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Abstract

In this dissertation, we investigate oscillatory properties of the perturbed half-linear

Euler differential equation
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<1+ i a,-2 )cb(x’)

=1 Log 7t

/

_|_

ty—§+f—ﬁf ]cp(x):o,

i=1tP Log ?t

where Log  t = Hlj‘:l log,t, log,t=1log,_,(logt), log,t =1logt, and in the second part

perturbations involving periodic functions (), c(¢), a;(t), Bj(t) >0
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are studied.
In the both cases, the method of transformation of the so-called modified Riccati

equation is used.



Abstrakt

V této disertacni préci studujeme oscilacni vlastnosti perturbované Eulerovy polo-

linearni diferencialni rovnice

_1\?
(CID(x'))/—}— Z/—ZCD(X) =0, ®D(x):=x"2x, = (p_l) .

Nejdiive uvazujeme perturbace ve tvaru
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kde Log t = Hlj‘-zl log, ¢, log,t=1og;_,(logt), log,t =1logt, a v druhé ¢asti studujeme

perturbace obsahujici periodické funkce r(z), c(), a;(t), B;(t) >0
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V obou pripadech je k vySetfovani rovnic vyuzita metoda transformaci tzv. modifiko-

vané Riccatiho rovnice.
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Introduction

The half-linear differential equation is a second order nonlinear differential equation of the
form

(r)®()) +e(t)®(x) =0, @(x):=|x]P"2x, p> 1, (1)

with continuous functions r, ¢ and r(t) > 0. The terminology “half-linear” differential
equation is motivated by the fact that its solution space has just one half of the properties that
characterize linearity, namely homogeneity but not generally aditivity. The terminology
half-linear equation was introduced in the papers of Bihari [1, 2], but as pioneers of this
theory are usually regarded Elbert and Mirzov with their papers [16, 17, 26].

There are several motivations for the investigation of qualitative properties of half-
linear differential equations. One of them comes from the fact that the partial differential

equation with the so-called p-Laplacian
div (||Vul|P72Vu) + c(x)®(u) =0, xeR"

with a spherically symetric potential ¢(x) can be transformed into half-linear equation
(1) which is also sometimes called equation with one-dimensional p-Laplacian. Another
motivation is that if p = 2 then (1) reduces to the linear Sturm-Liouville second order
differential equation

(r(t)x/)/ +c(t)x=0, (2)

whose qualitative theory is deeply developed and a natural question is which linear”
results for (2) can be extended to (1).
Even if the aditivity of the solution space of (1) is lost, the remaining homogeneity is

sufficient to establish a Sturmian theory for (1). This means, among others, that equation
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(1) does not admit coexistence of oscillatory and nonoscillatory solutions and hence it
can be classified as oscillatory or nonoscillatory as linear equation (2). A comprihensive
treatment of the qualitative theory of half-linear equations can be found in the books [4, 13].

The principal concern of the dissertation are oscillation criteria for (1) which are related,

in a certain sense, to the so-called half-linear Euler differential equation

(@) + tlpcp(x) —0, @)= 2 p>1, yeR

This equation is one of a few half-linear differential equations which can be solved (at least
partially) explicitly and when y = (%) p, this equation represents a natural ’borderline”
between oscillatory and nonoscillatory half-linear differential equations and hence it plays
an important role in many (non)oscillation criteria for (1).

The organization of the dissertation is following. In the first chapter, we deal with the
principal methods used for studying the oscillation properties. The reader gets familiar
with techniques using Priifer angle, Riccati equation or modified Riccati equation, as well
as the basic types of half-linear differential equations and their essential properties.

In the next chapter, we focus on the Euler half-linear differential equation having a
two-term perturbation and we lead the reader step by step to the oscillation criterion for
half-linear Euler differential equation with a two-term perturbation.

The third chapter gives a more general view on the problem of oscillation criteria for
Euler half-linear differential equation. We investigate the Euler half-linear differential
equation with perturbations of at maximum »n terms also in the term involving derivative.
This chapter shows that even if more complicated methods had to be used, the oscillation
criteria are perfect generalization of oscillation criteria presented in the Chapter 2.

The fourth chapter includes the oscillatory properties of Euler half-linear differential
equation with perturbations involving periodic functions.

The fifth and last chapter gives some ideas for the possible new research directions.



Chapter 1

Basic Theory

Let us consider the equation
(r() @) +c(t)®(x) =0, @(x):=|x]P 'sgnx, p> 1, (1.1)
where r and ¢ are continuous functions and r(r) > 0. We will first deal with the existence

and uniqueness of a solution of (1.1).

1.1 Half-linear trigonometric functions

We start with introducing the so-called half-linear trigonometric functions. Consider a

special half-linear equation of the form (1.1)
(@) +(p— D) =0 (1.2)

and denote by S = S(¢) its solution given by the initial conditions S(0) =0, §'(0) = 1.
We will show that the behavior of this solution si very similar to that of the classical
sine function. Multiplying (1.2) (with x replaced by S) by S’ and using the fact that
(®(S") = (p—1)|S'|P~2S", we get the identity [|S’|” 4 |S|P]’ = 0. Substituting here t = 0

and using the initial condition for § we have the generalized Pythagorian identity

S@)|P +[S'(1)" = 1. (1.3)
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The function S is positive in some right neighbourhood of 7 = 0 and using (1.3) §' =

(1— Sp)%, ie., —45 _ — dt in this neighbourhood, hence
(1-SP)

Sl

S(t) 1
t:/ (1 —sP) rds. (1.4)
0

Following the analogy with the case p = 2, we denote

1 1 1 rl _1 1 1 11
@2/ (1-s7) f'l’dsz—/ (1—u) u ;d”:_B(_’_)’
2 0 pJo p P 4
where g = -7 and
1
B(XJ):/ tx_l(l—t)y_ldt
0

is the Euler beta function. Using the formulas

I'(x) T
Bley) = T rgr(n ) =
['(x+y) sin 7Tx
with the Euler gamma function I'(x) = [;° " le~'dt, we have
— 2
P W
psin?

The formula (1.4) defines uniquely the function S = S(¢) on [0, %] with S(%) =1 and
hence by (1.3) §’ (%) = 0. Now, we define the half-linear sine function sin,? as the 27,

odd continuation of the function

The function S, reduces to the classical function sine in the case p = 2 and in some literature
this function is denoted by sin, 7 (in this dissertation we will be using this notation as well).
The remaining half-linear trigonometric functions are defined by the formulas

. sin, ¢ CoS,t
cos,t = (sinyt), tan,t= o P cotyt = =2

smpt
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The function tan, ¢ is periodic with the period 7, and has discontinuities at % +kmy, k € Z.

By (1.2) and (1.3) we have

(tan, 1)’ = 14 |tan,t|P, (cot,t)' = —|cot,t|* P(1+|cot,t|P).  (1.5)

- |cos,t|P

Hence (tan,?)’ > 0, (cot,)’ < 0 on their definition domains and there exist the inverse
functions arctan,,t, arccot, t which are defined as inverse functions of tan, ¢ and cot, in

the domains (—%, %) and (0, 7,), respectively. From (1.5) we have

1

(arctan, 1)’ = TEr

1.2 Half-linear Priifer transformation

Using the generalized trignometric functions and their inverse functions defined in the
previous section, we can introduce the generalized Priifer transformation as follows. Let

x be a nontrivial solution of (1.1) and g = p%l be the conjugate exponent of p. Put

p(1) = (Ix(t) P+ () (1)) ?

and let ¢ be a continuous function defined at all points where x(z) # 0 by the formula

ra—1 X
¢(t) = arccot,, M

x(t
Hence
x(t) = p(t)sin, @(t), (1.6)
r7 ()X (1) = peos, (1) (1.7)

Differentiating equality (1.6) and comparing it with (1.7) we get

r'=9(0)p(1) cos, @(t) = p'(t) sin, @(1) + p (1)@’ () cos, (1) (1.8)
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Similarly, applying the function ® to both sides of (1.7), differentiating the obtained

identity and substituting from (1.1) we get

—c(t)p? ! (1)®(sin, ¢ (1)) =
(p—1)[pP2(t)p' (t)®(cos, @(1)) — p? (1)@ (1)@(sin, @(1))].  (1.9)

o
we get the first order system for ¢ and p

Now, multiplying (1.8) by M, (1.9) by ji?f’flp and combining the obtained equations

o = siny g1 +7'-4(0)|cos, o1
p' = ®(sin, @) cos, @ [rlq(t) - %1 p.

The right hand-side of the last system for ¢ and p is Lipschitzian in these variables, hence
its solution is uniquely determined by an initial condition. But this means that the solution

of (1.1) is determined by an initial condition as well.

1.3 Riccati technique and variational principle

One of the basic methods of the half-linear oscillatory theory, the so-called Riccati tech-
nique, is based on the relationship between nonoscillation of equation (1.1) and solvability
of the associated Riccati type equation.

Let x be a solution of equation (1.1). Then w(t) = % is a solution of the Riccati

type differential equation
Rw|(t) :=w +c(t) + (p—1)r' () |w| = 0. (1.10)

We can easily prove that in view of equation (1.1) we have

W = (I’CD(X’))’CI)()C) — (p _ l)rq)(x/>|x|p,2x,
D2(x)

r|x'|P _

x|

——c—(p-1) —e—(p—1)r" .
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Recall that equation (1.1) is disconjugate on the closed interval |a,b] if the solution
x given by the initial condition x(a) = 0, r(a)®(x'(a)) = 1 has no zero in (a,b], in the
opposite case equation (1.1) is said to be conjugate on [a,b].

Let us also remind that equation (1.1) is said to be nonoscillatory if there exists T € R
such that (1.1) is disconjugate on [T, ), i.e., every nontrivial solution of this equation has
at most one zero in this interval and this means that every nontrivial solution is eventually
positive or negative. Equation (1.1) is said to be oscillatory in the opposite case, i.e., when
there exists a nontrivial oscillatory solution and this is equivalent, as we show below, that
every nontrivial solution has infinitely many zeros tending to oo.

The following statement which describes two basic methods of the half-linear oscilla-

tion theory is usually referred to as the Roundabout theorem.
Theorem 1. The following statements are equivalent.

1. Equation (1.1) is disconjugate on the interval [a,b).

2. There exists a solution of equation (1.1) having no zero in [a, b).

3. There exists a solution w of Riccati equation (1.10) which is defined on the whole
interval [a,b).
b
4. The energy functional F(y;a,b) = [[r(t)|y'|’ — c(t)|y|P]dt is positive for every

a
0%yeW,"(a,b).
For the proof of the above Roundabout Theorem 1 see for instance [4, p. 175].
The relationship between (1.1) and Riccati equation (1.10) shows that the classification
of (1.1) as oscillatory or nonoscillatory is correct, in the sense that if one solution of (1.1)

(non)oscillates, then any other solution also (non)oscillates. Indeed, let x be a nontrivial

r®(x')
P(x) -

w(ty—) = —eo. Now, if ¥ is a solution for which %(¢) # O for 7 € [t;,;], then the graph

solution of (1.1) with consecutive zeros att; <, and w = Then w(f;+) = e and
of W= %(g) has to intersect the graph of w and this contradicts the unique solvability of
(1.10) (since (1.10) is Lipschitzian in w). Therefore, ¥ has to vanish somewhere in [t],1,]

and hence, the zeros of linearly independent solutions of (1.1) interchange.
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Theorem 1 shows us the way the properties of Riccati equation (1.10) and second
order half-linear differential equation (1.1) are linked. For the investigation of oscillatory
properties of equation (1.1), the Riccati technique uses the equivalence of disconjugacy of
equation (1.1) and solvability of the associated Riccati equation (1.10).

More precisely, the following statement holds (see [13, Theorem 2.2.1]).

Proposition 1. Equation (1.1) is nonoscillatory if and only if there exists a differentiable

Sfunction w such that (1.10) holds for large t.

1.4 Modifed Riccati equation

The modified Riccati equation associated with (1.1) is introduced explicitly in [14], but
it can be found implicitly already in some earlier papers, e.g. [21, 22, 31]. Suppose that
(1.1) is nonoscillatory (i.e., every its nontrivial solution is eventually positive or negative)

and let & be a positive differentiable function. Consider the substitution
v="n"(t)w—G(t), G(t):=r(t)h(t)®(H (1)), (1.11)

where w is a solution of (1.10). Then v is a solution of the modified Riccati equation
V&) +(p—Dr(n)h 4 ()H(v,G(t)) =0, (1.12)

with
H(v,G) = |v+G|9—q® ' (G)v— |G|, (1.13)

&~ !(s5) = |s|972s being the inverse function of ®, and

&(t) = h(t) [(re) DK (1)) + () (h(t))]. (1.14)

This can be verified by a direct computation, see also computation below formula (2.5) in
the next chapter. Note that the function H(v,G) satisfies H(v,G) > 0 for every v,G € R
and H(v,G) = 0 = H,(v,G) if and only if v = 0. Observe also that Riccati equation (1.10)
is a special case of (1.12) with h(r) = 1, i.e., G(t) = 0.
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1.5 Half-linear Euler differential equation

The half-linear Euler differential equation

(@) + tlpq)(x) —0, ®():=p" 2 p>1, YER, (1.15)

is one of a few half-linear second order differential equations which can be solved explicitly.

Similarly to the linear case p = 2, if we look for a solution of (1.15) in the form x(¢) = t*,

we get

X =t
D(x) =@(A)r P VA = @(p )P At

(@) =@(A)(p— 1)(A — 1)tPA=A=P,
Substituting into (1.15) we obtain

D) (p—1)(A = )P AP L gP=DA=p —

A=A (1) | DAY (L — 1)+ ]% —0.

Hence, we find that A has to be a solution of the algebraic equation
PA)A—-1)+——=0,

(p—=DPA)(A-1)+7y=0,

see also [17].

We denote F(A) := (p—1)®(A)(A —1). By a direct computation of the derivative of

the function F (1) we get the extrema of this function

p®(A) AP (p—1) =0,

AP [Ap—(p—1)]=0.
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Since F(4o0) = oo, we see that the function F(A) := (p—1)®(A)(A — 1) has a global

minimum at A* = prl and the value of this minimum is

F) = e (1) (L) <o (1) el

p p p p

() ()

Consequently, the equation F (A1) + ¥ = 0 has two real roots if ¥ < 7,, one double real root

if Y = 7), and no real root if ¥ > ¥,.

Equation (1.15) is a particular case of the general half-linear second order differential
equation (1.1). This means, in particular, that (1.15) is nonoscillatory if and only if y < ¥,,.
Also, equation (1.15) with the critical coefficient ¥ = 7, serves as a comparison equation

for the Kneser-type (non)oscillation test which states that (1.1) with r(¢) = 1 is oscillatory

provided
. . op
htrgglft c(t) > (1.16)
and nonoscillatory if
limsuptPc(t) <7, (1.17)
t—oo

The potential c(t) = 7,/t? “separates” potentials ¢ in (1.1) with r(¢) = 1 for which this
equation is oscillatory or nonoscillatory. Criteria (1.16), (1.17) can be extended to the
general case r(¢) # 1. In this general setting, the Kneser type criterion is fomulated in

terms of the lower and upper limit of the expression
t p
r7 (1) (/ r1—4(s)ds> c(t) (1.18)
if [*r!79(¢)dt = oo, and of the expression

0 ( | ds)pcm

if [*r!74(t)dt < . The constant ¥, in this criterion remains the same. In the linear case

p=2,(1.16) and (1.17) are the classical Kneser (non)oscillation criteria.
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The Kneser test does not apply when lim,_,..#”c(t) = 7, and this situation is one of the

concerns of this dissertation.

1.6 Euler equation - nonoscillatory case

Even if the first possibility, when the equation F (1) + v = 0 has two real roots happens,
since the additivity of the solution space is lost in the half-linear case, we are not able
to compute other solutions explicitly. To get a more detailed information about their
asymptotic behavior, we use the procedure which is also typical in the linear case, namely
the transformation of (1.15) into an equation with constant coefficients.

The change of independent variable s = log¢ converts (1.15) into the equation (where

the dependent variable will be denoted again by x and ' = is)
(@) — (p— 1)@ (') + y®(x) = 0. (1.19)

The Riccati equations corresponding to (1.15) and (1.19) are
w=—yP—(p—1)|w/ (1.20)

and

V=—y+(p-1pv—(p-1)p/1:=E®W). (1.21)

The solutions w and v are related by the formula w(¢) = ¢! ~Pv(logt) and, moreover, we
have F(®~!(v)) +y= —E(v) with F defined in the previous section.

In the case where ¥ < 7, the function E(1) = 0 has two real roots 4; < 1 < 4y,
A= (’%1)[)_1. The constant functions v(s) = 41, v(s) = A, are solutions of (1.21).
Clearly, if v is a solution of (1.21) such that v(s) < A, for some s € R, then v/(s) < 0, if
v(s) € (A1,42), then V/(s) > 0, and V/(s) < O for v(s) > A,, a picture of the direction field
of (1.21) helps to visualize the situation. Any solution of (1.21) different from v(s) = A; »

can be expressed (implicitly) in the form (S € R being fixed)

v(s) dA
— =y5—S. 1.22
/v<s> ER) " (1.22)
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%2 _ds_js convergent whenever the integration interval does

Observe that the integral E(s)

not contain zeros A,  of E, in particular, for any € > 0

/A]8ﬂ>_ and ” ﬂ>_
. E(A) hoie EQA)

< ~1
In the case where y = ¥, the function £ (A ) = 0 has the double root A = (%) " and

(@A) = tp;1 That implies nonoscillation of (1.15).

equation (1.15) has a solution x(z) =

Since E(A) =0=E'(}),

E(x):%E"d)(x—i)%o((x—lf) as Ao A,

hence, taking into account that E” (1) = —%,

1 —_—

1
(A—A4)

E(R)  L1pr(i)(a -1y [1 +OA—1)
On the other hand, we see form (1.22) that any solution v which starts with the initial

value v(S) < A fails to be extensible up to e and solutions with v(S) > A tend to A as

S — oo. Substituting for E(A) in (1.22) we have

%+0(1og\/1—}u) =s5—38,

hence
2A+(A—2)0(og|A —A)) = (A —2A)(s—S).

Since lim, 5 (A — 2)0(log|A — A|) = 0, we have

lim (s — S)(v(s) — A) = lim s(v(s) — 1) = 2A.

§—ro0

Consequently,

O(log|v(s) —A|) = O(logs™') = O(logs) as s — oo,
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and thus (v(s) —A)~! = 51 +O(logs), which means

v(s)—j,:%—l1 :%(14—0(@)).
S 1+0(=2) s )

Now, taking into account that solutions of (1.20) and (1.21) are related by w(t) =

t1=Py(logt), we have

< 22 log(logt
() A= 10 (L‘;g))
logt log~¢

which means that the solution x of (1.15) which determines the solution w of (1.20) satisfies

~ 1
‘1) @A 2 \7 T p—1 2
(o) '), 1,
x(t) t logt pt  ptlogt

and thus

p=l 2
x(t)~t 7 logrt as t—»oo.

1.7 Riemann-Weber half-linear differential equation

An important role in our treatment is played by the so-called half-linear Riemann-Weber

equation which is the equation

Y Y, u
(@) + (t—;’ + tplog2t> d(x) = 0. (1.23)

It is shown in [18] that equation (1.23) is oscillatory if and only if

1/p—1\""!
wmmi=y (M)

In the linear case p = 2, equation (1.23) reduces to the classical Riemann-Weber equation

x”+( ! +L)xzo. (1.24)

42 " g2 log?t
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In the critical case U = %, equation (1.24) has linearly independent solutions

x1(t) = +/tlogt, x2(t) = +/tlogtlog(logt).

In the half-linear case, solutions in the critical case i = U, cannot be computed exactly,
but using a method similar to that from the preceeding Section 1.6, one can prove that

(1.23) with u = u,, has a solution
p=1 1
X(t)~1t 7 logrt as t— oo
and any other solution which is not proportional to X behaves asymptotically for t — oo as

-1
x(t)=ct'? log? rlog? (logt), 0#ceR,

see [18].

—

Here f(t) ~ g(t) for a pair of functions f,g means lim; ;e % =1



Chapter 2

Two-terms perturbation

2.1 Auxiliary results

In a general framework, we suppose that equation (1.1) is nonoscillatory and we study

oscillatory properties of its perturbation
[(r(t) +7(2))@(')] + (c(r) + (1)) D(x) = 0 2.1)

with continuous functions 7, ¢ such that r(¢) + 7(¢) > 0 for large ¢.

An important role is played by the concept of conditionally oscillatory half-linear equa-
tion. Following [13], equation (1.1) with A¢(¢) instead of ¢(¢) is said to be conditionally
oscillatory if there exists a constant Ay such that this equation is oscillatory for A > Ay
and nonoscillatory for A < Ay. The constant A is called the oscillation constant of (1.1).
A typical example of a conditionally oscillatory equation is just Euler equation (1.15) and
its oscillation constant is Ag = ¥,. Concerning a more detailed treatment of conditional
oscillation of half-linear differential equations we refer to [25].

Here we will deal with conditionally oscillatory half-linear equations in a more general

sense. We will consider the equation of the form
[(r(£) + 27(2)) (X)) + (c(r) + peé(t))P(x) =0 (2.2)
and we say that (2.2) is conditionally oscillatory if there exist constants o, B, ® € R, o # 0,

15
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B # 0, such that (2.2) is oscillatory for oA + B i > @ and nonoscillatory for aA +fu < @.
A typical example of conditionally oscillatory equation with two parameters is perturbed

Euler equation (1.15) with the critical coefficient 7,

A N } _
{<1+10g2t>¢(x )] +[lp+tl’log2t ®(x) =0. (2.3)

p—1
Itis proved in [6] that (2.3) is oscillatory if L — A7y, > p,, 1= % (’%) and nonoscillatory

if u — Ay, < u,. It was conjectured in [6] that (2.3) is nonoscillatory also in the limiting

case

=AY, = lp. (2.4)

In this chapter we prove that the conjecture is true.
Next we derive the modified Riccati equation in a more general setting than in the Sec-
tion 1.4. Together with (1.1) we consider equation (2.1) which we regard as a perturbation

of (1.1). Let h(t) # 0 be a differentiable function, denote
Q(t) = (r+F)hd(H)

and put
7:=h’w—-Q,

where w is a solution of the Riccati equation associated with (2.1)

Wt e(t) +2(t) + (p = 1)(r(t) +7(1)) = |w|? = 0.

Then z is a solution of the modified Riccati equation of the form
ZHC() + (p—1)(r(6) + 7))~ Th~U(1)H (2, Q) = 0,

where

Ct) = h(t) [((r(t) + F(0)@(H (2))) + (c(r) +&(£))D(A(1))]. 2.5)
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Indeed, by a direct computation we have

Z = [nPw—(r+F7)hd(H)]
= pP(h)h'w+hP [—(c+&) = (p—1)(r+7)'~|w|’]
— ((r+A®H)) h— (r+F)|H|P
=pP(WHh P (z+Q) —h(c+&) — (p—1)(r+F)IhP | P (z+ Q)|

—((r+PPMH)) k= (r+F)|H|?

h
=t pr Q= BL(R) — (4 AR = (p = 1))z 4

= —hL(h) — (p— DR~ U(r+7)'" 1|2+ Q|7 — q@ ' (Q)z— |Q[].

Note that in contrast to [6], here we do not suppose that /4 is a solution of (1.1), so the extra
term A[(r®(h'))" + c®(h)] appears in the definition of the function C in (2.5).

In the investigation of perturbations of Euler equation (1.15), we will need the following
results. The first one is a slight modification of [6, Theorem 3] (here, in contrast to [6], we
do not require that the function 4 is a solution of (1.1) but this only means that the above
mentioned extra terms appear in the definition of the function C, otherwise everything is

the same), so we omit its proof.

Theorem 2. Let h be a positive differentiable function such that K (t) # 0 for large t.

Denote
P(1) := (r(t) + F(0)) W () |W (1) |72,

and suppose that

/ ) = oo, / C(t)dt is convergent,

where C is given by (2.5), and that

liminf|Q(z)| > 0.
t—o0



Chapter 2. Two-terms perturbation 18

If
I ds [= 1
limsu —/ C(s)ds < —
Pl B ), (s) 2

t—roo

and

.. tds [~ 3
htlgglf %/t C(s)ds>—Z,

then equation (2.1) is nonoscillatory.

We will also need the next two statements concerning the existence of proper solutions
(i.e., solutions which can be extended up to o) of modified Riccati equation (1.12) which

we, for the sake of the later application, rewrite into the form
V4+CH) 4+ (p—1DR Y ()H(»,G(1)) =0 (2.6)

with continuous functions C,R and R(¢) > 0.

The proofs of the below given theorems can be found (in a modified form) in [6, 7].

Theorem 3. (i) IfC(t) < Oforlarget, then (2.6) possesses a (nonnegative) proper solution.

In the remaining part of the theorem suppose that
litrginf|G(t)| >0 and C(t)>0 forlarget.

Denote

Z(t) =R (1)|G(1)|"?,
and suppose that
/w%(t)dt = oo, /mc(t)dt < oo,

(i1) If
limsup </t%(s)ds) (/MC(S)dS) < iv

then (2.6) has a proper solution.

(1) If
litrgglf </t%(s)ds> </[MC(s)ds> > %1,
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then (2.6) possesses no proper solution.

Theorem 4. Together with (2.6) consider an equation of the same form
VD) + (p— DR Y ) H(1,G(1)) =0 (2.7)

with the function D satisfying D(t) > C(t) for large t. If the (majorant) equation (2.7) has

a proper solution, then (2.6) has a proper solution as well.

2.2 Equation (2.3) in the limiting case (2.4)

In this section we deal with equation (2.3) in the limiting case (2.4). The result of the
below given Theorem 5 is a special case of Theorem 6 from the Chapter 4, but because the
idea of the proof of Theorem 5 is completely different from that of Theorem 6, we present

it here with details. This result has been published in [11].

Theorem S. Suppose that (2.4) holds. Then the perturbed Euler equation with the critical

coefficient (2.3) is nonoscillatory.

Proof. We rewrite (2.3) into the form

A ! —
KH— . )d)(x’)} +{ﬁ+ B B Br =0
log”t tP - tPlog®t  tPlog°t

and we use the computation below (2.5) with r(r) =1, 7#(t) = 10;2t, c(t) = Z—;’ + m‘;ﬁ,

N _ o1
&) = Z’Iflogz”t, h(t)=t7 logrt.

We have

-1 1 1 1 1 1 —1 1 1 1
W=L""% rlogrt+—t rlogr =P Plogpt<1+—),
p p p (p

—1)logt
_1 pil _p-1 p—1 1 p,I
or)=(2"—") g7 e(1+—0 ) |
p (p—1)logt
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R L I I T Ry = 1 P
o) - (1) [ gt (1 L)
(1) P P s (p—1)logt

—1
p_l _2+l _1 1 p
+——-71 “"rlog Pt<1+—)
p (p—1)logt

-2
_2+l p—1 _2 1 P
—t 1 tl 14+ —
rlog » og ( -+ (p—l)logt)

e (F——
p p (p—1)logt
% {_1 (p— ll)logt * lolgt (1 + (p— 11)logt> B ple 1 log;t]
— iyt log" 7 1 {1 +—(pfl_)i)gt - (p;?,) —(p—z)lzlogzt
-2 1 1 1
("3 e oo 0] [ (1-55)

()]
+ 2 -
logct \p—1 p—1

oyl op=l 1 -2 -2
=Yt 2Jrll’logpl’ t {—l—k (_p —|—p )

logt p—1 p-—1
1 (p—2)(p—3) , (p—2)? _
log’1 (_ 2p—17 T (p—1p 1) Tollog zt)}

,2+l p=1 |: p 1 -3 :|
=Yt “'rlogr t|—1— 4+ O(log 7t

p—1
:t_2+% loglp t [—yp i + 0(10g_3 t)] ,
og-t

1 5
o)) +— P_|®(h
(@) 4 |1 25 | o
e N —1 1 —2)?
:(p )" 't 2+;’10g11’ T{—p - 5 — (P=2) —+o(log™1)
P P 2logt  3(p—1)2log’t

oyl ol Kp—l)p 1 p—1.p-1 1 }
+t “Trlogr t|(— ) +=z(—— ¢
& 4 2< p ) log?

p—lip1 041, o1 (p=2)* -1
—(—— t “'rlog T rt——(14+o(log”¢)) <0
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Similarly,

(1022rq)<hl))l =1

A(P— >p1 244 10011 {1+ p—2 4ol ~1 )]
=A|— t “"rlog "t o(log™ 't
p (p—1)logt
p—1 p+ |
A 1
X{ p plogt+0(0g )}
“1\"' -1 2
=1 (p—> 2 1og ! }’t[—p———-l- (log 1t)]
p p logt?

Hence, in the limiting case (2.4) it holds

((F(H)) +c@(h)] =1 P log™ "7t [~ Ay, 4t —

2 /p—1\""' 1
—= (p_) —— +o(log?1)
p p logt

2, it a1
:—%t 25 log > 1(1+0(1))

p_

as t — oo. Consequently,
1 2
h[(FP (1)) + é®(h)] = — logl% tilfﬂé logfzfé t(1+0(1)) =0(t 'og ?1)
p —

ast —» oo,

Now we use Theorem 2. In this theorem

P = (r+ A2 = tlogi(1+ (1)) ~ tlogt,

n_ (P=1\" LN
G=rhdH)="— 10gt<l—|——)
(%) < p ) (p—1)logt
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and using the previous computations

C=h[((r+7)®H)) +(c+&)@(h)] = 0(r og 1)

1
rlog?t”

as t — oo, i.e., there exists a constant M > 0 such that |C(¢)| <M Now, by a direct

/tP_l(s)ds/tooC(s)ds

so by Theorem 2 equation (2.3) with A and p satisfying (2.4) is nonoscillatory. U

computation

lim
t—e  logt

t—oo




Chapter 3

General perturbation

3.1 Perturbations of linear Euler equation

The results of this chapter are taken from [9]. Our investigation is motivated by the papers

[11, 18], and [23]. In [18], perturbations of (1.15) of the form

(CID(x')), +

by P ] ®(x) =0, 3.1)

3 2
tP i=1tP Logt

were investigated. Here, the notation
k
Logt = Hlogkt, log, t = log,_,(logt), log, t = logt
j=1
is again used. It was shown that the crucial role in (3.1) plays the constant u, =

2\ p
tioned in Section 1.7, to the so-called Riemann-Weber half-linear differential equation,

_1\»r1 . . . . ) )
1 (”—1> . In particular, if n =1 in (3.1), i.e., this equation reduces, as we have men-

then this equation is oscillatory if B; > u, and nonoscillatory in the opposite case. In
general, if B; = u, for j=1,...,n—1, then (3.1) is oscillatory if and only if 8, > u,, see
[18].

In [23], perturbations of the linear Euler differential equation were investigated and
a perturbation was also allowed in the term involving derivative. More precisely, the

differential equation

23



Chapter 3. General perturbation 24

<1+f % )x’] +[$+fL]x:0 (3.2)

2 2
i1 Log jt imit*Logjt

was considered. It was shown that if there exists k € {1,...,n} such that ; —a; /4 =1/4
forj=1,...,k—1,and By — oy /4 # }1, then (3.2) is oscillatory if and only if B — o /4 >
1/4. It Bj— o /4= % forall j=1,...,n, then (3.2) is nonoscillatory. This result was first

partially extended to the half-linear equation

KHIO;J q)(x/)}/-i- {ty—ﬁthplfgzt} d(x) =0 (3.3)

and it was shown that (3.3) is oscillatory if and only B — &y, > ,, see Section 2.2. For

some related results see also [7].

In this chapter we deal with perturbations of the Euler half-linear differential equation

in full generality. We consider the equation

(1+i % >c1>(x’)

2
=1 Log it

/

_|_

}’p_i_i B;

— d(x)=0 34
AW L (3.4)

j=1
and we find an explicit formula for the relationship between the constants ¢;,3; in (3.4)
which implies (non)oscillation of this equation. Our result is based on a new method which
consists in transformations of the modified Riccati equations associated with (1.1). The
main result along this line is established in the next section, while its application to the
perturbed Euler equation is presented in the last section of this chapter.

Next, we recall the transformation method of the investigation of (3.2) which we extend
in a modified form to half-linear equations. Recall that the Sturm-Liouville differential
equation

(r@®)x) +c(t)x=0 (3.5)

is the special case p =2 in (1.1). The transformation x = f(¢)y gives the identity (sup-

pressing the argument ¢)

FIY +ex] = (rf2Y) + fLrf) +cf]y. (3.6)
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In particular, if f(¢) # 0, then x is a solution of (3.5) if and only if y is a solution of the

equation

(r() f2(0)Y) + F(0)[(r(t) £ (£)) +¢(t) f(£)]y = 0. (3.7)

Let us emphasize at this moment that we have in disposal no half-linear version of

transformation identity (3.6).

Let us denote

o B
—1+Z :4—2‘24‘2 /

Log 't i=it*Log %t'

First we apply the transformation x = /7y to (3.2). Using (3.6) and the fact that f(1) = /¢

is a solution of the critical Euler linear equation x” + #x =0, we find that y is a solution

iﬁj—%ﬁm]y:o-

j=1 tLOth

of the equation

(er(r)y") +

Now, we change the independent variable  — ¢, the resulting equation is

(r(e)y) + [Z hi— aj/4]y—0. (3.8)

o Logjf

Here we take Logyt = 1. Equation (3.8) is oscillatory by Kneser oscillation criterion if
B1 — o1 /4 > 1/4 and nonoscillatory if B; — @ /4 < 1/4. Indeed, since r(e') ~ 1 ast — oo,
we have in (1.18) with p =2

re) (/[ r_l(es)ds>2 ~ 1

as t — oo, and hence
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If B1 — a1 /4 = 1/4, we can repeat the previous transformations and we obtain the equation

— 0 / 4 Bn — Oy, / 4
rle»(t //+ [32—_}__}_— :O’
( ( 2( ))y) tz Z‘ZLOgZ_Zl‘ y
here e;(t) := ¢?". Now it should be clear how one can obtain the result of [23] concerning
oscillation of (3.2). We repeat the transformation of dependent variable y — /¢y followed

by the change of independent variable  — ¢’ as long as the condition B; — «¢;/4 = 1/4 is

satisfied.

As we have emphasized above, we have no half-linear version of the linear transforma-
tion identity (3.6). Consequently, the above procedure cannot be applied directly to (1.1).
However, as observed e.g. in [6, 7], the modified Riccati equation in the linear case p =2
is the equation )

Yy

Vi +h[(rh') +ch] + i

which is just the Riccati equation associated with differential equation (3.7) (with & = f).
Hence, modified Riccati equation can be regarded, in a certain sense, as a half-linear
substitution for the linear transformation identity (3.6). This is just the idea which we

develop in the next section and apply it in the investigation of the perturbed Euler equation.

3.2 Transformation of modified Riccati equation
As a starting point of this section we consider the modified Riccati equation in the form
V+CH)+(p— DR Y )H(,G(1)) =0, (3.9)

where the function H is given by (1.13), the functions R, C are supposed to be continuous
and R(t) > 0. In this equation, we call the function C the absolute term (since this term

does not contain the unknown function v).

We consider the transformation

z=fP(t)v-U(r) (3.10)
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with a positive differentiable function f and with a function U which we determine as
follows. We have (again suppressing the argument #, this argument we will suppress also
now and then in the next parts of the dissertation)
S
p

7= 7(2+U)+fp{—C— (p—DR'[f Pz+U+ PG|

@ (G (V) -1l | -

=—(p— DR fz+U~+fPG|"+p E +RICI>1(G)] z
+p {7/ +R_ICI>_1(G)} U—(p—1)fPR NGl -U" - fPC.

Next we determine the function U in such a way that the differential equation for z is again
an equation of the form (3.9) (in which H(0,G) = 0 = H,(0,G)). Denote Q := U + fPG.

The terms on the third line of the previous computation
/
—(p—DR 'Yz Q 1 +p [?+R1¢1(G)}z (3.11)

we will take as the first two terms in the function of the same form as H in (3.9). Differ-
entiating (3.11) with respect to z, substituting z = 0, and setting the obtained expression

equal to zero, we obtain

R ' 1 1(Q) = §/+R_lcl>_1 (G),

hence

Q= fO(Rf +f2(G)).

Consequently, we obtain the transformed modified Riccati equation

Z4C+(p— DR |2+ Q1 — g (Q)z— Q)] =0,
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where
B /
c—-p(Lirie@))ur oG o)
+(p— DR QN + U
and

U=—fPG+ fORf +fP 1(G)). (3.13)

Note that formula (3.12) can be simplyfied as

C=R"fPIGI1—R'f Q1 - PG +Q + f°C.

3.3 General perturbations of Euler differential equation

Now we apply the results of the previous section to the perturbed Euler half-linear differ-

ential equation

+ (Z L) ®(x) =0, (3.14)

i—ot? Log §t

n aj , !
K;o LO%?f) e

P
where ap =1, fo = 7, := (”T?l> .

To simplify the next computations, we denote

=1+ -2 =ty B (3.15)

2,7 ) 2,
=1 Logjt 7= tP Log it

The Riccati equation associated with (3.14) is
w +c(t)+ (p—1)r'=9(r)|w|? = 0. (3.16)

In order to understand better the next transformation procedure, we recommend the

reader to compare it with the linear transformation idea presented in Section 3.1. The
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transformation

V1 :tp_]W—Ul,

with U; specified later, transforms (3.16) into the equation

v+ O Pl am () = 0 G3.17)

p—1

=C(t) with f(t)=t 7 ,R=r7"!, and G = 0. This

with & /¢ given by (3.12), i.e. 2

t

means that % =X +Y1+Z; +U{ + fPc, where

_ 1\ Pl
U= PG+ fORf + f&(G)) =T, T,:= (1’_1) |

Xi=-p (7/ +R—1q>—1(G)) Up=—(p— 1) 1T,
Yi=—(p—1)R'f?|G1 =0,
Q| =fO(Rf + f&(G)) =T,

Zy=(p— DR Q7= (p—)r' % rly, = (p— )it .

Hence, by a direct computation we obtain

C1 (¢ " B
el I 0@ og ™),
t i—i1tLogjt

where

B;=fj—a;Yp.

In equation (3.17), with the above given Elt([), we change the independent variable

t — ¢' and the resulting equation is
Vitei(t)+(p— l)r]_q(et) [|v1 +Qq(e")]|?— qd! (Q(e))v— Q‘f(e’))} =0

with
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As the next step, we consider the modified Riccati equation

Bl Bz Bn B R _
V/+—+— —+0t 3 _|_ _1}’ thv,Q l :07
T 2102 2 Log? 1 )+ (p—DF “)HW,Q (1))
where now

We apply the transformation v, = tv; — U,, the quantity U, is again determined in
such a way that we obtain a modified Riccati equation containing H type function for v;.
Hence, using the results from formula (3.12), with f(r) = t'/7, G(t) = Q,(t) = 71 (¢)T),

and R~(1) = f}fq(t), we have

~ 1 1 1_ 1
Q = fORF +f& () =7 @(— #1717 (AT,))
p

1 p=1
=t 14—
& p( +<p—1>r>

and using the binomial expansion

- 1\
Uy =—fPQ+Qy = -t/ ', +7tlC <1—1——)
3 "\ (b1

Further,
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Yo =—(p— DR 7|07 = —(p— )R iy, = —1(p— D)y,F,

g1 1 P
Zo=(p— DR Q" = (p— V)7 % 1yt <1+ )

(p— 1)t
:(p_ 1)7p’71t‘|‘p'}/p’~"1 + %Ypfl "‘O(t_z)-

Hence, the absolute term in the resulting modified Riccati equation is

52<t) / < Bj
=X+ Vot Zo+Us+1 | Y —L —
t 2TiaTerT (12’1 t2L0g?_1

=i {t[-(p= 1)1+ (p— D)1l +[—(p— 1)+ py)
! n. B
Z r o(t e A
t { 2 + YP:| + ( )} +j:1lL0g?_1l‘

_ = _“_ B, _ B

—r1 ” +O0(t~ )] +—+...+ (Log? 7

1 B, B,
= (MBI F g b 1 O(t72).
! tlog~t tLog?2 it

Observe that the O term in U, and later in other U; can be differentiated because of its

special form. Hence, if B; = ,,, we obtain the equation

Bz B _ —1 —
Vit —— 4t ——— + 0t 2) + (p— DI ()t 1H (v2,Q,) = 0.
2 tlogzt tLog%_lt )+ = DA0) (2, )

In this equation we apply again the change of independent variable r — ¢’ and the resulting
equation is

vh+ea(t)+(p— 17 /(e )e® DV H(vy, ) =0

with ¢, (¢) = & (e'), Qa(t) = Q,(¢'), and

We use the notation

P (t) :=Fi(e)e, ..., F(t) := Fr_1(e)e (3.18)
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in the next computations. With this notation, we have

! BZ Bn

24— 4 0(e )+ (p— DA e H (v, Q) =0, 3.19
V2 12 t2L0g%_2t (e)+(p )”2 ¢'H(v2,Q) ( )

We apply the transformation v3 = v, — U3 to (3.19). We obtain the equation

3 (t _
Vg‘i_ C3t( ) —l—(p— 1)?; qezfl_qH(V37Q3) :O,

1
where, with f(¢) =7 and R_l(t) _ ;é—qer,

. / -1/ — 7 ! 1 a
Q3 = fO(Rf + @7 ()) = 7atT (1 e T - l)te’)

and

(1)

==Xtz + Uz +te(t) (3.20)

with
N 1 p-1
U3:—192+Q3:U’2Fp _(1+—1)et>

" (1 i —ll)e’ e —11)te’)p_]

~ 1 p—2 —3t
:trzrp{—(l+g+w+0(e )
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X3=—p (]; +R o (fzz)> Us

_ Ejt(p—l)et (H ( ll)e’)} r

1 p—2 p—2
<ot ot a0l ™)

iy 1 p—2 p—2 p—2
— A, | — 1

"2 pLet+(p—l)t62t+2(p—1)t262’+(p )+ el

p—2 1 p—2 p—2

_ 0 t —2t

2tet el (p— 1)e? - 2(p— 1)te? 0 re )}
. —1

= _FZFP |:(P_ 1) ol 2l ; (te 2[):| ;

3=—(p— I)Féfqettl_qflg

P
~1qt1 ~q 1

——(p—1 9 thq |

(p—1)i, {Jr )e,]

(p—1

:_@_Dnmhb+@f3d+%pfm&+o@Zi

~ p t 3
=R~ (p = Dpte = pypt = SYp +0 (7)),

Zz=(p— l)f;_qe’tl_qﬂg

B To=ne T p—tne

1+ P + P + P (1+1)2+0(e_3t)
poe e e

1
=P {(P_ I)Ypett+l7'}’pt+p'}’p 7p+P'}’p t+ }/P—+O( )} .

= (P - 1)t’727pet

Substituting into (3.20) the above computed quantities, we have

&3(t) :Bz—up+ B3 . B,

+-o 4+ ———+0(e™).
t t tlog*t tLog2 ,t (re”™)
Consequently, if B, = l1,,, we obtain the equation
v3+Z +0(te™) + (p—1)7y (et UH (v3,25(1)) = 0.

tLogj 2t
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In this equation, the change of independent variable r — ¢’ results the equation
Vi+c3(t)+(p— l)féiq(t)Ez(t)H(V3,Q3 (1)) =0, c3(t):=¢&(e).
Here, and also in the sequel, we use the notation
ei(t):=é,....ex(t) i=en_1(e'), En(t) :=en(t) --e(t)

where 7 is the integer in (3.14).

Now we are already in a position to make the induction step in transformations of
modified Riccati equations. We suppose that B; = u, for j=1,...,k —2 for some

k€ {3,...,n}, so we have the equation
Vit et (6) + (p— DR T (0 Eea(t)H (i1, Q41 (1)) = 0

with
(3.21)

1+E1(t)+-~-+Ek_3(t))”_l

Qkfl(t) :prkfl(l‘) <1+ Ek_z(l)

By By,

ck*1<t):t—2+"'+ ‘l‘O(tE]?—,’;(t)/Eku(t))v

2
2 Log n—k17

where 7 1s given by (3.18). We will also use the notation
(1) =€), ri(t) :=Fi(t) =r(e).

Then 7 (t) = ri(¢)E;_1(t) and ri(t) = r(ex(t)) with r given by (3.15).
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We put vy = tvi_1 — Ur. We have

Up = — 181 +

N L4+ By ]!
=ti_I')s — |11+ ————
Tg—1 p{ [ + (p—l)Ek_z}

n {1+1+"'+Ek—3+ 1 }pl
(p—1DE2  (p—1)tEr2

(p=2)(1+--+Ep3) p—2

= rk_ll“p {1 +
and with f(1) = (7, R~ = 7 9E;_; and &_, given by (3.21)

X, =— <7/+R_1(I)_1(Qk_|)> Uy

1
=71l {;‘HP— DE2+ 1+ +Ep3)

L (=2t Ers) p—2
Ei— (p—DE, 2(p—1)E7 ,
p
= =11l {(p_ DE 2+ (p—1)(1+---+E;_3) +Z+

+ O(tE}_3/Ex )],
_ ~ - N
YVi=—(p—1)R lprZfl =—(p— 1)rkjEk72”Zfﬁ’p (1 +

= —ni1 [(p= DWE; 5 — pYptEr2(1+ -+ E;3)
PYp

+ 71(1 —|-'"—|—Ek,3)2—|—0(tE]§73/Ek,2):| ,

Zy=(p- DR 'f1Q] | =(p— Dir_1Eatyp
(14 +Eg_3) 1

P
X |1+ }
(p—1)Er— (p—1)tEx—»

(p—1)Ex_» 2(p—1)tE;_

+O(1E} 3/E; )

+O(IE} 3/E; ;)

b

(p—2)(14-- +E;_3)?
(p—1)Er 2

1+...+Ek_3)p

(p—1)Er 2

=r1 [(p— DYtEE 5+ pYptE—a(1+ -+ Ex_3) + pYpEr_2

PYp

PYp PY
t( 2t

+ Sl Ees)?  pyp(L -+ Eres) +

+ O(IE£_3/E](_2)] .
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Then, using that (p — 1)I", = p7, and

we have
Hp

X+ Y +7Z, = —T+0(IE]§_3/E/C_2).

The last formula is the result of a direct computation where one needs to show that all

terms with the faster growth than r~! vanish. Further, again by a direct computation

(p—2)(1+- +E3) p—2
(p—1E 2 2(p— 1)tEr

/
Ul = {rk_lrp l1 + +O(tE} 4 /E,fz)] }

=O(tE}_3/Ei—2).

Consequently, in the resulting modified Riccati equation for vy

G (t)

v+ +(p— DR Y1)H (v, (1)) =0 (3.22)

with R=1(1) = fk_—l] (t)Ex_»(t)t'~9 we have

) Bi1—lp | v B
=X+ + 2+ U+t = —— + Z —
! jktLoghiy

Cr(2) +O(tE}_3/Ex2)

ast —» oo,

Now we can summarize the previous computations as follows.

Theorem 6. Suppose that there exists k € {2,...,n} such that

B: = _L(p=ny k—1 3.23
j_ypa]_l*t[h up_i T y J= Lo, Kk— 1, ( )

and Py — Yy04 # 0. Then (3.4) is oscillatory if B — Y,0 > U, and nonoscillatory if
Br — Yp0u < Wp. If (3.23) holds for all j =1,...,n, equation (3.4) is nonoscillatory.

Proof. We apply Theorem 3 to the modified Riccati equation (3.22) for v;. In this equation,
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with the notation from Theorem 3,

_ p-1 -2 —2:4—21q—251—¢ 1-
XZ =R |Qk‘f] ~ 11 I’k_lrg rk_lEk_zl 4

-2.—1
)

1 _p-2
=11t g’ "~ gt

hence [* %(s)ds ~ g’ ~?logt and

o Bk
ds~ =X Bi=PBi— oy,
/t ci(s)ds ogr” B B — oy

Recall that f ~ g for a pair of functions f,g means lim; % = 1. Consequently, if

Big" ™% > ﬁ, what happens if and only if By > ,,, modified Riccati equation (3.22) for vy

has no proper solution in view of Theorem 3 (iii). Now, via the “back” transformations
Vj . 1-p
1/]-_1:—Uj+77 j=2,....k, w=-=-Uj+t 7 vy,

the same holds for the Riccati equation associated with (3.4) and hence this equation is

oscillatory by Proposition 1.

If By < up, nonoscillation of (3.4) follows from parts (i) (when By < 0) and (ii) (when
0 < By < up) of Theorem 3 since the existence of a proper solution of the modified Riccati
equation for vi, | implies the existence of a proper solution for the Riccati equation (3.16)

associated with (3.4), hence this equation is nonoscillatory by Proposition 1.

Finally, if (3.23) holds for all j = 1,...,n, then the absolute term in the modified
Riccati equation for v,y is d(t) := M = O(tE}_,(t)/E,—1(t)) and replacing d by its
nonnegative part d* = max{0,d}, we get a majorant of the modified Riccati equation for
Vup1 (in the sense of Theorem 4). The function d™ satisfies the same asymptotic estimate
as d. To estimate the integral [“d™(s)ds we proceed as follows. We have, via the

substitution e, 2 (s) = u, E,—2(s) ds = du, using the inequality log ;u < u, and followed by
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integration by parts,

= sEy_5(s) ds:/”5(61(5)"'€n—2(5))3ds
t En1(s) i en—1(s)-rer(t)
_[” logn_zulogn_3u...logu'udu
en72(t) e

o —1
u"
< / du
en72(u) e
n—1

oo e, o(u)
ena(u) en—l(”) )

~ _unflefu

Consequently,

t—ro0

lim logt/ d*(s)ds =0,
t

hence the modified Riccati equation for v, | with d™ instead of c’”Tl(t) possesses a proper

solution by Theorem 3 and, by Theorem 4, the Riccati equation for v, has the same

property. This implies that (3.4) is nonoscillatory using the same argument as in the

previous part of the proof. 0



Chapter 4

Perturbation with periodic functions

4.1 Formulation of the problem

One of the typical problems in the qualitative theory of various differential equations is
to study what happens when constants in an equation are replaced by periodic functions.
Our investigation follows this line and it is mainly motivated by the papers [6, 7, 9, 11,
12, 19, 23, 29, 30]. In [29, 30], linear second order differential equations with periodic
coefficients were considered which using a transformation of dependent variable can be

transformed into the equation of the form

o s 40 ]
(r00) + 5 e+ 0 | 10 @

with ¢-periodic functions r,c,d. It was shown that (4.1) behaves essentially in the same
way as the classical Riemann-Weber equation where the functions r~!,c,d are replaced

by their mean values

o

1 1 e o] e
r:—/ (1) d, c:—/ c(t)dr, d:—/ d(t)d.
o Jo aJo 0

More precisely, equation (4.1) is nonoscillatory if ¢7 < 1/4 and oscillatory if ¢7 > 1/4. In
the limiting case ¢7 = 1/4, equation (4.1) is nonoscillatory if d7 < 1/4 and oscillatory if

dr > 1/4.

39
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This result was extended in [23], where the second order linear differential equation

W, Bl ]x:o

_|_
12 =112 Log 3(t)

[r(t) + Xn: —aj(;zt)x'

j=1 Logj

with periodic functions r, ¢, a;, B i» j=1,...,n, was considered. It was shown, using an
averaging argument, that the oscillation result for (3.2) remains essentially to hold when
the constants ¢, 8;, j = 1,...,n, in (3.2) are replaced by periodic functions. The role of

constants is taken in this result by the mean values of periodic functions a;(t), B;(z).

As a next step, the effort was concentrated to extend the previous linear results to

half-linear equations. In [19], the equation
(r(t) @) + =L P(x) =0 (4.2)

with a-periodic r,c was considered. Similarly to the linear case, it was shown that (4.2) is

oscillatory provided ¢/P~! > Yp and nonoscillatory when ¢r? 1< Yp»

=gy rwan e=g [le)
F=— [ r9t)dt, ¢c=—
«Jo

the limiting case ¢/P~! = Yp remained undecided in [19]. This problem was resolved in

the later paper [12], we will mention this result later.
In this chapter we consider the equation

/

I-p
( %—22 Log » ) D(x')| +

with T-periodic functions r,c, @j, B, r(t) > 0. One of the reasons why we consider the

ﬁﬂ+i ) d(x)=0. (4.3)

tP 4 Log?(t)

J=1

coefficient of ®(x’) in the power 1 — p is that then this equation can be written as the first

order system

x,:(m)i a,~<2t>)>¢_l(u), u,:_t%(dmn 2 )W

j=1 Logj(z j=1 Logj(t

and perturbation terms in both equations of this system have essentially the same form.
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The main statement of this chapter is based on the result of the previous chapter
presented in Theorem 6. We show, similarly to the above mentioned papers, that constants
oj, B; in (3.4) can be replaced by periodic functions and the resulting oscillation formula is
essentially the same as that one in Theorem 6, only constants are replaced by mean values
of periodic functions appearing in perturbation terms.

We start with a slight modification of Theorem 6. We reformulate it in such a way that

it is applicable to equation (4.3) with constants ¢, 8; instead of T-periodic functions.

Proposition 2. Suppose that there exists k € {1,...,n} such that

1 /p—1\""" |
Bi+(p—1)1oy = Uy, ;upzi T ,j=1,...k—1

(drop this condition for k = 1) and B+ (p — 1)Y,04 # Up. Then the equation

n I=p /
<1+Z ocj%) o) | +

is oscillatory if B+ (p — 1)Y,04 > U, and nonoscillatory if B+ (p — 1) Yp 0% < Up.

by P ]¢<x>=o

2
tP =P Log it

Using the binomial expansion

n

n . =r .
(1—1—2%%(1‘)) :H—(l—p)(ZL)%—O(log_%) ast — oo

it is not difficult to see that Theorem 6 can be really reformulated as stated in Proposition 2.
We will need in the proof of the main result of this chapter the following modification
of the Priifer transformation from Section 1.2.
Let x be a nontrivial solution of (1.1) and consider the modified half-linear Priifer
transformation

x(t) = p(t)sin, @(t), P! ()X (t) = @cosp o(1).
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Then the angular variable @ satisfies the differential equation

o' :% rl_q(t)|cosp(p|p—<b(cosp ®)sin, ¢ +

tPc(t)
p—1

| SinP q)‘]? )

see [12].
The proof of our main result relies on the following averaging lemma, which can be

found in [12], see also [23, Sec. 5], [30, Proposition 2 in the linear case p = 2].

Lemma 1. Let ¢ be a solution of the equation

1
/—_
? =7

la(t)|cosp, @|7 — D(cos, @) sin, ¢ + b(t)|sin, @|7]

with bounded functions a(t) and b(t), a(t) > 0, and let T > 0. Denote

0(r) = %/j” o(s)ds.

Then O is a solution of the equation
1 : : 1
0’ = A A(t)|cos, 0|7 —P(cos, 0)sin, O + B(t)|sin, 0|7 | + O 2 4.4)

with
Alt) = % / " atyde. B = % / ) dr, 4.5)

and @(t)—0(t) =o(1) ast — oo.

The term O(¢~2) in (4.4) can also be written as (compare (1.3))
(|cos, 6P+ [sin, 8]7)O(t72),

hence equation (4.4) can be rewritten into the form considered later on

9’:; (A(t)+O(t™"))|cos), B]P — D(cos), 0) sin, O + (B(t)+O(t ")) |sin, 8|7 |. (4.6)
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4.2 Main result

The results of this section are taken from [10].

The formulation of Lemma 1 from the previous section shows another reason why we
consider the perturbations of Euler equation in the form as appears in (4.3), in particular,
why we consider the term by ®(x’) with the power 1 — p. With this power (since (1 —
p)(1—g) = 1), the function A in (4.5) is just the mean value over the interval [t,7 + T of

the function r(r) + Y, Our main result reads as follows.

L )

Theorem 7. Let r,c and aj,Bj, j =1,...,n, be T-periodic continuous functions, r(t) > 0,

and denote by 7,¢, @}, Bj, Jj=1,...,n, their mean values over the period T.
Q) IferP=! > Yp, then (4.3) is oscillatory and if el < Yp, then it is nonoscillatory.

(ii) Let ¢/t~ = Yp. If there exists k € {1,...,n} such that
B '+ (p—DypaF =y, j=1,. k-1

(drop this condition if k = 1) and Bii?~' 4+ (p — 1)y,047 " # p,, then (4.3) is
oscillatory if
B+ (p =) yp0ur ! > 1y 4.7)

and nonoscillatory if

B+ (p—Dyaur ' < . (4.8)

Proof. First of all, let us note that the statement (i) is given for completeness, it is proved
in [19], see also the text below (4.2). The statement (ii) for n = 1, ¢&¢; = 0 is the main result
of [12]. It remains to prove the statement (ii) in full generality.

Let x be a nontrivial solution of (4.3) and let ¢ be its Priifer angle, i.e., the solution x

of (4.3) and its quasiderivative are given by the formulas

X = thosp o(1).

x(t) = p(t)sin, (1), <”(t) + Z T oo2(n)
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Then ¢(¢) = 0 (mod 7,) if and only if x(z) = 0 and for large ¢

=1 r %) cos _! r )
(Nw_t<m+ghm%@>lIWW—I<@+th%@>>O

at these points (see the below equation (4.9)). Hence, (4.3) is oscillatory if and only if ¢ ()

is unbounded as ¢ — oo and this happens, by Lemma 1, if and only its mean value over the

interval [¢,t 4+ T] 0(t) = % ;+T ¢(s)ds is unbounded.

The function ¢ is a solution of the differential equation

o' :l [(r(t)—i—i aj(? ) |cos, @] —P(cos, @) sin, @

t — Log=(t
TR (;() 4.9)
1 1 j t .
+——c®)+ Y ———||sin, @|”|,
- ( 0+} Log%)>| »9 ]
i.e., in differential equation (4.4) we have (compare (4.5))
1 +T Loa(s)
Alt) == / + V' ) ds, 4.10
=7/ (r(s) ; Log§(s>) s (4.10)

B() :ﬁ/tﬂrT ( Z Log] ) (4.11)

Let f be a continuous T periodic function and f = % fOT f(s)ds be its mean value over the

period, then integration by parts yields
1 t+T
1 / / (sz) ds / )
T'Ji  Logi(s) T Log

K f”l(mg )/ o]

7 _ 1
B 4.12
Log?(t) +f LOgj(H'T) LOgj(t)] I

1 t+T 1 ! N
=y (_Log%(s) /t f(u)du]d
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Since the function f is bounded, there exists a constant K > 0 such that

/tsf(s)ds

<K, fort<s<t+T,

and hence we can estimate the last term in the previous computation as follows

t+T 1 ! s
/z [(Log?(s)) /tf(u)du
=KT —1 /
B Log?(t) .

ast — oo, & € (¢t,T +1). Here we have used that

ds| <K

1
Log?(t +7) Log?(l)]

—KT 1
¢  Elogé Log?(?j) [1+o(D)] =0 (tlogtLog%(t))

1 1
= (1+0(1), j=1,...,n,
(Log?(l)) tlogtLog?(t)< ). J

as can be verified by a direct computation. The same argument shows that also the term in

brackets in (4.12) has the same asymptotic behavior as t — c. Altogether, we have

Lt fs) L f 1 _f ( (1))
T/t Log?(s)ds_Log?(t)+0<tlogtLog§(t))_Log?(r) t+o tlogt ) )

This implies that the functions A and B in (4.10), (4.11) are

=F+[1 “og™! nL
A(t)=F+[1+0(t 'log t)}ngOgﬁ(t)

B1) = {a+ 1+0( og 1) Y ﬁ—fz(t)} .

P j=1 Logj
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Hence, substituting into (4.6), we obtain

1 ! of
0'=—{ [F+(1+0(t tog™r) —Z 4+ 0@t | |cos, 6|7
¢t { ( )J—Zl LOg?(l) p
— ®(cos;, 0)sin, 0
+(1+0(t110g1t))]§i+0(t1) |sin, O7 5.
=1 & Log2(1)

Now, since all terms

1
0 (i)

,j=1,...,n, and O™ ") ast— oo
Log2() J )

are asymptotically less than ngilz)(z)’ we obtain the differential equation for 6 which can

be written in the form

o =1
t

o(1) ,
r+ cos, 0]” —®(cos, 0)sin, O

o(1) .
<c+ Z Log Log%(t)) |smp9|p] .

This equation is a “Priifer angle” equation for the second order half-linear differential

equation

n ~ . I=p /
(f+): % o) ) ®(x) (4.13)
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which is the same as the equation

/

I-p
<1+Z a’/r o(1) )) ®(x) (4.14)

Log Log,%(t

1 __ [3-1’ ! o(1) B
< p— 1+Z . Log™( Log,%(t)) ®(x) =0.

Suppose that assumptions (ii) of Theorem 7 are satisfied and that (4.7) holds for k €

{1,...,n—1}. Then equation (4.14) is oscillatory as a direct consequence of Proposition 2.

If (4.7) holds for k = n, let € > 0 be so small that still

B —e+(p— D)y (F'an—€) > pp. (4.15)

and consider the equation

n - I=p
(+Zl a]/r an/r2_<§> O(x')

Log Log,(t

1 n—1 R =p—1 R =p—1 S
e ﬁfrz + B —— | P(x) =0.
t = Logj(t) Logj(t)

/

This equation is a Sturmian minorant for ¢ sufficiently large (when the o(1) term in (4.14)
is less than €) of (4.14) and (4.15) implies by Proposition 2 that this minorant equation is
oscillatory and hence (4.14) (which is the same as (4.13)) is oscillatory as well. This means
that the Priifer angle 6 of a solution of (4.13) is unbounded and by Lemma 1 the Priifer
angle ¢ of a solution of (4.3) is unbounded as well. This means that (4.3) is oscillatory. A

slightly modified argument implies that (4.3) is nonoscillatory provided (4.8) holds. [
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Concluding remarks

(i) In equation (2.3), the functions 7(¢) = 1%+2t’ ét) = @ “match together”, i.e., for
r(t) = 1 and c¢(t) = 7y,t " they have such asymptotic growth for t — oo that equation (2.3)
is conditionally oscillatory. This fact is a special case of the general situation which is
a subject of a possible next investigation. More precisely, given the functions r,c, we
look for functions 7, ¢ with such asymptotic growth that equation (2.1) is conditionally
oscillatory. For # = 0, this problem has been studied in [14, 15], where conditions on

unperturbed equation (1.1) is found under which its perturbation

u
r()®()) + |c(t) + ®(x) =0
( ) W ()R(1)(J' R (s)ds)”
is conditionally oscillatory (and its oscillation constant is Uy = %}, where ¢ is the conjugate
exponent to p, i.e. %—l—é = 1). Here h is the so-called principal solution of (1.1) and
R = rh?|W'|P=2. In [7], the explicit formula for the function 7 is found in such a way that

together with the function

1
W (6)R(t) (/' R (s)ds)”

equation (2.1) is conditionally oscillatory. This formula is

1
R @OPR() (1R (s) ds)

1)

27

48
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where

1”2 |h/|2p72

~. . l—g -1/ 7\ _ / p._ 1—q 2| 11g—2 _
G:=c 9%® (¢)=—-rh®(h), R:=c 9g°|g|T "= =

However, the results of that paper are proved under rather restrictive assumptions and it

would be interesting to know how to relax these restrictions.

(i1) In [31], the authors establish a “power comparison theorem” for the Riemann-Weber

half-linear equation

(@) + [ﬁ T ] ®(x) = 0. 5.1)

P tPlog?t
They proved a (non)oscillation criterion for this equation where this equation is compared
with an equation of the same form, but with a different power in the function ® and other
functions and constants appearing in (5.1). It suggests to investigate a similar problem for

the more general equation (2.3). Partial results along this line can be found in [3, 8].

(i11) In Chapter 3, we applied successively the transformation vy = tvy_; — Uy to the
modified Riccati equation, followed by the change of independent variable ¢ — ¢’. This
change of the independent variable was motivated by the linear case and also by the fact
that upon this transformation the modified Riccati equation simplifies. Without this change
of independent variable, the transformation procedure can be “reformulated” as follows.
As showed at the beginning of Chapter 3, the transformation (1.11), i.e., v=h"(t)w — G(t),
G(t) = r(t)h(r)®(K (1)), transforms Riccati equation (1.10) associated with (1.1) into the
modified Riccati equation (1.12). The transformation (3.10), i.e., z = fP(t)v —U(t),
transforms (1.12) into an equation of the same form, with the function C given by a

relatively complicated formula (3.12). The composition of these transformations gives

2= (f(O)h()"'w—(fP()G) +U (1))

and by a direct computation, using (3.13), we have fPG+U = rfh®((fh)"). So, the
resulting modified Riccati equation for z is just the modified Riccati equation resulting
from (1.10) via (1.11) with 4 replaced by fh. In this equation, the function ¢ is given by
(1.14) with h replaced by fh, i.e. é = fh[(r®((fh)) + c®(fh)].
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Now, consider the function

p-1 1

p—1 — £
’ — "% logri---loglt. (5.2)

ht) =17 (Log 1)

<=

In view of the previous consideration, the application of transformation (1.11) with this A
can be decomposed into the successive transformations v; =t~ w — G, v j=log;_jtvj—
Uj, j=2,...,k. Hence, the successive transformations treated in the previous chapter can

be replaced by just one transformation, with the transformation function (5.2).

This idea has been used in Chapter 2 in the case n = 1 in (3.4) and in (5.2). However,
as shows the computations in Section 2.2 (where also substantially the results of [5] have
been used), this method is technically complicated even in this relatively simple case. This
is also the reason why we developed the method of successive transformations of modified

Riccati equation presented in Section 3.2.

(iv) The reason why the perturbation terms in (3.4) are just Lsz
Bi
tP Log %t

o in the differential
j

term and

by ®(x) is motivated by the fact that in this form they “match together”,
similarly as in the simple case mentioned in the part (i) of this chapter. More precisely,
if we replace some of them by a term with a faster asymptotic growth, then this term
“overrules” remaining terms and equation becomes (non)oscillatory for any positive value
of the corresponding parameter o; or ;. On the other hand, functions with slower
asymptotic growth have no influence on the oscillatory behavior. These considerations are
closely related to concepts of strong (non)oscillation of half-linear equations as treated for

example in [25].

(v) In [7], and partially also in [6], the equation

/

[(r(t) + AF(1))(x')] + [e(r) + pe(t)| P(x) =0 (5.3)

is considered as a perturbation of (1.1). Assumptions on the functions r,7,c,¢ (which
are satisfied in case of the perturbed Euler equation) were found, which guarantee that
there exists a constant ¥ such that (5.3) is oscillatory if & — A > ¥ and nonoscillatory if
@ —A < y. The limiting case 4 — A = y remained undecided, mainly because of technical

computational problems. In view of perturbations of Euler equation with n =1, r(¢) = 1,
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7(t) = yylog2t, c(t) =t7P, &) = tPlog >t (then y = p,,) we conjecture that (5.3) is
nonoscillatory also in the limiting case 4 — A = y. We also hope that the method of
transformations of modified Riccati equation elaborated in Section 3.2 can be applied to
treat the “multiparametric” general case, not only for perturbations of Euler equation.

(vi) A possible new research direction is to investigate oscillatory properties of (4.3)
for a larger class of functions r, ¢, @}, B ; than are periodic ones. A first step in this direction
has been made in [20], where oscillatory properties of (4.3) with asymptotically almost
periodic functions r, ¢ are investigated. It is an open problem whether results of [20] can
be extended to the setting treated in Chapter 4.

(vii) Another open problem is the investigation of asymptotic properties of the perturbed
Euler equation in the framework of regularly varying functions. It would be interesting to
see how far the results of the papers [22, 24, 27, 28] can be extended to (4.3) with regularly

varying functions , ¢, ¢, B;.
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