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Počet stran: 74
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Abstract

In this doctoral dissertation we deal with nonoscillatory solutions of fourth-order dif-

ference equations and their asymptotic properties. The dissertation is organized into seven

chapters. The study of the difference equation of our type is motivated in Chapter 1,

where the historical overview of different types of fourth-order difference equations and

difference systems studied in the recent years is also given. The second chapter presents

the basic properties of two-terms difference equations such as the existence of quickly os-

cillatory solutions, the cyclic permutation of the coefficients of the difference equation and

the classification of possible types of nonoscillatory solutions of the difference equation.

In Chapter 3 we study the asymptotic behavior of nonoscillatory solutions of type (a) and

we present sufficient conditions for the nonexistence of this type of solution depending on

the type of equation (sub-linear, half-linear and super-linear case). Analogously, the same

type of problems for solutions of type (b) is studied in Chapter 4. The main body of the

text is represented by the following two chapters. Using a combination of conditions for

the nonexistence of the solutions of type (a) and type (b) we obtain the oscillation criteria

which are illustrated by examples and applications in Chapter 5. In Chapter 6 we deal

with the asymptotic behavior of nonoscillatory solutions and we define the maximal and

the minimal solution of difference equations. We state the necessary condition for the

difference equation to have the maximal or the minimal solution and we present theorems

that provide a connection between maximal, resp. minimal solutions and solutions of type

(a), resp. (b). Examples are provided to illustrate most of the theorems. For completeness,

the dissertation is finished with a sketch of a further research in the presented theory.

The main methods used in this dissertation are the asymptotic integration and the cyclic

permutation of the coefficients of the equation.



Abstrakt

V této disertačnı́ práci se zabýváme neoscilatorickými řešenı́mi diferenčnı́ch rovnic

čtvrtého řádu a jejich asymptotickými vlastnostmi. Práce je rozdělena do sedmi kapitol.

V prvnı́ kapitole je uveden historický přehled různých typů diferenčnı́ch rovnic čtvrtého

řádu a diferenčnı́ch systémů studovaných v poslednı́ch letech. Druhá kapitola uvádı́

základnı́ vlastnosti dvoučlenné diferenčnı́ rovnice, jako je existence rychle oscilatorického

řešenı́, cyklická permutace koeficientů a klasifikace možných typů neoscilatorických řešenı́

dané rovnice. V Kapitole 3 studujeme asymptotické vlastnosti neoscilatorických řešenı́

typu (a) a uvádı́me postačujı́cı́ podmı́nky pro neexistenci tohoto typu řešenı́ v závislosti

na typu rovnice (sublineárnı́, pololineárnı́ a superlineárnı́ přı́pad). Analogicky je stejná

problematika pro řešenı́ typu (b) studována v Kapitole 4. Nosnou část práce tvořı́ násle-

dujı́cı́ dvě kapitoly. Kombinacı́ podmı́nek neexistence řešenı́ typu (a) a typu (b) zı́skáme

oscilačnı́ kritéria, která jsou ilustrována přı́klady a aplikacemi v páté kapitole. V šesté

kapitole se zabýváme asymptotickým chovánı́m neoscilatorických řešenı́, definujeme zde

maximálnı́ a minimálnı́ řešenı́ diferenčnı́ rovnice. Udáváme nutnou podmı́nku pro to,

aby daná rovnice měla maximálnı́ či minimálnı́ řešenı́, a věty, které uvádı́ spojitost mezi

řešenı́m maximálnı́m, resp. minimálnı́m, a řešenı́m typu (a), resp. (b). Většina uve-

dených výsledků je ilustrována přı́klady. Disertačnı́ práce je uzavřena nástinem možného

směřovánı́ dalšı́ho výzkumu řešené problematiky. Hlavnı́ metody použité v této práci jsou

asymptotická integrace a cyklická záměna koeficientů v diferenčnı́ rovnici.
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Preface

Many interesting dynamic problems in applied science can be modelled by difference

equations (for example the vibration of particles and lattices in physics, problem of elas-

ticity, deformation of structures or soil settlement, phenomena in crystals, electric circuit

analysis, dynamic systems, molecular chains, control theory). The theory of difference

equations, the methods used, and their wide applications occupy a central position in

the broad area of mathematical analysis. Difference equations are used as mathematical

models describing real life situations in probability theory, queuing problems, statistical

problems, stochastic time series, combinatorial analysis, number theory, mechanics, geom-

etry, electrical networks, etc. In general, we expect difference equations to occur whenever

the system under study depends on one or more variables that can only assume a discrete

set of possible values.

In the last few years, an increasing attention has been paid to the study of oscillatory

and asymptotic behavior of solutions of difference equations. Determination of oscillatory

behavior for solutions of second-order difference equations has occupied a great part of

researchers’ interest. Compared to this, however, the study of fourth-order difference

equations receives considerably less attention in the literature even though such equations

often arise in the study of economics, statistics, mathematical biology and many other

areas of mathematics whose discrete models are used. In this dissertation we present new

contributions to the theory of a fourth-order difference equation.

This dissertation consists of seven chapters which are organized as follows: In the

first chapter we introduce the most frequently occurring forms of fourth-order difference

– xi –
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equations and four-dimensional difference systems. In Chapter 2 we recall fundamental

definitions and necessary basic properties of solutions of difference equations. We clas-

sify nonoscillatory solutions of a fourth-order difference equation according to the sign of

their quasi-differences. In Chapter 3 and Chapter 4 we give sufficient conditions that the

difference equation does not have any of these types of solutions. Finally, in Chapter 5, we

establish oscillation criteria for the difference equation and we present some applications.

We illustrate our criteria by examples. Furthermore, we deal with the asymptotic behavior

of nonoscillatory solutions and we introduce a definition of a maximal and a minimal solu-

tion in Chapter 6. In the last chapter we conclude with some remarks and open problems.

This doctoral dissertation comprises of results which the author achieved as the PhD

student in the years 2009-2014. Some results in this dissertation have not been published

yet. Some reported results were published by the author jointly with prof. RNDr. Zuzana

Došlá, DSc. The exact list of the published results is presented in the appendix.
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Chapter 1

Introduction

Consider a class of fourth-order nonlinear difference equations of the form

∆an

(
∆bn

(
∆cn (∆xn)

γ
)β
)α

+dnxλ
n+τ = 0 (E)

where α,β ,γ,λ are the ratios of odd positive integers, τ ∈ Z is a deviating argument and

{an}, {bn}, {cn}, {dn} are positive real sequences defined for n∈N0 = {n0,n0+1, . . .}, n0

is a positive integer, and ∆ is the forward difference operator defined by ∆xn = xn+1− xn.

In the oscillation problem we assume that sequences {an}, {bn}, {cn} satisfy either

∞

∑
n=n0

1

a1/α
n

= ∞,
∞

∑
n=n0

1

b1/β
n

= ∞,
∞

∑
n=n0

1

c1/γ
n

= ∞, (H1)

or 

∞

∑
n=n0

1

a1/α
n

= ∞,
∞

∑
n=n0

1

b1/β
n

< ∞,
∞

∑
n=n0

1

c1/γ
n

= ∞,

∞

∑
n=n0

1

b1/β
n

(
n−1

∑
k=n0

1

a1/α

k

)1/β

= ∞,
∞

∑
n=n0

1

c1/γ
n

(
∞

∑
k=n

1

b1/β

k

)1/γ

= ∞.

(H2)

We say that the equation (E) is in the sub-linear case when λ < αβγ , in the half-linear

case when λ = αβγ and in the super-linear case when λ > αβγ .

In recent years, great attention has been paid to the study of oscillatory and asymp-

totic behavior of solutions of difference equations. Compared to second-order difference

equations the study of higher-order equations and, in particular, fourth-order difference

– 1 –



Chapter 1. Introduction 2

equations has received considerably less attention. Practical use of difference equations is

evident in [10, 11, 12, 35].

Fourth-order difference equations were investigated in different forms, but widely consid-

ered in the literature have been special cases of (E). The most frequently occurring forms

of fourth-order difference equations are summarized as follows.

The simplest form of equation (E) when α = β = γ = 1 and an = bn = cn = 1 is

presented by an equation of the form

∆
4xn = f (n,xn+2),

where the function f : N×R→ R satisfies the condition x f (n,x) < 0 for all n ∈ N,

x ∈ R \ {0}. This equation was investigated by Popenda and Schmeidel [24] in 1995.

They studied the oscillatory behavior of solutions of this equation.

In 2003, Schmeidel [27] studied the similar equation with a different shift of indexes

∆
4xn = f (n,xn).

Thandapani and Arockiasamy [29] studied necessary and sufficient conditions for the

existence of nonoscillatory solutions with a specified asymptotic behavior for the equation

in more general form

∆
2 (rn

(
∆

2xn
))

+ f (n,xn) = 0,

where {rn} is a positive real sequence and the continuous function f : N×R→R satisfies

u f (n,u)> 0 for all u 6= 0 and n ∈N. The oscillatory and asymptotic behavior of solutions

of this equation was discussed by Yan and Liu [36].

If α = γ = 1, an = cn = 1 and τ = 3, then equation (E) reduces to the difference

equation

∆
2
(

bn
(
∆

2xn
)β
)
+dnxλ

n+3 = 0. (1.1)

If
∞

∑
n=n0

1

b1/β
n

< ∞, (1.2)
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then the assumption (H2) applies the condition

∞

∑
n=n0

1

b1/β
n

(
n−1

∑
k=n0

1

)1/β

=
∞

∑
n=n0

(n−n0)
1/β

b1/β
n

= ∞,

which is equivalent with
∞

∑
n=n0

(
n
bn

)1/β

= ∞, (1.3)

and the condition

∞

∑
n=n0

1

(
∞

∑
k=n

1

b1/β

k

)1/γ

=
∞

∑
n=n0

1

b1/β
n

n

∑
k=n0

1 =
∞

∑
n=n0

n−n0 +1

b1/β
n

= ∞,

which is equivalent with
∞

∑
n=n0

n

b1/β
n

= ∞. (1.4)

Hence, conditions (1.3) and (1.4) are special cases of condition (H2). The oscillatory

and asymptotic properties of solutions of equation (1.1) have been investigated with these

special assumptions (1.3) and (1.4) by Agarwal and Manojlović in [5] and Thandapani et

al. in [31, 32, 33]. While Thandapani and Vijaya [34] deal with a case where these series

are convergent (see also the references therein).

If α = β = γ = λ = 1, an = bn = 1 and τ = 1, then equation (E) reduces to the difference

equation

∆
3 (cn (∆xn))+dnxn+1 = 0.

The oscillatory behavior of solutions of this difference equation was investigated by

Selvaraj and Jaffer in [26].

Later, the results in [36] were extended by Graef and Thandapani [30] to the more

general equation

∆an (∆bn (∆cn (∆xn)))+ f (n,xn) = 0, (1.5)

where n ∈ N, {an}, {bn}, {cn} are sequences of positive real numbers, f is a function

f : N×R→ R. The oscillation criteria of (1.5) was investigated by Schmeidel, Migda,

Musielak [28]. Migda and Schmeidel [23] studied nonoscillatory solutions with special
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asymptotic properties of equation (1.5).

The following equation

∆
1

a3(n)

(
∆

1
a2(n)

(
∆

1
a1(n)

(∆x(n))α1

)α2
)α3

+δq(n) f (x[g(n)]) = 0, (1.6)

where δ = ±1, {ai(n)}, {q(n)} are sequences of positive real numbers, g(n) : N→ R,

∆g(n)≥ 0 for n≥ n0 and limn→∞g(n) = ∞, f is a function such that x f (x)> 0, f ′(x)≥ 0

for x 6= 0, and αi for i = 1,2,3 are the ratios of positive odd integers, was considered in

the recent papers by Agarwal, Grace, Wong and Manojlović [2, 3]. In [2], necessary and

sufficient conditions for the oscillation of all bounded solutions of (1.6) (the so called

B-oscillation) have been given. In [3], oscillation criteria for (1.6) have been established

using the analysis of nonoscillatory solutions and by comparison with certain first and

second-order difference equations.

In addition to the above, other special types of equation (E) have been widely investi-

gated in the literature for a particular deviating argument τ . In the case when τ = 0, see

e.g. [22, 23, 27, 28, 29, 31, 33, 36], in the case when τ = 1, see e.g. [26], in the case when

τ = 2, see e.g. [24], in the case when τ = 3, see e.g. [4, 5, 32, 34], and references therein.

Equation (E) with τ = 2 can be seen as a coupled system of two second-order difference

equations of the form ∆
(
rn (∆xn)

α
)
=−ϕnzη

n+1

∆

(
qn (∆zn)

β
)
= ψnxλ

n+1,

(1.7)

where α,β ,η ,λ are the ratios of odd positive integers and {rn}, {qn}, {ϕn}, {ψn} are

positive real sequences defined for n ∈ N0. Indeed, eliminating z from the first equation,

this system can be rewritten as

∆qn+1

(
∆ϕ
−1/η
n

(
∆rn (∆xn)

α
)1/η

)β

+ψn+1xλ
n+2 = 0, (1.8)



Chapter 1. Introduction 5

System (1.7) is a special case of more general coupled systems of the form

∆(rnΦα (∆xn)) =− f (n,yn+1)

∆
(
qnΦβ (∆yn)

)
= g(n,xn+1) ,

(1.9)

where Φλ (u) = |u|λ−1 sgnu with λ > 1 and f , g : N×R→ R are continuous functions,

nondecreasing with respect to the second variable, such that u f (k,u)> 0, ug(k,u)> 0 for

every u 6= 0 and k ∈ N. Oscillatory properties of system (1.9) have been investigated by

Marini, Matucci and Řehák in [21].

Motivated by these papers, we study the asymptotic and oscillatory properties of

solutions of equation (E) and we state new oscillation theorems. Our results unify, improve

and extend many well-known oscillation criteria that have appeared in the literature for

some special cases of equation (E). Oscillation criteria established in the above papers are

based on a different approach than that applied here. Namely in [3], they used comparing

(1.6) with certain first and second-order difference equations whose oscillatory properties

are known.

The approach here is based on considering equation (E) as a four-dimensional system.

By using the notation

yn = cn (∆xn)
γ , zn = bn (∆yn)

β , wn = an (∆zn)
α (1.10)

equation (E) can be written as the four-dimensional nonlinear difference system



∆xn =Cny1/γ
n

∆yn = Bnz1/β
n

∆zn = Anw1/α
n

∆wn =−Dnxλ
n+τ ,

(S)
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where

An = a−1/α
n , Bn = b−1/β

n , Cn = c−1/γ
n , Dn = dn.

Thus, if x is a solution of (E) and

x[1]n = cn (∆xn)
γ , x[2]n = bn

(
∆x[1]n

)β

, x[3]n = an

(
∆x[2]n

)α

are the so called quasi-differences of x, then the vector

(x,y,z,w) = (x,x[1],x[2],x[3])

is a solution of (S). Therefore, we can use system (S) instead of equation (E). It was more

appropriate in proofs of our theorems.

System (S) is a prototype of even-order k-dimensional difference systems

∆xi(n) = ai(n) fi(xi+1(n)), xk+1 = x1, i = 1, . . .k, k ≥ 2, (1.11)

where ai are functions and fi are continuous functions on R such that

u fi(u)> 0 for u 6= 0.

Let us note that, system (1.11) can be viewed as a discrete analogue of the four-dimensional

differential system investigated by Kusano et al. [20], and by Chanturia [13]. In these

papers the oscillation of the n-dimensional differential systems was investigated in terms

of Property A (which reads for equations of even-order as the oscillation of all solutions)

and Property B (which means that any nonoscillatory solution is either unbounded or

vanishing at infinity in all their components). The terminology Property A and Property B

is due to [13] and [18].

The properties of system (S) with the assumption Dn < 0 and An, Bn, Cn positive are

described in [14] and in author’s rigorous thesis [19]. In [19], we study the asymptotic prop-

erties of nonoscillatory solutions of difference systems and we give sufficient conditions

that any bounded nonoscillatory solution tends to zero and any unbounded nonoscillatory



Chapter 1. Introduction 7

solution tends to infinity in all its components.

In this dissertation, we study (E) via system (S) with the assumption Dn > 0 and An,

Bn, Cn positive. First, we show the influence of the deviating argument τ on the existence

of quickly oscillatory solutions and we describe the so called cyclic permutation for (E).

Our main goal is to state new oscillation theorems for equation (E) and to extend the

existing oscillation results in the literature, in the case where the difference operator in (E)

is in the canonical form, i.e. when (H1) holds, as well as in the case when (H2) holds.

We give oscillation theorems in the sub-linear, in the half-linear and in the super-linear

case. We state a-priori bounds for nonoscillatory solutions that lead to conditions for

the oscillation theorems. Our results are based on the conditions for the nonexistence

of nonoscillatory solutions and on the change of summation for double series. Due to

our approach considering (E) as a four-dimensional system, we extend for any τ ∈ Z

some results of [3] stated for a delay τ ≤ 0. Using the cyclic permutation we show how

it is possible to extend oscillation criteria to the case when one of the series in (H1) is

convergent.

Thereafter, we deal with the asymptotic behavior of nonoscillatory solutions. We define the

maximal and the minimal solution of the difference equation and we state the necessary

condition for the difference equation to have the maximal, resp. the minimal solution.

Finally, we find a connection between maximal, resp. minimal solutions and solutions of

type (a), resp. (b).

Our main tools are an asymptotic integration and the cyclic permutation of the coefficients

of a difference equation described in Chapter 2.2. The asymptotic integration means that

we use the summation of an equation from n0 to n (or to ∞). This term was introduced

by William Trench. This enables us to establish precise lower and upper bounds for both

types of nonoscillatory solutions, see Chapter 3 and Chapter 4.

Now we present definitions that we use below.

By a solution of equation (E) we mean a real sequence {xn} defined for all n ∈N0 and

satisfying equation (E) for all n ∈ N0. A solution of (E) is called a nontrivial if for any

n0 ≥ 1 there exists n > n0 such that xn 6= 0. Otherwise, the solution is called a trivial. By

a solution of system (S) we mean a vector sequence (x,y,z,w) which satisfies the system
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(S) for n ∈ N0. We consider only such solutions that are nontrivial for large n.

Observe that if (x,y,z,w) is a solution of system (S) and if there exists n0 ∈ N such that

xn 6= 0 for n ≥ n0, then yn 6= 0, zn 6= 0 and wn 6= 0 for n ≥ n0. Obviously, if (x,y,z,w) is

a solution of system (S) and one of its components is of one sign, then all its components

are of one sign.

A nontrivial solution {xn} of equation (E) is said to be nonoscillatory if it is either eventually

positive or eventually negative. Otherwise, the nontrivial solution is said to be oscillatory.

Equation (E) is said to be oscillatory if all its solutions are oscillatory. Oscillatory types of

solutions occur in many physical phenomena, such as vibrating mechanical systems and

electric circuits.

If (H1) holds, we say that the difference operator in equation (E) (resp. system (S) ) is in

the canonical form.

The important role plays the following definition.

Definition 1. A solution x of (E) is of type (a) if

xn > 0, x[1]n > 0, x[2]n > 0, x[3]n > 0 for large n.

A solution x of (E) is of type (b) if

xn > 0, x[1]n > 0, x[2]n < 0, x[3]n > 0 for large n.



Chapter 2

Basic properties of two-terms difference

equations

First, we point out some basic properties of solutions of equation (E). Equation (E) is

called a two-term difference equation, because it can be written as

L4xn +dnxλ
n+τ = 0,

where

L4xn = ∆an

(
∆bn

(
∆cn (∆xn)

γ
)β
)α

.

The terminology of two-terms equations comes from Uri Elias [8], who has introduced it

for n-order differential equations.

The results of this chapter hold without assumptions (H1), (H2).

We begin with the necessary condition for the existence of quickly oscillatory solutions.

2.1 Quickly oscillatory solutions

Prototypes of oscillatory solutions of (E) are solutions of the form

xn = (−1)n pn, pn > 0 for n ∈ N0.

– 9 –
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Such solutions are called quickly oscillatory and the following result can be seen as a

necessary condition for their existence.

Theorem 1. Equation (E) with τ even has no quickly oscillatory solutions.

Proof. Let xn = (−1)n pn be a quickly oscillatory solution of (E). Then

∆xn = (−1)n+1 (pn+1 + pn) .

From the first equation of system (S) we have

yn =

(
∆xn

Cn

)γ

= (−1)n+1 qn,

where qn =
(

pn+1
Cn

+ pn
Cn

)γ

> 0. From the second equation of (S) we obtain

zn =

(
∆yn

Bn

)β

= (−1)n rn,

where rn =
(

qn+1
Bn

+ qn
Bn

)β

> 0. Repeating the argument, we get from the third equation of

(S)

wn =

(
∆zn

An

)α

= (−1)n+1 sn,

where sn =
(

rn+1
An

+ rn
An

)α

> 0. Consequently, from here and from the fourth equation of

system (S) we have

∆wn = (−1)n (sn+1 + sn) =−Dn(−1)(n+τ)λ pλ
n+τ = (−1)n+1+τ Dn pλ

n+τ ,

which gives a conclusion.

Remark 1. Theorem 1 explains why equation (E) is often considered with τ odd.

By the method used in the proof of Theorem 1 we can easily construct equations

possessing a quickly oscillatory solution.
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Example 1. Consider the equation

∆
2 (

∆
2xn
)β

+
32β

(
2β +1

)2

2τλ
2n(β−λ )xλ

n+τ = 0, (2.1)

where τ is an odd positive integer. This equation has a quickly oscillatory solution

xn = (−1)n2n.

Indeed, pn = 2n, qn = 2n3, rn = 2nβ 32β , sn = 2nβ 32β

(
2β +1

)
and the value of dn follows

from the relation dn = (sn+1 + sn)/pλ
n+τ .

Example 2. Consider the equation

∆
3n(∆xn)+8(2n+3)xn+τ = 0. (2.2)

If τ is an even positive integer, then (2.2) has no quickly oscillatory solution. If τ is an odd

positive integer, then (2.2) has a quickly oscillatory solution

xn = (−1)n .

2.2 Cyclic permutation

The left-ordered cyclic permutation of coefficients in system (S) is described in author’s

rigorous thesis [19].

Lemma 1. [19, Lemma 7]

The following statements are equivalent:

(i) (x,y,z,w) is a solution of system (S),
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(ii) (x̃, ỹ, z̃, w̃), where (x̃, ỹ, z̃, w̃) = (w,x,y,z), is a solution of system



∆x̃n = Dn ỹδ
n+τ

∆ỹn = An z̃α
n

∆z̃n = Bn w̃β
n

∆w̃n =Cn x̃γ
n,

(S1)

(iii) (x̃, ỹ, z̃, w̃), where (x̃, ỹ, z̃, w̃) = (z,w,x,y), is a solution of system



∆x̃n =Cn ỹγ
n

∆ỹn = Dn z̃δ
n+τ

∆z̃n = An w̃α
n

∆w̃n = Bn x̃β
n ,

(S2)

(iv) (x̃, ỹ, z̃, w̃), where (x̃, ỹ, z̃, w̃) = (y,z,w,x), is a solution of system

∆x̃n = Bn ỹβ
n

∆ỹn =Cn z̃γ
n

∆z̃n = Dn w̃δ
n+τ

∆w̃n = An x̃α
n .

(S3)

Now, we describe the left-ordered cyclic permutation of coefficients in equation (E).

Lemma 2. The following statements are equivalent:

(i) x is a solution of (E).

(ii) y = {yn}, where yn = cn (∆xn)
γ , is a solution of

∆
1

d1/λ
n

(
∆an

(
∆bn (∆yn)

β
)α)1/λ

+
1

c1/γ

n+τ

y1/γ

n+τ = 0. (R1)

(iii) z = {zn}, where zn = bn (∆yn)
β , is a solution of

∆cn+τ

(
∆

1

d1/λ
n

(
∆an (∆zn)

α
)1/λ

)γ

+
1

b1/β

n+τ

z1/β

n+τ = 0. (R2)
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(iv) w = {wn}, where wn = an (∆zn)
α is a solution of

∆bn+τ

(
∆cn+τ

(
∆

1
dn

(∆wn)
1/λ

)γ)β

+
1

a1/α

n+τ

w1/α

n+τ = 0. (R3)

Proof. First, we prove that (i) is equivalent to (ii). If we express x from the last equation

in (S) we obtain

xn+τ =−
1

d1/λ
n

(∆wn)
1/λ =− 1

d1/λ
n

(
∆an

(
∆bn (∆yn)

β
)α)1/λ

. (2.3)

Thus, from here and the first equation in (S) we have

∆xn+τ =−∆
1

d1/λ
n

(
∆an

(
∆bn (∆yn)

β
)α)1/λ

=
1

c1/γ

n+τ

y1/γ

n+τ ,

which yields equation (R1). To prove that (i) is equivalent to (iii) we use the same process.

Using (1.10) and (2.3) we have

∆xn =−∆
1

d1/λ

n−τ

(
∆an−τ (∆zn−τ)

α
)1/λ

.

Substituing this into

∆yn = ∆cn (∆xn)
γ

and using the second equation of (S) we get equation (R2).

To prove that (i) is equivalent to (iv) we proceed as before, expressing ∆z in terms of

w from the third equation of (S) and from (1.10) and comparing both expressions.

Theorem 2. Equation (E) is oscillatory if and only if any of equations (R1), (R2), (R3) is

oscillatory.

Proof. The validity implies from Lemma 2.

Remark 2. By Theorem 2 equation (1.1) is oscillatory if and only if the equation

∆
2

(
1

d1/λ
n

(
∆

2zn
)1/λ

)
+

1

b1/β

n+3

z1/β

n+3 = 0
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is oscillatory. Observe that the difference operator in this equation is in the canonical

form if
∞

∑
n=n0

dn = ∞.

If we apply Lemma 2 to equation (1.8) we get that the cyclic permutation for the

coupled system (1.7) means that equations in (1.7) are considered in the opposite order.

From here and Theorem 2 we get the following corollary.

Corollary 1. Vector (x,z) is a solution of (1.7) if and only if the vector (u,v) = (−z,x) is

a solution of the coupled system∆

(
qn (∆un)

β
)
=−ψnvλ

n+1

∆
(
rn (∆vn)

α
)
= ϕnuη

n+1,

(2.4)

which is again system of the form (1.7).

The coupled system (1.7) is oscillatory if and only if the coupled system (2.4) is oscillatory.

Oscillation results of Marini, Matucci, Řehák in [21] for (1.7) assume

∑
1

r1/α
n

= ∞, ∑
1

q1/β
n

= ∞, ∑ϕn < ∞, ∑ψn = ∞,

which means that the difference operator in (1.8) is not in the canonical form. Hence,

to compare results of [21] and our oscillation criteria for the equation with the difference

operator in the canonical form we have to apply results of [21] to the coupled system (2.4).

Observe that the coupled system is oscillatory if all solutions are oscillatory, i.e. both

components are neither eventually positive nor negative.

The aim of the following section is to describe the possible types of nonoscillatory

solutions of equation (E). Throughout the next sections we use the convention

n2

∑
i=n1

ui = 0 if n1 > n2.
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2.3 Nonoscillatory solutions

We assume system (S) instead of equation (E). If (S) has a solution (x,y,z,w), then

(−x,−y,−z,−w) is a solution of (S), too. Hence, when studying the nonexistence con-

ditions for nonoscillatory solutions, for the sake of simplicity, we restrict our attention to

solutions such that xn > 0 for large n.

The component x of the solution (x,y,z,w) of system (S) is said to be oscillatory if for

any n0 ≥ 1 there exists n > n0 such that xn+1xn ≤ 0. The oscillation of the components y,

z, w is defined in the same way. A solution of system (S) is said to be oscillatory if all of

its components x,y,z,w are oscillatory. Otherwise, a solution is said to be nonoscillatory.

A solution of the system (S) is said to be bounded if all of its components x,y,z,w are

bounded. Otherwise, a solution is said to be unbounded.

The following Lemma 3 has been presented for system (S) with the assumption Dn < 0

in author’s rigorous thesis [19].

Lemma 3. Let (x,y,z,w) be a solution of system (S). The solution (x,y,z,w) is nonoscil-

latory if and only if any of its components x, y, z, w is either positive or negative for

large n.

Proof. It is sufficient to prove that if (x,y,z,w) is an oscillatory solution of (S), then all

components are either positive or negative for large n. First, we assume that xn > 0 for

n≥ n0 and n0 ∈ N. From the fourth equation of the system (S) we have that wn is strictly

decreasing for n ≥ n0. Hence, it is of one sign for large n. Proceeding by the same

argument we get that z and y are monotone and of one sign for large n, too. The remaining

cases when any of the components y, z, w are eventually positive or negative can be treated

in the same way.

We start with the following lemma which provides the classification of nonoscillatory

solutions of (S).

Lemma 4. Assume (H1) or (H2). Then any solution (x,y,z,w) of system (S) such that

xn > 0 for large n is of type (a) or of type (b).
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Proof. Assume (H1). Let (x,y,z,w) be a nonoscillatory solution of (S). Assume that there

exists a solution such that yn > 0, zn < 0, wn < 0 for large n. Since ∆zn < 0, there exists

k > 0 such that zn ≤−k for large n. Using the summation of the second equation of system

(S) we get

yn− yn0 =
n−1

∑
i=n0

Biz
1/β

i ≤−k1/β
n−1

∑
i=n0

Bi.

Passing n→ ∞ we get limyn =−∞, which is a contradiction.

Let there exist a solution so that yn < 0, zn > 0, wn > 0 for large n. Since z is positive

increasing there exists k > 0 so that zn ≥ k for large n. Summation of the second equation

of system (S) leads to limyn =+∞, which is a contradiction with the fact yn < 0.

Let there exist a solution so that yn < 0, zn < 0 for large n. Since y is negative decreasing

there exists k > 0 so that yn ≤−k for large n. By summation of the first equation of system

(S) and passing n→ ∞, we arrive at a contradiction.

The case when zn > 0 and wn < 0 for large n can be treated in a similar way by

summation of the third equation of (S).

Assume (H2). First, assume that there exists a nonoscillatory solution (x,y,z,w) such

that xn > 0 and zn > 0 for large n. Assume yn < 0. Since yn is increasing we can assume

that there exists k≤ 0 such that yn ≤ k for large n. By summation of the first and the second

equation of system (S) we get

yn ≤−
∞

∑
i=n

Biz
1/β

i ,

xn =
n−1

∑
j=n0

C jy
1/γ

j + xn0. (2.5)

Thus,

xn ≤−
n−1

∑
j=n0

C j

(
∞

∑
i= j

Biz
1/β

i

)1/γ

+ xn0

and passing n→ ∞ we obtain a contradiction with positivity of x. Therefore yn > 0. Now

assume wn < 0. Since wn is decreasing there exists k < 0 such that wn ≤ k for large n. By

summation of the third equation of system (S) we obtain

zn =
n−1

∑
i=n0

Aiw
1/α

i + zn0 ≤ k1/α
n−1

∑
i=n0

Ai + zn0, (2.6)
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passing n→∞ we have a contradiction with positivity of z. Therefore wn > 0 and this is a

type (a) of a nonoscillatory solution.

Assume that there exists a nonoscillatory solution (x,y,z,w) such that xn > 0 and zn < 0

for large n. Assume yn < 0. Since yn is decreasing, we can assume that there exists k < 0

such that yn ≤ k for large n. Then using (2.5) we get

xn ≤ k1/γ
n−1

∑
i=n0

Ci + xn0,

which is a contradiction with positivity of x. Therefore, yn > 0. Now assume that wn < 0.

Since wn is decreasing there exists k < 0 such that wn ≤ k for large n. Then using

substitution of (2.6) into the second equation of system (S) we obtain

yn ≤
n−1

∑
j=n0

B j

(
k1/α

j−1

∑
i=n0

Ai + zn0

)1/β

+ yn0 ≤ L
n−1

∑
j=n0

B j

(
j−1

∑
i=n0

Ai

)1/β

,

where L is a suitable constant. Passing n→ ∞ we obtain a contradiction with positivity of

y. Therefore, wn > 0 and it is a type (b) of a nonoscillatory solution.

Remark 3. A solution x of equation (E) is of type (a) [type (b)] if the corresponding

solution (x,y,z,w) of system (S) is of type (a) [type (b)].

Theorem 3. Assume (H1) or (H2). If

∞

∑
n=n0

dn = ∞, (2.7)

then equation (E) is oscillatory.

Proof. In view of Lemma 4 we can assume without loss of generality that xn > 0, yn > 0

and wn > 0. Hence, there exist k > 0 and n0 > 1 such that xn ≥ k for n≥ n0. By summation

of the fourth equation of system (S), we find that (2.7) leads to a contradiction with the

positiveness of wn.

Example 3. Consider equation (2.2) from Example 2. By Theorem 3, this equation has

all solutions oscillatory for any τ ∈ Z. However, by Theorem 1 no oscillatory solution is

quickly oscillatory for τ even.
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Example 4. Consider the difference equation

∆
4xn + xn+τ = 0. (2.8)

We see that an = bn = cn = dn = 1. Therefore, it satisfies assumption (H1) and (2.7). In

virtue of Theorem 3 equation (2.8) is oscillatory for any τ ∈ Z.

In addition, one can check (see [1]) that (2.8) with τ = 0 has these solutions

x(1)n = α
ncosβn,

x(2)n = α
nsinβn,

x(3)n = γ
ncosδn,

x(4)n = γ
nsinδn,

where
α = |1− (1− i)/

√
2|,

β = tan−11/(
√

2−1),

γ = |1+(1+ i)/
√

2|,

δ = tan−11/(
√

2+1).

Example 5. Consider equation (2.1) from Example 1. We have an = bn = cn = 1 and

dn =
32β

(
2β +1

)2

2τλ
2n(β−λ ).

If β ≥ λ , then by Theorem 3 equation (2.1) has all solutions oscillatory.

However, if β < λ , then by [5, Theorems 3.5,3.6] equation (2.1) has also nonoscillatory

solutions.

Hence, under assumptions (H1) or (H2), if (E) has a nonoscillatory solution, then

∞

∑
n=n0

dn < ∞. (2.9)
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2.4 Lemmas on integration and summation

In the following chapters we give sufficient conditions for the nonexistence of both types

of nonoscillatory solutions of (E). To this goal the following lemmas will be used.

Lemma 5. (i) Let k ∈ (0;1) and {wn} be a sequence such that wn > 0 and ∆wn < 0.

Then
∞

∑
n=1

−∆wn

wk
n

< ∞.

(ii) Let k > 1 and {wn} be a sequence such that wn > 0 and ∆wn > 0. Then

∞

∑
n=1

∆wn

wk
n+1

< ∞.

Proof. Claim (i). We suppose that k < 1 and wn > 0, ∆wn < 0. This implies

−∆wn

wk
n
≤
∫ wn

wn+1

1
tk dt.

Summing from N to ∞ we obtain

∞

∑
n=N

−∆wn

wk
n
≤

∞

∑
n=N

∫ wn

wn+1

1
tk dt ≤

∫ wN

0

1
tk dt < ∞.

Claim (ii). If k > 1 and wn > 0, ∆wn > 0, then we get

∆wn

wk
n+1
≤
∫ wn+1

wn

1
tk dt.

Using summation from N to ∞ we obtain

∞

∑
n=N

∆wn

wk
n+1
≤

∞

∑
n=N

∫ wn+1

wn

1
tk dt ≤

∫
∞

wN

1
tk dt < ∞.

The important tool in our investigation is the following change of summation, see

[6, 7].

Lemma 6. Let {an} and {dn} be positive real sequences defined for n ∈ N0. Assume case
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(i) α > λ or α = λ ≥ 1.

If
∞

∑
n=n0

dn

(
n

∑
k=n0

1

a1/α

k

)λ

= ∞, then
∞

∑
n=n0

1

a1/α
n

(
∞

∑
k=n

dk

)1/α

= ∞.

(ii) α < λ or α = λ ≤ 1.

If
∞

∑
n=n0

1

a1/α
n

(
∞

∑
k=n

dk

)1/α

= ∞, then
∞

∑
n=n0

dn

(
n

∑
k=n0

1

a1/α

k

)λ

= ∞.

Proof. Conditions with α = λ have been proved in [7], conditions α 6= λ in [6].

Remark 4. Observe that the opposite implications in Lemma 6 in general need not hold.

For example, choosing

S =
∞

∑
n=1

1
n(n−1)

(
n

∑
k=1

1

)λ

and T =
∞

∑
n=1

(
∞

∑
k=n

1
k(k−1)

)1/α

,

we have S = ∞ and T < ∞ for λ ≥ 1 and α < 1; the opposite case holds for λ < 1 and

α ≥ 1.

In order to construct illustrative examples we use the following connection between

power and generalized power.

Define for k ∈ N

k(α) :=
Γ(k+1)

Γ(k+1−α)
,

where Γ is the Gamma function

Γ(t) :=
∫

∞

0
e−sst−1ds.

Lemma 7. We have

lim
k→∞

kα

k(α)
= 1 (α ∈ R) .

Proof. The proof of this result was suggested by M. Bohner by personal communication

and published in [9, Lemma 5.1].
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Stirling’s formula [25, Chapter 8] says that

lim
x→∞

Γ(x+1)(x
e

)x√2πx
= 1.

Thus,

αk :=
Γ(k+1−α)

(k
e

)k√
2πk

Γ(k+1)
(k−α

e

)k−α√
2π (k−α)

→ 1 as k→ ∞.

Hence, we can conclude that

kα

k(α)
= kα

αk

(k−α

e

)k−α√
2π (k−α)(k

e

)k√
2πk

= αk

(k−α

k

)k−α√
k−α

e−α
√

k

= αkeα

√
1− α

k

(
1− α

k

)k

→ 1 · eα ·1 · e−α = 1 as k→ ∞.



Chapter 3

Nonoscillatory solutions of type (a)

3.1 Asymptotic properties of solutions of type (a)

To establish oscillation theorems, conditions for the nonexistence of solutions of type (a)

and of type (b) are crucial. In the sequel, we give a lower bound for solutions of type (a)

and we describe asymptotic properties of these solutions.

Recall that a solution x of (E) is of type (a) if

xn > 0, x[1]n > 0, x[2]n > 0, x[3]n > 0 for large n,

where x[1], x[2], x[3] are quasi-differences of x. If x is of type (a), then

(x,y,z,w) =
(

x,x[1],x[2],x[3]
)

is a type (a) solution of (S).

Lemma 8. If equation (E) has a solution of type (a), then

∞

∑
n=n0

dn

n+τ−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

1/γ


λ

< ∞ (3.1)

– 22 –
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and every solution x of type (a) satisfies for n≥ n0

xn

xλ/(αβγ)
n+τ−3

≥ In

(
∞

∑
i=n−3

di

)1/(αβγ)

, (3.2)

where n0 is sufficiently large and

In =
n−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ

. (3.3)

Proof. Let (x,y,z,w) be a type (a) solution of system (S), i.e. all components of the solution

are positive. First we prove (3.1). Since z is positive increasing, there exists k > 0 such

that z1/β
n ≥ k for large n, say n≥ n0. From the first and the second equation of system (S)

we get

x j ≥
j−1

∑
i=n0

Ciy
1/γ

i , y j ≥
j−1

∑
i=n0

Biz
1/β

i ≥ k
j−1

∑
i=n0

Bi,

so

x j ≥
j−1

∑
n=n0

Cn

(
n−1

∑
k=n0

Bkz1/β

k

)1/γ

≥ k1/γ

j−1

∑
n=n0

Cn

(
n−1

∑
k=n0

Bk

)1/γ

. (3.4)

By summation of the fourth equation of system (S) and using (3.4)

−wn +wn0 =
n−1

∑
i=n0

−∆wi ≥ kλ/γ
n−1

∑
i=n0

Di

i+τ−1

∑
j=n0

C j

(
j−1

∑
k=n0

Bk

)1/γ
λ

and from the boundedness of w we have (3.1). Since w is non-increasing, we get from the

second and the third equation of system (S)

y j ≥ w1/(αβ )
j−2

j−1

∑
i=n0

Bi

(
i−1

∑
k=n0

Ak

)1/β

,

so

xn ≥ w1/(αβγ)
n−3

n−1

∑
j=n0

1

c1/γ

j

 j−1

∑
i=n0

1

b1/β

i

(
i−1

∑
k=n0

1

a1/α

k

)1/β
1/γ

. (3.5)
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Using summation of the fourth equation of system (S) we get

wn ≥
∞

∑
i=n

Dixλ
i+τ ≥ xλ

n+τ

∞

∑
i=n

Di. (3.6)

Therefore,

w1/(αβγ)
n−3 ≥ xλ/(αβγ)

n+τ−3

(
∞

∑
i=n−3

Di

)1/(αβγ)

. (3.7)

From (3.5) and (3.7) follows the validity of (3.2).

Theorem 4. Every solution x of type (a) satisfies for n≥ n0

k1

(
x[3]n−3

)1/(αβγ)
In ≤ xn ≤ k2 In, (3.8)

where k1,k2 are suitable positive constants, n0 is sufficiently large and In is defined by

(3.3).

In addition, if (H1) or (H2) holds, then

lim
n→∞

xn = ∞, (3.9)

if

∞

∑
n=n0

dn

n+τ−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ


λ

= ∞, (3.10)

then

lim
n→∞

x[3]n = 0. (3.11)

Proof. Let (x,y,z,w) =
(

x,x[1],x[2],x[3]
)

be a type (a) solution of system (S), i.e. all

components of the solution are positive.

First, we prove (3.8). Since w = x[3] is non-increasing, we get from the second and the

third equation of system (S)

y j ≥ w1/(αβ )
j−2

j−1

∑
i=n0

Bi

(
i−1

∑
k=n0

Ak

)1/β

,
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so

xn ≥ w1/(αβγ)
n−3

n−1

∑
j=n0

1

c1/γ

j

 j−1

∑
i=n0

1

b1/β

i

(
i−1

∑
k=n0

1

a1/α

k

)1/β
1/γ

. (3.12)

Since w is positive decreasing, there exists l > 0 such that wn ≤ l for n ≥ n0. From the

third and the second equation of system (S) we obtain

zn ≤ zn0 + l1/α
n−1

∑
i=n0

Ai, yn ≤ yn0 +
n−1

∑
k=n0

Bk

(
zn0 + l1/α

k−1

∑
i=n0

Ai

)1/β

,

then using the first equation of system (S) we get the upper bound

xn ≤ xn0 +
n−1

∑
j=n0

C j

yn0 +
j−1

∑
k=n0

Bk

(
zn0 + l1/α

k−1

∑
i=n0

Ai

)1/β
1/γ

.

Therefore, there exists k2 > 0 such that

xn ≤ k2

n−1

∑
j=n0

1

c1/γ

j

 j−1

∑
k=n0

1

b1/β

k

(
k−1

∑
i=n0

1

a1/α

i

)1/β
1/γ

= k2In.

From (3.2) in Lemma 8 we get the lower bound. From (E) we obtain

∆x[3]n =−dnxλ
n+τ . (3.13)

By using (3.13) in inequality (3.2) we get the lower bound in (3.8).

Now, we prove the asymptotic properties of solutions of type (a). If (H1) or (H2)

holds, then we get from (3.4) that

lim
j→∞

x j ≥ k1/γ lim
j→∞

j−1

∑
n=n0

Cn

(
n−1

∑
k=n0

Bk

)1/γ

= ∞,

which implies the validity of (3.9).

As claimed above, x[3] is positive and non-increasing. Assume that

lim
n→∞

x[3]n = m,
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where m is a positive constant. From (3.8) we get that xn ≥ k · In, where k is a positive

constant. Using this fact and summation (3.13) from n0 to n−1 we obtain

x[3]n = x[3]n0 −
n−1

∑
i=n0

dixλ
i+τ ≤ x[3]n0 − kλ

n−1

∑
i=n0

diIλ
i+τ . (3.14)

Passing n→∞ and assuming (3.10), we have from (3.14) that limn→∞ x[3]n < 0, which gives

a contradiction. Thus:

lim
n→∞

x[3]n = 0.

This completes the proof.

3.2 Sufficient conditions for the nonexistence solutions of

type (a)

The nonexistence of solutions of type (a) is ensured by the following conditions.

Theorem 5. Assume (H1) or (H2). Then equation (E) has no solution of type (a) if any of

the following conditions hold:

(i)

∞

∑
n=n0

dn

n+τ−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

1/γ


λ

= ∞; (3.15)

(ii) λ < αβγ and

∞

∑
n=n0

dn

n+τ−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ


λ

= ∞; (3.16)

(iii) λ ≥ αβγ , τ ≥ 3 and

limsup
n→∞

n−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ(

∞

∑
m=n−3

dm

)1/(αβγ)

> 1;

(3.17)
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(iv) λ > αβγ , τ ≥ 3 and

limsup
n→∞

n−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ(

∞

∑
m=n−3

dm

)1/(αβγ)

> 0.

(3.18)

Proof. Let (x,y,z,w) be a type (a) solution of system (S), i.e. all components of the

solution are positive. Since z is positive increasing, there exists k > 0 such that z1/β
n ≥ k

for large n, say n≥ n0. From the first and the second equation of system (S) we get

x j ≥
j−1

∑
i=n0

Ciy
1/γ

i , y j ≥
j−1

∑
i=n0

Biz
1/β

i ≥ k
j−1

∑
i=n0

Bi,

so

x j ≥
j−1

∑
n=n0

Cn

(
n−1

∑
k=n0

Bkz1/β

k

)1/γ

≥ k1/γ

j−1

∑
n=n0

Cn

(
n−1

∑
k=n0

Bk

)1/γ

. (3.19)

Let condition (i) hold. By summation of the fourth equation of system (S) and using

(3.19) we get

−wn +wn0 =
n−1

∑
i=n0

−∆wi ≥ kλ/βγkλ/γ
n−1

∑
i=n0

Di

i+τ−1

∑
j=n0

C j

(
j−1

∑
k=n0

Bk

)1/γ
λ

.

Passing n→ ∞ we get the contradiction with the boundedness of w.

Let condition (ii) hold. Taking into account that w is positive and decreasing, we get

by summation of the third equation of system (S)

z j ≥
j−1

∑
i=n0

Aiw
1/α

i ≥ w1/α

j−1

j−1

∑
i=n0

Ai.

Thus,

−∆wn = Dnxλ
n+τ ≥ Dn

n+τ−1

∑
m=n0

Cm

m−1

∑
k=n0

Bk

(
w1/α

k−1

k−1

∑
i=n0

Ai

)1/β
1/γ


λ

.
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Hence,

−∆wn

wn−1
λ/(αβγ)

≥ Dn

n+τ−1

∑
m=n0

Cm

m−1

∑
k=n0

Bk

(
k−1

∑
i=n0

Ai

)1/β
1/γ


λ

.

Summing this inequality from n0 to ∞ we have

∞

∑
n=n0

−∆wn

wλ/(αβγ)
n−1

≥
∞

∑
n=n0

Dn

n+τ−1

∑
i=n0

Ci

 i−1

∑
j=n0

B j

(
j−1

∑
k=n0

Ak

)1/β
1/γ


λ

.

By Lemma 5 the expression on the left side is finite, which is a contradiction with (3.16).

Assume (iii). Using Lemma 8 we obtain from (3.2)

In

(
∞

∑
i=n−3

di

)1/(αβγ)

≤ xn

xλ/(αβγ)
n+τ−3

≤ 1. (3.20)

Passing n→ ∞, we get a contradiction with (3.17).

Assume (iv). Because (H1) or (H2) holds, then by Theorem 4 we have that (3.9) holds.

Thus, since λ > αβγ , then

lim
n→∞

xn

xλ/(αβγ)
n+τ−3

= 0.

By (3.20) we have

In

(
∞

∑
i=n−3

di

)1/(αβγ)

≤ xn

xλ/(αβγ)
n+τ−3

.

Passing n→ ∞, we get that

lim
n→∞

In

(
∞

∑
i=n−3

di

)1/(αβγ)

= 0,

which is a contradiction with (3.18). Thus, the solution of type (a) cannot occur.

Remark 5. Theorem 5 extends Theorem 2.6 and Corollary 2.2 in [3] for equation (E). We

extend these results also for the super-linear and the half-linear cases.
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3.3 Applications

The assumption (H1) or (H2) is important only in Theorem 5-(iv). Theorem 5 claims (i),

(ii), (iii) hold without this assumption.

In the super-linear case λ > αβγ condition (3.18) is better than (3.17). It is clear that

condition (3.17) implies the validity of (3.18). This fact is illustrated by the following

example.

Example 6. Consider equation (E) in the form

∆
3
(

n(3) (∆xn)
)
+∆

(
− 1

lnn

)
xλ

n+τ = 0, τ ≥ 3 and λ > 1.

Thus, α = β = γ = 1 and an = bn = 1, cn = n(3), dn = ∆
(
− 1

lnn

)
.

Therefore,

limsup
n→∞

n−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ(

∞

∑
m=n−3

dm

)1/(αβγ)

= limsup
n→∞

n−1

∑
i=n0

1
i(3)

(
i−1

∑
j=n0

(
j−1

∑
k=n0

1

))(
∞

∑
m=n−3

∆

(
− 1

lnm

))

= limsup
n→∞

1
2 ln(n−2)
ln(n−3)

=
1
2
.

We can see that condition (3.18) is satisfied, while (3.17) is not applicable. By Theorem 5

such equation has no solution of type (a).

Theorem 5 together with the change of summation given in Lemma 6 enables us to

show the role of the nonlinearity f (n) = nλ to the nonexistence of a solution of type (a).

The following holds.

Corollary 2. Let there exist λ0 < αβγ such that (3.16) with λ = λ0 holds. Then for any

λ ≥ λ0 equation (E) has no solution of type (a).
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Proof. First, assume λ0 ≤ λ < αβγ . Using notation

Xi =
1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ

,

we have
∞

∑
n=n0

dn

(
n+τ−1

∑
i=n0

Xi

)λ0

≤
∞

∑
n=n0

dn

(
n+τ−1

∑
i=n0

Xi

)λ

,

and by Theorem 5 equation (E) does not have any solution of type (a).

Now, assume λ ≥ αβγ . Then using the change of summation from Lemma 6 part (i)

we get that conditions (3.18) and (3.17) hold. In virtue of Theorem 5, equation (E) does

not have any solution of type (a) in this case as well.

Roughly speaking, condition (3.16) is the ”universal” sufficient condition for the nonex-

istence of solutions of type (a) for any λ > 0.



Chapter 4

Nonoscillatory solutions of type (b)

Recall that a solution x of (E) is of type (b) if

xn > 0, x[1]n > 0, x[2]n < 0, x[3]n > 0 for large n.

Similarly as in Chapter 3, we state the lower bound for solutions of type (b) and we describe

asymptotic properties of these solutions.

4.1 Asymptotic properties of solutions of type (b)

First, we give a lower bound for solutions of type (b).

Lemma 9. If equation (E) has a solution of type (b), then

∞

∑
n=n0

1

a1/α
n

(
∞

∑
k=n

dk

)1/α

< ∞ (4.1)

and
∞

∑
n=n0

1

b1/β
n

 ∞

∑
k=n

1

a1/α

k

(
∞

∑
i=k

di

)1/α
1/β

< ∞. (4.2)

Moreover, every solution x of type (b) satisfies for n≥ n0

xn

xλ/αβγ

n+τ−1

≥ J1/γ

n−1

n−1

∑
i=n0

1

c1/γ

i

, (4.3)

– 31 –
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where n0 is sufficiently large and

Jn =
∞

∑
k=n

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β

. (4.4)

Proof. Let x be a solution of type (b). Then (x,y,z,w) is a solution of (S) satisfying xn > 0,

yn > 0, zn < 0, wn > 0 for large n. Since the components y, w and −z are positive and

decreasing, we have

lim
n→∞

yn = y∞, y∞ ≥ 0, lim
n→∞

wn = w∞, w∞ ≥ 0, lim
n→∞

zn = z∞, z∞ ≤ 0.

STEP 1. By summation of the fourth equation of (S) we have

wn = w∞ +
∞

∑
k=n

Dkxλ
k+τ ≥ xλ

n+τ

∞

∑
k=n

Dk. (4.5)

By summation of the third equation of (S) and substituting (4.5) we obtain

zm ≥ zn0 + xλ/α

n0+τ

m−1

∑
n=n0

An

(
∞

∑
k=n

Dk

)1/α

.

Since z is bounded, we get (4.1).

STEP 2. By summation of the third equation of (S) and substituting (4.5) we get

− zn =−z∞ +
∞

∑
k=n

Akw1/α

k ≥ xλ/α

n+τ

∞

∑
k=n

Ak

(
∞

∑
i=k

Di

)1/α

. (4.6)

By summation of the second equation of (S) we obtain

ym− yn0 =
m−1

∑
n=n0

Bnz1/β
n .

Thus,

yn0 = ym +
m−1

∑
n=n0

Bn(−zn)
1/β ≥ L1/β

m−1

∑
n=n0

Bn

 ∞

∑
k=n

Ak

(
∞

∑
i=k

Di

)1/α
1/β

,
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where L > 0 such that xλ/α

n+τ ≥ L for n≥ n0. From here we get (4.2).

STEP 3. We prove the inequality (4.3). Using summation of the second equation of

system (S) we get

y∞− yn =
∞

∑
k=n

1

b1/β

k

z1/β

k ,

so

yn ≥
∞

∑
k=n

1

b1/β

k

(
−z1/β

k

)
.

Using (4.6) we obtain

yn ≥
∞

∑
k=n

1

b1/β

k

xλ/(αβ )
k+τ

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β

,

yn ≥ xλ/(αβ )
n+τ

∞

∑
k=n

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β

,

yn ≥ xλ/(αβ )
n+τ Jn.

Using summation of the first equation of system (S) we get

xn ≥ xn0 +
n−1

∑
i=n0

1

c1/γ

i

y1/γ

i ≥ y1/γ

n−1

n−1

∑
i=n0

1

c1/γ

i

, (4.7)

thus,

xn ≥ xλ/(αβγ)
n+τ−1 J1/γ

n−1

n−1

∑
i=n0

1

c1/γ

i

,

which implies (4.3).

4.2 Sufficient conditions for the nonexistence solutions of

type (b)

The nonexistence of solutions of type (b) is ensured by the following conditions.

Theorem 6. Equation (E) has no solution of type (b) if any of the following conditions
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hold:

(i)

T :=
∞

∑
n=n0

1

a1/α
n

(
∞

∑
k=n

dk

)1/α

= ∞; (4.8)

(ii) T < ∞ and

∞

∑
n=n0

1

b1/β
n

 ∞

∑
k=n

1

a1/α

k

(
∞

∑
i=k

di

)1/α
1/β

= ∞; (4.9)

(iii) λ < αβγ , T < ∞ and

∞

∑
n=n0

1

b1/β
n

(
n+τ−1

∑
k=n0

1

c1/γ

k

)λ/(αβ )
 ∞

∑
j=n

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β

= ∞; (4.10)

(iv) λ > αβγ , τ ≥ 1 and

∞

∑
n=n0

1

c1/γ
n

 ∞

∑
k=n

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β


1/γ

= ∞; (4.11)

(v) λ ≥ αβγ , τ ≥ 1 and

limsup
n→∞

 ∞

∑
k=n−1

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β


1/γ(

n−1

∑
m=n0

1

c1/γ
m

)
> 1. (4.12)

Proof. Claims (i) and (ii) follow from Lemma 9. To prove claims (iii) - (v), we assume

that there exists a solution x of (E) which is of type (b) and we use estimations stated in

the proof of Lemma 9.

Let (x,y,z,w) be a solution of (S) satisfying xn > 0, yn > 0, zn < 0, wn > 0 for large n.

Then z satisfies (4.6) and x satisfies (4.7). Using (4.6) and (4.7) we get

−zn ≥ xλ/α

n+τ

∞

∑
j=n

A j

(
∞

∑
i= j

Di

)1/α

≥ yλ/(αγ)
n+τ−1

(
n+τ−1

∑
k=n0

Ck

)λ/α
∞

∑
j=n

A j

(
∞

∑
i= j

Di

)1/α

.
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Thus, using the second equation of system (S) we obtain

−∆yn = Bn (−zn)
1/β ≥ Bnyλ/(αβγ)

n+τ−1

(
n+τ−1

∑
k=n0

Ck

)λ/(αβ )
 ∞

∑
j=n

A j

(
∞

∑
i= j

Di

)1/α
1/β

,

so

−∆yn

yλ/(αβγ)
n+τ−1

≥ Bn

(
n+τ−1

∑
k=n0

Ck

)λ/(αβ )
 ∞

∑
j=n

A j

(
∞

∑
i= j

Di

)1/α
1/β

.

Since αβγ > λ we get by Lemma 5-(i)

∞ >
∞

∑
n=n0

−∆yn

yλ/(αβγ)
n+τ−1

≥
∞

∑
n=n0

Bn

(
n+τ−1

∑
k=n0

Ck

)λ/(αβ )
 ∞

∑
j=n

A j

(
∞

∑
i= j

Di

)1/α
1/β

,

which gives a contradiction with (4.10).

Assume (iv). From the third and the second equation of system (S) and (4.6) we obtain

yn ≥ xλ/(αβ )
n+τ

∞

∑
k=n

Bk

 ∞

∑
j=k

A j

(
∞

∑
i= j

Di

)1/α
1/β

= xλ/(αβ )
n+τ Jn,

where Jn is defined by (4.4). Thus,

cn (∆xn)
γ = yn ≥ xλ/(αβ )

n+τ Jn,

∆xn

xλ/(αβγ)
n+τ

≥ 1

c1/γ
n

J1/γ
n .

Since x is positive increasing, τ ≥ 1 and αβγ < λ we have by Lemma 5-(ii)

∞ >
∞

∑
n=n0

∆xn

xλ/(αβγ)
n+1

≥
∞

∑
n=n0

∆xn

xλ/(αβγ)
n+τ

≥
∞

∑
n=n0

1

c1/γ
n

J1/γ
n ,

which leads to a contradiction with (4.11).

Assume (v). Since xn ≤ xn+τ−1, we get by (4.3)

1≥ xn

xλ/αβγ

n+τ−1

≥ J1/γ

n−1

n−1

∑
i=n0

1

c1/γ

i
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a contradiction with (4.12).

Remark 6. The conditions (H1) and (H2) are not needed in Theorem 6.

4.3 Discussion of conditions

1) In the super-linear case λ > αβγ we can apply conditions (4.11) or (4.12). We show

that they are independent. Let the sequence Jn be defined by (4.4) and put

Xn =
1

c1/γ
n

.

Then conditions (4.11) and (4.12) can be rewritten as

∞

∑
n=n0

XnJ1/γ
n = ∞ and limsup

n→∞

J1/γ

n−1

n−1

∑
i=n0

Xi > 1,

respectively. Since Jn is decreasing, we have

J1/γ

n−1

n−1

∑
i=n0

Xi ≤
n−1

∑
i=n0

XiJ
1/γ

i ,

so

limsup
n→∞

J1/γ

n−1

n−1

∑
i=n0

Xi ≤
∞

∑
i=n0

XiJ
1/γ

i .

Thus in general, if condition (4.11) holds, then (4.12) need not to hold and vice versa.

Example 7. Consider equation (E), where cn = 1, α = 1, β = 1, γ = 1, λ > 1 and an, bn

be such that Jn =
1
n .

Then (4.11) reads as
∞

∑
n=n0

Jn =
∞

∑
n=n0

1
n
= ∞,

so (4.11) is satisfied. Condition (4.12) reads as

limsup
n→∞

Jn−1

n−1

∑
i=n0

1 = limsup
n→∞

1
n−1

n−1

∑
i=n0

1 = limsup
n→∞

n−n0

n−1
= 1,

so (4.12) is not valid.
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2) Now, we discuss conditions for the nonexistence of solutions of type (a) and type

(b) stated in Theorem 5 and Theorem 6.

Parts (i) and (ii) of Theorem 5 and parts (i)-(iii) of Theorem 6 can be viewed as a

discrete counterpart of similar results for differential systems of the n-th order, see [20,

Propositions 4.1 and 4.5].

Comparing conditions for the nonexistence of solutions of type (a) and (b) in the sub-

linear case, part (ii) of Theorem 5 and part (iii) of Theorem 6 extend Corollary 2.2 and

Corollary 2.1 in [3], respectively, where it is assumed that τ ≤ 0 and (H1). Moreover,

assuming (H1), part (i) of Theorem 5 and part (ii) of Theorem 6 can be obtained from

Theorem 2.6 and Theorem 2.4 in [3], respectively, but our proofs are completely different.



Chapter 5

Oscillation criteria and applications

In this section we establish oscillation criteria for equation (E) under assumptions (H1)

or (H2) and (2.9). Oscillation criteria are based on conditions for the nonexistence of the

nonoscillatory solutions given in the previous sections.

5.1 Oscillation criteria

Theorem 3 from Section 2.3 ensures the oscillation of (E) for any τ ∈ Z. Now we apply

results of Chapter 3 and Chapter 4 and we state oscillation theorems in which the role of

deviating argument τ is important.

Consider the double series

P =
∞

∑
n=n0

dn

(
n

∑
k=n0

1

c1/γ

k

)λ

, T =
∞

∑
n=n0

1

a1/α
n

(
∞

∑
k=n

dk

)1/α

.

Theorem 7. Assume (H1) or (H2), τ ≥ 1. If

P = ∞ and T = ∞,

then (E) is oscillatory.

Proof. Lemma 4 implies that equation (E) has two possible types of solutions, type (a)

or type (b). If P = ∞, then (3.15) holds for τ ≥ 1 and by Theorem 5 equation (E) has no

– 38 –
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solution of type (a). If T = ∞, then by Theorem 6 equation (E) has no solution of type (b).

Thus, (E) is oscillatory.

In a special case when α = γ = λ = 1 and an = cn we have

P = ∞⇔ T = ∞.

The interesting case occurs when α = λ 6= 1 or α 6= λ . The problem of comparison

of conditions (3.15) and (4.8) leads to the problem of a change of summation for double

series described in Lemma 6.

Theorem 8. Assume (H1) or (H2). Equation (E) with τ ≥ 1 is oscillatory if any of the

following conditions holds:

(i) α > λ or α = λ ≥ 1, P = ∞ and

liminf
c1/γ

n

a1/α
n

> 0; (5.1)

(ii) α < λ or α = λ ≤ 1, T = ∞ and

limsup
c1/γ

n

a1/α
n

< ∞.

Proof. Claim (i). Clearly, condition P = ∞ implies the validity of (3.15) for any τ ≥ 1.

Hence, by Theorem 5, equation (E) with τ ≥ 1 has no type (a) solution. By comparison

theorem for series and in view of (5.1), we have

∞

∑
n=n0

dn

(
n

∑
k=n0

1

a1/α

k

)λ

= ∞.

Using Lemma 6 we get T = ∞. By Theorem 6 equation (E) has no type (b) solutions. Now,

the conclusion follows from Lemma 4. Claim (ii) can be proved by a similar way.

In general, when Theorem 8 cannot be applied, then we can apply Theorem 5, part (i)

and Theorem 6, parts (i), (ii) and we obtain the following result.
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Theorem 9. Assume (H1) or (H2). If (3.15) and either (4.8) or (4.9) hold, then equation

(E) is oscillatory.

In the sub-linear case this result can be improved using part (ii) of Theorem 5 and part

(iii) of Theorem 6 as follows.

Theorem 10. Assume λ < αβγ and either (H1) or (H2). If (3.16) and either (4.8) or

(4.10) hold, then equation (E) is oscillatory.

In general, oscillation of (E) depends on the type of nonlinearity (whether the sub-

linear, the half-linear or the super-linear case occurs) and on the deviating argument τ . The

following holds.

Theorem 11. Let τ ≥ 3 and either (H1) or (H2) hold. Equation (E) is oscillatory if any of

the following conditions hold:

(i) λ = αβγ , (3.17) and one of conditions (4.8), (4.9) or (4.12);

(ii) λ > αβγ , (3.18) and one of conditions (4.8), (4.9), (4.11) or (4.12);

(iii) λ < αβγ , (3.16) and one of conditions (4.8), (4.9) or (4.10).

Proof. By Lemma 4 any nonoscillatory solution is of type (a) or (b). By Theorem 5 and 6

the conditions ensure that equation (E) has no solutions of type (a) and of type (b).

Remark 7. Theorem 9 generalizes [3, Theorem 2.10], where they assume only the case

when (H1) holds.

Theorems 8, 9, 10 can be compared with results in [21] using coupled system (2.4).

Application of Theorem 1 or Theorem 2’ of [21] to system (2.4) leads to conditions

(3.15), (4.8) or (3.16), (4.8), respectively. Observe that Theorem 4’ of [21] ensures

oscillation of (2.4) provided λ < 1, (3.16) and certain additional assumptions on α,β ,γ .

Theorem 11 case (ii) extends Corollary 2 in [33] and case (iii) extends Corollary 1 in

[33], where equation (1.1) was studied, the special kind of our more general equation (E).

Theorem 11 extends Theorem 2.10 in [3], where the super-linear case was not treated

at all.



Chapter 5. Oscillation criteria and applications 41

Concluding remark

We discuss the role of the integer-valued argument τ in (E) to the behavior of nonoscillatory

solutions. It is well-known that the deviating argument τ plays an important role in the

oscillation.

We can notice that conditions (3.15) and (3.16) for the nonexistence of solutions of type

(a) depend on τ but hold for τ ∈ Z. On the contrary, conditions (3.17) and (3.18) do not

depend on τ and hold only for τ ≥ 3.

If we consider conditions for the nonexistence of solutions of type (b), the argument τ

appears only in condition (4.10), the others do not depend on τ . Conditions (4.8), (4.9)

and (4.10) hold for τ ∈ Z and conditions (4.11) and (4.12) hold only for τ ≥ 1.

In example 12 of the following section we can see how the argument τ can influence the

nonexistence of a solution of type (a). Thus, it is a question whether we can generalize the

effect of τ to the nonexistence of both solutions of type (a) and (b).

5.2 Applications and examples

In this section there are examples which illustrate our results which were presented in the

previous chapter.

First example shows that conditions in Theorem 10 are optimal.

Example 8. Consider the equation

∆
(
∆

3xn
)α

+dnxλ
n+τ = 0 (5.2)

where τ ≥ 1 and (2.9) holds. Then

P =
∞

∑
n=n0

nλ dn, T =
∞

∑
n=n0

(
∞

∑
k=n

dk

)1/α

and by Theorems 8 and 10 we get that equation (5.2) is oscillatory if any of the following

conditions is satisfied

(i) λ < α or α = λ ≥ 1, P = ∞;
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(ii) λ > α or α = λ ≤ 1, T = ∞;

(iii) λ < α , ∑
∞
n=n0

n3λ dn = ∞, T < ∞ and

∞

∑
n=n0

nλ/α
∞

∑
j=n

(
∞

∑
k= j

dk

)1/α

= ∞.

The claim (iii) of Example 8 is not true for α = λ = 1 as the next example shows.

Example 9. Consider the Euler-type difference equation

∆
4xn +

15
16

n(−3/2)

(n+3)(5/2)
xn+3 = 0, (n≥ 2), (5.3)

where n(µ) = Γ(n+1)
Γ(n−µ+1) is the factorial function, Γ is the Gamma function and µ ∈ R for

which Γ(n− µ + 1) is defined. One can check that xn = n(5/2) is a positive solution of

(5.3). Using the fact n(µ) ∼ nµ (see Lemma 7) we have ∑
∞
n=n0

n3dn = ∞ and

∞

∑
n=n0

n
∞

∑
j=n

(
∞

∑
k= j

dk

)
= ∞.

Another oscillation criteria can be obtained using the cyclic permutation described in

Lemma 2 and Theorem 2. For instance, in the case when

∞

∑
n=n0

a−1/α
n = ∞,

∞

∑
n=n0

b−1/β
n < ∞,

∞

∑
n=n0

c−1/γ
n =

∞

∑
n=n0

dn = ∞,

we can apply Theorems 8–11 to the equation (R2).

We show the application of Theorem 2 and Theorem 10.

Consider equation

∆
2
(

bn
(
∆

2xn
)β
)
+dnxλ

n+τ = 0, (5.4)

where τ ∈ Z and
∞

∑
n=n0

1

b1/β
n

< ∞ and
∞

∑
n=n0

dn = ∞. (5.5)



Chapter 5. Oscillation criteria and applications 43

Then the cyclic permutated equation (R2) to (5.4) is

∆
2

(
1

d1/λ
n

(
∆

2zn
)1/λ

)
+

1

b1/β

n+τ

z1/β

n+τ = 0, (5.6)

whose difference operator is in the canonical form, i.e. (H1) holds. In equation (5.6) we

have α = 1, β = 1/λ , γ = 1, λ = 1/β . Hence, the condition λ < αβγ reads λ < β and

the series P and T for (5.6) as

P̄ =
∞

∑
n=n0

(
n

bn+τ

)1/β

, T̄ =
∞

∑
n=n0

∞

∑
k=n

1

b1/β

k+τ

=
∞

∑
n=n0

n−n0 +1

b1/β

n+τ

.

Since limn→∞
n+τ

n = 1, we have P̄ = ∞ if and only if

∞

∑
n=n0

(
n
bn

)1/β

= ∞. (5.7)

Similarly, since limn→∞
n+τ

n−n0+1 = 1, we get T̄ = ∞ if and only if

∞

∑
n=n0

n

b1/β
n

= ∞. (5.8)

Observe that if β ≥ 1 and (5.7) holds, then (5.8) is satisfied, while if β ≤ 1 and (5.8)

holds, then (5.7) is satisfied.

It is worth noting that if (5.7) and (5.8) hold, then (H2) is satisfied for (5.6) and we can

apply Theorems 7 – 11 to (5.6).

If (5.7) and (5.8) hold, then by Theorem 7 equation (5.6) is oscillatory.

By Theorem 7 we get the following corollary.

Corollary 3. Assume (5.5), τ ≥ 1, β > 0 arbitrary and (5.7), (5.8) hold. Then (5.4) is

oscillatory.

By Theorem 2 and Theorem 10, we get the following result.
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Corollary 4. Assume (5.5) and λ < β , τ ∈ Z. If

∞

∑
n=n0

1

b1/β

n+τ

(
n+τ−1

∑
j=n0

jλ d j

)1/β

= ∞

and either (5.8) or
∞

∑
n=n0

nλ/β dn

(
∞

∑
k=n

k

b1/β

k

)λ

= ∞,

then equation (5.4) is oscillatory.

Remark 8. Corollary 4 completes the oscillation criteria for equation (5.4) with τ = 3

given in [33] and [34], where instead of the condition ∑dn = ∞, it is assumed that both

series in conditions (5.7) and (5.8) are divergent or convergent respectively.

The following examples illustrate Theorem 11.

Example 10. Consider the equation

∆
2
(

1
n−1

(∆(n−1)∆xn)

)
+

µ

(n+2)(n+3)
xλ

n+3 = 0, (5.9)

where µ > 1 and λ ≥ 1 are real constants.

Thus, an = 1, bn =
1

n−1 , cn = n−1, and α = β = γ = 1. We have

Xn =
1
cn

n−1

∑
i=n0

1
bi

(
i−1

∑
j=1

1
a j

)
=

1
n−1

n−1

∑
i=1

1
i−1

(
i−1

∑
j=1

1

)
=

1
n−1

n−1

∑
i=1

i−1
i−1

= 1,

∞

∑
k=n−3

dk =
∞

∑
k=n−3

µ

(k+2)(k+3)
= µ

∞

∑
k=n−3

−∆
1

k+2
=

µ

n−1
,

and so (3.17) reads as

limsup
n→∞

n−1

∑
i=n0

Xi

∞

∑
k=n−3

dk = limsup
n→∞

(n−n0)
µ

n−1
= µ.

Therefore, if λ > 1, then the condition (3.18) is satisfied and by Theorem 5-(iv) equation

(5.9) has no solution of type (a).

If λ = 1 , then we apply Theorem 5-(iii). Thus, (5.9) has no solution of type (a).
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Applying condition (4.8) we get

∞

∑
n=n0

(
∞

∑
k=n

µ

(k+2)(k+3)

)
= ∞.

Hence, by Theorem 6 - (i) equation (5.9) has no solution of type (b) for any λ ≥ 1.

Summarizing, (5.9) is oscillatory for λ ≥ 1.

Example 11. Consider the equation

∆
4xn +µn(−4)xn+3 = 0, (5.10)

where µ > 0 is a real constant.

If µ > 6, then

limsup
n→∞

(
∞

∑
i=n

∞

∑
j=i

∞

∑
s= j

µn(−4)

)(
n

∑
k=n0

1

)

= limsup
n→∞

µn(−1)

6
· (n+1−n0) = limsup

n→∞

µ(n+1−n0)

6(n+1)
> 1.

Thus, the condition (4.12) is satisfied and by Theorem 6 equation (5.10) has no solution of

type (b).

Similarly, if µ > 18, then

limsup
n→∞

(
n−1

∑
i=n0

i−1

∑
j=n0

j−1

∑
k=n0

1

)(
∞

∑
k=n−3

µk(−4)

)
= limsup

n→∞

n3

6
· µ (n−3)(−3)

3
> 1,

and the condition (3.17) is satisfied. Then by Theorem 5 equation (5.10) has no solution

of type (a).

Summarizing, (5.10) is oscillatory for µ > 18.

Next example illustrates the role of the deviating argument τ .

Example 12. Assume equation (E) with λ = 2, dn = e−n2
, an = 1, α = 1 and bn, cn, β , γ

satisfy

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

1/γ

= ∆e
(i−2)2

2 .
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First, assume equation (E) with τ = 1. Rewriting the condition (3.15) we obtain

∞

∑
n=n0

e−n2

(
n

∑
i=n0

∆e
(i−2)2

2

)2

=
∞

∑
n=n0

e−n2
(

e
(n−1)2

2 −K
)2

<
∞

∑
n=n0

e−n2
e(n−1)2

=
∞

∑
n=n0

e−2n+1 < ∞,

where K = e
(n0−2)2

2 .

Thus, Theorem 5-(i) is not aplicable and we can not decide if (E) has a solution of type

(a).

However, for (E) with τ = 2 the condition (3.15) is satisfied because

∞

∑
n=n0

e−n2

(
n+1

∑
i=n0

∆e
(i−2)2

2

)2

=
∞

∑
n=n0

e−n2
(

e
n2
2 −K

)2

=
∞

∑
n=n0

e−n2
(

en2
−2Ke

n2
2 +K2

)
=

∞

∑
n=n0

1−2Ke−
n2
2 +K2e−n2

= ∞

Therefore (E) does not have any solution of type (a) for τ ≥ 2.
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Maximal and minimal solutions

In this section we study maximal and minimal solutions of (E) under assumption (H1) or

(H2) and their relationship to the type (a) and (b) solutions.

According to Lemma 4, any eventually positive solution of (E) falls into one of the two

types (a) or (b).

Recall

x[1]n = cn (∆xn)
γ , x[2]n = bn

(
∆x[1]n

)β

, x[3]n = an

(
∆x[2]n

)α

.

If xn > 0, then there exists k > 0 such that xn ≥ k for large n and furthermore x[3] is positive

and decreasing.

Therefore, we can state that for any eventually positive solution x of (E) there exist

positive constants r, R such that

r ≤ xn ≤ RIn for large n,

where In is defined by (3.3), i.e.

In =
n−1

∑
i=n0

1

c1/γ

i

 i−1

∑
j=n0

1

b1/β

j

(
j−1

∑
k=n0

1

a1/α

k

)1/β
1/γ

.

That leads to the following definition of a minimal and a maximal solution.

Definition 2. In the set of all eventually positive solutions of equation (E), a solution x

– 47 –
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which satisfies

lim
n→∞

xn = r (6.1)

is called a minimal solution, and a solution x of equation (E) satisfying

lim
n→∞

xn

In
= R (6.2)

is called a maximal solution.

The problem of the existence of minimal and maximal solutions has been studying

by Agarwal and Manojlović [4], Migda and Schmeidel [23], Thandapani and Arocki-

asamy [29], Thandapani and Selvaraj [32] for special types of the fourth-order difference

equations.

6.1 Maximal solutions

Lemma 10. If x is a maximal solution of (E), then

lim
n→∞

xn = ∞. (6.3)

Proof. Assumptions (H1) and (H2) imply that

lim
n→∞

In = ∞. (6.4)

If x is a maximal solution, then x satisfies (6.2) and from this and (6.4) we get the validity

of (6.3).

The following result shows the relation between a maximal solution and a solution of

type (a).

Theorem 12. Assume (H1) or (H2). If x is a maximal solution of (E), then x is of type (a).

Proof. By Lemma 4, any eventually positive solution of (E) is of type (a) or type (b). Let

x be a solution of (E) of type (b). Hence, x[1] is positive and decreasing. Thus, there exists
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k > 0 such that x[1]n ≤ k for large n. From this we obtain

cn (∆xn)
γ ≤ k,

xn ≤ k1/γ
n−1

∑
j=n0

1

c1/γ

j

.

From (6.2) we get that there exists n0 such that

xn ≥
R
2
· In

for all n≥ n0. Hence,
R
2
· In ≤ xn ≤ k1/γ

n−1

∑
j=n0

1

c1/γ

j

,

and therefore,

limsup
n→∞

In

∑
n−1
j=n0

1
c1/γ

j

< ∞.

However, by discrete l’Hospital’s rule (Stolz theorem), see Agarwal [1, Theorem 1.8.9],

we get

limsup
n→∞

In

∑
n−1
j=n0

1
c1/γ

j

= ∞,

which gives a contradiction. Therefore a solution x of type (b) can not be a maximal

solution.

Theorem 13. A necessary condition for equation (E) to have a maximal solution x is that

∞

∑
n=n0

dnIλ
n+τ < ∞. (6.5)

Proof. Let x be a maximal solution of equation (E). Then there exists an integer n0 such

that
R
2
· In ≤ xn ≤ 2R · In,
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for n≥ n0. Summing equation (E) from n0 to n−1 we have

x[3]n = an

(
∆bn

(
∆cn (∆xn)

γ
)β
)α

≥
n−1

∑
i=n0

dixλ
i+3

≥
n−1

∑
i=n0

di

(
R
2
· Ii+3

)λ

≥
(

R
2

)λ

·
n−1

∑
i=n0

di · Iλ
i+3

for all n≥ n0. Since x[3] is bounded, passing n→ ∞ we arrive at a contradiction.

The problem whether the condition (6.5) is also sufficient for the existence of a maximal

solution is a subject of our study in [17]. Observe that this problem has been studied for

equation

∆
2
(

bn
(
∆

2xn
)β
)
+dnxλ

n+3 = 0

by Thandapani and Selvaraj [32, Theorem 1] and Agarwal and Manojlović [4, Theorem

5.1]. The proof of Theorem 1 in [32] is based on Schauder Fixed-Point Theorem. However,

the continuity of the operator is not given there and the proof of the relatively compactness

is not clear. In [4] Theorem 5.1 is given without proof with the argument that it is the same

as that of Theorem 1 in [32].

6.2 Minimal solutions

We continue with the relation between a minimal solution and a solution of type (b).

Theorem 14. Assume (H1) or (H2). If x is a minimal solution of (E), then x is of type (b).

Proof. By Lemma 4, any eventually positive solution of (E) is of type (a) or type (b). Let

x be a type (a) solution of (E). Hence, by Theorem 4, we have

lim
n→∞

xn = ∞,

which gives a contradiction with the definition of the minimal solution. Therefore, the

minimal solution must be of type (b).
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Theorem 15. A necessary condition for equation (E) to have a minimal solution x is that

∞

∑
n=n0

1

c1/γ
n

 ∞

∑
k=n

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β


1/γ

< ∞. (6.6)

Proof. Let x be a positive minimal solution of equation (E). There exists an integer n0

such that
r
2
≤ xn ≤ 2r,

for all n≥ n0. In view of Theorem 14 the solution is of type (b). Thus, from (4.3) we get

xn ≥
n−1

∑
m=n0

1

c1/γ
m

 ∞

∑
k=m

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

dixλ
i+τ

)1/α
1/β


1/γ

.

We suppose that 2r ≥ xn, letting n→ ∞, we get

∞ > 2r ≥ xn ≥
n−1

∑
m=n0

1

c1/γ
m

 ∞

∑
k=m

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

dixλ
i+τ

)1/α
1/β


1/γ

.

Because xn has a positive finite limit as n→ ∞, we obtain

∞ >
∞

∑
m=n0

1

c1/γ
m

 ∞

∑
k=m

1

b1/β

k

 ∞

∑
j=k

1

a1/α

j

(
∞

∑
i= j

di

)1/α
1/β


1/γ

.

In [17] we show that (6.6) is also the sufficient condition.

Similarly as maximal solutions, minimal solutions were studied by Thandapani and Sel-

varaj in [32], see Theorem 2. The proof is based on Schauder Fixed-Point Theorem but

the operator in their proof is defined incorrectly. In addition, the proof lacks the proof of

the continuity of the operator and the proof of the relatively compactness.



Chapter 7

Concluding remarks and open problems

We present new oscillation results and we indicate future directions which may be pursued

in the context of our research. Due to the fact that studying fourth-order difference

equations has received considerably less attention, there is a great number of open problems

in this direction. Thus, the topics presented in this dissertation can be extended in various

ways. We sketch some of the related problems in this section.

• The first possible extension of our results could be generalization of our theorems

for a two-term difference equation of the form

L4xn +dn f (xn) = 0,

where f : R→ R is a continuous function that satisfies

u f (u)> 0 for u 6= 0,

and for λ > 0

lim
u→∞

f (u)
uλ

> 0.

• The other possibility is to study equation (E) without assumptions (H1) and (H2). In

this case, there are eight possible types of nonoscillatory positive solutions, therefore

it will be a more difficult problem to find some conditions for oscillation.

• The results in Chapter 5 can be generalized and applied to more general even-order

– 52 –
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difference equations and 2n-dimensional systems.

• In this dissertation there are sufficient conditions given for the oscillation of equation

(E). Thus, another possible direction of our research can be effort to find such

conditions that all solutions of equation (E) are nonoscillatory. This is an open

problem.



Appendix

In this dissertation we present new results in the theory of fourth-order difference equations

obtained and published by the author jointly with Zuzana Došlá. The thesis consists of the

results from articles [15, 16, 17]. For completeness, this dissertation is finished with a list

of results presented in this text that have been published.

Theorem 1 [15, Theorem 1]

Lemma 1 [19, Lemma 7]

Lemma 2 [15, Lemma 1]

Theorem 2 [15, Theorem 2]

Lemma 3 - This lemma was proved in [14, Lemma 1] for system (S) with the assumption

Dn < 0.

Lemma 4 - This lemma was proved in [16, Lemma 1] with assumption (H2) and in [15,

Lemma 2] with assumption (H1).

Theorem 3 - This theorem was proved in [16, Proposition 1] with assumption (H2) and in

[15, Proposition 1] with assumption (H1).

Lemma 5 claim (i) [15, Lemma 3]

Lemma 5 claim (ii) [16, Lemma 4]

Lemma 8 [16, Proposition 2]

Theorem 5 claims (i), (ii) [15, Lemma 4 (ii), (iii)]

Theorem 5 claim (iii) [16, Theorem 5 (ii)]

Lemma 9 [16, Proposition 3]

Theorem 6 claims (i), (ii), (iii) [15, Lemma 5 (i), (ii), (iii)]

Theorem 6 claims (iv), (v) [15, Theorem 6 (i), (ii)]

– 54 –
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Theorem 7 [15]

Theorem 8 - This theorem was proved in [15, Theorem 3] only with assumption (H1).

Theorem 9 - This theorem was proved in [16, Theorem 2 (i)] with assumption (H2) and in

[15, Theorem 4] with assumption (H1).

Theorem 10 - This theorem was proved in [16, Theorem 2 (ii)] with assumption (H2) and

in [15, Theorem 5] with assumption (H1).

Theorem 11 claim (i) [16, Corollary 2 (ii)]

Theorem 11 claim (iii) [16, Theorem 2 (ii)]

Corollary 4 [15, Corollary 1]

The following results are contained in [17]:

Theorem 4, Theorem 5 claim (iv), Lemma 10, Theorems 11 – 15
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[9] S. Fišnarová, Oscillation of two-term Sturm-Liouville difference equations, Interna-

tional J. Difference Equ., (1) (2006), 81-99.

[10] T. Fort, Finite differences and difference equations in the real domain, Oxford Uni-

versity Press, London 1948.

[11] H.I. Freedman, Deterministic mathematical models in population ecology, Marcel

Dekker, New York, 1980.

[12] D. Greenspan, Discrete models, Addison-Wesley, Reading, Massachusetts, 1973.

[13] T. A. Chanturia, On oscillatory properties of systems of nonlinear ordinary differential

equations (in Russian), Proc. of I. N. Vekua Inst. of Appl. Math., Tbilisi, 14 (1983),

163-204.
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