-differentiable (V-differentiable) functions satisfies

(f9)® = 2"+ fg™ = [79™ + [%9,

(f9)¥ =Yg+ fg" = 9" + Yy,

and the ratio of two differentiable functions is given by
(z)A e

g 99°

([)V _ Y9 fg¥

9 99°

A function f: T — R is said to be rd-continuous (ld-continuous) if it is right continu-
ous (left continuous) at all rd-points (Id-points) and the left limit (right limit) at 1d-points
(rd-points) exists (finite). Provided f is rd-continuous (ld-continuous) then there exists
a A-differentiable function F' (a V-differentiable function ) such that F2(t) = f(t)
(GV(t) = f(t)). Using these functions we define the integrals

‘/ﬂwsz@—F@,

(2.3)

(2.4)

)

(2.5)

b
/ F(t) Vit = G(b) — G(a).

In some proofs we will also need the nabla version of integration by parts

b b
(26) | g ve=rwson - [ rog7ove

Further we recall the relationship between the delta and nabla derivatives. The proof
of this statement can be found in [16, Chap. 4].

LeMMA 2.1. If f: T — R is A-differentiable function on T* and f* is rd-continuous
on T%, then f is V-differentiable on T,., and

fv(t) _ hms—nf— fA(S) i,ft s ld and TS,
a f2(p(t)) otherwise.

If g : T — R is V-differentiable function on T, and g% is ld-continuous on T, then g is
A-differentiable on T", and

A(t) _ limg_;4 gv(s) if t 1s Is and rd,
I B gV (o(t)) otherwise.
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Especially, if f2 is continuous on T*, resp. ¢V is continuous on T,, then
1Y) = FA(o(t),  resp.

g2 (t) = g (a(1))

holds for any t € T,, resp. t € T".

(2.7)

2.2. Half-linear equations

We will mention explicitly the associated Riccati equation, Picone’s identity and Round-
about theorem.

LEMMA 2.2. Let x be a solution of (HLD) such that x(t) # 0 in an interval I. Then
w(t) = %g)()t)) s a solution of the Riccati-type differential equation

(2.8) w' +c(t) + (p— 1)®|ui‘<qr) =0, & r)=|r|""sgn(r)

on I, where q is the conjugate number of p, i.e., ¢ = 1%'

PROPOSITION 2.1 (Picone’s identity). Suppose that w is a solution of the Riccati
equation (2.8) on [a,b] and let y € C*[a,b]. Then for t € [a,b]

(wlylP) =rly'|P = clyl’ — Gy, w),

holds, where

p [l )y Cw BRI CLiC)lN
511 » (y)e~(r)y + Y

Equation (HLD) is said to be disconjugate on the closed interval [a, b] if the solution z
given by the initial condition z(a) = 0, r(a)®(z'(a)) = 1 has no zero in the interval (a, b].
Otherwise (HLD) is said to be conjugate on [a,b]. The so-called Roundabout theorem
relates the Riccati equation, the energy functional and the basic oscillatory properties of
the solutions of equation (HLD).

Gy, w) =

PROPOSITION 2.2 (Roundabout theorem). The following statements are equivalent:
(i) Equation (HLD) is disconjugate on the interval |a, b].
(ii) Equation (HLD) has a positive solution on [a,b].
(iii) There exists a solution w of the Riccati equation (2.8) which is defined on whole
interval [a, b].
(iv) The energy functional

f@mw:/vwwww®Mﬂ@

is positive for every nontrivial function y, such that y(a) = 0 = y(b) and y' is
piecewise continuous on [a, b].

Next, we will state the Roundabout theorem for equation (HLA). For that we need
the following notion. We say that a solution = of equation (HLA) contains a generalized
zero on an interval (m,m + 1] if x,, # 0 and r,, 2T < 0.
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PROPOSITION 2.3 (Roundabout theorem (difference version)). The following state-
ments are equivalent:

(i) Equation (HLA) is disconjugate on the interval [0, N, i.e., the solution T given
by the initial conditions Ty = 0,7¢®(Z1) = 1 has no generalized zero in (0, N +1].
(ii) There exists a solution of (HLA) having no generalized zero in [0, N + 1].
(iii) There exists a solution w of the Riccati-type difference equation (related to (HLA)
by substitution wy = rkq)(i—”:“))

(1 = i ) —0
(I>(<I>*1(rk) + (I)fl('wk)) N
which is defined on whole interval [0, N 4+ 1] and satisfies = (ry) + @~ (wy) > 0

on interval [0, N].
(iv) The discrete p-degree functional

Awk + ¢ + wy,

N

Fa(y;0,N) = > [re| Ayl — crlyra|”]
k=0

1s positive for every nontrivial sequence y = {yk}ivjol, such that yo =0 = yny1-

More details about equations (HLD), (HLA), including proofs of the statements men-
tioned above, can be found in [20].

The next step in development of the basic theory of half-linear dynamic equations is
the dynamic equation

(HL?) (r(H)®(@%)> +c(t)®(a?) =0, ®(z) = |2["""sgn (2),p > 1,

investigated by Rehék, see [45], [46]. This equation involves both of previously mentioned
equations (HLD), (HLA) as special cases, it is sufficient to choose as a time scale the reals
R or the integers Z. The main results for (HL2) important for our thesis can be found in
Chapter 3.

2.3. Symplectic dynamic systems

There exists well developed theory of linear Hamiltonian systems (further denoted LHS)
i.e., systems of the form

3

' = A(t)z + B(t)u,
u' = C(t)xr — AT (t)u,

where z,u € R", A, B, C being n X n matrices with B, C' symmetric. Overview of results
concerning (2.9) achieved until 1995 can be found in monographs of Reid [48] and of
Kratz [36].

Before passing to the main theorem of this section which summarizes oscillatory pro-
perties of system (2.9), we need to recall some basic definitions. We say that two points
t1,ts are conjugate relative to (2.9) if there exists a solution z such that x(t;) = 0 = z(t2)
and z(t) # 0 in [t1,ts]. System (2.9) is said to be conjugate in an interval [a, b] if there
exist points t1, to € [a, b] which are conjugate relative to (2.9). In the opposite case system
(2.9) is said to be disconjugate. We say that system (2.9) is oscillatory if for every ¢ € R

(2.9)
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this system is conjugate in [c, 00), otherwise system (2.9) is said to be nonoscillatory. The
system (2.9) is said to be identically normal (controllable) on an interval I C R, if the
trivial solution (z,u) = (0,0), is the only solution for which z(¢) = 0 on a nondegenerate
subinterval of I.

The matrix analogy of (2.9) is the system

X' = A()X + B(t)U,

(2.10) U =Ct)X — AT,

where X, U are nxn matrices. A solution (X, U) of system (2.10) is said to be conjoined if
XTU is symmetric matrix and it is said to be conjoined basis if, moreover, rank () = n.

In oscillation theory of (2.9), an important role is played by the associated quadratic
functional

(2.11) Fla,u) = / [ (&)B(t)u(t) + " (H)C(t)x(t)] dt,

and the Riccati matrix equation

(2.12) Q' = C(t) + AT(1)Q + QA(t) + QB(H)Q = 0,
where the matrix @ is related to (2.10) by the substitution Q = UX .

THEOREM 2.1. Assume that (2.9) is identically normal on interval [a,b] and that
the matriz B is nonnegative definite in this interval. Then the following statements are
equivalent:

(i) System (2.9) is disconjugate on the interval |a,b].

(ii) The quadratic functional (2.11) is positive for every nontrivial (x,u) satisfying
conditions o' (t) = A(t)x + B(t)u, z(a) = 0 = x(b) and z(t) #Z 0 in [a, b].

(iii) The solution (X,U) of (2.10) given by the initial condition X (a) = 0,U(a) =1
satisfies det X (t) # 0 for t € [a,b].

(iv) There exists a conjoined basis (X,U) of (2.10) such that X (t) is nonsingular for
t € [a,b].

(v) There exists a symmetric matriz QQ which for t € [a,b] solves the Riccati matriz
differential equation (2.12).

System (2.9) can be rewritten as the first order system

(2.13) Z=H(t)z, 2= (‘z) . H= (é —iT) ,

where the matrix H satisfies the identity

(2.14) H' T +TH(E) =0, J= (_OI é) :

I being the n x n identity matrix.
One of the fundamental properties of LHS is that its fundamental matrix Z is sym-
plectic, i.e., ZT ()T Z(t) = J, whenever it is symplectic in the initial condition. Indeed,

(Z2'g2) =Z2"H'"JZ + Z"THZ = Z"(H' T + TH)Z = 0.
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The discrete counterpart of (2.13) is the so-called symplectic difference system (further
referred to as SDS)

(2.15) Zk+1 = Skzk,

where z, € R?", S;, € R?™*2n_ S, being symplectic matrix, i.e.,
0 I

The symplecticity of the fundamental matrix of system (2.15) is caused by the fact that
the set of all symplectic (2n x 2n)-matrices forms a group with respect to the matrix
multiplication. The basic properties of (2.15) are described in [12].

A (delta) symplectic dynamic system

(2.16) 22 =8(t)z

with 2z € R?*, § : T — R?"*2" then represents a unification of the previous two cases.
Similarly as before, the desired property of the fundamental matrix of this system is that
the fundamental matrix should be symplectic, i.e., Z7(t)JZ(t) = J (J being the same
matrix as in (2.14)), whenever it has this property at one point of T. In the case of
symplectic dynamic system, this condition is of the form

(ZTTZ2) = (2" T2+ 27 T2 = ZTSTT(Z + pZt) + ZT TS Z =
=7'ST T2+ u2'S* g8z + 7277872 = ZV(STT + TS + uSTIS)Z.
Therefore, the symplecticity condition of system (2.16) reads as

(2.17) STHT + TSt + ut)ST*()TS(t) =0, J= <_01 é) ,

I being the n x n identity matrix. If we write the matrix S in the form § = (’é g)

with n x n matrices A, B,C, D, then (2.17) translates as

C—Cl+ u(ATCc —CTA) =0,
(2.18) BT — B+ u(B"™D - D'B) =0,
A 4+ D+ u(A™D - CTB) = 0.

The matrix symplecticity condition Z ()7 Z(t) = J can be equivalently written as
Z(t)JZ*(t) = J and using this equation one can easily derive a complementary set of
conditions to (2.18), i.e.

C—-C'+ " —pch) =o,
(2.19) BT — B+ p(AB" — BA") =0,
D+ A" + W(DA" —cBY) = 0.

Basic qualitative properties of delta symplectic systems have been established in the
papers [14, 22, 24, 33] and are summarized in [16, Chap. IX]. The main tool in the
investigation of qualitative properties of (2.16) is the so-called Roundabout theorem which
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relates oscillatory properties of this system to the positivity of the associated quadratic
functional and the solvability of the Riccati matrix equation. In this statement, system
(2.16) is considered on a time scale interval [a,b] C T.

PROPOSITION 2.4. ([33]). Suppose that (2.16) is dense-normal on every interval [a, s,

where s € |a,b] is a dense point, i.e., the trivial solution z = (Z) = 0 s the the only
solution for which x(t) =0 on [a, s]. Then the following statements are equivalent:

(i) The quadratic functional

F(z) = /b {zN(STK+ KS + uSTKS)z}(t) At, K = <? 8) :

is positive definite, i.e., F(z) > 0 for every z = (z) : a,b] — R*™ for which
z(a) =0 =x(b) and x £ 0 on [a,b].

(il) The 2n x n solution Z = (5) given by the initial condition X (a) = 0,U(a) = I is
such that X (t) is invertible in all dense points in (a,b], Ker X (o(t)) C Ker X(t),
and X ()X (a(t))B(t) > 0 fort € [a, p(b)]. Here Ker, T, and > denote the kernel,

Moore-Penrose generalized inverse, and nonnegative definiteness of the matriz
indicated.

(iii) There exists a symmetric solution @ on |a,b] of the Riccati matriz equation
Q% =C(t)+D(t)Q — Q" (A(t) + B(H)Q)
such that I + p(A+ BQ) is nonsingular and [I + p(A+ BQ)|'B > 0 on [a, p(b)].

A nabla symplectic system is the first order system
(2.20) 2V =8(t)z
with the 2n x 2n matrix S satisfying
STHT +TSt) —v(t)ST(t)TS(t) =0
and in terms of the matrices A, B,C, D this identity reads as
C—-Cr —v(ATC - CTA) =0,
(2.21) B' — B - v(B"D - D'B) =0,
A+ D —v(A™D - C'B) = 0.

The concept of the nabla symplectic system is quite new and these systems have not been
studied in the literature yet (at least, as far as we know), but it can be shown that basic
properties of solutions of these systems are the same as those of (2.16). In particular, the

fundamental matrix of this system is symplectic whenever it is symplectic at one point of
T.



CHAPTER 3

HALF-LINEAR DYNAMIC EQUATIONS WITH MIXED
DERIVATIVES

3.1. Introduction

In this chapter we investigate oscillatory properties of solutions of the half-linear second
order dynamic equation with mixed derivatives

(3.1) (r(t)®(x*))Y + c(t)®(z) = 0.

Recently, several papers dealing with the Sturm-Liouville second order dynamic equation
of the form (which is the special case p =2 in (3.1))

(3.2) (r(t)z®)¥ +c(t)z =0

appeared, see [10, 38] and also [16, Chap. IV], where the basic qualitative theory of
(3.2) has been established. It was shown that qualitative properties of solutions of this
equation are very similar to those of the “normal” Sturm-Liouville dynamic equation
(3.3) (r(t)z™)* 4 c(t)z’ = 0,

the theory of which is now relatively deeply developed, see [15] and the references given
therein.

Another motivation for our research is a series of papers [2, 45, 46], where the half-
linear dynamic equation
(3.4) (r(t)®(a))® + c(t)P(27) = 0,  @(x) == [2["~ sgn (2), p> 1,

is investigated and a theory unifying the theory of half-linear differential and difference
equations is established.

3.2. Basic facts

Here we start with several lemmas, that are used later on in this chapter. In the theory
of half-linear equations, the frequently used tool is the Young inequality, see [31].

LeMMA 3.1. If p > 1 and q > 1 are mutually conjugate numbers, i.e., %—i—é =1, then
for any u,v € R

ulP |l
—  — > |,
p q

and equality holds if and only if u = |v|7%v.

(3.5)

The next lemma can be considered as a time scale version of the second mean value
theorem of integral calculus. Its proof can be found in [45].

11
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LEMMA 3.2. Let f be a function such that its A-derivative > is rd-continuous and
2 does not change its sign for t € [a,b]. Then for any rd-continuous function g there
exist points ¢,d € [a,b]® such that

c b
[ e as s [“owane 50 [ o0
and
d b
/f” DAtz () [ gt acs o) [ a0 an
a d
Lemma 2.1, applied to the A-integral and V-integral, gives the following result.

LemMMA 3.3. Let f be a ld-continuous function and let

f(t) = limg_¢y f(s) ift is ls and rd point,
RO otherwise.

/abf(t)Vt:/abf(t)At

PROOF. Let F be the V-antiderivative of f, i.e., F¥ = f. Then by Lemma 2.1 we
have

Then

FY(a(t)) = fo(t) otherwise.
Hence, FA(t) = f(t), and thus

/f@mzm%:/f@w

Further we present a formula for the V-derivative of a composite function, the proof
of this statement is the same as for A-derivative and it is based on the Lagrange Mean
Value Theorem.

LEMMA 3.4. Let f: R — R be a differentiable function and g : T — R be V-differen-
tiable. Then we have

FA(t) — {hms—>t+ FV(S) = lim, ¢y f(s) iftisls and rd,

O

[Fg@)]Y = (g ().
where & is between g°(t) and g(t).

Now we recall some results of the above mentioned papers [2] and [38] that deal with
equations (3.2) and (3.4). These results are summarized in statements which are usually
referred to as the Reid Roundabout theorem. Recall that by a solution of (3.2) it is
understood a function z which is A-differentiable, rz® is V-differentiable and (3.2) is
satisfied. A solution of (3.4) is defined in a similar way. We use the standard notation
for time scale intervals. An interval [a,b] actually means {t € T : a <t < b}, open and
half-open intervals have the same meaning.
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ProrosiTION 3.1 ([38], [16, Chap. 4]). Suppose that the function c is ld-continuous,
ris continuous and r(t) > 0. Then the following statements are equivalent:

(i) Equation (3.2) is disconjugate on an interval [p(a),o(b)], i.e., the solution x of
(3.2) given by the initial condition x*(a) = 0, (rz®)?(a) = 1 has no generalized
zero in (p(a),o(b)], i.e., it satisfies 2 (t)x(t) > 0 for t € (p(a),o(D)].

(ii) There ezists a solution of (3.2) having no generalized zero in [p(a), o (b)].

(iii) The quadratic functional

o(b)
Fw= [ [O6T - ] Te>0
p(a)
over nontrivial y : [p(a),c(b)] — R for which y¥ ewists, it is ld-continuous, and
y*(a) =0 =y(b).
(iv) There exists a solution of the Riccati equation
p)2
v ¢ <w— =0
w A elt) + re(t) + v(t)we
related to (3.2) by the substitution w = #, which is defined on [p(a),o(b)] and
satisfies there r°(t) + v(t)w” > 0.

Note that it is supposed in [10] that both functions ¢, r in (3.2) are continuous. How-
ever, under this assumption the V-derivative (r(t)z®)V is continuous, in particular, 1d-
continuous, hence applying the forward jump operator to (3.2), using (2.7) we get the
equation

(r(t)z™)2 + 7 (t)2” =0
which is just the equation of the form (3.3) and the above formulated Proposition 3.1 can
be essentially deduced from a corresponding statement for (3.3), see [15]. Also, a state-
ment analogous to Proposition 3.1 can be formulated without positivity assumption on
the function r, however, as showed, e.g., in [24] where (3.3) is investigated, “reasonable”
oscillation criteria can be derived only under some sign restrictions on the function r,
we refer to [24] for details. Finally, note that our presentation of Proposition 3.1 fol-
lows exactly the presentation of [16] and [38]. Later, in Section 3.3, we give a similar
result for half-linear equation (3.1), but instead of the interval [p(a),o(b)] considered in
Proposition 3.1, we formulate our results for ¢ € [a, b].
Now we turn our attention to the Roundabout theorem for (3.4), see [45].

PROPOSITION 3.2. Suppose that the functions r,c are rd-continuous and r(t) # 0.
Then the following statements are equivalent.
(i) Equation (3.4) is disconjugate on a time scale interval [a,b], i.e., the solution x
given by the initial condition x(a) = 0, r(a)®(z*(a)) = 1 has no generalized zero
in (a,b], i.e., r(t)®(x(t))®(z7(t)) > 0 fort € (a,b].
(ii) There exists a solution of (3.4) having no generalized zero in [a,b).
(iii) The energy functional

Fw) = [ FOWAP - ol P At >0
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for every nontrivial y whose A-derivative is piecewise rd-continuous and at end-
poins y(a) = 0 = y(b) holds.

(iv) There ezists a solution of the Riccati-type equation (related to (3.4) by the sub-
stitution w = r®(z*/x))

N —(p— Dr'74(t)|w]® if o(t) =t,
w” +c(t) = _L<1_ r(t) ) if o(t) > t

w(t) (21 (r () +u(t)2 ! (w))

which is defined for t € [a,b] and satisfies D 1(r(t)) + p(t)® H(w(t)) > 0 in this
interval.

3.3. Picone’s identity and Roundabout theorem

Before passing to the main subjects of this section which are basic statements for the
elaboration of the oscillation theory of (3.1), let us note that we are not concerned with
the existence and uniqueness problem for (3.1) in this thesis. This result can be proved
using the time scales induction essentially in the same way as in [10, Theorem 3.1] and
[45, Section 3.

Throughout what follows we suppose that

(H) r(t) is continuous, c(t) is ld-continuous, and r(t) # 0
on a time scale interval under consideration. Under this assumption, system (3.1) can be
written as a 2 X 2 system

oV = o Hw/rr(t), uY = —c(t)®(a’ + () H(u/rr(t))),

and the existence and uniqueness problem for (3.1) is investigated via this first order
system. We have the same statement as [10, Theorem 3.1], namely that a solution of
(3.1) is uniquely determined by the initial condition z(ty) = xo, zV(ty) = x1, tp € T,
xg, 1 € R, it exists on any interval where the hypotheses (H) are satisfied and depends
continuously on the initial condition. We conjucture, that the results of this section
remain to hold under the weaker assumption that r is only ld-continuous, but under this
weaker assumption we have till now some difficulties with the existence problem for (3.1).
We start with the Riccati substitution for (3.1).

LEMMA 3.5. Suppose that x is a solution of (3.1) such that x(t) # 0 on a time scale
interval I = [a,b]. Then w = r®(z>/x) is a solution of the Riccati-type equation

(1) wl L
(3.6) wv+dﬂ—{ = D=ty “ if t=p(t),
. - wP rP(t .

0] (1 - <I’(‘Ifl(7"”(1t))-&-u(1t)(1>*1(wﬂ))) if p(t) <.

Moreover, if

(3.7) r(t)z(t)z?(t) > 0 for t € [a,b],,
holds, then
(3.8) O (P (t)) + v(t)® N (w(t)) > 0

fort € [a,b],.
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PROOF. Let w = T(ID(%A). Then using (2.5) and (2.3) we have (suppressing the argu-
ment t)

v _ (r2@?)Ve(r) — ro(z)0V ()
O(27) P (x)
(ro(z2)V (®(2f) + v2¥(x)) — r0(z2) 2V ()
O(2¢)®()
(ro(@?)Y — ro(z2)] PV ()

T () 0(a)
_ L @)oY weY(x)
O (zP)D(x) o(z)

Now we have to distinguish two cases:
(i) Suppose that t is left dense. Then the nabla derivative reduces to the “normal deriva-
tive” (®V(x) = ®'(x)) and the p-operator has no effect, so that

o @@ oD e
w' = 3(z) iz (p—1) 7 o 1(r)
=—c—(p— 1)w(§)_1<(1:)) =—c—(p—1) q)|jli|(r)

which is equation (3.6).

(ii) Suppose that ¢ is left scattered. Then because of (2.3) and (2.7)

(
@@Vg _ q)(%(f)(xp) -1 (1 - %) -2 (1 -0 (:HIWD

1 1 1 rf
=7 (1 ol u@)p)) o (1 T e 1)+ u<b—1<wp>>>

which implies the second case of relation (3.6). The last fact we need to prove is that the
inequality @1 (r?) + v®~*(w”) > 0 is valid for ¢ € [a, ],. But

() 18 () = 7 () v () = a7 ) (1 n —)

P xP
A v
:<I>_1(r”)mp+yx P :®_1<Tp)xp+ux _ % 1(Tﬂ)£
xP xP TP
and the last expression is positive if and only if (3.7) holds. O

In the next statement and also later we will denote by C}, the class of functions
y : [a,b] C T — R such that yV exists and it is ld-continuous.

THEOREM 3.1 (Picone’s Identity). Assume that w is a solution of Riccati equation
(3.6) on [a,b]. Lety € Clla,b]. Then fort € |a,b] (suppressing the argument)

(3.9) (wlyP)Y =r*lyV [P = clyl’ — Gy, w),
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holds, where

(3.10) G(y,w) = {@If(r) [\é*l(}:)va —w®(y)®(r)yY + M} if p(t) =

VP — w1V T YN P+ P if p(t) <t

PROOF. First suppose that ¢ is left dense, i.e. p(t) =t. Then

|w]?

(wly)¥ = w¥lyl" +w(ly)” = (= c= (0= g5 vl + pwd(y)y”

O=1(r)
rlyV P w p
=™ =l = p{ "L — w4 SR
(I)—l r Vip 1 wd q
— T‘yV|p _ C’y|p _ q)?(r){ ’ ( )y ‘ . w@(y)fb_ (T)yv + ’ q(y)| }

For Is-point ¢ we have (using (2.4) and (3.6))

(wlyl")”

=¥y + w0 )” = [ o= 51 = g gy o
lyl” — lyI”

14

+w”
wPrP
v®(d-1(rr) + vd-!

p

— P VIP _ P p_ W o, VP

Ly —clyl” + (wp))lyl Y=y
WP

L(re) + vd-

_ v v w’
A e Ul v = Ty Y7+ Y

i.e., (3.10) holds since y = y* + vyV. O

THEOREM 3.2. Let the assumptions of the previous theorem be satisfied and, in addi-
tion, suppose that

(3.11) O ()) + v()® (WP (1) > 0

fort € T,. Then G(y,w)(t) > 0 fort € |a,bl., where the equality holds if and only if
wd(y) = ro(y?).

PRrROOF. Again, suppose first that ¢ is left dense. Then because v(t) = 0 holds, condi-
tion (3.11) implies ®~(r(¢)) > 0. We have

L i | lwew)r

Gy, w —wd(y)® ' (r)y" Ty

}.

This case is very easy to prove, because the expression in brackets is nonnegative according
to Young’s inequality (Lemma 3.1 with v = ®~(r)yY,v = w®(y)). Equality occurs if
and only if v = ®(u), i.e., if and only if w®(y) = r®(y>). Note that this equality holds
iff w is related to y by the Riccati substitution.
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Now suppose that ¢ is Is-point. If we set a = vyV, 3 = y”, we can write the function
G in variables «, (3 as
rP wPrP

1
G =— P
(0, 0) = 24l (D1 (re) + vd(wr))
If the case a + 3 = 0 occurs, then |o| = |3| and the function G(a, ) is of following form

p p p
= [+ BI” + w’|5]° -

o B) = Gla) = 12X 7y
(@, ) = Gla) = ——{—= + v’}
and the expression in brackets is positive according to (3.11).

If a + 3 # 0 then our aim is to prove that
7”)1/1_7)[04|p + wﬂ|ﬁ|p wPrP

o+ B — (@) 4+ ve T (wr))

The left-hand side of the last inequality is homogeneous in variables «, 3, i.e., it is not
changed by the transformation o — ka,  — kf for any k € R\ {0}. For this reason, we
can assume that o 4+ 8 = £1, for example a + § = 1. We will show that the minimum of
the function G(a, 8) := Z|al? + w’|B|P, provided o+ 3 = 1, is equal to the right-hand
side of the inequality (3.12).

First we will express G as a function of only one variable using the condition a+/3 = 1.
So we have

v

(3.12)

- rP
G(a) = e lafP + wP|1 — af?.

The derivative of this function is
G'() = p{

with the only stationary point

e
pp—1

P(a) — w'P(l—a)}

v® 1 (wP)
O-1(rr) + v®1(wr)

*

o =

The second derivative is given by

~ p
(3.13) G"(a) =pp—1) { Z—l ’Oé|p_2 + w’|1 — a|p_2}
v
and at the stationary point o* satisfies
é//(a*) _
1 P -1 P\ |p—2 Pld—1(rrP)|P—2
=200~ Vg i Lt P e ) )
1
_ _ PlapP|2—a P|rP|2—q
= p(p 1>y|<I>—1(rP) T (w) {r|w’ P~ + vw?|r? >~}
|,,ﬂpwp|27q —1/..p -1 p
= p(p— 1>V|CI>—1(TP) T {o~'(r") + v~ (w”)}

so that the sign of é”(oz*) depends only on the last bracket, which is positive due to our
assumption (3.11). This implies that o is a local minimum point of the function G and
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one can directly verify that the value é(a*) just equals the expression on the right-hand
side of inequality (3.12). Finally, using again condition (3.11) and (3.13), by a similar
computation as above one can verify that é”(a) >0, i.e., G is convex and hence o* is
also the global minimum of G. O

Oscillatory properties of (3.1) are defined via the concept of a generalized zero of
a solution of this equation. We say that a solution x of equation (3.1) has a generalized
zero at t if x(t) = 0 or, if ¢ is Is-point and (rPzz”)(t) < 0. We say that equation (3.1)
is disconjugate on an interval [a,b] if the nontrivial solution y satisfying y(a) = 0 has
no generalized zero in (a,b] and any other nontrivial solution of (3.1) has at most one
generalized zero in [a, b].

Now, let us define A to be the set of functions

A= {y € Cy((a, b, R) : y(a) = y(b) = 0}
and the p-degree functional F on A by

(3.14) Flyia,b) = / (POl - c(t)lyi?} .

We say F is positive definite (and write F > 0) on A provided F(y) > 0 for all y € A
and F(y) = 0 if and only if y = 0.

The next theorem establishes basic methods of the oscillation theory of (3.1) and
relates disconjugacy of this equation to the solvability of the Riccati equation (3.6) and
positivity of the energy functional (3.14).

THEOREM 3.3 (Roundabout theorem). The following statements are equivalent:
(i) Equation (3.1) is disconjugate on [a,b).
(ii) There exists a solution of (3.1) having no generalized zero in [a,b).
(iii) The Riccati equation (3.6) has a solution w satisfying for all t € la,bl, the
inequality {®~(r?) + v®1(wf)}(t) > 0.
(iv) The p-degree functional F is positive definite on A.

Proor. We prove that the following four implications are valid:
(i)=-(ii): Let 7 be the solution of (3.1) satisfying the initial conditions g(a) = 0,7V (a) = 1.
From (i) we get that (r°yy”)(t) > 0 for t € (a,b]. Consider a solution y. given by the
initial conditions (with € > 0)

ve(a) =< y¥ (@) = a)( v(a)) +1.

where v = 0if v =0 and v = % if v > 0. Then y. — y for ¢ — 0. Hence, if we choose
e > 0 sufficiently small, then y = y. fulfills (r’yy”)(t) > 0 for t € (a,b]. Moreover, for
Is-point a we get

erf(a) =1
re(a)

(r’yy”)(a) = r*(a) =e>0

rP(a)

because , o) - 1
Sy (VY @) 1
v (a) ( v )( ) v(a)re(a)
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by (2.2). In the case when a is ld-point we have

(r'yy’)(a) = (ry*)(a) = r(a)e’,

which is positive if and only if 7(a) > 0. Suppose conversely that r(a) < 0. Consider
a solution 7 that satisfies the initial conditions 7(d) = 0,7~ (d) = 1, where d € (a,b]. The
disconjugacy of the equation (3.1) implies (r*yy”)(a) > 0. Since a is left dense, we get
r(a) > 0 which is contradiction. Altogether, y is the solution of (3.1) with (r*yy”)(t) > 0
for t € [a,b], so that (ii) holds.

(ii)=-(iii): This implication is the Riccati substitution already proved in Lemma 3.5.
(iii)=-(iv): Suppose that w is a solution of Riccati equation (3.6) satisfying the inequality
{71 (r?) + v® 1 (w?)}(t) > 0 for ¢ € [a,b].. Let y € A, i.e., y(a) = y(b) = 0. From the
Picone identity we have

POV = eyl = (wt)lyl")" + Gy, w)

and by integrating from a to b we obtain
b
Flyah)= [ 1O = c(olul’} vt

b b
= [w(®)[l"] + / Gy, w) Vi = / Cly.w) V.

Hence F(y;a,b) > 0 because of Theorem 3.2 and, moreover, the case F(y;a,b) = 0 can
occur if and only if w®(y) = r®(y?), i.e., y> = ®L(w/r)y. But since y(a) = 0, the
initial value problem admits only the trivial solution. Consequently, F(y;a,b) > 0 for all
nontrivial y € A.

(iv)=-(i): Suppose, by contradiction, that F(y;a,b) > 0 and (3.1) is not disconjugate on
[a,b]. Then either the nontrivial solution ¢ of (3.1) given by the initial condition y(a) = 0
has a generalized zero in (a,b] or there is a nontrivial solution y of (3.1) such that y
has at least two generalized zeros in (a,b]. Consider the latter possibility, the former
one can be treated in a similar way. Let «, 5 € (a,b], where a < p(f3), be two smallest
generalized zeros of y in (a,b]. There are four possibilities according to whether «, 3
are ld- or Is-points. We consider here the case when [ ld-point (i.e., p(3) = () and we
construct a nontrivial piecewise continuous function y € C' with y(a) = 0 = y(b), such
that F(y;a,b) < 0. If the remaining two possibilities happen (p(3) < (), we proceed in
a similar way as in the remaining part of the proof.

First suppose that « is Is-point and define

0 for t € [a, ),
ut) = { y(t) for t  [o, 4,
0 for t € (3,0],

which implies v € A and u(t) # 0 for ¢ € («, ). In the next computation we use integra-
tion by parts (2.6), the definition of function u, the fact that fpt(t) f(s)Vs = f(t)v(t), and

that (r®(y®))(a) = (ro(y™))"(@) + v(@)(re(y*))¥ (o).
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We have
F(u;a,b)

:/ [r”(t)|uv|p - c(t)|u|p] Vit
o 8
:/ [rp(t)|uv\p — c(t)\u|p} Vt+/ [T’p(t)|uv|p — c(t)|u]p} Vit

pla) a

v ﬂ g A\\V
= {(r’|u !’”—c|u|’”)v}( )+ urd(u®)| /u[(r(t)fb(u )Y+ c(t)P(u)] Vi

= {vr*|u¥ P} (@) — u {c®(u)v + (r(u®))” + v(re(u?))V} (a)
= 19(0) W )~y (@) 27 (@)
UL a(y(a) - @(vtals )]
Hence, it suffices to show that
(3.15) {yrro(y) —yrre(vy")} (@) < 0.
This inequality is equivalent to the inequality
{@  yr")(y —vyY)} (@) = {2 (yr*@(y”)) } (o) <0,

but this inequality holds because accordlng to our assumption « is generalized zero of
solution y, so (3.15) holds and hence F(u;a,b) <0, a contradiction.

Now suppose that « is an ld-point, i.e., p(a) = «a. Since r(t) # 0, the inequality
{r*yPy}(a) < 0 means that either y(a) = 0 or r(«) < 0. If y(a) = 0, the same function
u as in the previous part of the proof gives F(u;a,b) = 0, a contradiction, so we suppose
that y(a) # 0 and 7”(«) < 0. In this case we proceed in the same way as in the continuous
case (see, e.g., [47]). Let t,, — a—, as m — o0, be the left-sequence for a and put

t—tm
() = {“"—tmw for t € [t 0] N'T,

0 otherwise.
Now, the same computation as in [45, 46] yields
F(tm;a,b) — r’(a) <0 as m — oo,
a contradiction. 0

REMARK 3.1. (i) The previous theorem implies that the Sturm Comparison theorem
extends verbatim to (3.1). In particular, let the equation

(3.16) (R)®(z%)Y + C(t)®(z) =0
be a Sturmian majorant of (3.1) on [a, b], i.e

0<R(t) <r(t), C(t)=>c(t), telab].
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If (3.1) is not disconjugate on [a, b], i.e., there exists a nontrivial function y € A such that

b
Fre(y; a,b) :/ [P (&) |yV [P = c(t)|y|P] VE <0,
then also
b
Fretat) = [ RSP - Cly] Vi <0,

and hence (3.16) is not disconjugate as well. Conversely, if (3.16) is disconjugate on
la,b], i.e., Fro(y;a,b) > 0 for every 0 £ y € A, then F,..(y;a,b) > 0 and (3.1) is also
disconjugate on [a, b].

(ii) Theorem 3.3 also shows that (3.1) does not admit coexistence of a solution without
generalized zero in [a,b] and a solution having two or more generalized zeros in this
interval. Indeed, the existence of a solution of (3.1) without a generalized zero in [a, b]
implies F,..(y;a,b) > 0 for 0 £ y € A, while the existence of a solution with two or more
generalized zeros enables to construct a function 0 # ¢ € A for which Fre(g;a,b) < 0.
(iii) The previous remark also justifies the classification of (3.1) on time scales unbounded
above as oscillatory and nonoscillatory in the same way as for the classical linear Sturm-
Liouville differential equations.

3.4. Oscillation criteria

Throughout this section we suppose that a time scale under consideration is unbounded
above; i.e., there exists a sequence t,, € T such that ¢,, — oo.
Equation (3.1) is said to be nonoscillatory if there exists a € T such that (3.1) is
disconjugate on [, (] for every 3 > «. In the opposite case, (3.1) is said to be oscillatory.
As a direct consequence of the equivalence (i) and (iv) in the Roundabout theorem,
we have the following statement.

LEMMA 3.6. Equation (3.1) is nonoscillatory if and only if there exists a € T such
that

Flya0) = | Tl — ey () Ve > 0

a

for every nontrivial y : [a,00) — R with yV piecewise ld-continuous, satisfying y(a) = 0,
and for which there exists d > a with y(t) =0 for t > d.

THEOREM 3.4 (Leighton-Wintner criterion). Suppose that r(t) > 0 for large t

(3.17) /Oo(rp(t))l_q Vt=o00 and /00 c(t) Vit = 0.

Then equation (3.1) is oscillatory.



3.4. OSCILLATION CRITERIA 22

PROOF. Let a € T be arbitrary and ¢y, s,t3,t4 € [a,00) be such that a < t; < ty <
t3 < ty. Define function y by

la,t1),
[t1,t2)

y(t)y=<1 for ¢ € [ta, t3),
[t3,ta)
[

where f, g are given by the formulas
t _
 JLrr) s
[ ()0 0s’
i.e., they satisfy the boundary conditions f(t1) = 0, f(t2) = 1,9(t3) = 1, g(t4) = 0. This
vields y(t;) = y(ts) = 0,y(t) > 0 for t € (t1,t4) and yV is piecewise ld-continuous. It
holds
P(£))1—¢

Fo
o (rP(s))1 71 Vs

and consequently, using integration by parts,

f(t)

(r(t)'
Vi) = — :
g7() S (re(s)) -1 Vs

/ TP Vi = | ot ar

— /ttz rp(t)q)(fv(t))fv(t) Vit + /tt4 rp(t)q)(gv(t))ngf) vt

= [ O@(Y () O] — / (BT (1) £ Vi

t1

+ (027 ()9 ()] — / ’ (r'(H)2(g" (1)) 9" Vi

t3

= 1P (t2)®(fV (£2)) f (t2) — r*(ts)@(g" (t3))g(ts)

_ ( /t f (re (1)) w) o ( /: (r# (£)) w) o

Now we compute the second term in F(y;a,00) by Lemma 3.3 (with ¢, § defined in
the same way as f in Lemma 3.3. We obtain

| g ve= [anim = [ angom)a

t3 t3 i3
since the function ¢ is continuous. Using the second mean value theorem of integral
calculus (Lemma 3.2) there exists sy > t3 such that

52

/: () gP(a(t)) At > / Yy At = / c(t) Vt.

t3 t3
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By the same argument, there exists s; € (t1,t2) such that

/ " O VS / " (vt

t1 S1

Summarizing the previous computations, we get

to 1—p ta 1—p 52
Fly:a,00) < ( / (e (1))} w) + ( / (e (1)) w) - / c(t) Vt.
t1 t3 S1
Now, if t1,ty are fixed, for sufficiently large ¢3,t, the assumptions (3.17) of this theorem
imply that F(y;a,00) < 0. O

When the assumption of the previous theorem concerning the divergence of the integral
[ ¢(t) Vit is violated, the next criterion applies.

THEOREM 3.5. Suppose that r(t) > 0 for large t,

/Oo(rp(t))lq Vt = oo,

and

(3.18) lim inf (/at(rp(s))lq Vs)p_l(/too c(s) Vs> > 1.

t—o00
Then equation (3.1) is oscillatory.

PROOF. Define the function y in the same way as in the previous proof. Then
F(y;a,00) satisfies

Fvace = ([ )+ ]

1 3

= (/tt2 (rP () Vt)lp

1

tg S2

(re ()1 Vt> T /S c(t) Vit

1

t2 eo L[ J2(re ()19 Vi po1
[ (o)™ [ (i)

It is not so difficult to show that if (3.18) holds, then the expression in brackets is negative
for sufficiently large t5 < t3 < t4. This proofis exactly the same as for differential equation,
i.e. T =R, see [18]. O

3.5. Nonoscillation criteria

In the proof of the next nonoscillation criterion for (3.1) we will need the following refine-
ment of the Riccati equivalence of (i) and (iii) in Theorem 3.3. We will denote by R[w]
the so-called Riccati operator (compare (3.6)), i.e.,

Ri] = {wV +c(t) + (p— 1) g2 if t = p(t),

(319) wP TP (t) :
wY +c(t) + m(l - ‘I>(<I>—1(rﬂ(t))+1/(t)fb—1(wp))) if p(t) <t,
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and by L£(z) the left-hand side of (3.1), i.e.,
L(z) = (r(t)®(x2)Y + c(t)®(x).

The proof of the next lemma follows the same idea as in the continuous case, but for the
reader’s convenience we present here the main ideas of this proof.

LEMMA 3.7. Equation (3.1) is nonoscillatory if and only if there exists a V-differenti-
able function w satisfying (3.8) such that R[w] < 0 for large t.

PROOF. The implication “=" is trivial since it is only a restatement of the Riccati
equivalence (i) <= (iii) for large ¢t. To prove the opposite implication, suppose that there
exists a function w satisfying assumptions of the lemma on an interval [T, 00). To prove
that (3.1) is nonoscillatory, we will construct a nonoscillatory majorant of this equation
in such a way that w is a solution of the Riccati equation associated to this majorant
equation.

Let y be the solution of the initial value problem

y® =r1 e (w(t)y, y(T) =1,

where T is sufficiently large. Using the computation at the beginning of LLemma 3.5 we
have

0P () (D (y))Y
D(yr)D(y)

Then we have, again following the computation in the proof of Lemma 3.5, in particular,
splitting the cases p(t) <t and p(t) = t,

Rlw] = w¥ +c(t) +

0> [y["Rlw] = [yl"|w” +c(t) + "’F’(I)’J(yA>(‘I>()y))v

S | YW

Now, let é(t) := c(t) — %([ty)}(t) Then ¢é(t) > ¢(t) and y is a solution of the equation

(which is a Sturmian majorant of (3.1))
(3.20) (r(O®(y>)Y + () @(y) =0

for which r*(t)y”(t)y(t) > 0 for large ¢, i.e., (3.20) is nonoscillatory and hence (3.1) is
nonoscillatory as well. O

Now we apply Lemma 3.7 to prove the Hille-Nehari-type nonoscillation criterion for
(3.1). The idea of the proof is the same as in the continuous case T = R, but the
particularities of time scale calculus require some additional assumptions (which are au-
tomatically satisfied for T = R) and also some technical modifications, compare the proof
of [18, Theorem 2.1].
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THEOREM 3.6. Suppose that r(t) > 0 for large t, [~ (r°(t))' " Vt = oo, the integral
[ e(t) Vit is convergent,

(3.21) —(}

t—00 fap(t) [re(s)]' ™7 Vs
(3.22) lim inf (/tp()(rﬂ(s))l—q VS)pl(/p: c(s) Vs) > —2pp_ 1(1%)”1,
(3.23) h?iigp (/tp(t)(rp(S»l—q V5>p_1</p: e(s) VS) < %(p%l)p—l’

then (3.1) is nonoscillatory.

PROOF. By the previous lemma, we will construct a function w such that R[w](t) <0
and (3.8) holds for large ¢. To this end, we denote (for the notational convenience)

we also denote
At) = ([ Fl=a(s )Vs)p1</tooc(s) Vs)
Let 0
(3.24) w(t) = (]%1)1?_1</t: F9(5s) Vs)l_p + /too c(s) Vs.

Using Lemma 3.4 (a V-chain rule for differentiation) we have

[(/t: ~1— q( )Vs)lp}v _ (1_p)7;1—q(t)0_p(t)’

[ vs<on < [ s

to to

where

Also, using the Lagrange mean value theorem we have
(1 T ) 0@ +vd (W) — P(PT(7))
P (OH(F) + v~ (w))/ v O(O(F) + vd~(w))
n|P=2|w}4
(1) 71! il
O (71(F) + v ()

where 7 is between ®7(7) and ®~H(7) + v®~'(w). By adding (%~ =1y to the pair of
inequalities

T|§z

2p—1

(19;1)1,,1 < AP(H) < _(p;l)p*l’

we obtain
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More precisely, (3.22) implies the existence of ¢ > 0 such that
—1 -1
A7) + (=) "1+ ) < (B2
p p
for large t. Now we will estimate the quantity

@l = ( / ") vs) () + (E2))"

to b

(T) First consider the case that t is 1d-point, i.e., p(t) < t. Using the previous computa-
tions, we obtain

where

B(t) :=

t ~1— ~q—
(o Juy )P P27 ~
[ ra(s) vs) @) + v (@)
as t — oo, in particular, for any € > 0, B(t) < (1 + ¢) for large ¢. Indeed, consider the
case p > 2, the case p € (1,2) can be treated analogously. Using the fact that

O () — v (@) S n < &) +v|2TH (@),

and that
w91
V|— =
7
(2= - g—1
o T [j;to vs:| +f(t) VS
= U P
~1—¢q _ p(t) -1 oo -1
_ (t)’/(t)r (p 1)13_'_(/ fl*q(S)Vs)p (/ c(s)Vs) q o
ftg 71-4(s) Vs D to p(t)

as t — oo, since the second term in the last expression is bounded (see (3.22)) and the
first one goes to zero by (3.21). The last calculation also implies that

(7)) + vd () >0
for large t.
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Hence

1B(#)]

IN

SO () Vs + w0\ o1 (7) + v ()27
ftg(t) 1-4(5) Vs O (O-1(F) + vd1(w))

1 Jil—a P Fa—1+(p—2)(¢—1) 11+ V(I)_l(w/fﬂp_z
— + F o/7
79 1-a(5) Vs PO (14 v (/7))

v p ! 1, ast
— —— — 1, ast— oo.
ft’;(t) Floa(s) Vs ) L+v@ N w/7)

Summarizing all estimates, if ¢y is so large that all statements claimed to hold for large
t hold for t > t;, we have

w (p— e _p—1yp p—1 P 5
K ]S(ftﬁ(t)fl—q(s)vs)p[ ( » ) +‘( » )" +«4()’ (1+ )] <0
and
@7 (F) + v (@) = @7 (AL +v@ (/7)) > 0
for large t.

(IT) Case p(t) = t. This case is now easy to treat, since then @ = w,

—a-n () ([ Freres) T et

0

and an easy modification of the previous computation shows that
Rlw] = w +c(t) + (p— L)r' () w|? <0
for large ¢. 0J

The following theorem complements the previous statement and deals with the case
when [ (r(t))' ™ Vit < 0.

THEOREM 3.7. Suppose that r(t) > 0 for large t, [ (r°(t))' "7 Vt < oo, the integral
[T e(t) Vit =
t) [re(t)] ¢
iy 20O
t—o00 f q Vs
o0 p—1 p(t) Ww—1,p—1p1
lim inf / rP(s))1 71 Vs / c(s)Vs) > — —)",
oo p—1 p(t) 1,p—1p1
lim sup / rP(s))1 71 Vs / c(s)Vs) < =(—=)"",
msup ([ 026 Vs) ([ el Vs) < (55

then (3.1) is nonoscillatory.

PRrROOF. The proof is similar to that of the previous theorem, we only take

w) = 2y ([T ws) T et v

p t to
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instead of w defined by (3.24). O

In this chapter we have formulated only basic results concerning qualitative theory of
(3.1). A natural motivation for the continuation of the research are the results presented
in [2] which concern equation (3.4).



CHAPTER 4

EVEN ORDER DYNAMIC EQUATIONS

4.1. Introduction

As a motivation for our research, let us start first with the case T = R and consider the
even order (formally) self-adjoint differential equation

n

(4.1) S 1 (r(ty™) " =0, () > 0.

v=0
The substitution
y Sy (=1)  (ryy®) el
Y :
€T = . , u = :
. —(Tny(n))/ + Tn—ly(n_l)
y(nfl) rny(n)

converts (4.1) into the linear Hamiltonian differential system (2.9)
' = A{t)r + B(t)u, u = C(t)x — A" (t)u,

with the matrices

1
B = diag{O, . ,0,—} ,  C =diag{rg,...,rn_1},
Tn

A:Am-:{l if j=itl,i=1,...,n—1,

0 elsewhere,
see [17, 47].
The discrete counterpart of (4.1) is the difference equation
(42) S0 A (A ) =0, ) £0,
v=0

and the substitution

Yisno1 S ()P A (A )

AYpyn—2

T = ) U =

. _A(Tz[cn]Anyk) + T;[cn_l]Anflka

converts this equation into the linear Hamiltonian difference system
(43) Al’k = Akxk—&-l + Bkuk, Auk = Ckxk-i-l - Aguk,
29
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with the matrices

1 —
B =diag{0>--.,0 } C = diag{ry,...,r" "},

Y ,'«-.IE:TL]

A A — 1 if j=i+4+1,i=1,...,n—1,
S0 elsewhere.

The comprehensive treatment of the qualitative theory of discrete Hamiltonian systems
and higher order equations can be found in [5]. We also refer to the fundamental paper of
Bohner [11], where the theory of (4.3) with the matrix B possibly singular is established.

Concerning a time scale unification of the results for continuous and discrete equations
(4.1) and (4.2), except for some partial results (see, e.g., [6, 7, 8, 9]), no systematic
theory has been developed yet. The possible reason is the following fact. Motivated by
the discrete case, consider the fourth order dynamic equation (we consider this special
case just to explain the main idea without technical details)

(4.4) (r(t)y>*)>2 + q(t)y" = 0.

If we try the substitution (again motivated by the discrete case)

=(0)-(2) =) -(07)

with the aim to rewrite (4.4) as the Hamiltonian system (with the matrices given by
analogous formulas as in the continuous and discrete case)

(4.5) ™ = A(t)z® + B(t)u, u” = C(t)z® — AT(t)u,

we easily find that we need the identity (y)” = (y”)%, but this identity holds generally
only for T = R and T = hZ, h being a positive real constant. Consequently, even-order
equations of the form (4.4) cannot be written in the form (4.5) and this is likely the reason
for the missing qualitative theory of even-order equations on time scales since the theory
of Hamiltonian systems both in the continuous and discrete case is a natural background
for the investigation of (4.1) and (4.2).

The aim of this chapter is to overcome this problem using the concept of dynamic equa-
tions with mized derivatives. Second order equations of this type have been investigated
in the recent papers [10, 38|, see also [16, Chap. 3,4], and the principal role is played
there by the concept of nabla derivative on time scales. Let us define the differential
operators

(4.6) DAy _ yAV...AV k even, ~Ay _ yVA...VA k even,
k yAV...VA k odd, k yAV.,.VA k odd,

(4 7) Dvy _ yVA...VA k even, ﬁvy _ yAV...AV k even,
) kd - yVA...AV k odd, kJ - yVA...AV k odd,

(the operators D?, DV start with the nabla and delta derivative, respectively, while
DA, DV end with the corresponding derivative) and consider the higher order dynamic
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equations
(4.8) Liy) = Y (=1)"DY (r.()DSy) =0,
(4.9) M(y) = Y (=1)"D2 (rn()DYy) = 0.

We will show that these equations can be written in the form of (delta or nabla) sym-
plectic dynamic systems and this enables to study (4.8), (4.9) using the (relatively deeply
developed) theory of symplectic dynamic systems.

The next section contains the computations showing that (4.8), (4.9) can be written
as a (delta or nabla) symplectic dynamic system. In the last section we discuss some
open problems and the perspectives of the research in the area of higher order dynamic

equations with mixed derivatives.

4.2. Conversion to symplectic systems

In this section we show that higher order equations (4.8) and (4.9) can be rewritten as a
delta symplectic system or as a nabla symplectic system. The vector variables z,u and
the matrices A, B, C, D in resulting symplectic systems have slightly different form for the
operators L or M, for n even or odd, and for transformation to delta or nabla symplectic
system (altogether we have eight cases), but the approach is similar in all cases. For this
reason we present detailed calculations only for two particular possibilities.

As a first representative case let us consider equation (4.9) with n odd and 1d-
continuous functions 7;.

THEOREM 4.1. Suppose that n is odd and the functions r;, 1 = 0,...,n, are ld-
continuous. Then equation (4.9) can be transformed into nabla symplectic system

() =2 5)0)

where the blocks A,B,C, D are n X n matrices of the following form

0 1 0 0 0 0
0O 0 1 —v 0 0
0 0 0 1 0 0
0 0 0 O 0 0
A= : e A
0O 1 —v O
0 0 1 0
0O 0 0 1
0 0O 0 0 0
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0 0 0
B - : _ )
0 0 ==
0 o L
(6 —vrf 0 0 0 0 7]
0 T 0 0 0 0
0 wvry 15 —uvrb 0 0
0 0 0 T3 0 0
C=]. ) : ,
Tng —Vrn_g 0
0 Tn—2 0
0 0 Urp—o Th ||
[0 0 0 0 0 0 i
-1 0 0 o0 0 0
-v =1 0 0 0 0
0 0O -1 0 0 0
D= . .
0 0 0
-1 0 0
0 S
ProoF. Using the usual type of substitution
— - i y 7 - n v ~ -
il yV Uy >—1(—1) 'DY L (r,(t)DYy)
2 n v—21
e | [ | [ S DEu DYy
tt| |pv et | = (r(t)DTY)A + s ()DY_yy
v w2 n ra(t)DYy
- _DrYﬂy_ - " "

we get a system of 2n equations (suppressing the argument ¢)

v _ A
T{ = X, Uy = Troly,
A \%
Ty = T3, Uy = —Up + T2,
A v _
Ty = Tp, Up_1 = —Up—2 + Tp—2Tn_1,
1
v _ A
T, = —Up, U, = —Up—1 T Tn_1Tp.

n
The obtained system contains both nabla and delta derivatives. Because we want to get
nabla symplectic system, we need to replace all delta derivatives by nabla derivatives.



The functions r;, i =0, ...

verify that

and
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rhry — vrhxs,

T3 — Vly,
I5 — Vg,
Tpn — l/]?;

:xn—

—Un,

n

—Uy — vuy + vrimy + rhrs — vrbxy,

P P
—Up—3 — VUp—g + VI'p_4Tp-3 + Th—3ln—2 — VI, _3Tn—1,

P
—Up—1 — VUp—2 + VI'p—2Tp—1 + Tn—1Tn —

Thus we get a matrix nabla system

2\ " (A B\ (=x

w) \C D) \u)’
where A, B,C, D are n x n matrices of desired form. It remains to prove that (4.10) is
really a nabla symplectic system, i.e., that the matrices A, B,C, D verify equalities (2.21).

(4.10)

It holds

0 0 0

rh —vrh 0

0 (&1 0

| O

0 0
| :
B'D = 0 0
0 0

0
0
0
0 0
rt_ . —vrl
0 Tn—2
0 0
0 0
1 —vrp_y

p

vr,_q

n

o o

)

)

Up,.

33

,n, are ld-continuous, hence according to (2.7) one can directly
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0 0 0 0 0
0 0 0 0 0
-1 0 0 00
AT D=10 -1 0 S
: 0 00
0 00
|0 -1 0 0]
0 0 0
Tr | N
CB_ O --- 0 0
P
0O ... (0 »n=t

Tn

Using these calculations one can easily deduce that the needed equations (2.21) are really
satisfied. OJ

As a second representative case we choose equation (4.8) for n even. We suppose that
the functions r; are rd-continuous and we transform this equation to a delta symplectic
system.

THEOREM 4.2. Suppose that n is even and that the functions r;, 1 = 0,...,n, are
rd-continuous. Then equation (4.8) can be transformed to the delta symplectic system

() =2 5)0)

where the blocks A,B,C, D are n X n matrices of the following form

0 1 00 0 0
0 0 1 u 0 0
0 0 01 0 0
0O 0 0O 0 0
A=1{. . . . .,
1 0 0
0 1 pu
0 0 1
0 0 0 &2t
0 0 O
B=|’ ,
0 - 0

o
|
P=
;Ql,_.o
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rf g 0 0
0 1 0 0
0 —pry 1§ prg

0 0 0 3

o O OO
O O O O

0 0 0  7rpa
0 0 0 O 0 0]
-1 0 0 O 0 0
w —1 0 0 0 0
0 0 -1 0 0 0
D = . . .
-1 0 0 0
pw —1 0 0
| 0 0 0 -1 0]

PROOF. A substitution of the similar form as that in the proof of Theorem 4.1, i.e.,

_ y - 1= -
o I S B D o C S A Ol
x n v2 T
jodl I v B O R SO ERNE L N 1 72)20
' Up _ A A
Tn—1 D2 Ly unl (ra(t)Dyy) +Zn71(t)Dn—1y
Ll DRy L () Dyy

leads to a system of 2n equations (again suppressing the argument ¢)

A v _
Ty = Ta, Uy = Tola,
v A
Ty = T3, Uy = —Uj + T'1 T2,
A v o _
Ty = T, Uy 1= —Up—2 + Tp—2Tn-1,
1
v _ A
T, = r—un U, = —Up—1 + Tn—1Tp.
n

Using (2.7) we replace nabla derivatives by delta derivatives (we can do it because of our
assumption of rd-continuity of functions r;) to get the equations
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Ty = X3+ [y,
A
Ty = Ts+ U,
1 T
A Hrn—1
T, = _Jun Uunfl + pu ns
n n T
and
A o o
Uy = TgT1+ Urgxo,
A + . + o + o
Us = (%) MUy UTr1To 93 HUTo Ty,
A _ + _ + o + o
Uy = Up—2 HUp—3 HTp_3Tn—2 Th—9Tn—1 MUYy _oTn.

So we have the matrix delta system

(4.11) @A - (é g) (i) |

where the n x n matrices A, B,C,D are the same as in the statement of this theorem.

It remains to prove that (4.11) is a symplectic system, i.e., to verify equations (2.18).
It holds

0 0 0 --- 0
g g 0 ‘
0 1 0
pry g 0 0
T'n—3 0 0
0 0 719, ure o+ WT"JI
[0 0 0 O]
B'D=10 --- 0 0 0],
0 0 r% 0
0 0 = 0
[0 0 0 0 07
0 0 0 0 0
-1 0 0 0 0
ATD=10 -1 0 : ,
: 0 0 0
0 0 0
0 -1 —Hn1o
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0 0 0 0
CTB — . . . .
0 --- 0 0 0
0 . 0 —Hmot Ta
These computations directly imply that equations (2.18) are satisfied. 0

REMARK 4.1. Observe that in cases T = R and T = Z equations (4.8) and (4.9) really
reduce to (4.1) and (4.2), respectively. In the continuous case T = R it is clear since
both nabla and delta derivatives are the usual derivative. Concerning the discrete case
T = 7Z, using the identity Ay,_, = Vy, and after suitable relabeling the sequences r*!,
v =0,...,n, toshow that (4.2) can be written either in the form (4.8) or (4.9) is a matter
of direct computation.

4.3. Self-adjointness of dynamic equations

In this section we prove that equations (4.8), (4.9) are formally self-adjoint. As it was
shown in the previous section, the matrices A,B,C,D in symplectic dynamic system
corresponding to equation (4.8) or (4.9) are of slightly different form for the operators
L, M as well as for n even or odd.

The terminology " formally” self-adjoint is used in this thesis in the sense which is usual
in the theory of differential equations. A given higher order dynamic equation is converted
to a first order vector dynamic system, the first entry of the vector solution of this system
complies with the solution of the original higher order equation. Then, the last entry of the
vector solution of the adjoint system satisfies the adjoint equation, and if this equation
is the same as the original one, this equation is said to be formally self-adjoint. The
adjective "formally” is skipped, if the problem is regarded from the differential operators
theory point of view. In this setting, together with a given differential expression, the
domain of a differential operator is determined by some boundary conditions and this
operator is called self-adjoint if the differential expression and also the domain of the
adjoint operator are the same as far as the original one. The “differential operators”
approach to self-adjointness of even order dynamic equations with mixed derivatives has
been used in [8].

The adjoint system to system (2.16) is the system

(4.12) Yt = =ST(t)y°.
Indeed, let W be a fundamental matrix of (2.16) and let V = (WT)~. Then
VA — (WD WA (W) = (W) TWTST (W)Y = —STVe.
Equation (4.12) is equivalent to the equation
(4.13) y® = (1 +pST (1) S )y

Note that the matrix I+ pS7 (¢) is really invertible because (2.17) implies that the matrix
I+uST (t) is symplectic and hence invertible. Observe also that (4.13) is again a symplectic
dynamic system as can be verified by a direct computation.
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THEOREM 4.3. Suppose that the functions r,, v =0,...,n, are rd-continuous. Then
equation (4.8) is formally self-adjoint.

PROOF. Let us suppose that n is even. Then the assumptions of Theorem 4.2 are
satisfied (this theorem is formulated for n even, but for n odd the same statement holds
only with slightly different block matrices) and therefore equation (4.8) is equivalent to
the system

(4.14) @A - (é S) (u)

where the blocks A, B,C, D are n x n matrices of the following form

0 1 0 0 0 0 7
0 0 1 u 0 0
0O 0 01 0 0 0 0 0
0O 0 00 0 0 : :
A: . . . . . ) B: ) i )
e 0 - 0 0
0O 1 0 0 0 _.TN? 7%
0O 0 1 pu o
0O 0 0 1
0 0O 0 O %
(e g 00 0 0 7
0 T 0 0 0 0
0 —pry r§ purg 0 0
0 0 0 rs 0 0
C: . : )
T'n—3 0 0
Wrn—3 Tp_o W5 o
| 0 0 0 Th_1
0 0 0 0 0 O]
-1 0 0 0 0 O
pw —1 0 0 0 O
0 0O -1 0 0 0
D= . .
-1 0 0 0
w =1 0 0
0 .- 0 0 —1 0]

According to (4.12), the corresponding adjoint system to system (4.14) is

- )0
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This matrix system is equivalent to the system of 2n dynamic equations

A oo
Yy = —Tocrs
A o o0 o o
Yo = TYp T HTgRy —T1Zy T T123,
A a o0
Ys = Yy —Taz3,
A o o oo o o
Yg = —HYy — Y3 — HTyz3 —T32y + UT325,
A _ o .0 o o o . o + o
Yn—2 = HYpn—a = Yn—3 = Hp_g2n_3 = Tn—32p_o T HTn-32,_1,
A o o o o
Yn—1 = “Yn—2 Th2%1;
A o o HTrn—1 o o o o
Yn = “HYn—2 = Yn-1— ro Yn = MTp_2Zn_1 — Tn—1%p,
n
A o o
f1 T A2 T Hes,
_ o
29 = Z3,
A o o
3 T A4 T HAs,
A _ o
B2 = Fn—1>
A . mo o
Zp—1 = T_Uyn + 2,
1
A o
22 = ——y
n o Ino
Tn
where yq,...,y, and zq, ..., 2, are entries of the vectors y and z, respectively.

Next we show that the first entry z; of the vector z in (4.15) satisfies equation (4.8)

3

which proves that this equation is formally self-adjoint. Using (2.3) and (2.7) we have

A o o __ A o __ o o __
U = Zg — MZ3 = Zo+ 12y — {23 = Zo + 23 — [UZ3 = 2o
AV VYV _ (A _
21 = 2z = () =2

M g (o M g
Dpyzi =z = —yn +an = ——(—rnzy) + 2+ iz = 2

Tn Tn

1
DRz = z) =(2) = ==
n
The last equation implies
Yo = —1n Doz

and therefore the next identity holds
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Il”n”l_1 o o o o
ro Yn = HTp_2%p—1 — Tn—1%,
n

yy = —(raD3z)® = —pyl o — Yo, —

Hrn—1 ( o A

= W o~ Yn-1 — Y1 — e G e L G T )

= —MWYn-o— Yn-1 — H(—Yp_o — Th 9%y 1) = HTp_ 2%y 1 — Tn_12n
= “Yn-1—Tn-12n = “Yn-1 — Tn71D$_1zl-
So that
Yn—1 = (TnDﬁzl)A - Tn—1D$_12’1

and the V-derivative of y,,_; fulfills

yg_l = (TnDﬁzl)Av - (rnleﬁ_lzl)v = —Yn—2 —Th—22p—-1= —Yn—2 — ranDT%—QZla
hence
Yoo = —(rnD52)2Y 4 (rp 1 D5 1 21)Y — 1y 9D o2,
n
= Y (=1)IDY ) (r(t) DR )
v=n—2

By similar computations, using only equations of the system of 2n dynamic equations
and (2.3) and (2.7) we get after (n — 3) steps

n

Y1 = Z(—l)”ﬁf_l (r,(t)D3z1) .

v=1
The V-derivative of the first entry y; satisfies

n

yy =—roz1 =y _(—1)"D} (r,(t)D5 ).

v=1

Altogether we get the original equation for the entry z;

If n is odd, then the matrices A, B,C,D in (4.14) are slightly different, but the same
computation as above shows that (4.8) is formally self-adjoint also in this case. 0J

THEOREM 4.4. Suppose that the functions r,, v =0,...,n, are rd-continuous. Then
the equation (4.9) is formally self-adjoint.

PROOF. Equation (4.9) can be again rewritten as a delta symplectic system, see [26].
Therefore, one can directly verify that the same procedure as in the proof of the previous
theorem proves the statement. [
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4.4. Remarks and research perspectives

What we have done so far is just the starting point of the qualitative theory of even order
dynamic equations with mixed derivatives — a “hint” that equations of the form (4.8)
and (4.9) can be written as symplectic dynamic systems. This facts opens a relatively
large area for the further investigation of these equations, one can follow the discrete and
continuous methods and try to find their time scale unification. In this concluding section
we outline some perspectives of the research along this line.

(i) The main research direction is oscillation theory of (4.8) and (4.9). Following the
discrete and continuous case, these properties can be defined via (non)oscillation of the
associated symplectic system. Let us consider the case that this associated system is
a delta symplectic system (2.16). It is not difficult to see that the assumption of dense
normality is satisfied and hence one can apply the Roundabout theorem (Proposition
2.4), in particular, the equivalence of disconjugacy and positivity of the corresponding
quadratic functional. By a direct computation one can verify that the integrand of the
functional F in Proposition 2.4 is

F(z) = 2"{S"K+KS+ uS"KS}=~
(x\T [ CT+ucTA uC’B x
— \u DT + A+ puDTA B+ uDTB) \u)’

where A, B,C,D are block entries of S. Consider the case n even (the case n odd is
analogical), then substituting for the matrices A, B,C, D and for

o1 (=177 Do (r(8) DY y)

v=1 v

o Y o(=1)" DY (1 () DY y)
D2, —(ra(t)Dy)® + rua () Dy yy

rn(t)Dyy
we have using a direct computation similar to that of the previous section

F(z) = 27 (CT + uCT A)x + 2uz"CT Bu + u” (B + uD' B)u
= {4+ )+ + 5 +uytY)A)? +

2,.2
Ty 1
o

‘H“Z—2(D7?—2y + N(D$—29)A)2 + Tn—l(Df—ly)Q + (Dﬁ—ﬂ/)Q

1
+— [(un + /Wﬁy - NQTi—l(Dr?—l?/)Q}

n/2—1
= > {l(Dgy)° T + re (D3 y)?} + 17 [(Dy) T
=0

Here we have used the convention that D3y = v.
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Now suppose that the time scale under consideration is unbounded from above. The
equivalence of disconjugacy of (2.16) and the positivity of the associated quadratic func-
tional F (see Proposition 2.4) implies that (4.8) is eventually disconjugate (another ter-
minology is nonoscillatory) if and only if for every T" € T the symplectic system (we
consider here the delta symplectic system since its oscillation theory is relatively deeply
developed) is disconjugate on [T, T1] for every T > T} > T, and this is equivalent to (with
the relationship between y and z = (2))

Fly) = /OO F(2) AL >0

T
for every nontrivial y for which D2y exists, it is piecewise rd-continuous, D2y(T) = 0,
1 =20,...,n— 1, and there exists T € T such y(t) =0 for t > T. There exist various
oscillation and nonoscillation criteria for (4.1) and (4.2) based on this variational principle,
see, e.g., [23, 29]. The results of the previous section, coupled with the oscillation criteria
given in [13] suggest to look for time scale unification of these criteria. An important role
in this investigation may play the time scale version of the Wirtinger inequality proved
in [34].

(i) To explain another research possibility, consider the two-term differential equation

n n (
(4.16) (=" (r(Hy™)™ = q(t)y,
where 7, ¢ are positive functions. It is known (see, e.g., [3]) that this equation is nonoscil-
latory if and only if the so-called reciprocal equation (related to (4.16) by the substitution

z =ry™) "
e Lw) L
() =

is also nonoscillatory. A discrete version of this statement is established in [12, 21].
A natural question is whether a unifying time scale approach can be developed on the
basis of the results of this paper. We refer also to the paper [35], where this problem is
treated in the scope of time scale Hamiltonian systems.

n)

(iii) Another problem closely related to the oscillation theory of (formally) self-adjoint
higher order equations is the factorization of the corresponding differential operator. De-
note by L(y) the 2n-th order differential operator defined by the left-hand side of (4.1).
If this equation is disconjugate on an interval I, the classical result of the theory of
differential operators states that in this case there exists an n-th differential operator

N(y) =y + a1 (Oy" ™ + -+ ar(t)y + aolt)y

with continuous functions ag, ..., a,_1, such that the operator L admits in I the factori-
zation

L(y) = N*(ra(t)N(y)),
where N* is the adjoint operator of M. A discrete version of this statement can be found
in [19] and suggests again to look for a time scale unification.

(iv) The last research problem which we point out here is the transformation theory
of even order self-adjoint equations in the framework of transformations of Hamiltonian
or symplectic systems. It is shown in [4] (continuous case) and in [12] (discrete case)
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that the transformation of dependent variable y = hz, where h is a transformation func-
tion (sequence), can be investigated as a special case of the general transformation of
Hamiltonian or symplectic systems. The results of the previous section suggest to look
for a time scale unifying approach to this problem.

(v) In the paper [8], a similar problem as in this chapter is investigated. In the main

part of that paper the authors deal with another 2n-order dynamic equations with mixed

derivatives
n

) i1 ViflA
(4.17) L(y) = (=) (ra(y> )
=0
and its “nabla” counterpart

(4.15) M) = 1) (™)

1=0

ATy

(with the convention that for ¢ = 0 and ¢ = 1 the corresponding terms in L are r((t)y

and (Tl(t)yV)A, a similar convention is used in the operator M). It is shown that these
equations can be written in the form of the time scale linear Hamiltonian system (4.5) and
hence also in the form (2.16). Further it is shown that these equations are formally self-
adjoint with respect to a certain inner product, provided some boundary conditions are
satisfied. At the final part of [8], equations of the form (4.8) and (4.9) are briefly discussed
and their transformation into Hamiltonian systems is suggested. However, the approach
used there is different from ours. Finally, note that all research problems mentioned in
this section “apply” also to equations (4.17), (4.18).

(vi) If the functions r, are ld-continuous, equations (4.8), (4.9) can be written in the
form (2.20) and the adjoint system to this system is yvV = —ST(¢)y?. Using the same
idea as in the previous section, it can be shown, that (4.8), (4.9) are formally self-adjoint
in this case as well. Only the block matrices in these nabla systems are slightly different
from those in the delta symplectic systems, the technical computations are very similar.
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Abstract

The thesis consists essentially of two parts. The first one deals with oscillation theory of
the half-linear second order dynamic equation with mixed derivatives

(r()®@@)Y +c(t)®(x) =0, d(z) = |z|P " sgn (x), p> 1.

It is established the so-called Roundabout theorem for this equation and this theorem is
used to prove several oscillation and nonoscillation criteria for this equation. The second
part is devoted to the investigation of even order dynamic equations

n

Lly) = Y _(-1)"Dy (r,(t)Dyy) =0,

M(y) = Y _(-1)"Dg (r,(t)D)y) =0,

v=0

where D2 D2 DY, DY are certain v-th order differential operators with mixed deriva-
tives. It is shown that equations L(y) = 0, M (y) = 0 are formally self-adjoint and that
they can be written in the form of the so-called delta and nabla symplectic systems.
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