1.
> | rovnice:=x^3 - (a-1)*x^2 + a^2*x - a^3; |
> | reseni:=solve(rovnice,x); |
> | reseni[1]; |
> | vzorec:=reseni[1]: g:=unapply(vzorec,a); |
> | g(0); g(1); evalf(g(2)); |
2.
> | restart: f:=x -> if x <= 1 and x >= -1 then 1 else 0 fi; |
> | plot(f,-3..3,-0.5..1.5); |
3.
> | L:=proc(n::nonnegint) |
> | if n=0 then 1 |
> | elif n=1 then x |
> | else expand( ((2*n-1)*x*L(n-1)-(n-1)*L(n-2))/n ) fi end; |
> | L(7); |
> | with (orthopoly); |
> | P(7,x); |
4.
> | rovnice:=x^2+y^2=5, x*y=y^2-2; |
> | reseni:=solve({rovnice}, {x,y}); |
> | convert(reseni[3],radical); |
> | eval(rovnice, reseni[1]); eval(rovnice, reseni[2]); eval(rovnice, convert(reseni[3],radical)); |
> | r1:= fsolve( {rovnice}, {x,y}); |
> | r2:= fsolve( {rovnice}, {x,y}, avoid = {r1}) ; |
> | r3:= fsolve( {rovnice}, {x,y}, avoid = {r1,r2}) ; |
> | r4:= fsolve( {rovnice}, {x,y}, avoid = {r1,r2,r3}) ; |
5.
> | solve(abs(x)<abs((x-3)^2),x); |
> |