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CHAPTER 1INTRODUCTIONThe prin
ipal 
on
ern of this thesis is to investigate some aspe
ts of the qualitative the-ory of dynami
 equations on time s
ales. The main attention is fo
used to half-linearse
ond order dynami
 equations with mixed derivatives and to even order linear dynami
equations with mixed derivatives and their relationship to symple
ti
 dynami
 systems.The time s
ales theory was introdu
ed by Stefan Hilger in his PhD dissertation [32℄.In this thesis, a \tool" whi
h enabled unifying of dis
rete and 
ontinuous 
al
ulus hasbeen developed. Before that, there were \parallel" bran
hes of the di�erential equationsand di�eren
e equations theory. In some aspe
ts, they were very similar, in other aspe
tsthey seemed to be 
ompletely di�erent. Introdu
ing the notion of time s
ale was anelegant way how to unify these two theories into dynami
 equations theory. The mainidea of the papers 
on
erning dynami
 equations on time s
ales is to prove 
ertain resultfor general time s
ale. If only the set of the real numbers, resp. integers, is taken intoa

ount (as a spe
ial time s
ale), the general result leads to a result appli
able to anordinary di�erential equation, resp. di�eren
e equation.This thesis is divided into three parts. In the �rst part (Chapter 2) we de�ne all notionsand state all basi
 statements, that we will need later on. Further, a brief overview ofthe theory of half-linear equations and symple
ti
 dynami
 systems, whi
h pre
edes theresults of this thesis, 
an be found here. The main two parts of the thesis are Chapter3, where we deal with half-linear dynami
 equations, and Chapter 4, where the theory of
ertain type of the even order linear dynami
 equation is dis
ussed. Chapter 3 is basedon the paper [25℄ and Chapter 4 
ontains results of the papers [26℄ and [37℄.The half-linear se
ond order di�erential equation is an equation of the form(HLD) (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−1 sgn (x), p > 1,where the fun
tions r, c are 
ontinuous and r(t) > 0. The spa
e of all solutions of (HLD)is just homogenous, but generally not additive. So this spa
e has only one half of theproperties of a linear spa
e, and this is the reason why equation (HLD) is 
alled half-linear. The basi
 qualitative theory of equation (HLD) was developed by Elbert andMirzov within their papers [28℄, [39℄ and a 
omprehensive treatment of this topi
 
an befound in the book [27℄. Equation (HLD) has similar properties as the Sturm-Liouvilledi�erential equation(SLD) (r(t)x′)′ + c(t)x = 0,whi
h is a spe
ial 
ase of equation (HLD) when p = 2. In parti
ular, the Sturmian theoryextends verbatim to (HLD).A dis
rete 
ounterpart of equation (HLD) is the di�eren
e equation(HL∆) ∆(rkΦ(∆xk)) + ckΦ(xk+1) = 0, Φ(x) = |x|p−1 sgn (x), p > 1,2



1. INTRODUCTION 3where ∆xk = xk+1 − xk is the forward di�eren
e operator, r, c are real-valued sequen
esand rk 6= 0. Properties of equation (HL∆) are similar to properties of the equation(SL∆) ∆(rk∆xk) + ckxk+1 = 0,i.e., the Sturm-Liouville di�eren
e equation. The basi
 qualitative theory of half-lineardi�eren
e equations has been established in a series of papers of P. Øehák [40, 41, 42,43, 44℄ and the results of these papers are summarized in the book [1℄.Natural uni�
ations of (HLD) and (HL∆) within the theory of dynami
 equations ontime s
ales are the equation(HL) (r(t)Φ(x∆))∆ + c(t)Φ(xσ) = 0,and(HLMD) (r(t)Φ(x∆))∇ + c(t)Φ(x) = 0,where ∆,∇ and σ are the so-
alled delta derivative, nabla derivative and forward jumpoperator, respe
tively. The basi
 qualitative theory of (HL) has been established in thepapers of P. Øehák [45, 46℄ and it is summarized in [2℄. The main 
on
ern of Chapter3 is equation (HLMD). Motivated by the results given in [2℄, we prove the so-
alledRoundabout theorem for (HLMD) and we present os
illation and nonos
illation 
riteriafor this equation.As mentioned before, Chapter 4 deals with even order dynami
 equations with mixedderivatives. A typi
al example of su
h equations are the fourth order dynami
 equations
(r(t)y∆∇)∆∇ − (p(t)y∆)∇ + q(t)y = 0or
(r(t)y∇∆)∇∆ − (p(t)y∇)∆ + q(t)y = 0.Equations of this kind appeared only very re
ently in [7, 9, 30℄ and the basi
 qualitativetheory of these equations has not been elaborated yet. The main tool we use is therelationship of even order dynami
 equations with mixed derivatives to the so-
alledsymple
ti
 dynami
 systems.The results presented in this thesis have been a
hieved under support of the resear
hgrant 201/04/0580 of the Grant Agen
y of the Cze
h Republi
.I would like to thank my advisor Prof.Ondøej Do¹lý for his inexaustible willingness,kindness and patien
e during the many and many hours of 
onsultations. I am very grate-ful for his suggestions and 
ontinuous support throughout my Ph.D. studies of Mathema-ti
al Analysis at the Fa
ulty of S
ien
e of Masaryk University over the years 2002-2007.Brno, September 2007 Daniel Marek



CHAPTER 2PRELIMINARIESIn this 
hapter we re
all, for reader's 
onvenien
e, all basi
 fa
ts about the topi
s treatedin this thesis, i.e., essentials of the time s
ales 
al
ulus and basi
 theory of half-linear equa-tions and of symple
ti
 systems. More spe
i�
 results will be stated in those subse
tions,where they are immediately used. 2.1. Time s
alesA time s
ale T is any nonempty 
losed subset of the set of real numbers R. The mainexamples of time s
ales (whi
h will be mentioned several times) are the sets of integers Zand the real numbers R. We de�ne operators σ, ρ : T → T by
σ(t) = inf{s ∈ T : s > t},

ρ(t) = sup{s ∈ T : s < t}.Operator σ is 
alled forward jump operator and operator ρ is 
alled ba
kward jump ope-rator. We put σ(M) = M , if T has a maximum M , and ρ(m) = m, if T has a minimum
m. The fun
tions µ, ν : T → [0,∞), where

µ(t) = σ(t) − t,

ν(t) = t − ρ(t),are 
alled graininess fun
tion and ba
kward graininess fun
tion, respe
tively. Dependingon whether the graininess fun
tions for t ∈ T are positive or equal to zero, we distinguishseveral types of time s
ales points. A point t ∈ T is said to beright dense, if µ(t) = 0,left dense, if ν(t) = 0,right s
attered, if µ(t) > 0,left s
attered, if ν(t) > 0 anddense, if t is left dense or right dense.We will use the abbreviations rd, ld, rs, ls-point, respe
tively. If a time s
ale T hasa left s
attered maximum M (right s
attered minimum m), then we de�ne T
κ = T \ {M}(Tκ = T \ {m}), otherwise T

κ = T (Tκ = T).We de�ne the delta and nabla derivatives as follows
f∆(t) =

{
lims→t

f(s)−f(t)
s−t

, if µ(t) = 0,
f(σ(t))−f(t)

µ(t)
if µ(t) > 0,

(2.1)
f∇(t) =

{
lims→t

f(s)−f(t)
s−t

if ν(t) = 0,
f(t)−f(ρ(t))

ν(t)
if ν(t) > 0.

(2.2) 4



2.1. TIME SCALES 5It is obvious that f∆(t) = f ′(t) = f∇(t) if T = R, and f∆(t) = ∆f(t) = f(t + 1) − f(t),
f∇(t) = f(t) − f(t − 1) if T = Z. By fσ and fρ we denote the 
omposition f ◦ σ and
f ◦ ρ, respe
tively. Provided that f is a ∆-di�erentiable fun
tion, resp. ∇-di�erentiablefun
tion, i.e., f∆, resp. f∇ exists, then(2.3) fσ(t) = f(t) + µf∆(t), resp.

fρ(t) = f(t) − νf∇(t)holds. All basi
 di�erential formulas 
an be generalized also for the 
ase of time s
ales,e.g., the produ
t of two ∆-di�erentiable (∇-di�erentiable) fun
tions satis�es
(fg)∆ = f∆gσ + fg∆ = fσg∆ + f∆g,

(fg)∇ = f∇gρ + fg∇ = fρg∇ + f∇g,
(2.4)and the ratio of two di�erentiable fun
tions is given by

(
f

g

)∆

=
f∆g − fg∆

ggσ
,

(
f

g

)∇

=
f∇g − fg∇

ggρ
.

(2.5)A fun
tion f : T → R is said to be rd-
ontinuous (ld-
ontinuous) if it is right 
ontinu-ous (left 
ontinuous) at all rd-points (ld-points) and the left limit (right limit) at ld-points(rd-points) exists (�nite). Provided f is rd-
ontinuous (ld-
ontinuous) then there existsa ∆-di�erentiable fun
tion F (a ∇-di�erentiable fun
tion G) su
h that F∆(t) = f(t)(G∇(t) = f(t)). Using these fun
tions we de�ne the integrals
∫ b

a

f(t) ∆t = F (b) − F (a),

∫ b

a

f(t)∇t = G(b) − G(a).In some proofs we will also need the nabla version of integration by parts(2.6) ∫ b

a

f∇(t)gρ(t)∇t = [f(t)g(t)]ba −

∫ b

a

f(t)g∇(t)∇t.Further we re
all the relationship between the delta and nabla derivatives. The proofof this statement 
an be found in [16, Chap. 4℄.Lemma 2.1. If f : T → R is ∆-di�erentiable fun
tion on T
κ and f∆ is rd-
ontinuouson T

κ, then f is ∇-di�erentiable on Tκ, and
f∇(t) =

{
lims→t− f∆(s) if t is ld and rs,
f∆(ρ(t)) otherwise.If g : T → R is ∇-di�erentiable fun
tion on Tκ and g∇ is ld-
ontinuous on Tκ, then g is

∆-di�erentiable on T
κ, and

g∆(t) =

{
lims→t+ g∇(s) if t is ls and rd,
g∇(σ(t)) otherwise.



2.2. HALF-LINEAR EQUATIONS 6Espe
ially, if f∆ is 
ontinuous on T
κ, resp. g∇ is 
ontinuous on Tκ, then

f∇(t) = f∆(ρ(t)), resp.
g∆(t) = g∇(σ(t))

(2.7)holds for any t ∈ Tκ, resp. t ∈ T
κ.2.2. Half-linear equationsWe will mention expli
itly the asso
iated Ri

ati equation, Pi
one's identity and Round-about theorem.Lemma 2.2. Let x be a solution of (HLD) su
h that x(t) 6= 0 in an interval I. Then

w(t) = r(t)Φ(x′(t))
Φ(x(t))

is a solution of the Ri

ati-type di�erential equation(2.8) w′ + c(t) + (p − 1)
|w|q

Φ−1(r)
= 0, Φ−1(r) = |r|q−1 sgn (r)on I, where q is the 
onjugate number of p, i.e., q = p

p−1
.Proposition 2.1 (Pi
one's identity). Suppose that w is a solution of the Ri

atiequation (2.8) on [a, b] and let y ∈ C1[a, b]. Then for t ∈ [a, b]

(w|y|p)′ = r|y′|p − c|y|p − G(y, w),holds, where
G(y, w) =

p

Φ−1(r)

[
|Φ−1(r)y′|p

p
− wΦ(y)Φ−1(r)y′ +

|wΦ(y)|q

q

]
.Equation (HLD) is said to be dis
onjugate on the 
losed interval [a, b] if the solution xgiven by the initial 
ondition x(a) = 0, r(a)Φ(x′(a)) = 1 has no zero in the interval (a, b].Otherwise (HLD) is said to be 
onjugate on [a, b]. The so-
alled Roundabout theoremrelates the Ri

ati equation, the energy fun
tional and the basi
 os
illatory properties ofthe solutions of equation (HLD).Proposition 2.2 (Roundabout theorem). The following statements are equivalent:(i) Equation (HLD) is dis
onjugate on the interval [a, b].(ii) Equation (HLD) has a positive solution on [a, b].(iii) There exists a solution w of the Ri

ati equation (2.8) whi
h is de�ned on wholeinterval [a, b].(iv) The energy fun
tional

F(y; a, b) =

∫ b

a

[r(t)|y′|p − c(t)|y|p] dt,is positive for every nontrivial fun
tion y, su
h that y(a) = 0 = y(b) and y′ ispie
ewise 
ontinuous on [a, b].Next, we will state the Roundabout theorem for equation (HL∆). For that we needthe following notion. We say that a solution x of equation (HL∆) 
ontains a generalizedzero on an interval (m,m + 1] if xm 6= 0 and rmxmxm+1 ≤ 0.



2.3. SYMPLECTIC DYNAMIC SYSTEMS 7Proposition 2.3 (Roundabout theorem (di�eren
e version)). The following state-ments are equivalent:(i) Equation (HL∆) is dis
onjugate on the interval [0, N ], i.e., the solution x̃ givenby the initial 
onditions x̃0 = 0, r0Φ(x̃1) = 1 has no generalized zero in (0, N +1].(ii) There exists a solution of (HL∆) having no generalized zero in [0, N + 1].(iii) There exists a solution w of the Ri

ati-type di�eren
e equation (related to (HL∆)by substitution wk = rkΦ(∆xk

xk
))

∆wk + ck + wk

(
1 −

rk

Φ(Φ−1(rk) + Φ−1(wk))

)
= 0whi
h is de�ned on whole interval [0, N + 1] and satis�es Φ−1(rk) + Φ−1(wk) > 0on interval [0, N ].(iv) The dis
rete p-degree fun
tional

Fd(y; 0, N) =
N∑

k=0

[rk|∆yk|
p − ck|yk+1|

p] ,is positive for every nontrivial sequen
e y = {yk}
N+1
k=0 , su
h that y0 = 0 = yN+1.More details about equations (HLD), (HL∆), in
luding proofs of the statements men-tioned above, 
an be found in [20℄.The next step in development of the basi
 theory of half-linear dynami
 equations isthe dynami
 equation(HL∆) (r(t)Φ(x∆))∆ + c(t)Φ(xσ) = 0, Φ(x) = |x|p−1 sgn (x), p > 1,investigated by Øehák, see [45℄, [46℄. This equation involves both of previously mentionedequations (HLD), (HL∆) as spe
ial 
ases, it is suÆ
ient to 
hoose as a time s
ale the reals

R or the integers Z. The main results for (HL∆) important for our thesis 
an be found inChapter 3. 2.3. Symple
ti
 dynami
 systemsThere exists well developed theory of linear Hamiltonian systems (further denoted LHS),i.e., systems of the form
x′ = A(t)x + B(t)u,

u′ = C(t)x − AT (t)u,
(2.9)where x, u ∈ R

n, A,B,C being n × n matri
es with B,C symmetri
. Overview of results
on
erning (2.9) a
hieved until 1995 
an be found in monographs of Reid [48℄ and ofKratz [36℄.Before passing to the main theorem of this se
tion whi
h summarizes os
illatory pro-perties of system (2.9), we need to re
all some basi
 de�nitions. We say that two points
t1, t2 are 
onjugate relative to (2.9) if there exists a solution x su
h that x(t1) = 0 = x(t2)and x(t) 6≡ 0 in [t1, t2]. System (2.9) is said to be 
onjugate in an interval [a, b] if thereexist points t1, t2 ∈ [a, b] whi
h are 
onjugate relative to (2.9). In the opposite 
ase system(2.9) is said to be dis
onjugate. We say that system (2.9) is os
illatory if for every c ∈ R



2.3. SYMPLECTIC DYNAMIC SYSTEMS 8this system is 
onjugate in [c,∞), otherwise system (2.9) is said to be nonos
illatory. Thesystem (2.9) is said to be identi
ally normal (
ontrollable) on an interval I ⊂ R, if thetrivial solution (x, u) ≡ (0, 0), is the only solution for whi
h x(t) ≡ 0 on a nondegeneratesubinterval of I.The matrix analogy of (2.9) is the system
X ′ = A(t)X + B(t)U,

U ′ = C(t)X − AT (t)U,
(2.10)where X,U are n×n matri
es. A solution (X,U) of system (2.10) is said to be 
onjoined if
XT U is symmetri
 matrix and it is said to be 
onjoined basis if, moreover, rank ( X

U ) = n.In os
illation theory of (2.9), an important role is played by the asso
iated quadrati
fun
tional(2.11) F(x, u) =

∫ b

a

[
uT (t)B(t)u(t) + xT (t)C(t)x(t)

]
dt,and the Ri

ati matrix equation(2.12) Q′ − C(t) + AT (t)Q + QA(t) + QB(t)Q = 0,where the matrix Q is related to (2.10) by the substitution Q = UX−1.Theorem 2.1. Assume that (2.9) is identi
ally normal on interval [a, b] and thatthe matrix B is nonnegative de�nite in this interval. Then the following statements areequivalent:(i) System (2.9) is dis
onjugate on the interval [a, b].(ii) The quadrati
 fun
tional (2.11) is positive for every nontrivial (x, u) satisfying
onditions x′(t) = A(t)x + B(t)u, x(a) = 0 = x(b) and x(t) 6≡ 0 in [a, b].(iii) The solution (X,U) of (2.10) given by the initial 
ondition X(a) = 0, U(a) = Isatis�es det X(t) 6= 0 for t ∈ [a, b].(iv) There exists a 
onjoined basis (X,U) of (2.10) su
h that X(t) is nonsingular for

t ∈ [a, b].(v) There exists a symmetri
 matrix Q whi
h for t ∈ [a, b] solves the Ri

ati matrixdi�erential equation (2.12).System (2.9) 
an be rewritten as the �rst order system(2.13) z′ = H(t)z, z =

(
x
u

)
, H =

(
A B
C −AT

)
,where the matrix H satis�es the identity(2.14) HT (t)J + JH(t) = 0, J =

(
0 I
−I 0

)
,

I being the n × n identity matrix.One of the fundamental properties of LHS is that its fundamental matrix Z is sym-ple
ti
, i.e., ZT (t)JZ(t) = J , whenever it is symple
ti
 in the initial 
ondition. Indeed,
(ZTJZ)′ = ZTHTJZ + ZTJHZ = ZT (HTJ + JH)Z = 0.



2.3. SYMPLECTIC DYNAMIC SYSTEMS 9The dis
rete 
ounterpart of (2.13) is the so-
alled symple
ti
 di�eren
e system (furtherreferred to as SDS)(2.15) zk+1 = Skzk,where zk ∈ R
2n,Sk ∈ R

2n×2n, Sk being symple
ti
 matrix, i.e.,
ST

k JSk = J , J =

(
0 I
−I 0

)
.The symple
ti
ity of the fundamental matrix of system (2.15) is 
aused by the fa
t thatthe set of all symple
ti
 (2n × 2n)-matri
es forms a group with respe
t to the matrixmultipli
ation. The basi
 properties of (2.15) are des
ribed in [12℄.A (delta) symple
ti
 dynami
 system(2.16) z∆ = S(t)zwith z ∈ R

2n, S : T → R
2n×2n, then represents a uni�
ation of the previous two 
ases.Similarly as before, the desired property of the fundamental matrix of this system is thatthe fundamental matrix should be symple
ti
, i.e., ZT (t)JZ(t) = J (J being the samematrix as in (2.14)), whenever it has this property at one point of T. In the 
ase ofsymple
ti
 dynami
 system, this 
ondition is of the form

(ZTJZ)∆ = (ZT )∆JZσ + ZTJZ∆ = ZTSTJ (Z + µZ∆) + ZTJSZ =

= ZTSTJZ + µZTSTJSZ + ZTJSZ = ZT (STJ + JS + µSTJS)Z.Therefore, the symple
ti
ity 
ondition of system (2.16) reads as(2.17) ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0, J =

(
0 I
−I 0

)
,

I being the n × n identity matrix. If we write the matrix S in the form S =

(
A B
C D

)with n × n matri
es A,B, C,D, then (2.17) translates as(2.18) C − CT + µ(ATC − CTA) = 0,

BT − B + µ(BTD −DTB) = 0,

AT + D + µ(ATD − CTB) = 0.The matrix symple
ti
ity 
ondition ZT (t)JZ(t) = J 
an be equivalently written as
Z(t)JZT (t) = J and using this equation one 
an easily derive a 
omplementary set of
onditions to (2.18), i.e.(2.19) C − CT + µ(CDT −DCT ) = 0,

BT − B + µ(ABT − BAT ) = 0,

D + AT + µ(DAT − CBT ) = 0.Basi
 qualitative properties of delta symple
ti
 systems have been established in thepapers [14, 22, 24, 33℄ and are summarized in [16, Chap. IX℄. The main tool in theinvestigation of qualitative properties of (2.16) is the so-
alled Roundabout theorem whi
h



2.3. SYMPLECTIC DYNAMIC SYSTEMS 10relates os
illatory properties of this system to the positivity of the asso
iated quadrati
fun
tional and the solvability of the Ri

ati matrix equation. In this statement, system(2.16) is 
onsidered on a time s
ale interval [a, b] ⊂ T.Proposition 2.4. ([33℄). Suppose that (2.16) is dense-normal on every interval [a, s],where s ∈ [a, b] is a dense point, i.e., the trivial solution z =
(

x
u

)
≡ 0 is the the onlysolution for whi
h x(t) ≡ 0 on [a, s]. Then the following statements are equivalent:(i) The quadrati
 fun
tional

F(z) =

∫ b

a

{
zT (STK + KS + µSTKS)z

}
(t) ∆t, K =

(
0 0
I 0

)
,is positive de�nite, i.e., F (z) > 0 for every z =

(
x
u

)
: [a, b] → R

2n for whi
h
x(a) = 0 = x(b) and x 6≡ 0 on [a, b].(ii) The 2n×n solution Z =

(
X
U

) given by the initial 
ondition X(a) = 0, U(a) = I issu
h that X(t) is invertible in all dense points in (a, b], Ker X(σ(t)) ⊆ Ker X(t),and X(t)X†(σ(t))B(t) ≥ 0 for t ∈ [a, ρ(b)]. Here Ker, †, and ≥ denote the kernel,Moore-Penrose generalized inverse, and nonnegative de�niteness of the matrixindi
ated.(iii) There exists a symmetri
 solution Q on [a, b] of the Ri

ati matrix equation
Q∆ = C(t) + D(t)Q − Qσ(A(t) + B(t)Q)su
h that I +µ(A+BQ) is nonsingular and [I +µ(A+BQ)]−1B ≥ 0 on [a, ρ(b)].A nabla symple
ti
 system is the �rst order system(2.20) z∇ = S(t)zwith the 2n × 2n matrix S satisfying
ST (t)J + JS(t) − ν(t)ST (t)JS(t) = 0and in terms of the matri
es A,B, C,D this identity reads as(2.21) C − CT − ν(ATC − CTA) = 0,

BT − B − ν(BTD −DTB) = 0,

AT + D − ν(ATD − CTB) = 0.The 
on
ept of the nabla symple
ti
 system is quite new and these systems have not beenstudied in the literature yet (at least, as far as we know), but it 
an be shown that basi
properties of solutions of these systems are the same as those of (2.16). In parti
ular, thefundamental matrix of this system is symple
ti
 whenever it is symple
ti
 at one point of
T.



CHAPTER 3HALF-LINEAR DYNAMIC EQUATIONS WITH MIXEDDERIVATIVES3.1. Introdu
tionIn this 
hapter we investigate os
illatory properties of solutions of the half-linear se
ondorder dynami
 equation with mixed derivatives(3.1) (r(t)Φ(x∆))∇ + c(t)Φ(x) = 0.Re
ently, several papers dealing with the Sturm-Liouville se
ond order dynami
 equationof the form (whi
h is the spe
ial 
ase p = 2 in (3.1))(3.2) (r(t)x∆)∇ + c(t)x = 0appeared, see [10, 38℄ and also [16, Chap. IV℄, where the basi
 qualitative theory of(3.2) has been established. It was shown that qualitative properties of solutions of thisequation are very similar to those of the \normal" Sturm-Liouville dynami
 equation(3.3) (r(t)x∆)∆ + c(t)xσ = 0,the theory of whi
h is now relatively deeply developed, see [15℄ and the referen
es giventherein.Another motivation for our resear
h is a series of papers [2, 45, 46℄, where the half-linear dynami
 equation(3.4) (r(t)Φ(x∆))∆ + c(t)Φ(xσ) = 0, Φ(x) := |x|p−1 sgn (x), p > 1,is investigated and a theory unifying the theory of half-linear di�erential and di�eren
eequations is established. 3.2. Basi
 fa
tsHere we start with several lemmas, that are used later on in this 
hapter. In the theoryof half-linear equations, the frequently used tool is the Young inequality, see [31℄.Lemma 3.1. If p > 1 and q > 1 are mutually 
onjugate numbers, i.e., 1
p
+ 1

q
= 1, thenfor any u, v ∈ R(3.5) |u|p

p
+

|v|q

q
≥ |uv|,and equality holds if and only if u = |v|q−2v.The next lemma 
an be 
onsidered as a time s
ale version of the se
ond mean valuetheorem of integral 
al
ulus. Its proof 
an be found in [45℄.11



3.2. BASIC FACTS 12Lemma 3.2. Let f be a fun
tion su
h that its ∆-derivative f∆ is rd-
ontinuous and
f∆ does not 
hange its sign for t ∈ [a, b]. Then for any rd-
ontinuous fun
tion g thereexist points c, d ∈ [a, b]κ su
h that

∫ b

a

fσ(t)g(t) ∆t ≤ f(a)

∫ c

a

g(t) ∆t + f(b)

∫ b

c

g(t) ∆tand ∫ b

a

fσ(t)g(t) ∆t ≥ f(a)

∫ d

a

g(t) ∆t + f(b)

∫ b

d

g(t) ∆t.Lemma 2.1, applied to the ∆-integral and ∇-integral, gives the following result.Lemma 3.3. Let f be a ld-
ontinuous fun
tion and let
f̂(t) =

{
lims→t+ f(s) if t is ls and rd point,
fσ(t) otherwise.Then ∫ b

a

f(t)∇t =

∫ b

a

f̂(t) ∆t.Proof. Let F be the ∇-antiderivative of f , i.e., F∇ = f . Then by Lemma 2.1 wehave
F∆(t) =

{
lims→t+ F∇(s) = lims→t+ f(s) if t is ls and rd,
F∇(σ(t)) = fσ(t) otherwise.Hen
e, F∆(t) = f̂(t), and thus
∫ b

a

f̂(t) ∆t = F (t)|ba =

∫ b

a

f(t)∇t.

�Further we present a formula for the ∇-derivative of a 
omposite fun
tion, the proofof this statement is the same as for ∆-derivative and it is based on the Lagrange MeanValue Theorem.Lemma 3.4. Let f : R → R be a di�erentiable fun
tion and g : T → R be ∇-differen-tiable. Then we have
[f(g(t))]∇ = f ′(ξ)g∇(t),where ξ is between gρ(t) and g(t).Now we re
all some results of the above mentioned papers [2℄ and [38℄ that deal withequations (3.2) and (3.4). These results are summarized in statements whi
h are usuallyreferred to as the Reid Roundabout theorem. Re
all that by a solution of (3.2) it isunderstood a fun
tion x whi
h is ∆-di�erentiable, rx∆ is ∇-di�erentiable and (3.2) issatis�ed. A solution of (3.4) is de�ned in a similar way. We use the standard notationfor time s
ale intervals. An interval [a, b] a
tually means {t ∈ T : a ≤ t ≤ b}, open andhalf-open intervals have the same meaning.



3.2. BASIC FACTS 13Proposition 3.1 ([38℄, [16, Chap. 4℄). Suppose that the fun
tion c is ld-
ontinuous,
r is 
ontinuous and r(t) > 0. Then the following statements are equivalent:(i) Equation (3.2) is dis
onjugate on an interval [ρ(a), σ(b)], i.e., the solution x of(3.2) given by the initial 
ondition xρ(a) = 0, (rx∆)ρ(a) = 1 has no generalizedzero in (ρ(a), σ(b)], i.e., it satis�es xρ(t)x(t) > 0 for t ∈ (ρ(a), σ(b)].(ii) There exists a solution of (3.2) having no generalized zero in [ρ(a), σ(b)].(iii) The quadrati
 fun
tional

F(y) =

∫ σ(b)

ρ(a)

[
rρ(t)(y∇)2 − c(t)y2

]
∇t > 0over nontrivial y : [ρ(a), σ(b)] → R for whi
h y∇ exists, it is ld-
ontinuous, and

yρ(a) = 0 = yσ(b).(iv) There exists a solution of the Ri

ati equation
w∇ + c(t) +

(wρ)2

rρ(t) + ν(t)wρ
= 0,related to (3.2) by the substitution w = r(t)x∆

x
, whi
h is de�ned on [ρ(a), σ(b)] andsatis�es there rρ(t) + ν(t)wρ > 0.Note that it is supposed in [10℄ that both fun
tions c, r in (3.2) are 
ontinuous. How-ever, under this assumption the ∇-derivative (r(t)x∆)∇ is 
ontinuous, in parti
ular, ld-
ontinuous, hen
e applying the forward jump operator to (3.2), using (2.7) we get theequation

(r(t)x∆)∆ + cσ(t)xσ = 0whi
h is just the equation of the form (3.3) and the above formulated Proposition 3.1 
anbe essentially dedu
ed from a 
orresponding statement for (3.3), see [15℄. Also, a state-ment analogous to Proposition 3.1 
an be formulated without positivity assumption onthe fun
tion r, however, as showed, e.g., in [24℄ where (3.3) is investigated, \reasonable"os
illation 
riteria 
an be derived only under some sign restri
tions on the fun
tion r,we refer to [24℄ for details. Finally, note that our presentation of Proposition 3.1 fol-lows exa
tly the presentation of [16℄ and [38℄. Later, in Se
tion 3.3, we give a similarresult for half-linear equation (3.1), but instead of the interval [ρ(a), σ(b)] 
onsidered inProposition 3.1, we formulate our results for t ∈ [a, b].Now we turn our attention to the Roundabout theorem for (3.4), see [45℄.Proposition 3.2. Suppose that the fun
tions r, c are rd-
ontinuous and r(t) 6= 0.Then the following statements are equivalent.(i) Equation (3.4) is dis
onjugate on a time s
ale interval [a, b], i.e., the solution xgiven by the initial 
ondition x(a) = 0, r(a)Φ(x∆(a)) = 1 has no generalized zeroin (a, b], i.e., r(t)Φ(x(t))Φ(xσ(t)) > 0 for t ∈ (a, b].(ii) There exists a solution of (3.4) having no generalized zero in [a, b].(iii) The energy fun
tional
F(y) =

∫ b

a

[r(t)|y∆|p − c(t)|yσ|p] ∆t > 0



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 14for every nontrivial y whose ∆-derivative is pie
ewise rd-
ontinuous and at end-poins y(a) = 0 = y(b) holds.(iv) There exists a solution of the Ri

ati-type equation (related to (3.4) by the sub-stitution w = rΦ(x∆/x))
w∆ + c(t) =

{
−(p − 1)r1−q(t)|w|q if σ(t) = t,

− w
µ(t)

(
1 − r(t)

Φ(Φ−1(r(t))+µ(t)Φ−1(w))

) if σ(t) > twhi
h is de�ned for t ∈ [a, b] and satis�es Φ−1(r(t)) + µ(t)Φ−1(w(t)) > 0 in thisinterval.3.3. Pi
one's identity and Roundabout theoremBefore passing to the main subje
ts of this se
tion whi
h are basi
 statements for theelaboration of the os
illation theory of (3.1), let us note that we are not 
on
erned withthe existen
e and uniqueness problem for (3.1) in this thesis. This result 
an be provedusing the time s
ales indu
tion essentially in the same way as in [10, Theorem 3.1℄ and[45, Se
tion 3℄.Throughout what follows we suppose that(H) r(t) is 
ontinuous, c(t) is ld-
ontinuous, and r(t) 6= 0on a time s
ale interval under 
onsideration. Under this assumption, system (3.1) 
an bewritten as a 2 × 2 system
x∇ = Φ−1(uρ/rρ(t)), u∇ = −c(t)Φ(xρ + ν(t)Φ−1(uρ/rρ(t))),and the existen
e and uniqueness problem for (3.1) is investigated via this �rst ordersystem. We have the same statement as [10, Theorem 3.1℄, namely that a solution of(3.1) is uniquely determined by the initial 
ondition x(t0) = x0, x∇(t0) = x1, t0 ∈ T,

x0, x1 ∈ R, it exists on any interval where the hypotheses (H) are satis�ed and depends
ontinuously on the initial 
ondition. We 
onju
ture, that the results of this se
tionremain to hold under the weaker assumption that r is only ld-
ontinuous, but under thisweaker assumption we have till now some diÆ
ulties with the existen
e problem for (3.1).We start with the Ri

ati substitution for (3.1).Lemma 3.5. Suppose that x is a solution of (3.1) su
h that x(t) 6= 0 on a time s
aleinterval I = [a, b]. Then w = rΦ(x∆/x) is a solution of the Ri

ati-type equation(3.6) w∇ + c(t) =

{
−(p − 1) |w|q

Φ−1(r(t))
if t = ρ(t),

− wρ

ν(t)

(
1 − rρ(t)

Φ(Φ−1(rρ(t))+ν(t)Φ−1(wρ))

) if ρ(t) < t.Moreover, if(3.7) rρ(t)x(t)xρ(t) > 0 for t ∈ [a, b]κ,holds, then(3.8) Φ−1(rρ(t)) + ν(t)Φ−1(wρ(t)) > 0for t ∈ [a, b]κ.
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x
). Then using (2.5) and (2.3) we have (suppressing the argu-ment t)

w∇ =
(rΦ(x∆))∇Φ(x) − rΦ(x∆)Φ∇(x)

Φ(xρ)Φ(x)

=
(rΦ(x∆))∇(Φ(xρ) + νΦ∇(x)) − rΦ(x∆)Φ∇(x)

Φ(xρ)Φ(x)

= −c +
[ν(rΦ(x∆))∇ − rΦ(x∆)]Φ∇(x)

Φ(xρ)Φ(x)

= −c −
(rΦ(x∆))ρΦ∇(x)

Φ(xρ)Φ(x)
= −c −

wρΦ∇(x)

Φ(x)
.Now we have to distinguish two 
ases:(i) Suppose that t is left dense. Then the nabla derivative redu
es to the \normal deriva-tive" (Φ∇(x) = Φ′(x)) and the ρ-operator has no e�e
t, so that

w∇ = −c − w
Φ′(x)

Φ(x)
= −c − w

(p − 1)|x|p−2x′

|x|p−1
= −c − (p − 1)w

x′

x

Φ−1(r)

Φ−1(r)

= −c − (p − 1)w
Φ−1(w)

Φ−1(r)
= −c − (p − 1)

|w|q

Φ−1(r)whi
h is equation (3.6).(ii) Suppose that t is left s
attered. Then be
ause of (2.3) and (2.7)
Φ∇(x)

Φ(x)
=

Φ(x) − Φ(xρ)

νΦ(x)
=

1

ν

(
1 −

Φ(xρ)

Φ(x)

)
=

1

ν

(
1 − Φ

(
xρ

xρ + ν(x∆)ρ

))

=
1

ν

(
1 −

1

Φ(1 + ν(x∆

x
)ρ)

)
=

1

ν

(
1 −

rρ

Φ(Φ−1(rρ) + νΦ−1(wρ))

)whi
h implies the se
ond 
ase of relation (3.6). The last fa
t we need to prove is that theinequality Φ−1(rρ) + νΦ−1(wρ) > 0 is valid for t ∈ [a, b]κ. But
Φ−1(rρ) + νΦ−1(wρ) = Φ−1(rρ) + νΦ−1(rρ)

x∆ρ

xρ
= Φ−1(rρ)

(
1 + ν

x∆ρ

xρ

)

= Φ−1(rρ)
xρ + νx∆ρ

xρ
= Φ−1(rρ)

xρ + νx∇

xρ
= Φ−1(rρ)

x

xρand the last expression is positive if and only if (3.7) holds. �In the next statement and also later we will denote by C1
ld the 
lass of fun
tions

y : [a, b] ⊂ T → R su
h that y∇ exists and it is ld-
ontinuous.Theorem 3.1 (Pi
one's Identity). Assume that w is a solution of Ri

ati equation(3.6) on [a, b]. Let y ∈ C1
ld[a, b]. Then for t ∈ [a, b] (suppressing the argument)(3.9) (w|y|p)∇ = rρ|y∇|p − c|y|p − G(y, w),
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{
p

Φ−1(r)

[
|Φ−1(r)y∇|p

p
− wΦ(y)Φ−1(r)y∇ + |wΦ(y)|q

q

] if ρ(t) = t,

rρ|y∇|p − wρrρ

νΦ(Φ−1(rρ)+νΦ−1(wρ))
|yρ + νy∇|p + wρ

ν
|yρ|p if ρ(t) < t.Proof. First suppose that t is left dense, i.e. ρ(t) = t. Then

(w|y|p)∇ = w∇|y|p + w(|y|p)∇ =
(
− c − (p − 1)

|w|q

Φ−1(r)

)
|y|p + pwΦ(y)y∇

= r|y∇|p − c|y|p − p
{r|y∇|p

p
− wΦ(y)y∇ +

1

q

|w|q|y|p

Φ−1(r)

}

= r|y∇|p − c|y|p −
p

Φ−1(r)

{ |Φ−1(r)y∇|p

p
− wΦ(y)Φ−1(r)y∇ +

|wΦ(y)|q

q

}
.For ls-point t we have (using (2.4) and (3.6))

(w|y|p)∇

= w∇|y|p + wρ(|y|p)∇ =
[
− c −

wρ

ν

(
1 −

rρ

Φ(Φ−1(rρ) + νΦ−1(wρ))

)]
|y|p

+ wρ |y|
p − |yρ|p

ν

= rρ|y∇|p − c|y|p +
wρrρ

νΦ(Φ−1(rρ) + νΦ−1(wρ))
|y|p −

wρ

ν
|yρ|p − rρ|y∇|p

= rρ|y∇|p − c|y|p −
{
rρ|y∇|p −

wρrρ

νΦ(Φ−1(rρ) + νΦ−1(wρ))
|y|p +

wρ

ν
|yρ|p

}
,i.e., (3.10) holds sin
e y = yρ + νy∇. �Theorem 3.2. Let the assumptions of the previous theorem be satis�ed and, in addi-tion, suppose that(3.11) Φ−1(rρ(t)) + ν(t)Φ−1(wρ(t)) > 0for t ∈ Tκ. Then G(y, w)(t) ≥ 0 for t ∈ [a, b]κ, where the equality holds if and only if

wΦ(y) = rΦ(y∆).Proof. Again, suppose �rst that t is left dense. Then be
ause ν(t) = 0 holds, 
ondi-tion (3.11) implies Φ−1(r(t)) > 0. We have
G(y, w) =

p

Φ−1(r)

{ |Φ−1(r)y∇|p

p
− wΦ(y)Φ−1(r)y∇ +

|wΦ(y)|q

q

}
.This 
ase is very easy to prove, be
ause the expression in bra
kets is nonnegative a

ordingto Young's inequality (Lemma 3.1 with u = Φ−1(r)y∇, v = wΦ(y)). Equality o

urs ifand only if v = Φ(u), i.e., if and only if wΦ(y) = rΦ(y∆). Note that this equality holdsi� w is related to y by the Ri

ati substitution.



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 17Now suppose that t is ls-point. If we set α = νy∇, β = yρ, we 
an write the fun
tion
G in variables α, β as

G(α, β) =
1

ν

{ rρ

νp−1
|α|p −

wρrρ

Φ(Φ−1(rρ) + νΦ−1(wρ))
|α + β|p + wρ|β|p

}
.If the 
ase α + β = 0 o

urs, then |α| = |β| and the fun
tion G(α, β) is of following form

G(α, β) = G(α) =
|α|p

ν

{ rρ

νp−1
+ wρ

}and the expression in bra
kets is positive a

ording to (3.11).If α + β 6= 0 then our aim is to prove that(3.12) rρν1−p|α|p + wρ|β|p

|α + β|p
≥

wρrρ

Φ(Φ−1(rρ) + νΦ−1(wρ))
.The left-hand side of the last inequality is homogeneous in variables α, β, i.e., it is not
hanged by the transformation α 7→ kα, β 7→ kβ for any k ∈ R \ {0}. For this reason, we
an assume that α + β = ±1, for example α + β = 1. We will show that the minimum ofthe fun
tion G̃(α, β) := rρ

νp−1 |α|
p + wρ|β|p, provided α + β = 1, is equal to the right-handside of the inequality (3.12).First we will express G̃ as a fun
tion of only one variable using the 
ondition α+β = 1.So we have

G̃(α) =
rρ

νp−1
|α|p + wρ|1 − α|p.The derivative of this fun
tion is

G̃′(α) = p
{ rρ

νp−1
Φ(α) − wρΦ(1 − α)

}with the only stationary point
α∗ =

νΦ−1(wρ)

Φ−1(rρ) + νΦ−1(wρ)
.The se
ond derivative is given by(3.13) G̃′′(α) = p(p − 1)

{
rρ

νp−1
|α|p−2 + wρ|1 − α|p−2

}and at the stationary point α∗ satis�es
G̃′′(α∗) =

= p(p − 1)
1

|Φ−1(rρ) + νΦ−1(wρ)|p−2

{ rρ

νp−1
|νΦ−1(wρ)|p−2 + wρ|Φ−1(rρ)|p−2

}

= p(p − 1)
1

ν|Φ−1(rρ) + νΦ−1(wρ)|p−2

{
rρ|wρ|2−q + νwρ|rρ|2−q

}

= p(p − 1)
|rρwρ|2−q

ν|Φ−1(rρ) + νΦ−1(wρ)|p−2

{
Φ−1(rρ) + νΦ−1(wρ)

}so that the sign of G̃′′(α∗) depends only on the last bra
ket, whi
h is positive due to ourassumption (3.11). This implies that α∗ is a lo
al minimum point of the fun
tion G̃ and
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an dire
tly verify that the value G̃(α∗) just equals the expression on the right-handside of inequality (3.12). Finally, using again 
ondition (3.11) and (3.13), by a similar
omputation as above one 
an verify that G̃′′(α) ≥ 0, i.e., G̃ is 
onvex and hen
e α∗ isalso the global minimum of G̃. �Os
illatory properties of (3.1) are de�ned via the 
on
ept of a generalized zero ofa solution of this equation. We say that a solution x of equation (3.1) has a generalizedzero at t if x(t) = 0 or, if t is ls-point and (rρxxρ)(t) < 0. We say that equation (3.1)is dis
onjugate on an interval [a, b] if the nontrivial solution y satisfying y(a) = 0 hasno generalized zero in (a, b] and any other nontrivial solution of (3.1) has at most onegeneralized zero in [a, b].Now, let us de�ne A to be the set of fun
tions
A := {y ∈ C1

ld([a, b], R) : y(a) = y(b) = 0}and the p-degree fun
tional F on A by(3.14) F(y; a, b) =

∫ b

a

{rρ(t)|y∇|p − c(t)|y|p}∇t.We say F is positive de�nite (and write F > 0) on A provided F(y) ≥ 0 for all y ∈ Aand F(y) = 0 if and only if y ≡ 0.The next theorem establishes basi
 methods of the os
illation theory of (3.1) andrelates dis
onjuga
y of this equation to the solvability of the Ri

ati equation (3.6) andpositivity of the energy fun
tional (3.14).Theorem 3.3 (Roundabout theorem). The following statements are equivalent:(i) Equation (3.1) is dis
onjugate on [a, b].(ii) There exists a solution of (3.1) having no generalized zero in [a, b].(iii) The Ri

ati equation (3.6) has a solution w satisfying for all t ∈ [a, b]κ theinequality {Φ−1(rρ) + νΦ−1(wρ)}(t) > 0.(iv) The p-degree fun
tional F is positive de�nite on A.Proof. We prove that the following four impli
ations are valid:(i)⇒(ii): Let ỹ be the solution of (3.1) satisfying the initial 
onditions ỹ(a) = 0, ỹ∇(a) = 1.From (i) we get that (rρỹỹρ)(t) > 0 for t ∈ (a, b]. Consider a solution yε given by theinitial 
onditions (with ε > 0)
yε(a) = ε, y∇

ε (a) = ν̃(a)
(εrρ(a) − 1

rρ(a)
− ν(a)

)
+ 1,where ν̃ = 0 if ν = 0 and ν̃ = 1

ν
if ν > 0. Then yε → ỹ for ε → 0. Hen
e, if we 
hoose

ε > 0 suÆ
iently small, then y ≡ yε ful�lls (rρyyρ)(t) > 0 for t ∈ (a, b]. Moreover, forls-point a we get
(rρyyρ)(a) = rρ(a)

ε

rρ(a)
= ε > 0be
ause

y∇(a) =
(y − yρ

ν

)
(a) =

εrρ(a) − 1

ν(a)rρ(a)
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ase when a is ld-point we have
(rρyyρ)(a) = (ry2)(a) = r(a)ε2,whi
h is positive if and only if r(a) > 0. Suppose 
onversely that r(a) < 0. Considera solution ŷ that satis�es the initial 
onditions ŷ(d) = 0, ŷ∆(d) = 1, where d ∈ (a, b]. Thedis
onjuga
y of the equation (3.1) implies (rρŷŷρ)(a) > 0. Sin
e a is left dense, we get

r(a) > 0 whi
h is 
ontradi
tion. Altogether, y is the solution of (3.1) with (rρyyρ)(t) > 0for t ∈ [a, b], so that (ii) holds.(ii)⇒(iii): This impli
ation is the Ri

ati substitution already proved in Lemma 3.5.(iii)⇒(iv): Suppose that w is a solution of Ri

ati equation (3.6) satisfying the inequality
{Φ−1(rρ) + νΦ−1(wρ)}(t) > 0 for t ∈ [a, b]κ. Let y ∈ A, i.e., y(a) = y(b) = 0. From thePi
one identity we have

rρ(t)|y∇|p − c(t)|y|p = (w(t)|y|p)∇ + G(y, w)and by integrating from a to b we obtain
F(y; a, b) =

∫ b

a

{rρ(t)|y∇|p − c(t)|y|p}∇t

= [w(t)|y|p]ba +

∫ b

a

G(y, w)∇t =

∫ b

a

G(y, w)∇t.Hen
e F(y; a, b) ≥ 0 be
ause of Theorem 3.2 and, moreover, the 
ase F(y; a, b) = 0 
ano

ur if and only if wΦ(y) = rΦ(y∆), i.e., y∆ = Φ−1(w/r)y. But sin
e y(a) = 0, theinitial value problem admits only the trivial solution. Consequently, F(y; a, b) > 0 for allnontrivial y ∈ A.(iv)⇒(i): Suppose, by 
ontradi
tion, that F(y; a, b) > 0 and (3.1) is not dis
onjugate on
[a, b]. Then either the nontrivial solution ỹ of (3.1) given by the initial 
ondition y(a) = 0has a generalized zero in (a, b] or there is a nontrivial solution y of (3.1) su
h that yhas at least two generalized zeros in (a, b]. Consider the latter possibility, the formerone 
an be treated in a similar way. Let α, β ∈ (a, b], where α < ρ(β), be two smallestgeneralized zeros of y in (a, b]. There are four possibilities a

ording to whether α, βare ld- or ls-points. We 
onsider here the 
ase when β ld-point (i.e., ρ(β) = β) and we
onstru
t a nontrivial pie
ewise 
ontinuous fun
tion y ∈ C1 with y(a) = 0 = y(b), su
hthat F(y; a, b) ≤ 0. If the remaining two possibilities happen (ρ(β) < β), we pro
eed ina similar way as in the remaining part of the proof.First suppose that α is ls-point and de�ne

u(t) =





0 for t ∈ [a, α),

y(t) for t ∈ [α, β],

0 for t ∈ (β, b],whi
h implies u ∈ A and u(t) 6= 0 for t ∈ (α, β). In the next 
omputation we use integra-tion by parts (2.6), the de�nition of fun
tion u, the fa
t that ∫ t

ρ(t)
f(s)∇s = f(t)ν(t), andthat (rΦ(y∆))(α) = (rΦ(y∆))ρ(α) + ν(α)(rΦ(y∆))∇(α).
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F(u; a, b)

=

∫ b

a

[
rρ(t)|u∇|p − c(t)|u|p

]
∇t

=

∫ α

ρ(α)

[
rρ(t)|u∇|p − c(t)|u|p

]
∇t +

∫ β

α

[
rρ(t)|u∇|p − c(t)|u|p

]
∇t

=
{
(rρ|u∇|p − c|u|p)ν

}
(α) + urΦ(u∆)

∣∣β
α
−

∫ β

α

u
[
(r(t)Φ(u∆))∇ + c(t)Φ(u)

]
∇t

=
{
νrρ|u∇|p

}
(α) − u

{
cΦ(u)ν + (rΦ(u∆))ρ + ν(rΦ(u∆))∇

}
(α)

= rρ(α)

∣∣∣∣
u(α) − uρ(α)

ν(α)

∣∣∣∣
p

ν(α) − y(α)rρ(α)Φ(y∇(α))

=
y(α)rρ(α)

Φ(ν(α))

[
Φ(y(α)) − Φ(ν(α)y∇(α))

]
.Hen
e, it suÆ
es to show that(3.15) {

yrρΦ(y) − yrρΦ(νy∇)
}

(α) ≤ 0.This inequality is equivalent to the inequality
{
Φ−1(yrρ)(y − νy∇)

}
(α) =

{
Φ−1(yrρΦ(yρ))

}
(α) ≤ 0,but this inequality holds be
ause a

ording to our assumption α is generalized zero ofsolution y, so (3.15) holds and hen
e F(u; a, b) ≤ 0, a 
ontradi
tion.Now suppose that α is an ld-point, i.e., ρ(α) = α. Sin
e r(t) 6= 0, the inequality

{rρyρy}(α) ≤ 0 means that either y(α) = 0 or r(α) < 0. If y(α) = 0, the same fun
tion
u as in the previous part of the proof gives F(u; a, b) = 0, a 
ontradi
tion, so we supposethat y(α) 6= 0 and rρ(α) < 0. In this 
ase we pro
eed in the same way as in the 
ontinuous
ase (see, e.g., [47℄). Let tm → α−, as m → ∞, be the left-sequen
e for α and put

um(t) =

{
t−tm

(α−tm)1/p for t ∈ [tm, α] ∩ T,

0 otherwise.Now, the same 
omputation as in [45, 46℄ yields
F(um; a, b) → rρ(α) < 0 as m → ∞,a 
ontradi
tion. �Remark 3.1. (i) The previous theorem implies that the Sturm Comparison theoremextends verbatim to (3.1). In parti
ular, let the equation(3.16) (R(t)Φ(x∆))∇ + C(t)Φ(x) = 0be a Sturmian majorant of (3.1) on [a, b], i.e.,

0 < R(t) ≤ r(t), C(t) ≥ c(t), t ∈ [a, b].



3.4. OSCILLATION CRITERIA 21If (3.1) is not dis
onjugate on [a, b], i.e., there exists a nontrivial fun
tion y ∈ A su
h that
Frc(y; a, b) =

∫ b

a

[
rρ(t)|y∇|p − c(t)|y|p

]
∇t ≤ 0,then also

FRC(y; a, b) =

∫ b

a

[
Rρ(t)|y∇|p − C(t)|y|p

]
∇t ≤ 0,and hen
e (3.16) is not dis
onjugate as well. Conversely, if (3.16) is dis
onjugate on

[a, b], i.e., FRC(y; a, b) > 0 for every 0 6≡ y ∈ A, then Frc(y; a, b) > 0 and (3.1) is alsodis
onjugate on [a, b].(ii) Theorem 3.3 also shows that (3.1) does not admit 
oexisten
e of a solution withoutgeneralized zero in [a, b] and a solution having two or more generalized zeros in thisinterval. Indeed, the existen
e of a solution of (3.1) without a generalized zero in [a, b]implies Frc(y; a, b) > 0 for 0 6≡ y ∈ A, while the existen
e of a solution with two or moregeneralized zeros enables to 
onstru
t a fun
tion 0 6≡ ỹ ∈ A for whi
h FRC(ỹ; a, b) ≤ 0.(iii) The previous remark also justi�es the 
lassi�
ation of (3.1) on time s
ales unboundedabove as os
illatory and nonos
illatory in the same way as for the 
lassi
al linear Sturm-Liouville di�erential equations.3.4. Os
illation 
riteriaThroughout this se
tion we suppose that a time s
ale under 
onsideration is unboundedabove; i.e., there exists a sequen
e tn ∈ T su
h that tn → ∞.Equation (3.1) is said to be nonos
illatory if there exists α ∈ T su
h that (3.1) isdis
onjugate on [α, β] for every β > α. In the opposite 
ase, (3.1) is said to be os
illatory.As a dire
t 
onsequen
e of the equivalen
e (i) and (iv) in the Roundabout theorem,we have the following statement.Lemma 3.6. Equation (3.1) is nonos
illatory if and only if there exists a ∈ T su
hthat
F(y; a,∞) =

∫ ∞

a

{rρ|y∇|p − c|y|p}(t)∇t > 0for every nontrivial y : [a,∞) → R with y∇ pie
ewise ld-
ontinuous, satisfying y(a) = 0,and for whi
h there exists d > a with y(t) ≡ 0 for t > d.Theorem 3.4 (Leighton-Wintner 
riterion). Suppose that r(t) > 0 for large t(3.17) ∫ ∞

(rρ(t))1−q ∇t = ∞ and ∫ ∞

c(t)∇t = ∞.Then equation (3.1) is os
illatory.



3.4. OSCILLATION CRITERIA 22Proof. Let a ∈ T be arbitrary and t1, t2, t3, t4 ∈ [a,∞) be su
h that a ≤ t1 < t2 <
t3 < t4. De�ne fun
tion y by

y(t) =





0 for t ∈ [a, t1),

f(t) for t ∈ [t1, t2),

1 for t ∈ [t2, t3),

g(t) for t ∈ [t3, t4),

0 for t ∈ [t4,∞),where f, g are given by the formulas
f(t) =

∫ t

t1
(rρ(s))1−q ∇s

∫ t2
t1

(rρ(s))1−q ∇s
, g(t) =

∫ t4
t

(rρ(s))1−q ∇s
∫ t4

t3
(rρ(s))1−q ∇s

,i.e., they satisfy the boundary 
onditions f(t1) = 0, f(t2) = 1, g(t3) = 1, g(t4) = 0. Thisyields y(t1) = y(t4) = 0, y(t) > 0 for t ∈ (t1, t4) and y∇ is pie
ewise ld-
ontinuous. Itholds
f∇(t) =

(rρ(t))1−q

∫ t2
t1

(rρ(s))1−q ∇s
, g∇(t) = −

(rρ(t))1−q

∫ t4
t3

(rρ(s))1−q ∇s
,and 
onsequently, using integration by parts,

∫ ∞

a

rρ(t)|y∇(t)|p ∇t =

∫ t4

t1

rρ(t)|y∇(t)|p ∇t

=

∫ t2

t1

rρ(t)Φ(f∇(t))f∇(t)∇t +

∫ t4

t3

rρ(t)Φ(g∇(t))g∇(t)∇t

= [rρ(t)Φ(f∇(t))f(t)]t2t1 −

∫ t2

t1

(rρ(t)Φ(f∇(t)))∇fρ ∇t

+ [rρ(t)Φ(g∇(t))g(t)]t4t3 −

∫ t4

t3

(rρ(t)Φ(g∇(t)))∇gρ ∇t

= rρ(t2)Φ(f∇(t2))f(t2) − rρ(t3)Φ(g∇(t3))g(t3)

=

(∫ t2

t1

(rρ(t))1−q ∇t

)1−p

+

(∫ t4

t3

(rρ(t))1−q ∇t

)1−p

.Now we 
ompute the se
ond term in F(y; a,∞) by Lemma 3.3 (with ĉ, ĝ de�ned inthe same way as f̂ in Lemma 3.3. We obtain
∫ t4

t3

c(t)gp(t)∇t =

∫ t4

t3

ĉ(t)ĝp(t) ∆t =

∫ t4

t3

ĉ(t)gp(σ(t)) ∆tsin
e the fun
tion g is 
ontinuous. Using the se
ond mean value theorem of integral
al
ulus (Lemma 3.2) there exists s2 > t3 su
h that
∫ t4

t3

ĉ(t)gp(σ(t)) ∆t ≥

∫ s2

t3

ĉ(t) ∆t =

∫ s2

t3

c(t)∇t.



3.5. NONOSCILLATION CRITERIA 23By the same argument, there exists s1 ∈ (t1, t2) su
h that
∫ t2

t1

c(t)fp(t)∇t ≥

∫ t2

s1

c(t)∇t.Summarizing the previous 
omputations, we get
F(y; a,∞) ≤

(∫ t2

t1

(rρ(t))1−q ∇t
)1−p

+
(∫ t4

t3

(rρ(t))1−q ∇t
)1−p

−

∫ s2

s1

c(t)∇t.Now, if t1, t2 are �xed, for suÆ
iently large t3, t4 the assumptions (3.17) of this theoremimply that F(y; a,∞) < 0. �When the assumption of the previous theorem 
on
erning the divergen
e of the integral∫∞
c(t)∇t is violated, the next 
riterion applies.Theorem 3.5. Suppose that r(t) > 0 for large t,

∫ ∞

(rρ(t))1−q ∇t = ∞,and(3.18) lim inf
t→∞

(∫ t

a

(rρ(s))1−q ∇s
)p−1(∫ ∞

t

c(s)∇s
)

> 1.Then equation (3.1) is os
illatory.Proof. De�ne the fun
tion y in the same way as in the previous proof. Then
F(y; a,∞) satis�es

F(y; a,∞) ≤
(∫ t2

t1

(rρ(t))1−q ∇t
)1−p

+
(∫ t4

t3

(rρ(t))1−q ∇t
)1−p

−

∫ s2

s1

c(t)∇t

=
(∫ t2

t1

(rρ(t))1−q ∇t
)1−p

×
[
1 −

(∫ t2

t1

(rρ(t))1−q ∇t
)p−1

∫ s2

s1

c(t)∇t +
(∫ t2

t1
(rρ(t))1−q ∇t

∫ t4
t3

(rρ(t))1−q ∇t

)p−1]
.It is not so diÆ
ult to show that if (3.18) holds, then the expression in bra
kets is negativefor suÆ
iently large t2 < t3 < t4. This proof is exa
tly the same as for di�erential equation,i.e. T = R, see [18℄. �3.5. Nonos
illation 
riteriaIn the proof of the next nonos
illation 
riterion for (3.1) we will need the following re�ne-ment of the Ri

ati equivalen
e of (i) and (iii) in Theorem 3.3. We will denote by R[w]the so-
alled Ri

ati operator (
ompare (3.6)), i.e.,(3.19) R[w] :=

{
w∇ + c(t) + (p − 1) |w|q

Φ−1(r(t))
if t = ρ(t),

w∇ + c(t) + wρ

ν(t)

(
1 − rρ(t)

Φ(Φ−1(rρ(t))+ν(t)Φ−1(wρ))

) if ρ(t) < t,



3.5. NONOSCILLATION CRITERIA 24and by L(x) the left-hand side of (3.1), i.e.,
L(x) := (r(t)Φ(x∆))∇ + c(t)Φ(x).The proof of the next lemma follows the same idea as in the 
ontinuous 
ase, but for thereader's 
onvenien
e we present here the main ideas of this proof.Lemma 3.7. Equation (3.1) is nonos
illatory if and only if there exists a ∇-di�erenti-able fun
tion w satisfying (3.8) su
h that R[w] ≤ 0 for large t.Proof. The impli
ation \⇒" is trivial sin
e it is only a restatement of the Ri

atiequivalen
e (i) ⇐⇒ (iii) for large t. To prove the opposite impli
ation, suppose that thereexists a fun
tion w satisfying assumptions of the lemma on an interval [T,∞). To provethat (3.1) is nonos
illatory, we will 
onstru
t a nonos
illatory majorant of this equationin su
h a way that w is a solution of the Ri

ati equation asso
iated to this majorantequation.Let y be the solution of the initial value problem

y∆ = r1−q(t)Φ−1(w(t))y, y(T ) = 1,where T is suÆ
iently large. Using the 
omputation at the beginning of Lemma 3.5 wehave
R[w] = w∇ + c(t) +

rρΦρ(y∆)(Φ(y))∇

Φ(yρ)Φ(y)
.Then we have, again following the 
omputation in the proof of Lemma 3.5, in parti
ular,splitting the 
ases ρ(t) < t and ρ(t) = t,

0 ≥ |y|pR[w] = |y|p
[
w∇ + c(t) +

rρΦρ(y∆)(Φ(y))∇

Φ(yρ)Φ(y)

]
= yL(y).Now, let c̃(t) := c(t) − y(t)L[y](t)

yp(t)
. Then c̃(t) ≥ c(t) and y is a solution of the equation(whi
h is a Sturmian majorant of (3.1))(3.20) (r(t)Φ(y∆))∇ + c̃(t)Φ(y) = 0for whi
h rρ(t)yρ(t)y(t) > 0 for large t, i.e., (3.20) is nonos
illatory and hen
e (3.1) isnonos
illatory as well. �Now we apply Lemma 3.7 to prove the Hille-Nehari-type nonos
illation 
riterion for(3.1). The idea of the proof is the same as in the 
ontinuous 
ase T = R, but theparti
ularities of time s
ale 
al
ulus require some additional assumptions (whi
h are au-tomati
ally satis�ed for T = R) and also some te
hni
al modi�
ations, 
ompare the proofof [18, Theorem 2.1℄.



3.5. NONOSCILLATION CRITERIA 25Theorem 3.6. Suppose that r(t) > 0 for large t, ∫∞
(rρ(t))1−q ∇t = ∞, the integral∫∞

c(t)∇t is 
onvergent,
lim
t→∞

ν(t) [rρ(t)]1−q

∫ ρ(t)

a
[rρ(s)]1−q ∇s

= 0,(3.21)
lim inf

t→∞

(∫ ρ(t)

t0

(rρ(s))1−q ∇s
)p−1(∫ ∞

ρ(t)

c(s)∇s
)

> −
2p − 1

p

(p − 1

p

)p−1
,(3.22)

lim sup
t→∞

(∫ ρ(t)

t0

(rρ(s))1−q ∇s
)p−1(∫ ∞

ρ(t)

c(s)∇s
)

<
1

p

(p − 1

p

)p−1
,(3.23)then (3.1) is nonos
illatory.Proof. By the previous lemma, we will 
onstru
t a fun
tion w su
h that R[w](t) ≤ 0and (3.8) holds for large t. To this end, we denote (for the notational 
onvenien
e)

r̃ := rρ, w̃ = wρ,we also denote
A(t) :=

(∫ t

t0

r̃1−q(s)∇s
)p−1(∫ ∞

t

c(s)∇s
)
.Let(3.24) w(t) =

(p − 1

p

)p−1
(∫ t

t0

r̃1−q(s)∇s
)1−p

+

∫ ∞

t

c(s)∇s.Using Lemma 3.4 (a ∇-
hain rule for di�erentiation) we have
[( ∫ t

t0

r̃1−q(s)∇s
)1−p]∇

= (1 − p)r̃1−q(t)θ−p(t),where ∫ ρ(t)

t0

r̃1−q(s)∇s ≤ θ(t) ≤

∫ t

t0

r̃1−q(s)∇s.Also, using the Lagrange mean value theorem we have
w̃

ν

(
1 −

r̃

Φ (Φ−1(r̃) + νΦ−1(w̃))

)
=

w̃

ν

Φ(Φ−1(r̃) + νΦ−1(w̃)) − Φ(Φ−1(r̃))

Φ(Φ−1(r̃) + νΦ−1(w̃))

= (p − 1)
|η|p−2|w̃|q

Φ (Φ−1(r̃) + νΦ−1(w̃))
,where η is between Φ−1(r̃) and Φ−1(r̃) + νΦ−1(w̃). By adding (p−1

p
)p to the pair ofinequalities

−
2p − 1

p

(p − 1

p

)p−1
< Aρ(t) <

1

p

(p − 1

p

)p−1
,we obtain

−
(p − 1

p

)p−1
< Aρ(t) +

(
p − 1

p

)p

<
(p − 1

p

)p−1
.
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isely, (3.22) implies the existen
e of ε > 0 su
h that
∣∣Aρ(t) +

(p − 1

p

)p∣∣q(1 + ε) <
(p − 1

p

)pfor large t. Now we will estimate the quantity
|w̃|q =

(∫ ρ(t)

t0

r̃1−q(s)∇s
)−p∣∣Aρ(t) +

(p − 1

p

)p∣∣q.(I) First 
onsider the 
ase that t is ld-point, i.e., ρ(t) < t. Using the previous 
omputa-tions, we obtain
R[w] = w∇ + c +

w̃

ν

(
1 −

r̃

Φ (Φ−1(r̃) + νΦ−1(w̃))

)

= −(p − 1)
(p − 1

p

)p
|θ|−pr̃1−q − c + c + (p − 1)

|η|p−2|w̃|q

Φ (Φ−1(r̃) + νΦ−1(w̃))

≤ (p − 1)r̃1−q
[
−
(p − 1

p

)p(
∫ t

t0

r̃1−q(s)∇s
)−p

+
(∫ ρ(t)

t0

r̃1−q(s)∇s
)−p |η|

p−2r̃q−1
∣∣∣(p−1

p
)p + Aρ(t)

∣∣∣
q

Φ (Φ−1(r̃) + νΦ−1(w̃))

]

=
(p − 1)r̃1−q

( ∫ t

t0
r̃1−q(s)∇s

)p

[
−
(p − 1

p

)p
+ B(t)

∣∣∣∣A
ρ(t) +

(p − 1

p

)p
∣∣∣∣
q ]

,where
B(t) :=

( ∫ t

t0
r̃1−q(s)∇s

∫ ρ(t)

t0
r̃1−q(s)∇s

)p |η|p−2r̃q−1

Φ (Φ−1(r̃) + νΦ−1(w̃))
→ 1as t → ∞, in parti
ular, for any ε > 0, B(t) < (1 + ε) for large t. Indeed, 
onsider the
ase p > 2, the 
ase p ∈ (1, 2) 
an be treated analogously. Using the fa
t that

Φ−1(r̃) − ν|Φ−1(w̃)| ≤ η ≤ Φ−1(r̃) + ν|Φ−1(w̃)|,and that
ν
∣∣∣
w̃

r̃

∣∣∣
q−1

=

= ν

∣∣∣(p−1
p

)p
[ ∫ ρ(t)

t0
r̃1−q(s)∇s

]1−p

+
∫∞

ρ(t)
c(s)∇s

∣∣∣
q−1

r̃q−1

=
ν(t)r̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

∣∣∣
(p − 1

p

)p
+
(∫ ρ(t)

t0

r̃1−q(s)∇s
)p−1(∫ ∞

ρ(t)

c(s)∇s
)∣∣∣

q−1

→ 0,as t → ∞, sin
e the se
ond term in the last expression is bounded (see (3.22)) and the�rst one goes to zero by (3.21). The last 
al
ulation also implies that
Φ−1(r̃) + νΦ−1(w̃) > 0for large t.



3.5. NONOSCILLATION CRITERIA 27Hen
e
|B(t)| ≤

(∫ ρ(t)

t0
r̃1−q(s)∇s + νr̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

)p

|Φ−1(r̃) + νΦ−1(w̃)|p−2r̃q−1

Φ (Φ−1(r̃) + νΦ−1(w̃))

=

(
1 +

νr̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

)p
r̃q−1+(p−2)(q−1) |1 + νΦ−1(w̃/r̃)|

p−2

r̃Φ (1 + νΦ−1(w̃/r̃))

=

(
1 +

νr̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

)p
1

1 + νΦ−1(w̃/r̃)
→ 1, as t → ∞.Summarizing all estimates, if t0 is so large that all statements 
laimed to hold for large

t hold for t ≥ t0, we have
R[w] ≤

(p − 1)r̃1−q

(
∫ ρ(t)

t0
r̃1−q(s)∇s)p

[
−
(p − 1

p

)p
+
∣∣∣
(p − 1

p

)p
+ Aρ(t)

∣∣∣
q

(1 + ε)
]

< 0and
Φ−1(r̃) + νΦ−1(w̃) = Φ−1(r̃)(1 + νΦ−1(w̃/r̃)) > 0for large t.(II) Case ρ(t) = t. This 
ase is now easy to treat, sin
e then w̃ = w,

w∇ = (1 − p)

(
p − 1

p

)p−1 (∫ t

t0

r̃1−q(s)∇s
)−p

r̃1−q(t) − c(t)and an easy modi�
ation of the previous 
omputation shows that
R[w] = w∇ + c(t) + (p − 1)r1−q(t)|w|q ≤ 0for large t. �The following theorem 
omplements the previous statement and deals with the 
asewhen ∫∞

(rρ(t))1−q ∇t < ∞.Theorem 3.7. Suppose that r(t) > 0 for large t, ∫∞
(rρ(t))1−q ∇t < ∞, the integral∫∞

c(t)∇t = ∞,
lim
t→∞

ν(t) [rρ(t)]1−q

∫∞

t
[rρ(s)]1−q ∇s

= 0,

lim inf
t→∞

(∫ ∞

ρ(t)

(rρ(s))1−q ∇s
)p−1(∫ ρ(t)

t0

c(s)∇s
)

> −
2p − 1

p

(p − 1

p

)p−1
,

lim sup
t→∞

(∫ ∞

ρ(t)

(rρ(s))1−q ∇s
)p−1(∫ ρ(t)

t0

c(s)∇s
)

<
1

p

(p − 1

p

)p−1
,then (3.1) is nonos
illatory.Proof. The proof is similar to that of the previous theorem, we only take

w(t) =
(p − 1

p

)p−1
(∫ ∞

t

r̃1−q(s)∇s
)1−p

+

∫ t

t0

c(s)∇s,



3.5. NONOSCILLATION CRITERIA 28instead of w de�ned by (3.24). �In this 
hapter we have formulated only basi
 results 
on
erning qualitative theory of(3.1). A natural motivation for the 
ontinuation of the resear
h are the results presentedin [2℄ whi
h 
on
ern equation (3.4).



CHAPTER 4EVEN ORDER DYNAMIC EQUATIONS4.1. Introdu
tionAs a motivation for our resear
h, let us start �rst with the 
ase T = R and 
onsider theeven order (formally) self-adjoint di�erential equation(4.1) n∑

ν=0

(−1)ν
(
rν(t)y

(ν)
)(ν)

= 0, rn(t) > 0.The substitution
x =




y
y′...

y(n−1)


 , u =




∑n
ν=1(−1)ν(rνy

(ν))(ν−1)...
−(rny(n))′ + rn−1y

(n−1)

rny(n)


 .
onverts (4.1) into the linear Hamiltonian di�erential system (2.9)

x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u,with the matri
es
B = diag{0, . . . , 0,

1

rn

}
, C = diag{r0, . . . , rn−1},

A = Ai,j =

{
1 if j = i + 1, i = 1, . . . , n − 1,

0 elsewhere,see [17, 47℄.The dis
rete 
ounterpart of (4.1) is the di�eren
e equation(4.2) n∑

ν=0

(−1)ν∆ν
(
r
[ν]
k ∆νyk+n−ν

)
= 0, r

[n]
k (t) 6= 0,and the substitution

xk =




yk+n−1

∆yk+n−2...
∆n−1yk


 , uk =




∑n
ν=1(−1)ν∆ν−1(r

[ν]
k ∆νyk+n−ν)...

−∆(r
[n]
k ∆nyk) + r

[n−1]
k ∆n−1yk+1

r
[n]
k ∆nyk


 .
onverts this equation into the linear Hamiltonian di�eren
e system(4.3) ∆xk = Akxk+1 + Bkuk, ∆uk = Ckxk+1 − AT

k uk,29



4.1. INTRODUCTION 30with the matri
es
B = diag{0, . . . , 0,

1

r
[n]
k

}
, C = diag{r[0]

k , . . . , r
[n−1]
k },

A = Ai,j =

{
1 if j = i + 1, i = 1, . . . , n − 1,

0 elsewhere.The 
omprehensive treatment of the qualitative theory of dis
rete Hamiltonian systemsand higher order equations 
an be found in [5℄. We also refer to the fundamental paper ofBohner [11℄, where the theory of (4.3) with the matrix B possibly singular is established.Con
erning a time s
ale uni�
ation of the results for 
ontinuous and dis
rete equations(4.1) and (4.2), ex
ept for some partial results (see, e.g., [6, 7, 8, 9℄), no systemati
theory has been developed yet. The possible reason is the following fa
t. Motivated bythe dis
rete 
ase, 
onsider the fourth order dynami
 equation (we 
onsider this spe
ial
ase just to explain the main idea without te
hni
al details)(4.4) (r(t)y∆∆)∆∆ + q(t)yσσ = 0.If we try the substitution (again motivated by the dis
rete 
ase)
x =

(
x1

x2

)
=

(
yσ

y∆

)
, u =

(
u1

u2

)
=

(
−(ry∆∆)∆

ry∆∆

)
.with the aim to rewrite (4.4) as the Hamiltonian system (with the matri
es given byanalogous formulas as in the 
ontinuous and dis
rete 
ase)(4.5) x∆ = A(t)xσ + B(t)u, u∆ = C(t)xσ − AT (t)u,we easily �nd that we need the identity (y∆)σ = (yσ)∆, but this identity holds generallyonly for T = R and T = hZ, h being a positive real 
onstant. Consequently, even-orderequations of the form (4.4) 
annot be written in the form (4.5) and this is likely the reasonfor the missing qualitative theory of even-order equations on time s
ales sin
e the theoryof Hamiltonian systems both in the 
ontinuous and dis
rete 
ase is a natural ba
kgroundfor the investigation of (4.1) and (4.2).The aim of this 
hapter is to over
ome this problem using the 
on
ept of dynami
 equa-tions with mixed derivatives. Se
ond order equations of this type have been investigatedin the re
ent papers [10, 38℄, see also [16, Chap. 3,4℄, and the prin
ipal role is playedthere by the 
on
ept of nabla derivative on time s
ales. Let us de�ne the di�erentialoperators

D∆
k y :=

{
y∆∇...∆∇ k even,

y∆∇...∇∆ k odd, D̃∆
k y :=

{
y∇∆...∇∆ k even,

y∆∇...∇∆ k odd,(4.6)
D∇

k y :=

{
y∇∆...∇∆ k even,

y∇∆...∆∇ k odd, D̃∇
k y :=

{
y∆∇...∆∇ k even,

y∇∆...∆∇ k odd,(4.7)(the operators D∆, D∇ start with the nabla and delta derivative, respe
tively, while
D̃∆, D̃∇ end with the 
orresponding derivative) and 
onsider the higher order dynami
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L(y) :=

n∑

ν=0

(−1)νD̃∇
ν

(
rν(t)D

∆
ν y
)

= 0,(4.8)
M(y) :=

n∑

ν=0

(−1)νD̃∆
ν

(
rν(t)D

∇
ν y
)

= 0.(4.9)We will show that these equations 
an be written in the form of (delta or nabla) sym-ple
ti
 dynami
 systems and this enables to study (4.8), (4.9) using the (relatively deeplydeveloped) theory of symple
ti
 dynami
 systems.The next se
tion 
ontains the 
omputations showing that (4.8), (4.9) 
an be writtenas a (delta or nabla) symple
ti
 dynami
 system. In the last se
tion we dis
uss someopen problems and the perspe
tives of the resear
h in the area of higher order dynami
equations with mixed derivatives.4.2. Conversion to symple
ti
 systemsIn this se
tion we show that higher order equations (4.8) and (4.9) 
an be rewritten as adelta symple
ti
 system or as a nabla symple
ti
 system. The ve
tor variables x, u andthe matri
es A,B, C,D in resulting symple
ti
 systems have slightly di�erent form for theoperators L or M , for n even or odd, and for transformation to delta or nabla symple
ti
system (altogether we have eight 
ases), but the approa
h is similar in all 
ases. For thisreason we present detailed 
al
ulations only for two parti
ular possibilities.As a �rst representative 
ase let us 
onsider equation (4.9) with n odd and ld-
ontinuous fun
tions ri.Theorem 4.1. Suppose that n is odd and the fun
tions ri, i = 0, . . . , n, are ld-
ontinuous. Then equation (4.9) 
an be transformed into nabla symple
ti
 system
(

x

u

)∇

=

(
A B
C D

)(
x

u

)
,where the blo
ks A,B, C,D are n × n matri
es of the following form

A =




0 1 0 0 · · · 0 0
0 0 1 −ν · · · 0 0

0 0 0 1
. . . 0 0

0 0 0 0
. . . 0 0... ... ... ... . . . . . . . . . ... ...

0 1 −ν 0
0 0 1 0
0 0 0 1

0 · · · 0 0 0 0




,
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B =




0 · · · 0 0... . . . ... ...
0 · · · 0 −ν

rn

0 · · · 0 1
rn


 ,

C =




rρ
0 −νrρ

0 0 0 · · · 0 0
0 r1 0 0 · · · 0 0
0 νr1 rρ

2 −νrρ
2 0 0

0 0 0 r3 0 0... . . . ... ...
rρ
n−3 −νrρ

n−3 0
0 rn−2 0

0 · · · 0 νrn−2 rρ
n−1




,

D =




0 0 0 0 · · · 0 0
−1 0 0 0 0 0
−ν −1 0 0 0 0
0 0 −1 0 0 0... ... . . . . . . . . . . . . ... ...

0 0 0
−1 0 0

0 · · · −ν −1 −
νrρ

n−1

rn




.

Proof. Using the usual type of substitution



x1

x2

x3...
xn−1

xn




=




y

y∇

y∇∆...
D∇

n−2y

D∇
n−1y




,




u1

u2...
un−1

un




=




∑n
ν=1(−1)ν−1D̃∇

ν−1(rν(t)D
∇
ν y)

∑n
ν=2(−1)ν−2D̃∆

ν−2(rν(t)D
∇
ν y)...

−(rn(t)D∇
n y)∆ + rn−1(t)D

∇
n−1y

rn(t)D∇
n y




,

we get a system of 2n equations (suppressing the argument t)
x∇

1 = x2, u∆
1 = r0x1,

x∆
2 = x3, u∇

2 = −u1 + r1x2,... ...
x∆

n−1 = xn, u∇
n−1 = −un−2 + rn−2xn−1,

x∇
n =

1

rn

un, u∆
n = −un−1 + rn−1xn.The obtained system 
ontains both nabla and delta derivatives. Be
ause we want to getnabla symple
ti
 system, we need to repla
e all delta derivatives by nabla derivatives.
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tions ri, i = 0, . . . , n, are ld-
ontinuous, hen
e a

ording to (2.7) one 
an dire
tlyverify that
x∇

2 = x3 − νx4,

x∇
4 = x5 − νx6,...

x∇
n−1 = xn − νx∇

n = xn −
ν

rn

un,and
u∇

1 = rρ
0x1 − νrρ

0x2,

u∇
3 = −u2 − νu1 + νr1x2 + rρ

2x3 − νrρ
2x4,...

u∇
n−2 = −un−3 − νun−4 + νrn−4xn−3 + rρ

n−3xn−2 − νrρ
n−3xn−1,

u∇
n = −un−1 − νun−2 + νrn−2xn−1 + rρ

n−1xn −
νrρ

n−1

rn

un.Thus we get a matrix nabla system(4.10) (
x
u

)∇

=

(
A B
C D

)(
x
u

)
,where A,B, C,D are n × n matri
es of desired form. It remains to prove that (4.10) isreally a nabla symple
ti
 system, i.e., that the matri
es A,B, C,D verify equalities (2.21).It holds

ATC =




0 0 0 · · · 0 0
rρ
0 −νrρ

0 0 0 0
0 r1 0 0 0... . . . . . . ... ...

0 0 0
rρ
n−3 −νrρ

n−3 0
0 · · · 0 rn−2 0




,

BTD =




0 · · · 0 0 0... ... ... ...
0 · · · 0 0 0

0 · · · 0 − 1
rn

−νrρ
n−1

r2
n


 ,
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ATD =




0 0 0 · · · 0 0
0 0 0 0 0
−1 0 0 0 0

0 −1 0
. . . ... ...... . . . 0 0 0

0 0 0
0 · · · −1 0 0




,

CTB =




0 · · · 0 0... ... ...
0 · · · 0 0

0 · · · 0
rρ
n−1

rn


 .Using these 
al
ulations one 
an easily dedu
e that the needed equations (2.21) are reallysatis�ed. �As a se
ond representative 
ase we 
hoose equation (4.8) for n even. We suppose thatthe fun
tions ri are rd-
ontinuous and we transform this equation to a delta symple
ti
system.Theorem 4.2. Suppose that n is even and that the fun
tions ri, i = 0, . . . , n, arerd-
ontinuous. Then equation (4.8) 
an be transformed to the delta symple
ti
 system

(
x

u

)∆

=

(
A B
C D

)(
x

u

)
,where the blo
ks A,B, C,D are n × n matri
es of the following form

A =




0 1 0 0 · · · 0 0
0 0 1 µ · · · 0 0

0 0 0 1
. . . 0 0

0 0 0 0
. . . 0 0... ... ... ... . . . . . . . . . ... ...

1 0 0
0 1 µ
0 0 1

0 · · · 0 0 µrn−1

rσ
n




,

B =




0 · · · 0 0... . . . ... ...
0 · · · 0 0
0 · · · − µ

rσ
n

1
rσ
n


 ,
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C =




rρ
0 µrσ

0 0 0 · · · 0 0
0 r1 0 0 · · · 0 0
0 −µr1 rσ

2 µrσ
2 0 0

0 0 0 r3
. . . 0 0... . . . . . . ... ...

rn−3 0 0
−µrn−3 rσ

n−2 µrσ
n−2

0 · · · 0 0 rn−1




,

D =




0 0 0 0 · · · 0 0
−1 0 0 0 0 0
µ −1 0 0 0 0
0 0 −1 0 0 0... ... . . . . . . . . . . . . ...

−1 0 0 0
µ −1 0 0

0 · · · 0 0 −1 0




.

Proof. A substitution of the similar form as that in the proof of Theorem 4.1, i.e.,



x1

x2

x3...
xn−1

xn




=




y

y∆

y∆∇...
D∆

n−2y

D∆
n−1y




,




u1

u2...
un−1

un




=




∑n
ν=1(−1)ν−1D̃∆

ν−1(rν(t)D
∇
ν y)

∑n
ν=2(−1)ν−2D̃∇

ν−2(rν(t)D
∇
ν y)...

−(rn(t)D∆
n y)∆ + rn−1(t)D

∆
n−1y

rn(t)D∆
n y




,

leads to a system of 2n equations (again suppressing the argument t)
x∆

1 = x2, u∇
1 = r0x1,

x∇
2 = x3, u∆

2 = −u1 + r1x2,... ...
x∆

n−1 = xn, u∇
n−1 = −un−2 + rn−2xn−1,

x∇
n =

1

rn

un u∆
n = −un−1 + rn−1xn.Using (2.7) we repla
e nabla derivatives by delta derivatives (we 
an do it be
ause of ourassumption of rd-
ontinuity of fun
tions ri) to get the equations
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x∆

2 = x3 + µx4,

x∆
4 = x5 + µx6,...

x∆
n =

1

rσ
n

un −
µ

rσ
n

un−1 +
µrn−1

rσ
n

xn,and
u∆

1 = rσ
0 x1 + µrσ

0 x2,

u∆
3 = −u2 + µu1 − µr1x2 + rσ

2 x3 + µrσ
2 x4,...

u∆
n−1 = −un−2 + µun−3 − µrn−3xn−2 + rσ

n−2xn−1 + µrσ
n−2xn.So we have the matrix delta system(4.11) (

x
u

)∆

=

(
A B
C D

)(
x
u

)
,where the n × n matri
es A,B, C,D are the same as in the statement of this theorem.It remains to prove that (4.11) is a symple
ti
 system, i.e., to verify equations (2.18).It holds

ATC =




0 0 0 · · · 0

rσ
0 µrσ

0 0
...

0 r1 0... . . . . . .
µrσ

n−4 0 0
rn−3 0 0

0 · · · 0 rσ
n−2 µrσ

n−2 +
µr2

n−1

rσ
n




,

BTD =




0 · · · 0 0 0... ... ... ...
0 · · · 0 0 0
0 · · · 0 µ

rσ
n

0

0 · · · 0 −1
rσ
n

0




,

ATD =




0 0 0 · · · 0 0
0 0 0 0 0
−1 0 0 0 0

0 −1 0
. . . ... ...... . . . 0 0 0

0 0 0
0 · · · −1 −µrn−1

rσ
n

0




,
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CTB =




0 · · · 0 0 0... ... ... ...
0 · · · 0 0 0
0 · · · 0 −µrn−1

rσ
n

rn−1

rσ
n


 .These 
omputations dire
tly imply that equations (2.18) are satis�ed. �Remark 4.1. Observe that in 
ases T = R and T = Z equations (4.8) and (4.9) reallyredu
e to (4.1) and (4.2), respe
tively. In the 
ontinuous 
ase T = R it is 
lear sin
eboth nabla and delta derivatives are the usual derivative. Con
erning the dis
rete 
ase

T = Z, using the identity ∆yk−1 = ∇yk and after suitable relabeling the sequen
es r[ν],
ν = 0, . . . , n, to show that (4.2) 
an be written either in the form (4.8) or (4.9) is a matterof dire
t 
omputation.4.3. Self-adjointness of dynami
 equationsIn this se
tion we prove that equations (4.8), (4.9) are formally self-adjoint. As it wasshown in the previous se
tion, the matri
es A,B, C,D in symple
ti
 dynami
 system
orresponding to equation (4.8) or (4.9) are of slightly di�erent form for the operators
L,M as well as for n even or odd.The terminology "formally" self-adjoint is used in this thesis in the sense whi
h is usualin the theory of di�erential equations. A given higher order dynami
 equation is 
onvertedto a �rst order ve
tor dynami
 system, the �rst entry of the ve
tor solution of this system
omplies with the solution of the original higher order equation. Then, the last entry of theve
tor solution of the adjoint system satis�es the adjoint equation, and if this equationis the same as the original one, this equation is said to be formally self-adjoint. Theadje
tive "formally" is skipped, if the problem is regarded from the di�erential operatorstheory point of view. In this setting, together with a given di�erential expression, thedomain of a di�erential operator is determined by some boundary 
onditions and thisoperator is 
alled self-adjoint if the di�erential expression and also the domain of theadjoint operator are the same as far as the original one. The \di�erential operators"approa
h to self-adjointness of even order dynami
 equations with mixed derivatives hasbeen used in [8℄.The adjoint system to system (2.16) is the system(4.12) y∆ = −ST (t)yσ.Indeed, let W be a fundamental matrix of (2.16) and let V = (W T )−1. Then

V ∆ = −(W T )−1(W T )∆((W σ)T )−1 = −(W T )−1W TST ((W σ)T )−1 = −ST V σ.Equation (4.12) is equivalent to the equation(4.13) y∆ = −(I + µST (t))−1ST (t)yσ.Note that the matrix I +µST (t) is really invertible be
ause (2.17) implies that the matrix
I+µST (t) is symple
ti
 and hen
e invertible. Observe also that (4.13) is again a symple
ti
dynami
 system as 
an be veri�ed by a dire
t 
omputation.



4.3. SELF-ADJOINTNESS OF DYNAMIC EQUATIONS 38Theorem 4.3. Suppose that the fun
tions rν, ν = 0, . . . , n, are rd-
ontinuous. Thenequation (4.8) is formally self-adjoint.Proof. Let us suppose that n is even. Then the assumptions of Theorem 4.2 aresatis�ed (this theorem is formulated for n even, but for n odd the same statement holdsonly with slightly di�erent blo
k matri
es) and therefore equation (4.8) is equivalent tothe system(4.14) (
x

u

)∆

=

(
A B
C D

)(
x

u

)
,where the blo
ks A,B, C,D are n × n matri
es of the following form

A =




0 1 0 0 · · · 0 0
0 0 1 µ · · · 0 0

0 0 0 1
. . . 0 0

0 0 0 0
. . . 0 0... ... ... ... . . . . . . . . . ... ...

0 1 0 0
0 0 1 µ
0 0 0 1

0 · · · 0 0 0 µrn−1

rσ
n




, B =




0 · · · 0 0... . . . ... ...
0 · · · 0 0
0 · · · − µ

rσ
n

1
rσ
n


 ,

C =




rρ
0 µrσ

0 0 0 · · · 0 0
0 r1 0 0 · · · 0 0
0 −µr1 rσ

2 µrσ
2 0 0

0 0 0 r3 0 0... . . . ... ...
rn−3 0 0
µrn−3 rσ

n−2 µrσ
n−2

0 · · · 0 0 rn−1




,

D =




0 0 0 0 · · · 0 0
−1 0 0 0 0 0
µ −1 0 0 0 0
0 0 −1 0 0 0... ... . . . . . . . . . ... ...

−1 0 0 0
µ −1 0 0

0 · · · 0 0 −1 0




.

A

ording to (4.12), the 
orresponding adjoint system to system (4.14) is(4.15) (
y

z

)∆

= −

(
AT CT

BT DT

)(
y

z

)σ

.



4.3. SELF-ADJOINTNESS OF DYNAMIC EQUATIONS 39This matrix system is equivalent to the system of 2n dynami
 equations
y∆

1 = −rσ
0 zσ

1 ,

y∆
2 = −yσ

1 − µrσ
0 zσ

1 − r1z
σ
2 + µr1z

σ
3 ,

y∆
3 = −yσ

2 − rσ
2 zσ

3 ,

y∆
4 = −µyσ

2 − yσ
3 − µrσ

2 zσ
3 − r3z

σ
4 + µr3z

σ
5 ,...

y∆
n−2 = −µyσ

n−4 − yσ
n−3 − µrσ

n−4z
σ
n−3 − rn−3z

σ
n−2 + µrn−3z

σ
n−1,

y∆
n−1 = −yσ

n−2 − rσ
n−2z

σ
n−1,

y∆
n = −µyσ

n−2 − yσ
n−1 −

µrn−1

rσ
n

yσ
n − µrσ

n−2z
σ
n−1 − rn−1z

σ
n ,

z∆
1 = zσ

2 − µzσ
3 ,

z∆
2 = zσ

3 ,

z∆
3 = zσ

4 − µzσ
5 ,...

z∆
n−2 = zσ

n−1,

z∆
n−1 =

µ

rσ
n

yσ
n + zσ

n ,

z∆
n = −

1

rσ
n

yσ
n,where y1, . . . , yn and z1, . . . , zn are entries of the ve
tors y and z, respe
tively.Next we show that the �rst entry z1 of the ve
tor z in (4.15) satis�es equation (4.8),whi
h proves that this equation is formally self-adjoint. Using (2.3) and (2.7) we have

z∆
1 = zσ

2 − µzσ
3 = z2 + µz∆

2 − µzσ
3 = z2 + µzσ

3 − µzσ
3 = z2

z∆∇
1 = z∇2 = (z∆

2 )ρ = z3...
D∆

n−1z1 = z∆
n−1 =

µ

rσ
n

yσ
n + zσ

n =
µ

rσ
n

(−rσ
nz∆

n ) + zn + µz∆
n = zn

D∆
n z1 = z∇n = (z∆

n )ρ = −
1

rn

yn.The last equation implies
yn = −rnD∆

n z1and therefore the next identity holds
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y∆

n = −(rnD∆
n z1)

∆ = −µyσ
n−2 − yσ

n−1 −
µrn−1

rσ
n

yσ
n − µrσ

n−2z
σ
n−1 − rn−1z

σ
n

= −µyσ
n−2 − yn−1 − µy∆

n−1 −
µrn−1

rσ
n

(−rσ
nz∆

n ) − µrσ
n−2z

σ
n−1 − rn−1(zn + µz∆

n )

= −µyσ
n−2 − yn−1 − µ(−yσ

n−2 − rσ
n−2z

σ
n−1) − µrσ

n−2z
σ
n−1 − rn−1zn

= −yn−1 − rn−1zn = −yn−1 − rn−1D
∆
n−1z1.So that

yn−1 = (rnD
∆
n z1)

∆ − rn−1D
∆
n−1z1and the ∇-derivative of yn−1 ful�lls

y∇
n−1 = (rnD

∆
n z1)

∆∇ − (rn−1D
∆
n−1z1)

∇ = −yn−2 − rn−2zn−1 = −yn−2 − rn−2D
∆
n−2z1,hen
e

yn−2 = −(rnD
∆
n z1)

∆∇ + (rn−1D
∆
n−1z1)

∇ − rn−2D
∆
n−2z1,

=
n∑

ν=n−2

(−1)ν−(n−3)D̃∇
ν−(n−2)

(
rν(t)D

∆
ν z1

)
.By similar 
omputations, using only equations of the system of 2n dynami
 equationsand (2.3) and (2.7) we get after (n − 3) steps

y1 =
n∑

ν=1

(−1)νD̃∆
ν−1

(
rν(t)D

∆
ν z1

)
.The ∇-derivative of the �rst entry y1 satis�es

y∇
1 = −r0z1 =

n∑

ν=1

(−1)νD̃∇
ν

(
rν(t)D

∆
ν z1

)
.Altogether we get the original equation for the entry z1

n∑

ν=0

(−1)νD̃∇
ν

(
rν(t)D

∆
ν z1

)
= 0.If n is odd, then the matri
es A,B, C,D in (4.14) are slightly di�erent, but the same
omputation as above shows that (4.8) is formally self-adjoint also in this 
ase. �Theorem 4.4. Suppose that the fun
tions rν, ν = 0, . . . , n, are rd-
ontinuous. Thenthe equation (4.9) is formally self-adjoint.Proof. Equation (4.9) 
an be again rewritten as a delta symple
ti
 system, see [26℄.Therefore, one 
an dire
tly verify that the same pro
edure as in the proof of the previoustheorem proves the statement. �
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h perspe
tivesWhat we have done so far is just the starting point of the qualitative theory of even orderdynami
 equations with mixed derivatives { a \hint" that equations of the form (4.8)and (4.9) 
an be written as symple
ti
 dynami
 systems. This fa
ts opens a relativelylarge area for the further investigation of these equations, one 
an follow the dis
rete and
ontinuous methods and try to �nd their time s
ale uni�
ation. In this 
on
luding se
tionwe outline some perspe
tives of the resear
h along this line.(i) The main resear
h dire
tion is os
illation theory of (4.8) and (4.9). Following thedis
rete and 
ontinuous 
ase, these properties 
an be de�ned via (non)os
illation of theasso
iated symple
ti
 system. Let us 
onsider the 
ase that this asso
iated system isa delta symple
ti
 system (2.16). It is not diÆ
ult to see that the assumption of densenormality is satis�ed and hen
e one 
an apply the Roundabout theorem (Proposition2.4), in parti
ular, the equivalen
e of dis
onjuga
y and positivity of the 
orrespondingquadrati
 fun
tional. By a dire
t 
omputation one 
an verify that the integrand of thefun
tional F in Proposition 2.4 is
F (z) := zT{STK + KS + µSTKS}z

=

(
x

u

)T (
CT + µCTA µCTB

DT + A + µDTA B + µDTB

)(
x

u

)
,where A,B, C,D are blo
k entries of S. Consider the 
ase n even (the 
ase n odd isanalogi
al), then substituting for the matri
es A,B, C,D and for

x =




y
y∆...

D∆
n−1


 , u =




∑n
ν=1(−1)ν−1D̃∆

ν−1(rν(t)D
∇
ν y)

∑n
ν=2(−1)ν−2D̃∇

ν−2(rν(t)D
∇
ν y)...

−(rn(t)D∆
n y)∆ + rn−1(t)D

∆
n−1y

rn(t)D∆
n y


we have using a dire
t 
omputation similar to that of the previous se
tion

F (z) = xT (CT + µCTA)x + 2µxTCTBu + uT (B + µDTB)u

= rσ
0 (y + µy∆)2 + r1(y

∆)2 + rσ
2 (y∆∇ + µ(y∆∇)∆)2 + . . .

+rσ
n−2(D

∆
n−2y + µ(D∆

n−2y)∆)2 + rn−1(D
∆
n−1y)2 +

µ2r2
n−1

rσ
n

(D∆
n−1y)2

+
1

rσ
n

[
(un + µu∆

n )2 − µ2r2
n−1(D

∆
n−1y)2

]

=

n/2−1∑

i=0

{
rσ
2i[(D

∆
2iy)σ]2 + r2i+1(D

∆
2i+1y)2

}
+ rσ

n[(D∆
n y)σ]2.Here we have used the 
onvention that D∆

0 y = y.
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ale under 
onsideration is unbounded from above. Theequivalen
e of dis
onjuga
y of (2.16) and the positivity of the asso
iated quadrati
 fun
-tional F (see Proposition 2.4) implies that (4.8) is eventually dis
onjugate (another ter-minology is nonos
illatory) if and only if for every T ∈ T the symple
ti
 system (we
onsider here the delta symple
ti
 system sin
e its os
illation theory is relatively deeplydeveloped) is dis
onjugate on [T, T1] for every T ∋ T1 > T , and this is equivalent to (withthe relationship between y and z =
(

x
u

))
F(y) =

∫ ∞

T

F (z) ∆t > 0for every nontrivial y for whi
h D∆
n y exists, it is pie
ewise rd-
ontinuous, D∆

i y(T ) = 0,
i = 0, . . . , n − 1, and there exists T̃ ∈ T su
h y(t) ≡ 0 for t > T̃ . There exist variousos
illation and nonos
illation 
riteria for (4.1) and (4.2) based on this variational prin
iple,see, e.g., [23, 29℄. The results of the previous se
tion, 
oupled with the os
illation 
riteriagiven in [13℄ suggest to look for time s
ale uni�
ation of these 
riteria. An important rolein this investigation may play the time s
ale version of the Wirtinger inequality provedin [34℄.(ii) To explain another resear
h possibility, 
onsider the two-term di�erential equation(4.16) (−1)n

(
r(t)y(n)

)(n)
= q(t)y,where r, q are positive fun
tions. It is known (see, e.g., [3℄) that this equation is nonos
il-latory if and only if the so-
alled re
ipro
al equation (related to (4.16) by the substitution

z = ry(n))
(−1)n

(
1

q(t)
z(n)

)(n)

=
1

r(t)
zis also nonos
illatory. A dis
rete version of this statement is established in [12, 21℄.A natural question is whether a unifying time s
ale approa
h 
an be developed on thebasis of the results of this paper. We refer also to the paper [35℄, where this problem istreated in the s
ope of time s
ale Hamiltonian systems.(iii) Another problem 
losely related to the os
illation theory of (formally) self-adjointhigher order equations is the fa
torization of the 
orresponding di�erential operator. De-note by L(y) the 2n-th order di�erential operator de�ned by the left-hand side of (4.1).If this equation is dis
onjugate on an interval I, the 
lassi
al result of the theory ofdi�erential operators states that in this 
ase there exists an n-th di�erential operator

N(y) = y(n) + an−1(t)y
(n−1) + · · · + a1(t)y

′ + a0(t)ywith 
ontinuous fun
tions a0, . . . , an−1, su
h that the operator L admits in I the fa
tori-zation
L(y) = N∗(rn(t)N(y)),where N∗ is the adjoint operator of M . A dis
rete version of this statement 
an be foundin [19℄ and suggests again to look for a time s
ale uni�
ation.(iv) The last resear
h problem whi
h we point out here is the transformation theoryof even order self-adjoint equations in the framework of transformations of Hamiltonianor symple
ti
 systems. It is shown in [4℄ (
ontinuous 
ase) and in [12℄ (dis
rete 
ase)



4.4. REMARKS AND RESEARCH PERSPECTIVES 43that the transformation of dependent variable y = hz, where h is a transformation fun
-tion (sequen
e), 
an be investigated as a spe
ial 
ase of the general transformation ofHamiltonian or symple
ti
 systems. The results of the previous se
tion suggest to lookfor a time s
ale unifying approa
h to this problem.(v) In the paper [8℄, a similar problem as in this 
hapter is investigated. In the mainpart of that paper the authors deal with another 2n-order dynami
 equations with mixedderivatives(4.17) L(y) :=
n∑

i=0

(−1)i
(
ri(t)y

∆i−1∇
)∇i−1∆and its \nabla" 
ounterpart(4.18) M(y) :=

n∑

i=0

(−1)i
(
ri(t)y

∇i−1∆
)∆i−1∇(with the 
onvention that for i = 0 and i = 1 the 
orresponding terms in L are r0(t)yand (r1(t)y

∇
)∆, a similar 
onvention is used in the operator M). It is shown that theseequations 
an be written in the form of the time s
ale linear Hamiltonian system (4.5) andhen
e also in the form (2.16). Further it is shown that these equations are formally self-adjoint with respe
t to a 
ertain inner produ
t, provided some boundary 
onditions aresatis�ed. At the �nal part of [8℄, equations of the form (4.8) and (4.9) are brie
y dis
ussedand their transformation into Hamiltonian systems is suggested. However, the approa
hused there is di�erent from ours. Finally, note that all resear
h problems mentioned inthis se
tion \apply" also to equations (4.17), (4.18).(vi) If the fun
tions rν are ld-
ontinuous, equations (4.8), (4.9) 
an be written in theform (2.20) and the adjoint system to this system is y∇ = −ST (t)yρ. Using the sameidea as in the previous se
tion, it 
an be shown, that (4.8), (4.9) are formally self-adjointin this 
ase as well. Only the blo
k matri
es in these nabla systems are slightly di�erentfrom those in the delta symple
ti
 systems, the te
hni
al 
omputations are very similar.
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47Abstra
tThe thesis 
onsists essentially of two parts. The �rst one deals with os
illation theory ofthe half-linear se
ond order dynami
 equation with mixed derivatives
(r(t)Φ(x∆))∇ + c(t)Φ(x) = 0, Φ(x) = |x|p−1 sgn (x), p > 1.It is established the so-
alled Roundabout theorem for this equation and this theorem isused to prove several os
illation and nonos
illation 
riteria for this equation. The se
ondpart is devoted to the investigation of even order dynami
 equations

L(y) :=
n∑

ν=0

(−1)νD̃∇
ν

(
rν(t)D

∆
ν y
)

= 0,

M(y) :=
n∑

ν=0

(−1)νD̃∆
ν

(
rν(t)D

∇
ν y
)

= 0,where D∆
ν , D̃∆

ν , D∇
ν , D̃∇

ν are 
ertain ν-th order di�erential operators with mixed deriva-tives. It is shown that equations L(y) = 0,M(y) = 0 are formally self-adjoint and thatthey 
an be written in the form of the so-
alled delta and nabla symple
ti
 systems.2000 Mathemati
s Subje
t Classi�
ation 39 A 10


