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CHAPTER 1INTRODUCTIONThe prinipal onern of this thesis is to investigate some aspets of the qualitative the-ory of dynami equations on time sales. The main attention is foused to half-linearseond order dynami equations with mixed derivatives and to even order linear dynamiequations with mixed derivatives and their relationship to sympleti dynami systems.The time sales theory was introdued by Stefan Hilger in his PhD dissertation [32℄.In this thesis, a \tool" whih enabled unifying of disrete and ontinuous alulus hasbeen developed. Before that, there were \parallel" branhes of the di�erential equationsand di�erene equations theory. In some aspets, they were very similar, in other aspetsthey seemed to be ompletely di�erent. Introduing the notion of time sale was anelegant way how to unify these two theories into dynami equations theory. The mainidea of the papers onerning dynami equations on time sales is to prove ertain resultfor general time sale. If only the set of the real numbers, resp. integers, is taken intoaount (as a speial time sale), the general result leads to a result appliable to anordinary di�erential equation, resp. di�erene equation.This thesis is divided into three parts. In the �rst part (Chapter 2) we de�ne all notionsand state all basi statements, that we will need later on. Further, a brief overview ofthe theory of half-linear equations and sympleti dynami systems, whih preedes theresults of this thesis, an be found here. The main two parts of the thesis are Chapter3, where we deal with half-linear dynami equations, and Chapter 4, where the theory ofertain type of the even order linear dynami equation is disussed. Chapter 3 is basedon the paper [25℄ and Chapter 4 ontains results of the papers [26℄ and [37℄.The half-linear seond order di�erential equation is an equation of the form(HLD) (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−1 sgn (x), p > 1,where the funtions r, c are ontinuous and r(t) > 0. The spae of all solutions of (HLD)is just homogenous, but generally not additive. So this spae has only one half of theproperties of a linear spae, and this is the reason why equation (HLD) is alled half-linear. The basi qualitative theory of equation (HLD) was developed by Elbert andMirzov within their papers [28℄, [39℄ and a omprehensive treatment of this topi an befound in the book [27℄. Equation (HLD) has similar properties as the Sturm-Liouvilledi�erential equation(SLD) (r(t)x′)′ + c(t)x = 0,whih is a speial ase of equation (HLD) when p = 2. In partiular, the Sturmian theoryextends verbatim to (HLD).A disrete ounterpart of equation (HLD) is the di�erene equation(HL∆) ∆(rkΦ(∆xk)) + ckΦ(xk+1) = 0, Φ(x) = |x|p−1 sgn (x), p > 1,2



1. INTRODUCTION 3where ∆xk = xk+1 − xk is the forward di�erene operator, r, c are real-valued sequenesand rk 6= 0. Properties of equation (HL∆) are similar to properties of the equation(SL∆) ∆(rk∆xk) + ckxk+1 = 0,i.e., the Sturm-Liouville di�erene equation. The basi qualitative theory of half-lineardi�erene equations has been established in a series of papers of P. Øehák [40, 41, 42,43, 44℄ and the results of these papers are summarized in the book [1℄.Natural uni�ations of (HLD) and (HL∆) within the theory of dynami equations ontime sales are the equation(HL) (r(t)Φ(x∆))∆ + c(t)Φ(xσ) = 0,and(HLMD) (r(t)Φ(x∆))∇ + c(t)Φ(x) = 0,where ∆,∇ and σ are the so-alled delta derivative, nabla derivative and forward jumpoperator, respetively. The basi qualitative theory of (HL) has been established in thepapers of P. Øehák [45, 46℄ and it is summarized in [2℄. The main onern of Chapter3 is equation (HLMD). Motivated by the results given in [2℄, we prove the so-alledRoundabout theorem for (HLMD) and we present osillation and nonosillation riteriafor this equation.As mentioned before, Chapter 4 deals with even order dynami equations with mixedderivatives. A typial example of suh equations are the fourth order dynami equations
(r(t)y∆∇)∆∇ − (p(t)y∆)∇ + q(t)y = 0or
(r(t)y∇∆)∇∆ − (p(t)y∇)∆ + q(t)y = 0.Equations of this kind appeared only very reently in [7, 9, 30℄ and the basi qualitativetheory of these equations has not been elaborated yet. The main tool we use is therelationship of even order dynami equations with mixed derivatives to the so-alledsympleti dynami systems.The results presented in this thesis have been ahieved under support of the researhgrant 201/04/0580 of the Grant Ageny of the Czeh Republi.I would like to thank my advisor Prof.Ondøej Do¹lý for his inexaustible willingness,kindness and patiene during the many and many hours of onsultations. I am very grate-ful for his suggestions and ontinuous support throughout my Ph.D. studies of Mathema-tial Analysis at the Faulty of Siene of Masaryk University over the years 2002-2007.Brno, September 2007 Daniel Marek



CHAPTER 2PRELIMINARIESIn this hapter we reall, for reader's onveniene, all basi fats about the topis treatedin this thesis, i.e., essentials of the time sales alulus and basi theory of half-linear equa-tions and of sympleti systems. More spei� results will be stated in those subsetions,where they are immediately used. 2.1. Time salesA time sale T is any nonempty losed subset of the set of real numbers R. The mainexamples of time sales (whih will be mentioned several times) are the sets of integers Zand the real numbers R. We de�ne operators σ, ρ : T → T by
σ(t) = inf{s ∈ T : s > t},

ρ(t) = sup{s ∈ T : s < t}.Operator σ is alled forward jump operator and operator ρ is alled bakward jump ope-rator. We put σ(M) = M , if T has a maximum M , and ρ(m) = m, if T has a minimum
m. The funtions µ, ν : T → [0,∞), where

µ(t) = σ(t) − t,

ν(t) = t − ρ(t),are alled graininess funtion and bakward graininess funtion, respetively. Dependingon whether the graininess funtions for t ∈ T are positive or equal to zero, we distinguishseveral types of time sales points. A point t ∈ T is said to beright dense, if µ(t) = 0,left dense, if ν(t) = 0,right sattered, if µ(t) > 0,left sattered, if ν(t) > 0 anddense, if t is left dense or right dense.We will use the abbreviations rd, ld, rs, ls-point, respetively. If a time sale T hasa left sattered maximum M (right sattered minimum m), then we de�ne T
κ = T \ {M}(Tκ = T \ {m}), otherwise T

κ = T (Tκ = T).We de�ne the delta and nabla derivatives as follows
f∆(t) =

{
lims→t

f(s)−f(t)
s−t

, if µ(t) = 0,
f(σ(t))−f(t)

µ(t)
if µ(t) > 0,

(2.1)
f∇(t) =

{
lims→t

f(s)−f(t)
s−t

if ν(t) = 0,
f(t)−f(ρ(t))

ν(t)
if ν(t) > 0.

(2.2) 4



2.1. TIME SCALES 5It is obvious that f∆(t) = f ′(t) = f∇(t) if T = R, and f∆(t) = ∆f(t) = f(t + 1) − f(t),
f∇(t) = f(t) − f(t − 1) if T = Z. By fσ and fρ we denote the omposition f ◦ σ and
f ◦ ρ, respetively. Provided that f is a ∆-di�erentiable funtion, resp. ∇-di�erentiablefuntion, i.e., f∆, resp. f∇ exists, then(2.3) fσ(t) = f(t) + µf∆(t), resp.

fρ(t) = f(t) − νf∇(t)holds. All basi di�erential formulas an be generalized also for the ase of time sales,e.g., the produt of two ∆-di�erentiable (∇-di�erentiable) funtions satis�es
(fg)∆ = f∆gσ + fg∆ = fσg∆ + f∆g,

(fg)∇ = f∇gρ + fg∇ = fρg∇ + f∇g,
(2.4)and the ratio of two di�erentiable funtions is given by

(
f

g

)∆

=
f∆g − fg∆

ggσ
,

(
f

g

)∇

=
f∇g − fg∇

ggρ
.

(2.5)A funtion f : T → R is said to be rd-ontinuous (ld-ontinuous) if it is right ontinu-ous (left ontinuous) at all rd-points (ld-points) and the left limit (right limit) at ld-points(rd-points) exists (�nite). Provided f is rd-ontinuous (ld-ontinuous) then there existsa ∆-di�erentiable funtion F (a ∇-di�erentiable funtion G) suh that F∆(t) = f(t)(G∇(t) = f(t)). Using these funtions we de�ne the integrals
∫ b

a

f(t) ∆t = F (b) − F (a),

∫ b

a

f(t)∇t = G(b) − G(a).In some proofs we will also need the nabla version of integration by parts(2.6) ∫ b

a

f∇(t)gρ(t)∇t = [f(t)g(t)]ba −

∫ b

a

f(t)g∇(t)∇t.Further we reall the relationship between the delta and nabla derivatives. The proofof this statement an be found in [16, Chap. 4℄.Lemma 2.1. If f : T → R is ∆-di�erentiable funtion on T
κ and f∆ is rd-ontinuouson T

κ, then f is ∇-di�erentiable on Tκ, and
f∇(t) =

{
lims→t− f∆(s) if t is ld and rs,
f∆(ρ(t)) otherwise.If g : T → R is ∇-di�erentiable funtion on Tκ and g∇ is ld-ontinuous on Tκ, then g is

∆-di�erentiable on T
κ, and

g∆(t) =

{
lims→t+ g∇(s) if t is ls and rd,
g∇(σ(t)) otherwise.



2.2. HALF-LINEAR EQUATIONS 6Espeially, if f∆ is ontinuous on T
κ, resp. g∇ is ontinuous on Tκ, then

f∇(t) = f∆(ρ(t)), resp.
g∆(t) = g∇(σ(t))

(2.7)holds for any t ∈ Tκ, resp. t ∈ T
κ.2.2. Half-linear equationsWe will mention expliitly the assoiated Riati equation, Pione's identity and Round-about theorem.Lemma 2.2. Let x be a solution of (HLD) suh that x(t) 6= 0 in an interval I. Then

w(t) = r(t)Φ(x′(t))
Φ(x(t))

is a solution of the Riati-type di�erential equation(2.8) w′ + c(t) + (p − 1)
|w|q

Φ−1(r)
= 0, Φ−1(r) = |r|q−1 sgn (r)on I, where q is the onjugate number of p, i.e., q = p

p−1
.Proposition 2.1 (Pione's identity). Suppose that w is a solution of the Riatiequation (2.8) on [a, b] and let y ∈ C1[a, b]. Then for t ∈ [a, b]

(w|y|p)′ = r|y′|p − c|y|p − G(y, w),holds, where
G(y, w) =

p

Φ−1(r)

[
|Φ−1(r)y′|p

p
− wΦ(y)Φ−1(r)y′ +

|wΦ(y)|q

q

]
.Equation (HLD) is said to be disonjugate on the losed interval [a, b] if the solution xgiven by the initial ondition x(a) = 0, r(a)Φ(x′(a)) = 1 has no zero in the interval (a, b].Otherwise (HLD) is said to be onjugate on [a, b]. The so-alled Roundabout theoremrelates the Riati equation, the energy funtional and the basi osillatory properties ofthe solutions of equation (HLD).Proposition 2.2 (Roundabout theorem). The following statements are equivalent:(i) Equation (HLD) is disonjugate on the interval [a, b].(ii) Equation (HLD) has a positive solution on [a, b].(iii) There exists a solution w of the Riati equation (2.8) whih is de�ned on wholeinterval [a, b].(iv) The energy funtional

F(y; a, b) =

∫ b

a

[r(t)|y′|p − c(t)|y|p] dt,is positive for every nontrivial funtion y, suh that y(a) = 0 = y(b) and y′ ispieewise ontinuous on [a, b].Next, we will state the Roundabout theorem for equation (HL∆). For that we needthe following notion. We say that a solution x of equation (HL∆) ontains a generalizedzero on an interval (m,m + 1] if xm 6= 0 and rmxmxm+1 ≤ 0.



2.3. SYMPLECTIC DYNAMIC SYSTEMS 7Proposition 2.3 (Roundabout theorem (di�erene version)). The following state-ments are equivalent:(i) Equation (HL∆) is disonjugate on the interval [0, N ], i.e., the solution x̃ givenby the initial onditions x̃0 = 0, r0Φ(x̃1) = 1 has no generalized zero in (0, N +1].(ii) There exists a solution of (HL∆) having no generalized zero in [0, N + 1].(iii) There exists a solution w of the Riati-type di�erene equation (related to (HL∆)by substitution wk = rkΦ(∆xk

xk
))

∆wk + ck + wk

(
1 −

rk

Φ(Φ−1(rk) + Φ−1(wk))

)
= 0whih is de�ned on whole interval [0, N + 1] and satis�es Φ−1(rk) + Φ−1(wk) > 0on interval [0, N ].(iv) The disrete p-degree funtional

Fd(y; 0, N) =
N∑

k=0

[rk|∆yk|
p − ck|yk+1|

p] ,is positive for every nontrivial sequene y = {yk}
N+1
k=0 , suh that y0 = 0 = yN+1.More details about equations (HLD), (HL∆), inluding proofs of the statements men-tioned above, an be found in [20℄.The next step in development of the basi theory of half-linear dynami equations isthe dynami equation(HL∆) (r(t)Φ(x∆))∆ + c(t)Φ(xσ) = 0, Φ(x) = |x|p−1 sgn (x), p > 1,investigated by Øehák, see [45℄, [46℄. This equation involves both of previously mentionedequations (HLD), (HL∆) as speial ases, it is suÆient to hoose as a time sale the reals

R or the integers Z. The main results for (HL∆) important for our thesis an be found inChapter 3. 2.3. Sympleti dynami systemsThere exists well developed theory of linear Hamiltonian systems (further denoted LHS),i.e., systems of the form
x′ = A(t)x + B(t)u,

u′ = C(t)x − AT (t)u,
(2.9)where x, u ∈ R

n, A,B,C being n × n matries with B,C symmetri. Overview of resultsonerning (2.9) ahieved until 1995 an be found in monographs of Reid [48℄ and ofKratz [36℄.Before passing to the main theorem of this setion whih summarizes osillatory pro-perties of system (2.9), we need to reall some basi de�nitions. We say that two points
t1, t2 are onjugate relative to (2.9) if there exists a solution x suh that x(t1) = 0 = x(t2)and x(t) 6≡ 0 in [t1, t2]. System (2.9) is said to be onjugate in an interval [a, b] if thereexist points t1, t2 ∈ [a, b] whih are onjugate relative to (2.9). In the opposite ase system(2.9) is said to be disonjugate. We say that system (2.9) is osillatory if for every c ∈ R



2.3. SYMPLECTIC DYNAMIC SYSTEMS 8this system is onjugate in [c,∞), otherwise system (2.9) is said to be nonosillatory. Thesystem (2.9) is said to be identially normal (ontrollable) on an interval I ⊂ R, if thetrivial solution (x, u) ≡ (0, 0), is the only solution for whih x(t) ≡ 0 on a nondegeneratesubinterval of I.The matrix analogy of (2.9) is the system
X ′ = A(t)X + B(t)U,

U ′ = C(t)X − AT (t)U,
(2.10)where X,U are n×n matries. A solution (X,U) of system (2.10) is said to be onjoined if
XT U is symmetri matrix and it is said to be onjoined basis if, moreover, rank ( X

U ) = n.In osillation theory of (2.9), an important role is played by the assoiated quadratifuntional(2.11) F(x, u) =

∫ b

a

[
uT (t)B(t)u(t) + xT (t)C(t)x(t)

]
dt,and the Riati matrix equation(2.12) Q′ − C(t) + AT (t)Q + QA(t) + QB(t)Q = 0,where the matrix Q is related to (2.10) by the substitution Q = UX−1.Theorem 2.1. Assume that (2.9) is identially normal on interval [a, b] and thatthe matrix B is nonnegative de�nite in this interval. Then the following statements areequivalent:(i) System (2.9) is disonjugate on the interval [a, b].(ii) The quadrati funtional (2.11) is positive for every nontrivial (x, u) satisfyingonditions x′(t) = A(t)x + B(t)u, x(a) = 0 = x(b) and x(t) 6≡ 0 in [a, b].(iii) The solution (X,U) of (2.10) given by the initial ondition X(a) = 0, U(a) = Isatis�es det X(t) 6= 0 for t ∈ [a, b].(iv) There exists a onjoined basis (X,U) of (2.10) suh that X(t) is nonsingular for

t ∈ [a, b].(v) There exists a symmetri matrix Q whih for t ∈ [a, b] solves the Riati matrixdi�erential equation (2.12).System (2.9) an be rewritten as the �rst order system(2.13) z′ = H(t)z, z =

(
x
u

)
, H =

(
A B
C −AT

)
,where the matrix H satis�es the identity(2.14) HT (t)J + JH(t) = 0, J =

(
0 I
−I 0

)
,

I being the n × n identity matrix.One of the fundamental properties of LHS is that its fundamental matrix Z is sym-pleti, i.e., ZT (t)JZ(t) = J , whenever it is sympleti in the initial ondition. Indeed,
(ZTJZ)′ = ZTHTJZ + ZTJHZ = ZT (HTJ + JH)Z = 0.



2.3. SYMPLECTIC DYNAMIC SYSTEMS 9The disrete ounterpart of (2.13) is the so-alled sympleti di�erene system (furtherreferred to as SDS)(2.15) zk+1 = Skzk,where zk ∈ R
2n,Sk ∈ R

2n×2n, Sk being sympleti matrix, i.e.,
ST

k JSk = J , J =

(
0 I
−I 0

)
.The sympletiity of the fundamental matrix of system (2.15) is aused by the fat thatthe set of all sympleti (2n × 2n)-matries forms a group with respet to the matrixmultipliation. The basi properties of (2.15) are desribed in [12℄.A (delta) sympleti dynami system(2.16) z∆ = S(t)zwith z ∈ R

2n, S : T → R
2n×2n, then represents a uni�ation of the previous two ases.Similarly as before, the desired property of the fundamental matrix of this system is thatthe fundamental matrix should be sympleti, i.e., ZT (t)JZ(t) = J (J being the samematrix as in (2.14)), whenever it has this property at one point of T. In the ase ofsympleti dynami system, this ondition is of the form

(ZTJZ)∆ = (ZT )∆JZσ + ZTJZ∆ = ZTSTJ (Z + µZ∆) + ZTJSZ =

= ZTSTJZ + µZTSTJSZ + ZTJSZ = ZT (STJ + JS + µSTJS)Z.Therefore, the sympletiity ondition of system (2.16) reads as(2.17) ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0, J =

(
0 I
−I 0

)
,

I being the n × n identity matrix. If we write the matrix S in the form S =

(
A B
C D

)with n × n matries A,B, C,D, then (2.17) translates as(2.18) C − CT + µ(ATC − CTA) = 0,

BT − B + µ(BTD −DTB) = 0,

AT + D + µ(ATD − CTB) = 0.The matrix sympletiity ondition ZT (t)JZ(t) = J an be equivalently written as
Z(t)JZT (t) = J and using this equation one an easily derive a omplementary set ofonditions to (2.18), i.e.(2.19) C − CT + µ(CDT −DCT ) = 0,

BT − B + µ(ABT − BAT ) = 0,

D + AT + µ(DAT − CBT ) = 0.Basi qualitative properties of delta sympleti systems have been established in thepapers [14, 22, 24, 33℄ and are summarized in [16, Chap. IX℄. The main tool in theinvestigation of qualitative properties of (2.16) is the so-alled Roundabout theorem whih



2.3. SYMPLECTIC DYNAMIC SYSTEMS 10relates osillatory properties of this system to the positivity of the assoiated quadratifuntional and the solvability of the Riati matrix equation. In this statement, system(2.16) is onsidered on a time sale interval [a, b] ⊂ T.Proposition 2.4. ([33℄). Suppose that (2.16) is dense-normal on every interval [a, s],where s ∈ [a, b] is a dense point, i.e., the trivial solution z =
(

x
u

)
≡ 0 is the the onlysolution for whih x(t) ≡ 0 on [a, s]. Then the following statements are equivalent:(i) The quadrati funtional

F(z) =

∫ b

a

{
zT (STK + KS + µSTKS)z

}
(t) ∆t, K =

(
0 0
I 0

)
,is positive de�nite, i.e., F (z) > 0 for every z =

(
x
u

)
: [a, b] → R

2n for whih
x(a) = 0 = x(b) and x 6≡ 0 on [a, b].(ii) The 2n×n solution Z =

(
X
U

) given by the initial ondition X(a) = 0, U(a) = I issuh that X(t) is invertible in all dense points in (a, b], Ker X(σ(t)) ⊆ Ker X(t),and X(t)X†(σ(t))B(t) ≥ 0 for t ∈ [a, ρ(b)]. Here Ker, †, and ≥ denote the kernel,Moore-Penrose generalized inverse, and nonnegative de�niteness of the matrixindiated.(iii) There exists a symmetri solution Q on [a, b] of the Riati matrix equation
Q∆ = C(t) + D(t)Q − Qσ(A(t) + B(t)Q)suh that I +µ(A+BQ) is nonsingular and [I +µ(A+BQ)]−1B ≥ 0 on [a, ρ(b)].A nabla sympleti system is the �rst order system(2.20) z∇ = S(t)zwith the 2n × 2n matrix S satisfying
ST (t)J + JS(t) − ν(t)ST (t)JS(t) = 0and in terms of the matries A,B, C,D this identity reads as(2.21) C − CT − ν(ATC − CTA) = 0,

BT − B − ν(BTD −DTB) = 0,

AT + D − ν(ATD − CTB) = 0.The onept of the nabla sympleti system is quite new and these systems have not beenstudied in the literature yet (at least, as far as we know), but it an be shown that basiproperties of solutions of these systems are the same as those of (2.16). In partiular, thefundamental matrix of this system is sympleti whenever it is sympleti at one point of
T.



CHAPTER 3HALF-LINEAR DYNAMIC EQUATIONS WITH MIXEDDERIVATIVES3.1. IntrodutionIn this hapter we investigate osillatory properties of solutions of the half-linear seondorder dynami equation with mixed derivatives(3.1) (r(t)Φ(x∆))∇ + c(t)Φ(x) = 0.Reently, several papers dealing with the Sturm-Liouville seond order dynami equationof the form (whih is the speial ase p = 2 in (3.1))(3.2) (r(t)x∆)∇ + c(t)x = 0appeared, see [10, 38℄ and also [16, Chap. IV℄, where the basi qualitative theory of(3.2) has been established. It was shown that qualitative properties of solutions of thisequation are very similar to those of the \normal" Sturm-Liouville dynami equation(3.3) (r(t)x∆)∆ + c(t)xσ = 0,the theory of whih is now relatively deeply developed, see [15℄ and the referenes giventherein.Another motivation for our researh is a series of papers [2, 45, 46℄, where the half-linear dynami equation(3.4) (r(t)Φ(x∆))∆ + c(t)Φ(xσ) = 0, Φ(x) := |x|p−1 sgn (x), p > 1,is investigated and a theory unifying the theory of half-linear di�erential and di�ereneequations is established. 3.2. Basi fatsHere we start with several lemmas, that are used later on in this hapter. In the theoryof half-linear equations, the frequently used tool is the Young inequality, see [31℄.Lemma 3.1. If p > 1 and q > 1 are mutually onjugate numbers, i.e., 1
p
+ 1

q
= 1, thenfor any u, v ∈ R(3.5) |u|p

p
+

|v|q

q
≥ |uv|,and equality holds if and only if u = |v|q−2v.The next lemma an be onsidered as a time sale version of the seond mean valuetheorem of integral alulus. Its proof an be found in [45℄.11



3.2. BASIC FACTS 12Lemma 3.2. Let f be a funtion suh that its ∆-derivative f∆ is rd-ontinuous and
f∆ does not hange its sign for t ∈ [a, b]. Then for any rd-ontinuous funtion g thereexist points c, d ∈ [a, b]κ suh that

∫ b

a

fσ(t)g(t) ∆t ≤ f(a)

∫ c

a

g(t) ∆t + f(b)

∫ b

c

g(t) ∆tand ∫ b

a

fσ(t)g(t) ∆t ≥ f(a)

∫ d

a

g(t) ∆t + f(b)

∫ b

d

g(t) ∆t.Lemma 2.1, applied to the ∆-integral and ∇-integral, gives the following result.Lemma 3.3. Let f be a ld-ontinuous funtion and let
f̂(t) =

{
lims→t+ f(s) if t is ls and rd point,
fσ(t) otherwise.Then ∫ b

a

f(t)∇t =

∫ b

a

f̂(t) ∆t.Proof. Let F be the ∇-antiderivative of f , i.e., F∇ = f . Then by Lemma 2.1 wehave
F∆(t) =

{
lims→t+ F∇(s) = lims→t+ f(s) if t is ls and rd,
F∇(σ(t)) = fσ(t) otherwise.Hene, F∆(t) = f̂(t), and thus
∫ b

a

f̂(t) ∆t = F (t)|ba =

∫ b

a

f(t)∇t.

�Further we present a formula for the ∇-derivative of a omposite funtion, the proofof this statement is the same as for ∆-derivative and it is based on the Lagrange MeanValue Theorem.Lemma 3.4. Let f : R → R be a di�erentiable funtion and g : T → R be ∇-differen-tiable. Then we have
[f(g(t))]∇ = f ′(ξ)g∇(t),where ξ is between gρ(t) and g(t).Now we reall some results of the above mentioned papers [2℄ and [38℄ that deal withequations (3.2) and (3.4). These results are summarized in statements whih are usuallyreferred to as the Reid Roundabout theorem. Reall that by a solution of (3.2) it isunderstood a funtion x whih is ∆-di�erentiable, rx∆ is ∇-di�erentiable and (3.2) issatis�ed. A solution of (3.4) is de�ned in a similar way. We use the standard notationfor time sale intervals. An interval [a, b] atually means {t ∈ T : a ≤ t ≤ b}, open andhalf-open intervals have the same meaning.



3.2. BASIC FACTS 13Proposition 3.1 ([38℄, [16, Chap. 4℄). Suppose that the funtion c is ld-ontinuous,
r is ontinuous and r(t) > 0. Then the following statements are equivalent:(i) Equation (3.2) is disonjugate on an interval [ρ(a), σ(b)], i.e., the solution x of(3.2) given by the initial ondition xρ(a) = 0, (rx∆)ρ(a) = 1 has no generalizedzero in (ρ(a), σ(b)], i.e., it satis�es xρ(t)x(t) > 0 for t ∈ (ρ(a), σ(b)].(ii) There exists a solution of (3.2) having no generalized zero in [ρ(a), σ(b)].(iii) The quadrati funtional

F(y) =

∫ σ(b)

ρ(a)

[
rρ(t)(y∇)2 − c(t)y2

]
∇t > 0over nontrivial y : [ρ(a), σ(b)] → R for whih y∇ exists, it is ld-ontinuous, and

yρ(a) = 0 = yσ(b).(iv) There exists a solution of the Riati equation
w∇ + c(t) +

(wρ)2

rρ(t) + ν(t)wρ
= 0,related to (3.2) by the substitution w = r(t)x∆

x
, whih is de�ned on [ρ(a), σ(b)] andsatis�es there rρ(t) + ν(t)wρ > 0.Note that it is supposed in [10℄ that both funtions c, r in (3.2) are ontinuous. How-ever, under this assumption the ∇-derivative (r(t)x∆)∇ is ontinuous, in partiular, ld-ontinuous, hene applying the forward jump operator to (3.2), using (2.7) we get theequation

(r(t)x∆)∆ + cσ(t)xσ = 0whih is just the equation of the form (3.3) and the above formulated Proposition 3.1 anbe essentially dedued from a orresponding statement for (3.3), see [15℄. Also, a state-ment analogous to Proposition 3.1 an be formulated without positivity assumption onthe funtion r, however, as showed, e.g., in [24℄ where (3.3) is investigated, \reasonable"osillation riteria an be derived only under some sign restritions on the funtion r,we refer to [24℄ for details. Finally, note that our presentation of Proposition 3.1 fol-lows exatly the presentation of [16℄ and [38℄. Later, in Setion 3.3, we give a similarresult for half-linear equation (3.1), but instead of the interval [ρ(a), σ(b)] onsidered inProposition 3.1, we formulate our results for t ∈ [a, b].Now we turn our attention to the Roundabout theorem for (3.4), see [45℄.Proposition 3.2. Suppose that the funtions r, c are rd-ontinuous and r(t) 6= 0.Then the following statements are equivalent.(i) Equation (3.4) is disonjugate on a time sale interval [a, b], i.e., the solution xgiven by the initial ondition x(a) = 0, r(a)Φ(x∆(a)) = 1 has no generalized zeroin (a, b], i.e., r(t)Φ(x(t))Φ(xσ(t)) > 0 for t ∈ (a, b].(ii) There exists a solution of (3.4) having no generalized zero in [a, b].(iii) The energy funtional
F(y) =

∫ b

a

[r(t)|y∆|p − c(t)|yσ|p] ∆t > 0



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 14for every nontrivial y whose ∆-derivative is pieewise rd-ontinuous and at end-poins y(a) = 0 = y(b) holds.(iv) There exists a solution of the Riati-type equation (related to (3.4) by the sub-stitution w = rΦ(x∆/x))
w∆ + c(t) =

{
−(p − 1)r1−q(t)|w|q if σ(t) = t,

− w
µ(t)

(
1 − r(t)

Φ(Φ−1(r(t))+µ(t)Φ−1(w))

) if σ(t) > twhih is de�ned for t ∈ [a, b] and satis�es Φ−1(r(t)) + µ(t)Φ−1(w(t)) > 0 in thisinterval.3.3. Pione's identity and Roundabout theoremBefore passing to the main subjets of this setion whih are basi statements for theelaboration of the osillation theory of (3.1), let us note that we are not onerned withthe existene and uniqueness problem for (3.1) in this thesis. This result an be provedusing the time sales indution essentially in the same way as in [10, Theorem 3.1℄ and[45, Setion 3℄.Throughout what follows we suppose that(H) r(t) is ontinuous, c(t) is ld-ontinuous, and r(t) 6= 0on a time sale interval under onsideration. Under this assumption, system (3.1) an bewritten as a 2 × 2 system
x∇ = Φ−1(uρ/rρ(t)), u∇ = −c(t)Φ(xρ + ν(t)Φ−1(uρ/rρ(t))),and the existene and uniqueness problem for (3.1) is investigated via this �rst ordersystem. We have the same statement as [10, Theorem 3.1℄, namely that a solution of(3.1) is uniquely determined by the initial ondition x(t0) = x0, x∇(t0) = x1, t0 ∈ T,

x0, x1 ∈ R, it exists on any interval where the hypotheses (H) are satis�ed and dependsontinuously on the initial ondition. We onjuture, that the results of this setionremain to hold under the weaker assumption that r is only ld-ontinuous, but under thisweaker assumption we have till now some diÆulties with the existene problem for (3.1).We start with the Riati substitution for (3.1).Lemma 3.5. Suppose that x is a solution of (3.1) suh that x(t) 6= 0 on a time saleinterval I = [a, b]. Then w = rΦ(x∆/x) is a solution of the Riati-type equation(3.6) w∇ + c(t) =

{
−(p − 1) |w|q

Φ−1(r(t))
if t = ρ(t),

− wρ

ν(t)

(
1 − rρ(t)

Φ(Φ−1(rρ(t))+ν(t)Φ−1(wρ))

) if ρ(t) < t.Moreover, if(3.7) rρ(t)x(t)xρ(t) > 0 for t ∈ [a, b]κ,holds, then(3.8) Φ−1(rρ(t)) + ν(t)Φ−1(wρ(t)) > 0for t ∈ [a, b]κ.



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 15Proof. Let w = rΦ( x∆

x
). Then using (2.5) and (2.3) we have (suppressing the argu-ment t)

w∇ =
(rΦ(x∆))∇Φ(x) − rΦ(x∆)Φ∇(x)

Φ(xρ)Φ(x)

=
(rΦ(x∆))∇(Φ(xρ) + νΦ∇(x)) − rΦ(x∆)Φ∇(x)

Φ(xρ)Φ(x)

= −c +
[ν(rΦ(x∆))∇ − rΦ(x∆)]Φ∇(x)

Φ(xρ)Φ(x)

= −c −
(rΦ(x∆))ρΦ∇(x)

Φ(xρ)Φ(x)
= −c −

wρΦ∇(x)

Φ(x)
.Now we have to distinguish two ases:(i) Suppose that t is left dense. Then the nabla derivative redues to the \normal deriva-tive" (Φ∇(x) = Φ′(x)) and the ρ-operator has no e�et, so that

w∇ = −c − w
Φ′(x)

Φ(x)
= −c − w

(p − 1)|x|p−2x′

|x|p−1
= −c − (p − 1)w

x′

x

Φ−1(r)

Φ−1(r)

= −c − (p − 1)w
Φ−1(w)

Φ−1(r)
= −c − (p − 1)

|w|q

Φ−1(r)whih is equation (3.6).(ii) Suppose that t is left sattered. Then beause of (2.3) and (2.7)
Φ∇(x)

Φ(x)
=

Φ(x) − Φ(xρ)

νΦ(x)
=

1

ν

(
1 −

Φ(xρ)

Φ(x)

)
=

1

ν

(
1 − Φ

(
xρ

xρ + ν(x∆)ρ

))

=
1

ν

(
1 −

1

Φ(1 + ν(x∆

x
)ρ)

)
=

1

ν

(
1 −

rρ

Φ(Φ−1(rρ) + νΦ−1(wρ))

)whih implies the seond ase of relation (3.6). The last fat we need to prove is that theinequality Φ−1(rρ) + νΦ−1(wρ) > 0 is valid for t ∈ [a, b]κ. But
Φ−1(rρ) + νΦ−1(wρ) = Φ−1(rρ) + νΦ−1(rρ)

x∆ρ

xρ
= Φ−1(rρ)

(
1 + ν

x∆ρ

xρ

)

= Φ−1(rρ)
xρ + νx∆ρ

xρ
= Φ−1(rρ)

xρ + νx∇

xρ
= Φ−1(rρ)

x

xρand the last expression is positive if and only if (3.7) holds. �In the next statement and also later we will denote by C1
ld the lass of funtions

y : [a, b] ⊂ T → R suh that y∇ exists and it is ld-ontinuous.Theorem 3.1 (Pione's Identity). Assume that w is a solution of Riati equation(3.6) on [a, b]. Let y ∈ C1
ld[a, b]. Then for t ∈ [a, b] (suppressing the argument)(3.9) (w|y|p)∇ = rρ|y∇|p − c|y|p − G(y, w),



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 16holds, where(3.10) G(y, w) =

{
p

Φ−1(r)

[
|Φ−1(r)y∇|p

p
− wΦ(y)Φ−1(r)y∇ + |wΦ(y)|q

q

] if ρ(t) = t,

rρ|y∇|p − wρrρ

νΦ(Φ−1(rρ)+νΦ−1(wρ))
|yρ + νy∇|p + wρ

ν
|yρ|p if ρ(t) < t.Proof. First suppose that t is left dense, i.e. ρ(t) = t. Then

(w|y|p)∇ = w∇|y|p + w(|y|p)∇ =
(
− c − (p − 1)

|w|q

Φ−1(r)

)
|y|p + pwΦ(y)y∇

= r|y∇|p − c|y|p − p
{r|y∇|p

p
− wΦ(y)y∇ +

1

q

|w|q|y|p

Φ−1(r)

}

= r|y∇|p − c|y|p −
p

Φ−1(r)

{ |Φ−1(r)y∇|p

p
− wΦ(y)Φ−1(r)y∇ +

|wΦ(y)|q

q

}
.For ls-point t we have (using (2.4) and (3.6))

(w|y|p)∇

= w∇|y|p + wρ(|y|p)∇ =
[
− c −

wρ

ν

(
1 −

rρ

Φ(Φ−1(rρ) + νΦ−1(wρ))

)]
|y|p

+ wρ |y|
p − |yρ|p

ν

= rρ|y∇|p − c|y|p +
wρrρ

νΦ(Φ−1(rρ) + νΦ−1(wρ))
|y|p −

wρ

ν
|yρ|p − rρ|y∇|p

= rρ|y∇|p − c|y|p −
{
rρ|y∇|p −

wρrρ

νΦ(Φ−1(rρ) + νΦ−1(wρ))
|y|p +

wρ

ν
|yρ|p

}
,i.e., (3.10) holds sine y = yρ + νy∇. �Theorem 3.2. Let the assumptions of the previous theorem be satis�ed and, in addi-tion, suppose that(3.11) Φ−1(rρ(t)) + ν(t)Φ−1(wρ(t)) > 0for t ∈ Tκ. Then G(y, w)(t) ≥ 0 for t ∈ [a, b]κ, where the equality holds if and only if

wΦ(y) = rΦ(y∆).Proof. Again, suppose �rst that t is left dense. Then beause ν(t) = 0 holds, ondi-tion (3.11) implies Φ−1(r(t)) > 0. We have
G(y, w) =

p

Φ−1(r)

{ |Φ−1(r)y∇|p

p
− wΦ(y)Φ−1(r)y∇ +

|wΦ(y)|q

q

}
.This ase is very easy to prove, beause the expression in brakets is nonnegative aordingto Young's inequality (Lemma 3.1 with u = Φ−1(r)y∇, v = wΦ(y)). Equality ours ifand only if v = Φ(u), i.e., if and only if wΦ(y) = rΦ(y∆). Note that this equality holdsi� w is related to y by the Riati substitution.



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 17Now suppose that t is ls-point. If we set α = νy∇, β = yρ, we an write the funtion
G in variables α, β as

G(α, β) =
1

ν

{ rρ

νp−1
|α|p −

wρrρ

Φ(Φ−1(rρ) + νΦ−1(wρ))
|α + β|p + wρ|β|p

}
.If the ase α + β = 0 ours, then |α| = |β| and the funtion G(α, β) is of following form

G(α, β) = G(α) =
|α|p

ν

{ rρ

νp−1
+ wρ

}and the expression in brakets is positive aording to (3.11).If α + β 6= 0 then our aim is to prove that(3.12) rρν1−p|α|p + wρ|β|p

|α + β|p
≥

wρrρ

Φ(Φ−1(rρ) + νΦ−1(wρ))
.The left-hand side of the last inequality is homogeneous in variables α, β, i.e., it is nothanged by the transformation α 7→ kα, β 7→ kβ for any k ∈ R \ {0}. For this reason, wean assume that α + β = ±1, for example α + β = 1. We will show that the minimum ofthe funtion G̃(α, β) := rρ

νp−1 |α|
p + wρ|β|p, provided α + β = 1, is equal to the right-handside of the inequality (3.12).First we will express G̃ as a funtion of only one variable using the ondition α+β = 1.So we have

G̃(α) =
rρ

νp−1
|α|p + wρ|1 − α|p.The derivative of this funtion is

G̃′(α) = p
{ rρ

νp−1
Φ(α) − wρΦ(1 − α)

}with the only stationary point
α∗ =

νΦ−1(wρ)

Φ−1(rρ) + νΦ−1(wρ)
.The seond derivative is given by(3.13) G̃′′(α) = p(p − 1)

{
rρ

νp−1
|α|p−2 + wρ|1 − α|p−2

}and at the stationary point α∗ satis�es
G̃′′(α∗) =

= p(p − 1)
1

|Φ−1(rρ) + νΦ−1(wρ)|p−2

{ rρ

νp−1
|νΦ−1(wρ)|p−2 + wρ|Φ−1(rρ)|p−2

}

= p(p − 1)
1

ν|Φ−1(rρ) + νΦ−1(wρ)|p−2

{
rρ|wρ|2−q + νwρ|rρ|2−q

}

= p(p − 1)
|rρwρ|2−q

ν|Φ−1(rρ) + νΦ−1(wρ)|p−2

{
Φ−1(rρ) + νΦ−1(wρ)

}so that the sign of G̃′′(α∗) depends only on the last braket, whih is positive due to ourassumption (3.11). This implies that α∗ is a loal minimum point of the funtion G̃ and



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 18one an diretly verify that the value G̃(α∗) just equals the expression on the right-handside of inequality (3.12). Finally, using again ondition (3.11) and (3.13), by a similaromputation as above one an verify that G̃′′(α) ≥ 0, i.e., G̃ is onvex and hene α∗ isalso the global minimum of G̃. �Osillatory properties of (3.1) are de�ned via the onept of a generalized zero ofa solution of this equation. We say that a solution x of equation (3.1) has a generalizedzero at t if x(t) = 0 or, if t is ls-point and (rρxxρ)(t) < 0. We say that equation (3.1)is disonjugate on an interval [a, b] if the nontrivial solution y satisfying y(a) = 0 hasno generalized zero in (a, b] and any other nontrivial solution of (3.1) has at most onegeneralized zero in [a, b].Now, let us de�ne A to be the set of funtions
A := {y ∈ C1

ld([a, b], R) : y(a) = y(b) = 0}and the p-degree funtional F on A by(3.14) F(y; a, b) =

∫ b

a

{rρ(t)|y∇|p − c(t)|y|p}∇t.We say F is positive de�nite (and write F > 0) on A provided F(y) ≥ 0 for all y ∈ Aand F(y) = 0 if and only if y ≡ 0.The next theorem establishes basi methods of the osillation theory of (3.1) andrelates disonjugay of this equation to the solvability of the Riati equation (3.6) andpositivity of the energy funtional (3.14).Theorem 3.3 (Roundabout theorem). The following statements are equivalent:(i) Equation (3.1) is disonjugate on [a, b].(ii) There exists a solution of (3.1) having no generalized zero in [a, b].(iii) The Riati equation (3.6) has a solution w satisfying for all t ∈ [a, b]κ theinequality {Φ−1(rρ) + νΦ−1(wρ)}(t) > 0.(iv) The p-degree funtional F is positive de�nite on A.Proof. We prove that the following four impliations are valid:(i)⇒(ii): Let ỹ be the solution of (3.1) satisfying the initial onditions ỹ(a) = 0, ỹ∇(a) = 1.From (i) we get that (rρỹỹρ)(t) > 0 for t ∈ (a, b]. Consider a solution yε given by theinitial onditions (with ε > 0)
yε(a) = ε, y∇

ε (a) = ν̃(a)
(εrρ(a) − 1

rρ(a)
− ν(a)

)
+ 1,where ν̃ = 0 if ν = 0 and ν̃ = 1

ν
if ν > 0. Then yε → ỹ for ε → 0. Hene, if we hoose

ε > 0 suÆiently small, then y ≡ yε ful�lls (rρyyρ)(t) > 0 for t ∈ (a, b]. Moreover, forls-point a we get
(rρyyρ)(a) = rρ(a)

ε

rρ(a)
= ε > 0beause

y∇(a) =
(y − yρ

ν

)
(a) =

εrρ(a) − 1

ν(a)rρ(a)



3.3. PICONE'S IDENTITY AND ROUNDABOUT THEOREM 19by (2.2). In the ase when a is ld-point we have
(rρyyρ)(a) = (ry2)(a) = r(a)ε2,whih is positive if and only if r(a) > 0. Suppose onversely that r(a) < 0. Considera solution ŷ that satis�es the initial onditions ŷ(d) = 0, ŷ∆(d) = 1, where d ∈ (a, b]. Thedisonjugay of the equation (3.1) implies (rρŷŷρ)(a) > 0. Sine a is left dense, we get

r(a) > 0 whih is ontradition. Altogether, y is the solution of (3.1) with (rρyyρ)(t) > 0for t ∈ [a, b], so that (ii) holds.(ii)⇒(iii): This impliation is the Riati substitution already proved in Lemma 3.5.(iii)⇒(iv): Suppose that w is a solution of Riati equation (3.6) satisfying the inequality
{Φ−1(rρ) + νΦ−1(wρ)}(t) > 0 for t ∈ [a, b]κ. Let y ∈ A, i.e., y(a) = y(b) = 0. From thePione identity we have

rρ(t)|y∇|p − c(t)|y|p = (w(t)|y|p)∇ + G(y, w)and by integrating from a to b we obtain
F(y; a, b) =

∫ b

a

{rρ(t)|y∇|p − c(t)|y|p}∇t

= [w(t)|y|p]ba +

∫ b

a

G(y, w)∇t =

∫ b

a

G(y, w)∇t.Hene F(y; a, b) ≥ 0 beause of Theorem 3.2 and, moreover, the ase F(y; a, b) = 0 anour if and only if wΦ(y) = rΦ(y∆), i.e., y∆ = Φ−1(w/r)y. But sine y(a) = 0, theinitial value problem admits only the trivial solution. Consequently, F(y; a, b) > 0 for allnontrivial y ∈ A.(iv)⇒(i): Suppose, by ontradition, that F(y; a, b) > 0 and (3.1) is not disonjugate on
[a, b]. Then either the nontrivial solution ỹ of (3.1) given by the initial ondition y(a) = 0has a generalized zero in (a, b] or there is a nontrivial solution y of (3.1) suh that yhas at least two generalized zeros in (a, b]. Consider the latter possibility, the formerone an be treated in a similar way. Let α, β ∈ (a, b], where α < ρ(β), be two smallestgeneralized zeros of y in (a, b]. There are four possibilities aording to whether α, βare ld- or ls-points. We onsider here the ase when β ld-point (i.e., ρ(β) = β) and weonstrut a nontrivial pieewise ontinuous funtion y ∈ C1 with y(a) = 0 = y(b), suhthat F(y; a, b) ≤ 0. If the remaining two possibilities happen (ρ(β) < β), we proeed ina similar way as in the remaining part of the proof.First suppose that α is ls-point and de�ne

u(t) =





0 for t ∈ [a, α),

y(t) for t ∈ [α, β],

0 for t ∈ (β, b],whih implies u ∈ A and u(t) 6= 0 for t ∈ (α, β). In the next omputation we use integra-tion by parts (2.6), the de�nition of funtion u, the fat that ∫ t

ρ(t)
f(s)∇s = f(t)ν(t), andthat (rΦ(y∆))(α) = (rΦ(y∆))ρ(α) + ν(α)(rΦ(y∆))∇(α).
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F(u; a, b)

=

∫ b

a

[
rρ(t)|u∇|p − c(t)|u|p

]
∇t

=

∫ α

ρ(α)

[
rρ(t)|u∇|p − c(t)|u|p

]
∇t +

∫ β

α

[
rρ(t)|u∇|p − c(t)|u|p

]
∇t

=
{
(rρ|u∇|p − c|u|p)ν

}
(α) + urΦ(u∆)

∣∣β
α
−

∫ β

α

u
[
(r(t)Φ(u∆))∇ + c(t)Φ(u)

]
∇t

=
{
νrρ|u∇|p

}
(α) − u

{
cΦ(u)ν + (rΦ(u∆))ρ + ν(rΦ(u∆))∇

}
(α)

= rρ(α)

∣∣∣∣
u(α) − uρ(α)

ν(α)

∣∣∣∣
p

ν(α) − y(α)rρ(α)Φ(y∇(α))

=
y(α)rρ(α)

Φ(ν(α))

[
Φ(y(α)) − Φ(ν(α)y∇(α))

]
.Hene, it suÆes to show that(3.15) {

yrρΦ(y) − yrρΦ(νy∇)
}

(α) ≤ 0.This inequality is equivalent to the inequality
{
Φ−1(yrρ)(y − νy∇)

}
(α) =

{
Φ−1(yrρΦ(yρ))

}
(α) ≤ 0,but this inequality holds beause aording to our assumption α is generalized zero ofsolution y, so (3.15) holds and hene F(u; a, b) ≤ 0, a ontradition.Now suppose that α is an ld-point, i.e., ρ(α) = α. Sine r(t) 6= 0, the inequality

{rρyρy}(α) ≤ 0 means that either y(α) = 0 or r(α) < 0. If y(α) = 0, the same funtion
u as in the previous part of the proof gives F(u; a, b) = 0, a ontradition, so we supposethat y(α) 6= 0 and rρ(α) < 0. In this ase we proeed in the same way as in the ontinuousase (see, e.g., [47℄). Let tm → α−, as m → ∞, be the left-sequene for α and put

um(t) =

{
t−tm

(α−tm)1/p for t ∈ [tm, α] ∩ T,

0 otherwise.Now, the same omputation as in [45, 46℄ yields
F(um; a, b) → rρ(α) < 0 as m → ∞,a ontradition. �Remark 3.1. (i) The previous theorem implies that the Sturm Comparison theoremextends verbatim to (3.1). In partiular, let the equation(3.16) (R(t)Φ(x∆))∇ + C(t)Φ(x) = 0be a Sturmian majorant of (3.1) on [a, b], i.e.,

0 < R(t) ≤ r(t), C(t) ≥ c(t), t ∈ [a, b].



3.4. OSCILLATION CRITERIA 21If (3.1) is not disonjugate on [a, b], i.e., there exists a nontrivial funtion y ∈ A suh that
Frc(y; a, b) =

∫ b

a

[
rρ(t)|y∇|p − c(t)|y|p

]
∇t ≤ 0,then also

FRC(y; a, b) =

∫ b

a

[
Rρ(t)|y∇|p − C(t)|y|p

]
∇t ≤ 0,and hene (3.16) is not disonjugate as well. Conversely, if (3.16) is disonjugate on

[a, b], i.e., FRC(y; a, b) > 0 for every 0 6≡ y ∈ A, then Frc(y; a, b) > 0 and (3.1) is alsodisonjugate on [a, b].(ii) Theorem 3.3 also shows that (3.1) does not admit oexistene of a solution withoutgeneralized zero in [a, b] and a solution having two or more generalized zeros in thisinterval. Indeed, the existene of a solution of (3.1) without a generalized zero in [a, b]implies Frc(y; a, b) > 0 for 0 6≡ y ∈ A, while the existene of a solution with two or moregeneralized zeros enables to onstrut a funtion 0 6≡ ỹ ∈ A for whih FRC(ỹ; a, b) ≤ 0.(iii) The previous remark also justi�es the lassi�ation of (3.1) on time sales unboundedabove as osillatory and nonosillatory in the same way as for the lassial linear Sturm-Liouville di�erential equations.3.4. Osillation riteriaThroughout this setion we suppose that a time sale under onsideration is unboundedabove; i.e., there exists a sequene tn ∈ T suh that tn → ∞.Equation (3.1) is said to be nonosillatory if there exists α ∈ T suh that (3.1) isdisonjugate on [α, β] for every β > α. In the opposite ase, (3.1) is said to be osillatory.As a diret onsequene of the equivalene (i) and (iv) in the Roundabout theorem,we have the following statement.Lemma 3.6. Equation (3.1) is nonosillatory if and only if there exists a ∈ T suhthat
F(y; a,∞) =

∫ ∞

a

{rρ|y∇|p − c|y|p}(t)∇t > 0for every nontrivial y : [a,∞) → R with y∇ pieewise ld-ontinuous, satisfying y(a) = 0,and for whih there exists d > a with y(t) ≡ 0 for t > d.Theorem 3.4 (Leighton-Wintner riterion). Suppose that r(t) > 0 for large t(3.17) ∫ ∞

(rρ(t))1−q ∇t = ∞ and ∫ ∞

c(t)∇t = ∞.Then equation (3.1) is osillatory.



3.4. OSCILLATION CRITERIA 22Proof. Let a ∈ T be arbitrary and t1, t2, t3, t4 ∈ [a,∞) be suh that a ≤ t1 < t2 <
t3 < t4. De�ne funtion y by

y(t) =





0 for t ∈ [a, t1),

f(t) for t ∈ [t1, t2),

1 for t ∈ [t2, t3),

g(t) for t ∈ [t3, t4),

0 for t ∈ [t4,∞),where f, g are given by the formulas
f(t) =

∫ t

t1
(rρ(s))1−q ∇s

∫ t2
t1

(rρ(s))1−q ∇s
, g(t) =

∫ t4
t

(rρ(s))1−q ∇s
∫ t4

t3
(rρ(s))1−q ∇s

,i.e., they satisfy the boundary onditions f(t1) = 0, f(t2) = 1, g(t3) = 1, g(t4) = 0. Thisyields y(t1) = y(t4) = 0, y(t) > 0 for t ∈ (t1, t4) and y∇ is pieewise ld-ontinuous. Itholds
f∇(t) =

(rρ(t))1−q

∫ t2
t1

(rρ(s))1−q ∇s
, g∇(t) = −

(rρ(t))1−q

∫ t4
t3

(rρ(s))1−q ∇s
,and onsequently, using integration by parts,

∫ ∞

a

rρ(t)|y∇(t)|p ∇t =

∫ t4

t1

rρ(t)|y∇(t)|p ∇t

=

∫ t2

t1

rρ(t)Φ(f∇(t))f∇(t)∇t +

∫ t4

t3

rρ(t)Φ(g∇(t))g∇(t)∇t

= [rρ(t)Φ(f∇(t))f(t)]t2t1 −

∫ t2

t1

(rρ(t)Φ(f∇(t)))∇fρ ∇t

+ [rρ(t)Φ(g∇(t))g(t)]t4t3 −

∫ t4

t3

(rρ(t)Φ(g∇(t)))∇gρ ∇t

= rρ(t2)Φ(f∇(t2))f(t2) − rρ(t3)Φ(g∇(t3))g(t3)

=

(∫ t2

t1

(rρ(t))1−q ∇t

)1−p

+

(∫ t4

t3

(rρ(t))1−q ∇t

)1−p

.Now we ompute the seond term in F(y; a,∞) by Lemma 3.3 (with ĉ, ĝ de�ned inthe same way as f̂ in Lemma 3.3. We obtain
∫ t4

t3

c(t)gp(t)∇t =

∫ t4

t3

ĉ(t)ĝp(t) ∆t =

∫ t4

t3

ĉ(t)gp(σ(t)) ∆tsine the funtion g is ontinuous. Using the seond mean value theorem of integralalulus (Lemma 3.2) there exists s2 > t3 suh that
∫ t4

t3

ĉ(t)gp(σ(t)) ∆t ≥

∫ s2

t3

ĉ(t) ∆t =

∫ s2

t3

c(t)∇t.



3.5. NONOSCILLATION CRITERIA 23By the same argument, there exists s1 ∈ (t1, t2) suh that
∫ t2

t1

c(t)fp(t)∇t ≥

∫ t2

s1

c(t)∇t.Summarizing the previous omputations, we get
F(y; a,∞) ≤

(∫ t2

t1

(rρ(t))1−q ∇t
)1−p

+
(∫ t4

t3

(rρ(t))1−q ∇t
)1−p

−

∫ s2

s1

c(t)∇t.Now, if t1, t2 are �xed, for suÆiently large t3, t4 the assumptions (3.17) of this theoremimply that F(y; a,∞) < 0. �When the assumption of the previous theorem onerning the divergene of the integral∫∞
c(t)∇t is violated, the next riterion applies.Theorem 3.5. Suppose that r(t) > 0 for large t,

∫ ∞

(rρ(t))1−q ∇t = ∞,and(3.18) lim inf
t→∞

(∫ t

a

(rρ(s))1−q ∇s
)p−1(∫ ∞

t

c(s)∇s
)

> 1.Then equation (3.1) is osillatory.Proof. De�ne the funtion y in the same way as in the previous proof. Then
F(y; a,∞) satis�es

F(y; a,∞) ≤
(∫ t2

t1

(rρ(t))1−q ∇t
)1−p

+
(∫ t4

t3

(rρ(t))1−q ∇t
)1−p

−

∫ s2

s1

c(t)∇t

=
(∫ t2

t1

(rρ(t))1−q ∇t
)1−p

×
[
1 −

(∫ t2

t1

(rρ(t))1−q ∇t
)p−1

∫ s2

s1

c(t)∇t +
(∫ t2

t1
(rρ(t))1−q ∇t

∫ t4
t3

(rρ(t))1−q ∇t

)p−1]
.It is not so diÆult to show that if (3.18) holds, then the expression in brakets is negativefor suÆiently large t2 < t3 < t4. This proof is exatly the same as for di�erential equation,i.e. T = R, see [18℄. �3.5. Nonosillation riteriaIn the proof of the next nonosillation riterion for (3.1) we will need the following re�ne-ment of the Riati equivalene of (i) and (iii) in Theorem 3.3. We will denote by R[w]the so-alled Riati operator (ompare (3.6)), i.e.,(3.19) R[w] :=

{
w∇ + c(t) + (p − 1) |w|q

Φ−1(r(t))
if t = ρ(t),

w∇ + c(t) + wρ

ν(t)

(
1 − rρ(t)

Φ(Φ−1(rρ(t))+ν(t)Φ−1(wρ))

) if ρ(t) < t,



3.5. NONOSCILLATION CRITERIA 24and by L(x) the left-hand side of (3.1), i.e.,
L(x) := (r(t)Φ(x∆))∇ + c(t)Φ(x).The proof of the next lemma follows the same idea as in the ontinuous ase, but for thereader's onveniene we present here the main ideas of this proof.Lemma 3.7. Equation (3.1) is nonosillatory if and only if there exists a ∇-di�erenti-able funtion w satisfying (3.8) suh that R[w] ≤ 0 for large t.Proof. The impliation \⇒" is trivial sine it is only a restatement of the Riatiequivalene (i) ⇐⇒ (iii) for large t. To prove the opposite impliation, suppose that thereexists a funtion w satisfying assumptions of the lemma on an interval [T,∞). To provethat (3.1) is nonosillatory, we will onstrut a nonosillatory majorant of this equationin suh a way that w is a solution of the Riati equation assoiated to this majorantequation.Let y be the solution of the initial value problem

y∆ = r1−q(t)Φ−1(w(t))y, y(T ) = 1,where T is suÆiently large. Using the omputation at the beginning of Lemma 3.5 wehave
R[w] = w∇ + c(t) +

rρΦρ(y∆)(Φ(y))∇

Φ(yρ)Φ(y)
.Then we have, again following the omputation in the proof of Lemma 3.5, in partiular,splitting the ases ρ(t) < t and ρ(t) = t,

0 ≥ |y|pR[w] = |y|p
[
w∇ + c(t) +

rρΦρ(y∆)(Φ(y))∇

Φ(yρ)Φ(y)

]
= yL(y).Now, let c̃(t) := c(t) − y(t)L[y](t)

yp(t)
. Then c̃(t) ≥ c(t) and y is a solution of the equation(whih is a Sturmian majorant of (3.1))(3.20) (r(t)Φ(y∆))∇ + c̃(t)Φ(y) = 0for whih rρ(t)yρ(t)y(t) > 0 for large t, i.e., (3.20) is nonosillatory and hene (3.1) isnonosillatory as well. �Now we apply Lemma 3.7 to prove the Hille-Nehari-type nonosillation riterion for(3.1). The idea of the proof is the same as in the ontinuous ase T = R, but thepartiularities of time sale alulus require some additional assumptions (whih are au-tomatially satis�ed for T = R) and also some tehnial modi�ations, ompare the proofof [18, Theorem 2.1℄.



3.5. NONOSCILLATION CRITERIA 25Theorem 3.6. Suppose that r(t) > 0 for large t, ∫∞
(rρ(t))1−q ∇t = ∞, the integral∫∞

c(t)∇t is onvergent,
lim
t→∞

ν(t) [rρ(t)]1−q

∫ ρ(t)

a
[rρ(s)]1−q ∇s

= 0,(3.21)
lim inf

t→∞

(∫ ρ(t)

t0

(rρ(s))1−q ∇s
)p−1(∫ ∞

ρ(t)

c(s)∇s
)

> −
2p − 1

p

(p − 1

p

)p−1
,(3.22)

lim sup
t→∞

(∫ ρ(t)

t0

(rρ(s))1−q ∇s
)p−1(∫ ∞

ρ(t)

c(s)∇s
)

<
1

p

(p − 1

p

)p−1
,(3.23)then (3.1) is nonosillatory.Proof. By the previous lemma, we will onstrut a funtion w suh that R[w](t) ≤ 0and (3.8) holds for large t. To this end, we denote (for the notational onveniene)

r̃ := rρ, w̃ = wρ,we also denote
A(t) :=

(∫ t

t0

r̃1−q(s)∇s
)p−1(∫ ∞

t

c(s)∇s
)
.Let(3.24) w(t) =

(p − 1

p

)p−1
(∫ t

t0

r̃1−q(s)∇s
)1−p

+

∫ ∞

t

c(s)∇s.Using Lemma 3.4 (a ∇-hain rule for di�erentiation) we have
[( ∫ t

t0

r̃1−q(s)∇s
)1−p]∇

= (1 − p)r̃1−q(t)θ−p(t),where ∫ ρ(t)

t0

r̃1−q(s)∇s ≤ θ(t) ≤

∫ t

t0

r̃1−q(s)∇s.Also, using the Lagrange mean value theorem we have
w̃

ν

(
1 −

r̃

Φ (Φ−1(r̃) + νΦ−1(w̃))

)
=

w̃

ν

Φ(Φ−1(r̃) + νΦ−1(w̃)) − Φ(Φ−1(r̃))

Φ(Φ−1(r̃) + νΦ−1(w̃))

= (p − 1)
|η|p−2|w̃|q

Φ (Φ−1(r̃) + νΦ−1(w̃))
,where η is between Φ−1(r̃) and Φ−1(r̃) + νΦ−1(w̃). By adding (p−1

p
)p to the pair ofinequalities

−
2p − 1

p

(p − 1

p

)p−1
< Aρ(t) <

1

p

(p − 1

p

)p−1
,we obtain

−
(p − 1

p

)p−1
< Aρ(t) +

(
p − 1

p

)p

<
(p − 1

p

)p−1
.



3.5. NONOSCILLATION CRITERIA 26More preisely, (3.22) implies the existene of ε > 0 suh that
∣∣Aρ(t) +

(p − 1

p

)p∣∣q(1 + ε) <
(p − 1

p

)pfor large t. Now we will estimate the quantity
|w̃|q =

(∫ ρ(t)

t0

r̃1−q(s)∇s
)−p∣∣Aρ(t) +

(p − 1

p

)p∣∣q.(I) First onsider the ase that t is ld-point, i.e., ρ(t) < t. Using the previous omputa-tions, we obtain
R[w] = w∇ + c +

w̃

ν

(
1 −

r̃

Φ (Φ−1(r̃) + νΦ−1(w̃))

)

= −(p − 1)
(p − 1

p

)p
|θ|−pr̃1−q − c + c + (p − 1)

|η|p−2|w̃|q

Φ (Φ−1(r̃) + νΦ−1(w̃))

≤ (p − 1)r̃1−q
[
−
(p − 1

p

)p(
∫ t

t0

r̃1−q(s)∇s
)−p

+
(∫ ρ(t)

t0

r̃1−q(s)∇s
)−p |η|

p−2r̃q−1
∣∣∣(p−1

p
)p + Aρ(t)

∣∣∣
q

Φ (Φ−1(r̃) + νΦ−1(w̃))

]

=
(p − 1)r̃1−q

( ∫ t

t0
r̃1−q(s)∇s

)p

[
−
(p − 1

p

)p
+ B(t)

∣∣∣∣A
ρ(t) +

(p − 1

p

)p
∣∣∣∣
q ]

,where
B(t) :=

( ∫ t

t0
r̃1−q(s)∇s

∫ ρ(t)

t0
r̃1−q(s)∇s

)p |η|p−2r̃q−1

Φ (Φ−1(r̃) + νΦ−1(w̃))
→ 1as t → ∞, in partiular, for any ε > 0, B(t) < (1 + ε) for large t. Indeed, onsider thease p > 2, the ase p ∈ (1, 2) an be treated analogously. Using the fat that

Φ−1(r̃) − ν|Φ−1(w̃)| ≤ η ≤ Φ−1(r̃) + ν|Φ−1(w̃)|,and that
ν
∣∣∣
w̃

r̃

∣∣∣
q−1

=

= ν

∣∣∣(p−1
p

)p
[ ∫ ρ(t)

t0
r̃1−q(s)∇s

]1−p

+
∫∞

ρ(t)
c(s)∇s

∣∣∣
q−1

r̃q−1

=
ν(t)r̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

∣∣∣
(p − 1

p

)p
+
(∫ ρ(t)

t0

r̃1−q(s)∇s
)p−1(∫ ∞

ρ(t)

c(s)∇s
)∣∣∣

q−1

→ 0,as t → ∞, sine the seond term in the last expression is bounded (see (3.22)) and the�rst one goes to zero by (3.21). The last alulation also implies that
Φ−1(r̃) + νΦ−1(w̃) > 0for large t.
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|B(t)| ≤

(∫ ρ(t)

t0
r̃1−q(s)∇s + νr̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

)p

|Φ−1(r̃) + νΦ−1(w̃)|p−2r̃q−1

Φ (Φ−1(r̃) + νΦ−1(w̃))

=

(
1 +

νr̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

)p
r̃q−1+(p−2)(q−1) |1 + νΦ−1(w̃/r̃)|

p−2

r̃Φ (1 + νΦ−1(w̃/r̃))

=

(
1 +

νr̃1−q

∫ ρ(t)

t0
r̃1−q(s)∇s

)p
1

1 + νΦ−1(w̃/r̃)
→ 1, as t → ∞.Summarizing all estimates, if t0 is so large that all statements laimed to hold for large

t hold for t ≥ t0, we have
R[w] ≤

(p − 1)r̃1−q

(
∫ ρ(t)

t0
r̃1−q(s)∇s)p

[
−
(p − 1

p

)p
+
∣∣∣
(p − 1

p

)p
+ Aρ(t)

∣∣∣
q

(1 + ε)
]

< 0and
Φ−1(r̃) + νΦ−1(w̃) = Φ−1(r̃)(1 + νΦ−1(w̃/r̃)) > 0for large t.(II) Case ρ(t) = t. This ase is now easy to treat, sine then w̃ = w,

w∇ = (1 − p)

(
p − 1

p

)p−1 (∫ t

t0

r̃1−q(s)∇s
)−p

r̃1−q(t) − c(t)and an easy modi�ation of the previous omputation shows that
R[w] = w∇ + c(t) + (p − 1)r1−q(t)|w|q ≤ 0for large t. �The following theorem omplements the previous statement and deals with the asewhen ∫∞

(rρ(t))1−q ∇t < ∞.Theorem 3.7. Suppose that r(t) > 0 for large t, ∫∞
(rρ(t))1−q ∇t < ∞, the integral∫∞

c(t)∇t = ∞,
lim
t→∞

ν(t) [rρ(t)]1−q

∫∞

t
[rρ(s)]1−q ∇s

= 0,

lim inf
t→∞

(∫ ∞

ρ(t)

(rρ(s))1−q ∇s
)p−1(∫ ρ(t)

t0

c(s)∇s
)

> −
2p − 1

p

(p − 1

p

)p−1
,

lim sup
t→∞

(∫ ∞

ρ(t)

(rρ(s))1−q ∇s
)p−1(∫ ρ(t)

t0

c(s)∇s
)

<
1

p

(p − 1

p

)p−1
,then (3.1) is nonosillatory.Proof. The proof is similar to that of the previous theorem, we only take

w(t) =
(p − 1

p

)p−1
(∫ ∞

t

r̃1−q(s)∇s
)1−p

+

∫ t

t0

c(s)∇s,



3.5. NONOSCILLATION CRITERIA 28instead of w de�ned by (3.24). �In this hapter we have formulated only basi results onerning qualitative theory of(3.1). A natural motivation for the ontinuation of the researh are the results presentedin [2℄ whih onern equation (3.4).



CHAPTER 4EVEN ORDER DYNAMIC EQUATIONS4.1. IntrodutionAs a motivation for our researh, let us start �rst with the ase T = R and onsider theeven order (formally) self-adjoint di�erential equation(4.1) n∑

ν=0

(−1)ν
(
rν(t)y

(ν)
)(ν)

= 0, rn(t) > 0.The substitution
x =




y
y′...

y(n−1)


 , u =




∑n
ν=1(−1)ν(rνy

(ν))(ν−1)...
−(rny(n))′ + rn−1y

(n−1)

rny(n)


 .onverts (4.1) into the linear Hamiltonian di�erential system (2.9)

x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u,with the matries
B = diag{0, . . . , 0,

1

rn

}
, C = diag{r0, . . . , rn−1},

A = Ai,j =

{
1 if j = i + 1, i = 1, . . . , n − 1,

0 elsewhere,see [17, 47℄.The disrete ounterpart of (4.1) is the di�erene equation(4.2) n∑

ν=0

(−1)ν∆ν
(
r
[ν]
k ∆νyk+n−ν

)
= 0, r

[n]
k (t) 6= 0,and the substitution

xk =




yk+n−1

∆yk+n−2...
∆n−1yk


 , uk =




∑n
ν=1(−1)ν∆ν−1(r

[ν]
k ∆νyk+n−ν)...

−∆(r
[n]
k ∆nyk) + r

[n−1]
k ∆n−1yk+1

r
[n]
k ∆nyk


 .onverts this equation into the linear Hamiltonian di�erene system(4.3) ∆xk = Akxk+1 + Bkuk, ∆uk = Ckxk+1 − AT

k uk,29
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B = diag{0, . . . , 0,

1

r
[n]
k

}
, C = diag{r[0]

k , . . . , r
[n−1]
k },

A = Ai,j =

{
1 if j = i + 1, i = 1, . . . , n − 1,

0 elsewhere.The omprehensive treatment of the qualitative theory of disrete Hamiltonian systemsand higher order equations an be found in [5℄. We also refer to the fundamental paper ofBohner [11℄, where the theory of (4.3) with the matrix B possibly singular is established.Conerning a time sale uni�ation of the results for ontinuous and disrete equations(4.1) and (4.2), exept for some partial results (see, e.g., [6, 7, 8, 9℄), no systematitheory has been developed yet. The possible reason is the following fat. Motivated bythe disrete ase, onsider the fourth order dynami equation (we onsider this speialase just to explain the main idea without tehnial details)(4.4) (r(t)y∆∆)∆∆ + q(t)yσσ = 0.If we try the substitution (again motivated by the disrete ase)
x =

(
x1

x2

)
=

(
yσ

y∆

)
, u =

(
u1

u2

)
=

(
−(ry∆∆)∆

ry∆∆

)
.with the aim to rewrite (4.4) as the Hamiltonian system (with the matries given byanalogous formulas as in the ontinuous and disrete ase)(4.5) x∆ = A(t)xσ + B(t)u, u∆ = C(t)xσ − AT (t)u,we easily �nd that we need the identity (y∆)σ = (yσ)∆, but this identity holds generallyonly for T = R and T = hZ, h being a positive real onstant. Consequently, even-orderequations of the form (4.4) annot be written in the form (4.5) and this is likely the reasonfor the missing qualitative theory of even-order equations on time sales sine the theoryof Hamiltonian systems both in the ontinuous and disrete ase is a natural bakgroundfor the investigation of (4.1) and (4.2).The aim of this hapter is to overome this problem using the onept of dynami equa-tions with mixed derivatives. Seond order equations of this type have been investigatedin the reent papers [10, 38℄, see also [16, Chap. 3,4℄, and the prinipal role is playedthere by the onept of nabla derivative on time sales. Let us de�ne the di�erentialoperators

D∆
k y :=

{
y∆∇...∆∇ k even,

y∆∇...∇∆ k odd, D̃∆
k y :=

{
y∇∆...∇∆ k even,

y∆∇...∇∆ k odd,(4.6)
D∇

k y :=

{
y∇∆...∇∆ k even,

y∇∆...∆∇ k odd, D̃∇
k y :=

{
y∆∇...∆∇ k even,

y∇∆...∆∇ k odd,(4.7)(the operators D∆, D∇ start with the nabla and delta derivative, respetively, while
D̃∆, D̃∇ end with the orresponding derivative) and onsider the higher order dynami
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L(y) :=

n∑

ν=0

(−1)νD̃∇
ν

(
rν(t)D

∆
ν y
)

= 0,(4.8)
M(y) :=

n∑

ν=0

(−1)νD̃∆
ν

(
rν(t)D

∇
ν y
)

= 0.(4.9)We will show that these equations an be written in the form of (delta or nabla) sym-pleti dynami systems and this enables to study (4.8), (4.9) using the (relatively deeplydeveloped) theory of sympleti dynami systems.The next setion ontains the omputations showing that (4.8), (4.9) an be writtenas a (delta or nabla) sympleti dynami system. In the last setion we disuss someopen problems and the perspetives of the researh in the area of higher order dynamiequations with mixed derivatives.4.2. Conversion to sympleti systemsIn this setion we show that higher order equations (4.8) and (4.9) an be rewritten as adelta sympleti system or as a nabla sympleti system. The vetor variables x, u andthe matries A,B, C,D in resulting sympleti systems have slightly di�erent form for theoperators L or M , for n even or odd, and for transformation to delta or nabla sympletisystem (altogether we have eight ases), but the approah is similar in all ases. For thisreason we present detailed alulations only for two partiular possibilities.As a �rst representative ase let us onsider equation (4.9) with n odd and ld-ontinuous funtions ri.Theorem 4.1. Suppose that n is odd and the funtions ri, i = 0, . . . , n, are ld-ontinuous. Then equation (4.9) an be transformed into nabla sympleti system
(

x

u

)∇

=

(
A B
C D

)(
x

u

)
,where the bloks A,B, C,D are n × n matries of the following form

A =




0 1 0 0 · · · 0 0
0 0 1 −ν · · · 0 0

0 0 0 1
. . . 0 0

0 0 0 0
. . . 0 0... ... ... ... . . . . . . . . . ... ...

0 1 −ν 0
0 0 1 0
0 0 0 1

0 · · · 0 0 0 0




,
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B =




0 · · · 0 0... . . . ... ...
0 · · · 0 −ν

rn

0 · · · 0 1
rn


 ,

C =




rρ
0 −νrρ

0 0 0 · · · 0 0
0 r1 0 0 · · · 0 0
0 νr1 rρ

2 −νrρ
2 0 0

0 0 0 r3 0 0... . . . ... ...
rρ
n−3 −νrρ

n−3 0
0 rn−2 0

0 · · · 0 νrn−2 rρ
n−1




,

D =




0 0 0 0 · · · 0 0
−1 0 0 0 0 0
−ν −1 0 0 0 0
0 0 −1 0 0 0... ... . . . . . . . . . . . . ... ...

0 0 0
−1 0 0

0 · · · −ν −1 −
νrρ

n−1

rn




.

Proof. Using the usual type of substitution



x1

x2

x3...
xn−1

xn




=




y

y∇

y∇∆...
D∇

n−2y

D∇
n−1y




,




u1

u2...
un−1

un




=




∑n
ν=1(−1)ν−1D̃∇

ν−1(rν(t)D
∇
ν y)

∑n
ν=2(−1)ν−2D̃∆

ν−2(rν(t)D
∇
ν y)...

−(rn(t)D∇
n y)∆ + rn−1(t)D

∇
n−1y

rn(t)D∇
n y




,

we get a system of 2n equations (suppressing the argument t)
x∇

1 = x2, u∆
1 = r0x1,

x∆
2 = x3, u∇

2 = −u1 + r1x2,... ...
x∆

n−1 = xn, u∇
n−1 = −un−2 + rn−2xn−1,

x∇
n =

1

rn

un, u∆
n = −un−1 + rn−1xn.The obtained system ontains both nabla and delta derivatives. Beause we want to getnabla sympleti system, we need to replae all delta derivatives by nabla derivatives.



4.2. CONVERSION TO SYMPLECTIC SYSTEMS 33The funtions ri, i = 0, . . . , n, are ld-ontinuous, hene aording to (2.7) one an diretlyverify that
x∇

2 = x3 − νx4,

x∇
4 = x5 − νx6,...

x∇
n−1 = xn − νx∇

n = xn −
ν

rn

un,and
u∇

1 = rρ
0x1 − νrρ

0x2,

u∇
3 = −u2 − νu1 + νr1x2 + rρ

2x3 − νrρ
2x4,...

u∇
n−2 = −un−3 − νun−4 + νrn−4xn−3 + rρ

n−3xn−2 − νrρ
n−3xn−1,

u∇
n = −un−1 − νun−2 + νrn−2xn−1 + rρ

n−1xn −
νrρ

n−1

rn

un.Thus we get a matrix nabla system(4.10) (
x
u

)∇

=

(
A B
C D

)(
x
u

)
,where A,B, C,D are n × n matries of desired form. It remains to prove that (4.10) isreally a nabla sympleti system, i.e., that the matries A,B, C,D verify equalities (2.21).It holds

ATC =




0 0 0 · · · 0 0
rρ
0 −νrρ

0 0 0 0
0 r1 0 0 0... . . . . . . ... ...

0 0 0
rρ
n−3 −νrρ

n−3 0
0 · · · 0 rn−2 0




,

BTD =




0 · · · 0 0 0... ... ... ...
0 · · · 0 0 0

0 · · · 0 − 1
rn

−νrρ
n−1

r2
n


 ,
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ATD =




0 0 0 · · · 0 0
0 0 0 0 0
−1 0 0 0 0

0 −1 0
. . . ... ...... . . . 0 0 0

0 0 0
0 · · · −1 0 0




,

CTB =




0 · · · 0 0... ... ...
0 · · · 0 0

0 · · · 0
rρ
n−1

rn


 .Using these alulations one an easily dedue that the needed equations (2.21) are reallysatis�ed. �As a seond representative ase we hoose equation (4.8) for n even. We suppose thatthe funtions ri are rd-ontinuous and we transform this equation to a delta sympletisystem.Theorem 4.2. Suppose that n is even and that the funtions ri, i = 0, . . . , n, arerd-ontinuous. Then equation (4.8) an be transformed to the delta sympleti system

(
x

u

)∆

=

(
A B
C D

)(
x

u

)
,where the bloks A,B, C,D are n × n matries of the following form

A =




0 1 0 0 · · · 0 0
0 0 1 µ · · · 0 0

0 0 0 1
. . . 0 0

0 0 0 0
. . . 0 0... ... ... ... . . . . . . . . . ... ...

1 0 0
0 1 µ
0 0 1

0 · · · 0 0 µrn−1

rσ
n




,

B =




0 · · · 0 0... . . . ... ...
0 · · · 0 0
0 · · · − µ

rσ
n

1
rσ
n


 ,
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C =




rρ
0 µrσ

0 0 0 · · · 0 0
0 r1 0 0 · · · 0 0
0 −µr1 rσ

2 µrσ
2 0 0

0 0 0 r3
. . . 0 0... . . . . . . ... ...

rn−3 0 0
−µrn−3 rσ

n−2 µrσ
n−2

0 · · · 0 0 rn−1




,

D =




0 0 0 0 · · · 0 0
−1 0 0 0 0 0
µ −1 0 0 0 0
0 0 −1 0 0 0... ... . . . . . . . . . . . . ...

−1 0 0 0
µ −1 0 0

0 · · · 0 0 −1 0




.

Proof. A substitution of the similar form as that in the proof of Theorem 4.1, i.e.,



x1

x2

x3...
xn−1

xn




=




y

y∆

y∆∇...
D∆

n−2y

D∆
n−1y




,




u1

u2...
un−1

un




=




∑n
ν=1(−1)ν−1D̃∆

ν−1(rν(t)D
∇
ν y)

∑n
ν=2(−1)ν−2D̃∇

ν−2(rν(t)D
∇
ν y)...

−(rn(t)D∆
n y)∆ + rn−1(t)D

∆
n−1y

rn(t)D∆
n y




,

leads to a system of 2n equations (again suppressing the argument t)
x∆

1 = x2, u∇
1 = r0x1,

x∇
2 = x3, u∆

2 = −u1 + r1x2,... ...
x∆

n−1 = xn, u∇
n−1 = −un−2 + rn−2xn−1,

x∇
n =

1

rn

un u∆
n = −un−1 + rn−1xn.Using (2.7) we replae nabla derivatives by delta derivatives (we an do it beause of ourassumption of rd-ontinuity of funtions ri) to get the equations
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x∆

2 = x3 + µx4,

x∆
4 = x5 + µx6,...

x∆
n =

1

rσ
n

un −
µ

rσ
n

un−1 +
µrn−1

rσ
n

xn,and
u∆

1 = rσ
0 x1 + µrσ

0 x2,

u∆
3 = −u2 + µu1 − µr1x2 + rσ

2 x3 + µrσ
2 x4,...

u∆
n−1 = −un−2 + µun−3 − µrn−3xn−2 + rσ

n−2xn−1 + µrσ
n−2xn.So we have the matrix delta system(4.11) (

x
u

)∆

=

(
A B
C D

)(
x
u

)
,where the n × n matries A,B, C,D are the same as in the statement of this theorem.It remains to prove that (4.11) is a sympleti system, i.e., to verify equations (2.18).It holds

ATC =




0 0 0 · · · 0

rσ
0 µrσ

0 0
...

0 r1 0... . . . . . .
µrσ

n−4 0 0
rn−3 0 0

0 · · · 0 rσ
n−2 µrσ

n−2 +
µr2

n−1

rσ
n




,

BTD =




0 · · · 0 0 0... ... ... ...
0 · · · 0 0 0
0 · · · 0 µ

rσ
n

0

0 · · · 0 −1
rσ
n

0




,

ATD =




0 0 0 · · · 0 0
0 0 0 0 0
−1 0 0 0 0

0 −1 0
. . . ... ...... . . . 0 0 0

0 0 0
0 · · · −1 −µrn−1

rσ
n

0




,
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CTB =




0 · · · 0 0 0... ... ... ...
0 · · · 0 0 0
0 · · · 0 −µrn−1

rσ
n

rn−1

rσ
n


 .These omputations diretly imply that equations (2.18) are satis�ed. �Remark 4.1. Observe that in ases T = R and T = Z equations (4.8) and (4.9) reallyredue to (4.1) and (4.2), respetively. In the ontinuous ase T = R it is lear sineboth nabla and delta derivatives are the usual derivative. Conerning the disrete ase

T = Z, using the identity ∆yk−1 = ∇yk and after suitable relabeling the sequenes r[ν],
ν = 0, . . . , n, to show that (4.2) an be written either in the form (4.8) or (4.9) is a matterof diret omputation.4.3. Self-adjointness of dynami equationsIn this setion we prove that equations (4.8), (4.9) are formally self-adjoint. As it wasshown in the previous setion, the matries A,B, C,D in sympleti dynami systemorresponding to equation (4.8) or (4.9) are of slightly di�erent form for the operators
L,M as well as for n even or odd.The terminology "formally" self-adjoint is used in this thesis in the sense whih is usualin the theory of di�erential equations. A given higher order dynami equation is onvertedto a �rst order vetor dynami system, the �rst entry of the vetor solution of this systemomplies with the solution of the original higher order equation. Then, the last entry of thevetor solution of the adjoint system satis�es the adjoint equation, and if this equationis the same as the original one, this equation is said to be formally self-adjoint. Theadjetive "formally" is skipped, if the problem is regarded from the di�erential operatorstheory point of view. In this setting, together with a given di�erential expression, thedomain of a di�erential operator is determined by some boundary onditions and thisoperator is alled self-adjoint if the di�erential expression and also the domain of theadjoint operator are the same as far as the original one. The \di�erential operators"approah to self-adjointness of even order dynami equations with mixed derivatives hasbeen used in [8℄.The adjoint system to system (2.16) is the system(4.12) y∆ = −ST (t)yσ.Indeed, let W be a fundamental matrix of (2.16) and let V = (W T )−1. Then

V ∆ = −(W T )−1(W T )∆((W σ)T )−1 = −(W T )−1W TST ((W σ)T )−1 = −ST V σ.Equation (4.12) is equivalent to the equation(4.13) y∆ = −(I + µST (t))−1ST (t)yσ.Note that the matrix I +µST (t) is really invertible beause (2.17) implies that the matrix
I+µST (t) is sympleti and hene invertible. Observe also that (4.13) is again a sympletidynami system as an be veri�ed by a diret omputation.



4.3. SELF-ADJOINTNESS OF DYNAMIC EQUATIONS 38Theorem 4.3. Suppose that the funtions rν, ν = 0, . . . , n, are rd-ontinuous. Thenequation (4.8) is formally self-adjoint.Proof. Let us suppose that n is even. Then the assumptions of Theorem 4.2 aresatis�ed (this theorem is formulated for n even, but for n odd the same statement holdsonly with slightly di�erent blok matries) and therefore equation (4.8) is equivalent tothe system(4.14) (
x

u

)∆

=

(
A B
C D

)(
x

u

)
,where the bloks A,B, C,D are n × n matries of the following form

A =




0 1 0 0 · · · 0 0
0 0 1 µ · · · 0 0

0 0 0 1
. . . 0 0

0 0 0 0
. . . 0 0... ... ... ... . . . . . . . . . ... ...

0 1 0 0
0 0 1 µ
0 0 0 1

0 · · · 0 0 0 µrn−1

rσ
n




, B =




0 · · · 0 0... . . . ... ...
0 · · · 0 0
0 · · · − µ

rσ
n

1
rσ
n


 ,

C =




rρ
0 µrσ

0 0 0 · · · 0 0
0 r1 0 0 · · · 0 0
0 −µr1 rσ

2 µrσ
2 0 0

0 0 0 r3 0 0... . . . ... ...
rn−3 0 0
µrn−3 rσ

n−2 µrσ
n−2

0 · · · 0 0 rn−1




,

D =




0 0 0 0 · · · 0 0
−1 0 0 0 0 0
µ −1 0 0 0 0
0 0 −1 0 0 0... ... . . . . . . . . . ... ...

−1 0 0 0
µ −1 0 0

0 · · · 0 0 −1 0




.

Aording to (4.12), the orresponding adjoint system to system (4.14) is(4.15) (
y

z

)∆

= −

(
AT CT

BT DT

)(
y

z

)σ

.
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y∆

1 = −rσ
0 zσ

1 ,

y∆
2 = −yσ

1 − µrσ
0 zσ

1 − r1z
σ
2 + µr1z

σ
3 ,

y∆
3 = −yσ

2 − rσ
2 zσ

3 ,

y∆
4 = −µyσ

2 − yσ
3 − µrσ

2 zσ
3 − r3z

σ
4 + µr3z

σ
5 ,...

y∆
n−2 = −µyσ

n−4 − yσ
n−3 − µrσ

n−4z
σ
n−3 − rn−3z

σ
n−2 + µrn−3z

σ
n−1,

y∆
n−1 = −yσ

n−2 − rσ
n−2z

σ
n−1,

y∆
n = −µyσ

n−2 − yσ
n−1 −

µrn−1

rσ
n

yσ
n − µrσ

n−2z
σ
n−1 − rn−1z

σ
n ,

z∆
1 = zσ

2 − µzσ
3 ,

z∆
2 = zσ

3 ,

z∆
3 = zσ

4 − µzσ
5 ,...

z∆
n−2 = zσ

n−1,

z∆
n−1 =

µ

rσ
n

yσ
n + zσ

n ,

z∆
n = −

1

rσ
n

yσ
n,where y1, . . . , yn and z1, . . . , zn are entries of the vetors y and z, respetively.Next we show that the �rst entry z1 of the vetor z in (4.15) satis�es equation (4.8),whih proves that this equation is formally self-adjoint. Using (2.3) and (2.7) we have

z∆
1 = zσ

2 − µzσ
3 = z2 + µz∆

2 − µzσ
3 = z2 + µzσ

3 − µzσ
3 = z2

z∆∇
1 = z∇2 = (z∆

2 )ρ = z3...
D∆

n−1z1 = z∆
n−1 =

µ

rσ
n

yσ
n + zσ

n =
µ

rσ
n

(−rσ
nz∆

n ) + zn + µz∆
n = zn

D∆
n z1 = z∇n = (z∆

n )ρ = −
1

rn

yn.The last equation implies
yn = −rnD∆

n z1and therefore the next identity holds



4.3. SELF-ADJOINTNESS OF DYNAMIC EQUATIONS 40
y∆

n = −(rnD∆
n z1)

∆ = −µyσ
n−2 − yσ

n−1 −
µrn−1

rσ
n

yσ
n − µrσ

n−2z
σ
n−1 − rn−1z

σ
n

= −µyσ
n−2 − yn−1 − µy∆

n−1 −
µrn−1

rσ
n

(−rσ
nz∆

n ) − µrσ
n−2z

σ
n−1 − rn−1(zn + µz∆

n )

= −µyσ
n−2 − yn−1 − µ(−yσ

n−2 − rσ
n−2z

σ
n−1) − µrσ

n−2z
σ
n−1 − rn−1zn

= −yn−1 − rn−1zn = −yn−1 − rn−1D
∆
n−1z1.So that

yn−1 = (rnD
∆
n z1)

∆ − rn−1D
∆
n−1z1and the ∇-derivative of yn−1 ful�lls

y∇
n−1 = (rnD

∆
n z1)

∆∇ − (rn−1D
∆
n−1z1)

∇ = −yn−2 − rn−2zn−1 = −yn−2 − rn−2D
∆
n−2z1,hene

yn−2 = −(rnD
∆
n z1)

∆∇ + (rn−1D
∆
n−1z1)

∇ − rn−2D
∆
n−2z1,

=
n∑

ν=n−2

(−1)ν−(n−3)D̃∇
ν−(n−2)

(
rν(t)D

∆
ν z1

)
.By similar omputations, using only equations of the system of 2n dynami equationsand (2.3) and (2.7) we get after (n − 3) steps

y1 =
n∑

ν=1

(−1)νD̃∆
ν−1

(
rν(t)D

∆
ν z1

)
.The ∇-derivative of the �rst entry y1 satis�es

y∇
1 = −r0z1 =

n∑

ν=1

(−1)νD̃∇
ν

(
rν(t)D

∆
ν z1

)
.Altogether we get the original equation for the entry z1

n∑

ν=0

(−1)νD̃∇
ν

(
rν(t)D

∆
ν z1

)
= 0.If n is odd, then the matries A,B, C,D in (4.14) are slightly di�erent, but the sameomputation as above shows that (4.8) is formally self-adjoint also in this ase. �Theorem 4.4. Suppose that the funtions rν, ν = 0, . . . , n, are rd-ontinuous. Thenthe equation (4.9) is formally self-adjoint.Proof. Equation (4.9) an be again rewritten as a delta sympleti system, see [26℄.Therefore, one an diretly verify that the same proedure as in the proof of the previoustheorem proves the statement. �



4.4. REMARKS AND RESEARCH PERSPECTIVES 414.4. Remarks and researh perspetivesWhat we have done so far is just the starting point of the qualitative theory of even orderdynami equations with mixed derivatives { a \hint" that equations of the form (4.8)and (4.9) an be written as sympleti dynami systems. This fats opens a relativelylarge area for the further investigation of these equations, one an follow the disrete andontinuous methods and try to �nd their time sale uni�ation. In this onluding setionwe outline some perspetives of the researh along this line.(i) The main researh diretion is osillation theory of (4.8) and (4.9). Following thedisrete and ontinuous ase, these properties an be de�ned via (non)osillation of theassoiated sympleti system. Let us onsider the ase that this assoiated system isa delta sympleti system (2.16). It is not diÆult to see that the assumption of densenormality is satis�ed and hene one an apply the Roundabout theorem (Proposition2.4), in partiular, the equivalene of disonjugay and positivity of the orrespondingquadrati funtional. By a diret omputation one an verify that the integrand of thefuntional F in Proposition 2.4 is
F (z) := zT{STK + KS + µSTKS}z

=

(
x

u

)T (
CT + µCTA µCTB

DT + A + µDTA B + µDTB

)(
x

u

)
,where A,B, C,D are blok entries of S. Consider the ase n even (the ase n odd isanalogial), then substituting for the matries A,B, C,D and for

x =




y
y∆...

D∆
n−1


 , u =




∑n
ν=1(−1)ν−1D̃∆

ν−1(rν(t)D
∇
ν y)

∑n
ν=2(−1)ν−2D̃∇

ν−2(rν(t)D
∇
ν y)...

−(rn(t)D∆
n y)∆ + rn−1(t)D

∆
n−1y

rn(t)D∆
n y


we have using a diret omputation similar to that of the previous setion

F (z) = xT (CT + µCTA)x + 2µxTCTBu + uT (B + µDTB)u

= rσ
0 (y + µy∆)2 + r1(y

∆)2 + rσ
2 (y∆∇ + µ(y∆∇)∆)2 + . . .

+rσ
n−2(D

∆
n−2y + µ(D∆

n−2y)∆)2 + rn−1(D
∆
n−1y)2 +

µ2r2
n−1

rσ
n

(D∆
n−1y)2

+
1

rσ
n

[
(un + µu∆

n )2 − µ2r2
n−1(D

∆
n−1y)2

]

=

n/2−1∑

i=0

{
rσ
2i[(D

∆
2iy)σ]2 + r2i+1(D

∆
2i+1y)2

}
+ rσ

n[(D∆
n y)σ]2.Here we have used the onvention that D∆

0 y = y.



4.4. REMARKS AND RESEARCH PERSPECTIVES 42Now suppose that the time sale under onsideration is unbounded from above. Theequivalene of disonjugay of (2.16) and the positivity of the assoiated quadrati fun-tional F (see Proposition 2.4) implies that (4.8) is eventually disonjugate (another ter-minology is nonosillatory) if and only if for every T ∈ T the sympleti system (weonsider here the delta sympleti system sine its osillation theory is relatively deeplydeveloped) is disonjugate on [T, T1] for every T ∋ T1 > T , and this is equivalent to (withthe relationship between y and z =
(

x
u

))
F(y) =

∫ ∞

T

F (z) ∆t > 0for every nontrivial y for whih D∆
n y exists, it is pieewise rd-ontinuous, D∆

i y(T ) = 0,
i = 0, . . . , n − 1, and there exists T̃ ∈ T suh y(t) ≡ 0 for t > T̃ . There exist variousosillation and nonosillation riteria for (4.1) and (4.2) based on this variational priniple,see, e.g., [23, 29℄. The results of the previous setion, oupled with the osillation riteriagiven in [13℄ suggest to look for time sale uni�ation of these riteria. An important rolein this investigation may play the time sale version of the Wirtinger inequality provedin [34℄.(ii) To explain another researh possibility, onsider the two-term di�erential equation(4.16) (−1)n

(
r(t)y(n)

)(n)
= q(t)y,where r, q are positive funtions. It is known (see, e.g., [3℄) that this equation is nonosil-latory if and only if the so-alled reiproal equation (related to (4.16) by the substitution

z = ry(n))
(−1)n

(
1

q(t)
z(n)

)(n)

=
1

r(t)
zis also nonosillatory. A disrete version of this statement is established in [12, 21℄.A natural question is whether a unifying time sale approah an be developed on thebasis of the results of this paper. We refer also to the paper [35℄, where this problem istreated in the sope of time sale Hamiltonian systems.(iii) Another problem losely related to the osillation theory of (formally) self-adjointhigher order equations is the fatorization of the orresponding di�erential operator. De-note by L(y) the 2n-th order di�erential operator de�ned by the left-hand side of (4.1).If this equation is disonjugate on an interval I, the lassial result of the theory ofdi�erential operators states that in this ase there exists an n-th di�erential operator

N(y) = y(n) + an−1(t)y
(n−1) + · · · + a1(t)y

′ + a0(t)ywith ontinuous funtions a0, . . . , an−1, suh that the operator L admits in I the fatori-zation
L(y) = N∗(rn(t)N(y)),where N∗ is the adjoint operator of M . A disrete version of this statement an be foundin [19℄ and suggests again to look for a time sale uni�ation.(iv) The last researh problem whih we point out here is the transformation theoryof even order self-adjoint equations in the framework of transformations of Hamiltonianor sympleti systems. It is shown in [4℄ (ontinuous ase) and in [12℄ (disrete ase)



4.4. REMARKS AND RESEARCH PERSPECTIVES 43that the transformation of dependent variable y = hz, where h is a transformation fun-tion (sequene), an be investigated as a speial ase of the general transformation ofHamiltonian or sympleti systems. The results of the previous setion suggest to lookfor a time sale unifying approah to this problem.(v) In the paper [8℄, a similar problem as in this hapter is investigated. In the mainpart of that paper the authors deal with another 2n-order dynami equations with mixedderivatives(4.17) L(y) :=
n∑

i=0

(−1)i
(
ri(t)y

∆i−1∇
)∇i−1∆and its \nabla" ounterpart(4.18) M(y) :=

n∑

i=0

(−1)i
(
ri(t)y

∇i−1∆
)∆i−1∇(with the onvention that for i = 0 and i = 1 the orresponding terms in L are r0(t)yand (r1(t)y

∇
)∆, a similar onvention is used in the operator M). It is shown that theseequations an be written in the form of the time sale linear Hamiltonian system (4.5) andhene also in the form (2.16). Further it is shown that these equations are formally self-adjoint with respet to a ertain inner produt, provided some boundary onditions aresatis�ed. At the �nal part of [8℄, equations of the form (4.8) and (4.9) are briey disussedand their transformation into Hamiltonian systems is suggested. However, the approahused there is di�erent from ours. Finally, note that all researh problems mentioned inthis setion \apply" also to equations (4.17), (4.18).(vi) If the funtions rν are ld-ontinuous, equations (4.8), (4.9) an be written in theform (2.20) and the adjoint system to this system is y∇ = −ST (t)yρ. Using the sameidea as in the previous setion, it an be shown, that (4.8), (4.9) are formally self-adjointin this ase as well. Only the blok matries in these nabla systems are slightly di�erentfrom those in the delta sympleti systems, the tehnial omputations are very similar.
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47AbstratThe thesis onsists essentially of two parts. The �rst one deals with osillation theory ofthe half-linear seond order dynami equation with mixed derivatives
(r(t)Φ(x∆))∇ + c(t)Φ(x) = 0, Φ(x) = |x|p−1 sgn (x), p > 1.It is established the so-alled Roundabout theorem for this equation and this theorem isused to prove several osillation and nonosillation riteria for this equation. The seondpart is devoted to the investigation of even order dynami equations
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= 0,
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ν

(
rν(t)D

∇
ν y
)
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ν , D̃∇

ν are ertain ν-th order di�erential operators with mixed deriva-tives. It is shown that equations L(y) = 0,M(y) = 0 are formally self-adjoint and thatthey an be written in the form of the so-alled delta and nabla sympleti systems.2000 Mathematis Subjet Classi�ation 39 A 10


