Algebraic categorification and its applications, I

Volodymyr Mazorchuk
(Uppsala University)

Winter School “Geometry and physics”
January 17-24, 2015, Srni, Czech Republic
“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to category theory, in particular:

sets are upgraded to categories

functions are upgraded to functors

equalities are upgraded to isomorphisms
“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to category theory, in particular:

- sets are upgraded to categories
- functions are upgraded to functors
- equalities are upgraded to isomorphisms
Categorification in short

“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to category theory, in particular:

- sets are upgraded to categories
- functions are upgraded to functors
- equalities are upgraded to isomorphisms
“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to category theory, in particular:

- sets are upgraded to categories
- functions are upgraded to functors
- equalities are upgraded to isomorphisms
“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to category theory, in particular:

- **sets** are upgraded to **categories**
- **functions** are upgraded to **functors**
- **equalities** are upgraded to **isomorphisms**
“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to category theory, in particular:

sets are upgraded to **categories**

functions are upgraded to **functors**

equalities are upgraded to **isomorphisms**
“Definition”

Roughly speaking, categorification means an “upgrade” from set theory to category theory, in particular:

- sets are upgraded to categories
- functions are upgraded to functors
- equalities are upgraded to isomorphisms
Motivation

Question: Why do we need categorification?

Answer: Categories have more structure than sets.

This can be used to get new useful information about objects we study.
Question: Why do we need categorification?

Answer: Categories have more structure than sets.

This can be used to get new useful information about objects we study.
Motivation

Question: Why do we need categorification?

Answer: Categories have more *structure* than sets.

This can be used to get new useful information about objects we study.
Motivation

Question: Why do we need categorification?

Answer: Categories have more *structure* than sets.

This can be used to get new useful information about objects we study.
Motivation

Question: Why do we need categorification?

Answer: Categories have more structure than sets.

This can be used to get new useful information about objects we study.
Example: Khovanov homology — links and crossings

\(L \) — diagram of an oriented link

\(n_+ \) — number of right crossings

\(n_- \) — number of left crossings

right crossing

left crossing
Example: Khovanov homology — links and crossings

L — diagram of an oriented link

$n_+ — number of right crossings

$n_- — number of left crossings

right crossing

left crossing
Example: Khovanov homology — links and crossings

L — diagram of an oriented link

n_+ — number of right crossings

n_- — number of left crossings

right crossing

left crossing
Example: Khovanov homology — links and crossings

L — diagram of an oriented link

n_+ — number of right crossings

n_- — number of left crossings
Example: Khovanov homology — links and crossings

\(L \) — diagram of an oriented link

\(n_+ \) — number of right crossings

\(n_- \) — number of left crossings

right crossing

left crossing
Example: Khovanov homology — links and crossings

\[L \] — diagram of an oriented link

\(n_+ \) — number of right crossings

\(n_- \) — number of left crossings

right crossing

left crossing
Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}[v, v^{-1}]$ of L is defined via the following rule:

$$
\begin{cases}
\times \times \times = \{ \equiv \} - v \{ \} \\
\end{cases}
$$

together with $\{ \bigcirc L \} = (v + v^{-1}) \{L\}$

and normalized by the conditions $\{\emptyset\} = 1$.
Definition. The Kauffman bracket \(\{L\} \in \mathbb{Z}[v, v^{-1}] \) of \(L \) is defined via the following rule:

\[
\begin{cases}
\{ \begin{array}{c}
\times
\end{array} \} = \{ \begin{array}{c}
\circlearrowleft
\end{array} \} - v \{ \begin{array}{c}
\circlearrowright
\end{array} \}
\end{cases}
\]

together with \(\{ \bigcirc L \} = (v + v^{-1}) \{L\} \)

and normalized by the conditions \(\{\emptyset\} = 1 \).
Definition. The Kauffman bracket \(\{L\} \in \mathbb{Z}[v, v^{-1}] \) of \(L \) is defined via the following rule:

\[
\{ \bigtimes \} = \{ \bigcirc \} - v \{ \} \bigcirc \}
\]

Together with \(\{ \bigcirc L \} = (v + v^{-1}) \{ L \} \)

and normalized by the conditions \(\{ \emptyset \} = 1 \).
Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}[v, v^{-1}]$ of L is defined via the following rule:

$$\begin{align*}
\{ \begin{array}{c}
\times \\
\end{array} \} &= \{ \begin{array}{c}
\equiv \\
\end{array} \} - v \{ \begin{array}{c}
\bigcirc \\
\end{array} \} \\
\{ \begin{array}{c}
\bigcirc \\
\end{array} \} &= (v + v^{-1})\{L\}
\end{align*}$$

The Kauffman bracket together with the normalization $\{\emptyset\} = 1$.
Definition. The Kauffman bracket \(\{L\} \in \mathbb{Z}[\nu, \nu^{-1}] \) of \(L \) is defined via the following rule:

\[
\begin{align*}
\{ \begin{array}{c}
\times \\
\hline
\end{array} \} &= \{ \begin{array}{c}
\equiv \\
\hline
\end{array} \} - \nu \{ \begin{array}{c}
\circ \\
\hline
\end{array} \} \\
\end{align*}
\]

Together with \(\{ \bigcirc L \} = (\nu + \nu^{-1})\{L\} \) and normalized by the conditions \(\{\emptyset\} = 1 \).
Definition. The Kauffman bracket $\{L\} \in \mathbb{Z}[v, v^{-1}]$ of L is defined via the following rule:

$\{\times\} = \{\equiv\} - v \{\) (\}$

together with $\{\bigcirc L\} = (v + v^{-1})\{L\}$

and normalized by the conditions $\{\emptyset\} = 1$.
Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$\hat{J}(L) := (-1)^{n-} v^{n+2n} \{L\} \in \mathbb{Z}[v, v^{-1}]$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via

$$(v + v^{-1})J(L) = \hat{J}(L).$$

Theorem. [Jones] $J(L)$ is an invariant of an oriented link.

Example. For the Hopf link

$$H := \begin{array}{c}
\begin{array}{c}
\bigcirc \\
\bigcirc
\end{array}
\end{array}$$

we have $\hat{J} = (v + v^{-1})(v + v^5)$ and $J(H) = v + v^5$.
Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$\hat{J}(L) := (-1)^{n-} v^{n+2n-} \{L\} \in \mathbb{Z}[v, v^{-1}]$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via

$$(v + v^{-1})J(L) = \hat{J}(L).$$

Theorem. [Jones] $J(L)$ is an invariant of an oriented link.

Example. For the Hopf link

$$H := \begin{tikzpicture}
\draw (0,0) circle (0.5 cm);
\draw (1,0) circle (0.5 cm);
\draw (0,0) -- (1,0);
\end{tikzpicture}$$

we have $\hat{J} = (v + v^{-1})(v + v^5)$ and $J(H) = v + v^5$.

Volodymyr Mazorchuk
Algebraic categorification and its applications, I
6/29
Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$\hat{J}(L) := (-1)^{n-} v^{n+2n} \{L\} \in \mathbb{Z}[v, v^{-1}]$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via

$$(v + v^{-1}) J(L) = \hat{J}(L).$$

Theorem. [Jones] $J(L)$ is an invariant of an oriented link.

Example. For the Hopf link

$$H := \begin{tikzpicture} [baseline=-.5ex]
\node (a) at (0,0) {O};
\node (b) at (1,0) {O};
\draw (a) to[out=90, in=180, looseness=1.5] (b);
\draw (b) to[out=90, in=0, looseness=1.5] (a);
\end{tikzpicture}$$

we have $\hat{J} = (v + v^{-1})(v + v^5)$ and $J(H) = v + v^5$.
Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$\hat{J}(L) := (-1)^n - \nu^{n+2n} \{L\} \in \mathbb{Z}[\nu, \nu^{-1}]$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via

$$(\nu + \nu^{-1})J(L) = \hat{J}(L).$$

Theorem. [Jones] $J(L)$ is an invariant of an oriented link.

Example. For the Hopf link

$$H := \begin{tikzpicture}
\draw (0,0) circle (1);
\draw (1,0) circle (1);
\end{tikzpicture}$$

we have $\hat{J} = (\nu + \nu^{-1})(\nu + \nu^5)$ and $J(H) = \nu + \nu^5$.
Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$\hat{J}(L) := (-1)^n v^{n+2n-}\{L\} \in \mathbb{Z}[v, v^{-1}]$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via

$$(v + v^{-1})J(L) = \hat{J}(L).$$

Theorem. [Jones] $J(L)$ is an invariant of an oriented link.

Example. For the Hopf link

$$H := \begin{tikzpicture}
 \draw (0,0) circle (0.5);
 \draw (0,0) circle (0.5);
 \draw (0.5,0) to (0,0.5);
 \draw (0,0.5) to (0.5,0);
\end{tikzpicture}$$

we have $\hat{J} = (v + v^{-1})(v + v^5)$ and $J(H) = v + v^5$.
Definition. The unnormalized Jones polynomial \(\hat{J}(L) \) of \(L \) is defined by

\[
\hat{J}(L) := (-1)^{n-} v^{n+2n-} \{L\} \in \mathbb{Z}[v, v^{-1}]
\]

Definition. The (usual) Jones polynomial \(J(L) \) is defined via

\[
(v + v^{-1})J(L) = \hat{J}(L).
\]

Theorem. [Jones] \(J(L) \) is an invariant of an oriented link.

Example. For the Hopf link

\[
H := \begin{array}{c}
\includegraphics[width=0.1\textwidth]{hopf_links.png}
\end{array}
\]

we have \(\hat{J} = (v + v^{-1})(v + v^5) \) and \(J(H) = v + v^5 \).
Example: Khovanov homology — Jones polynomial

Definition. The unnormalized Jones polynomial $\hat{J}(L)$ of L is defined by

$$\hat{J}(L) := (-1)^{n-1} v^{n_+ - 2n_-} \{L\} \in \mathbb{Z}[v, v^{-1}]$$

Definition. The (usual) Jones polynomial $J(L)$ is defined via

$$(v + v^{-1}) J(L) = \hat{J}(L).$$

Theorem. [Jones] $J(L)$ is an invariant of an oriented link.

Example. For the Hopf link

$$H := \begin{array}{c}
\includegraphics[width=0.2\textwidth]{hopf_link.png}
\end{array}$$

we have

$$\hat{J} = (v + v^{-1})(v + v^5)$$

and

$$J(H) = v + v^5.$$
Example: Khovanov homology — characterization of J

Theorem. The Jones polynomial is uniquely determined by the property $J(\bigcirc) = 1$

and the **skein relation**

\[
v^2 J \begin{array}{cc}
\begin{array}{c}
\nearrow \\
\nearrow
\end{array} &
\begin{array}{c}
\searrow \\
\searrow
\end{array}
\end{array} - v^{-2} J \begin{array}{cc}
\begin{array}{c}
\swarrow \\
\swarrow
\end{array} &
\begin{array}{c}
\nwsearrow \\
\nwsearrow
\end{array}
\end{array} = (v - v^{-1}) J \begin{array}{cc}
\begin{array}{c}
\nwsearrow \\
\nwsearrow
\end{array} &
\begin{array}{c}
\nearrow \\
\nearrow
\end{array}
\end{array} \]

Volodymyr Mazorchuk

Algebraic categorification and its applications, I 7/29
Example: Khovanov homology — characterization of J

Theorem. The Jones polynomial is uniquely determined by the property $J(\bigcirc) = 1$

and the skein relation

\[v^2 J \begin{array}{c} \rightarrow \leftarrow \end{array} - v^{-2} J \begin{array}{c} \rightarrow \leftarrow \end{array} = (v - v^{-1}) J \begin{array}{c} \nearrow \searrow \end{array} \]
Theorem. The Jones polynomial is uniquely determined by the property $J(\bigcirc) = 1$

and the **skein relation**

\[
v^2 J \left(\begin{array}{c} \uparrow \downarrow \\ \downarrow \bigcirc \uparrow \end{array} \right) - v^{-2} J \left(\begin{array}{c} \uparrow \downarrow \\ \downarrow \bigcirc \uparrow \end{array} \right) = (v - v^{-1}) J \left(\begin{array}{c} \uparrow \\ \bigcirc \end{array} \right)
\]
Theorem. The Jones polynomial is uniquely determined by the property $J(\bigcirc) = 1$

and the skein relation

$$v^2 J \begin{pmatrix} \begin{array}{cc} \rightarrow & \rightarrow \\ \rightarrow & \rightarrow \end{array} \end{pmatrix} - v^{-2} J \begin{pmatrix} \begin{array}{cc} \rightarrow & \rightarrow \\ \rightarrow & \rightarrow \end{array} \end{pmatrix} = (v - v^{-1}) J \begin{pmatrix} \begin{array}{c} \rightarrow \\ \rightarrow \end{array} \end{pmatrix}$$
Theorem. The Jones polynomial is uniquely determined by the property $J(\bigcirc) = 1$

and the **skein relation**

$$v^2 J \begin{pmatrix} \begin{array}{c} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \end{array} \end{pmatrix} - v^{-2} J \begin{pmatrix} \begin{array}{c} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \end{array} \end{pmatrix} = (v - v^{-1}) J \begin{pmatrix} \begin{array}{c} \downarrow \downarrow \end{array} \end{pmatrix}$$
Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $[\cdot]$.

- \mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces.
- \mathbb{C}-gmod — category of finite dimensional graded \mathbb{C}-vector spaces.
- $\text{Com}^b(\mathbb{C}$-gmod) — category of finite complexes over \mathbb{C}-gmod.

$[\cdot]$ takes values in $\text{Com}^b(\mathbb{C}$-mod).

$V = \mathbb{C}$ in degree 1 \oplus \mathbb{C} in degree -1.
Example: Khovanov homology — idea and ingredients

Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $[\cdot, \cdot]$

\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces

\mathbb{C}-gmod — category of finite dimensional graded \mathbb{C}-vector spaces

$\text{Com}^b(\mathbb{C} \text{-gmod})$ — category of finite complexes over \mathbb{C}-gmod

$[\cdot, \cdot]$ takes values in $\text{Com}^b(\mathbb{C} \text{-mod})$

$V = \mathbb{C}$ in degree $1 \oplus \mathbb{C}$ in degree -1
Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket \cdot

\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces

\mathbb{C}-gmod — category of finite dimensional graded \mathbb{C}-vector spaces

$\text{Com}^b(\mathbb{C}$-gmod) — category of finite complexes over \mathbb{C}-gmod

\cdot takes values in $\text{Com}^b(\mathbb{C}$-mod)

$V — \mathbb{C}$ in degree 1 \oplus \mathbb{C} in degree -1
Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket \([\cdot, \cdot]\)

\(\mathbb{C}\text{-mod} \) — category of finite dimensional \(\mathbb{C}\)-vector spaces

\(\mathbb{C}\text{-gmod} \) — category of finite dimensional graded \(\mathbb{C}\)-vector spaces

\(\text{Com}^b(\mathbb{C}\text{-gmod}) \) — category of finite complexes over \(\mathbb{C}\text{-gmod}\)

\([\cdot, \cdot]\) takes values in \(\text{Com}^b(\mathbb{C}\text{-mod})\)

\(V \rightarrow \mathbb{C}\) in degree 1 \(\oplus \mathbb{C}\) in degree \(-1\)
Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $[\cdot\cdot]$.

\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces.

\mathbb{C}-gmod — category of finite dimensional graded \mathbb{C}-vector spaces.

$\text{Com}^b(\mathbb{C}\text{-gmod})$ — category of finite complexes over \mathbb{C}-gmod.

$[\cdot\cdot]$ takes values in $\text{Com}^b(\mathbb{C}\text{-mod})$.

$V = \mathbb{C}$ in degree 1 \oplus \mathbb{C} in degree -1.
Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $\langle \cdot, \cdot \rangle$

$\mathbb{C}\text{-mod} —$ category of finite dimensional \mathbb{C}-vector spaces

$\mathbb{C}\text{-gmod} —$ category of finite dimensional graded \mathbb{C}-vector spaces

$\text{Com}^b(\mathbb{C}\text{-gmod}) —$ category of finite complexes over $\mathbb{C}\text{-gmod}$

$\langle \cdot, \cdot \rangle$ takes values in $\text{Com}^b(\mathbb{C}\text{-mod})$

$V — \mathbb{C}$ in degree 1 $\oplus \mathbb{C}$ in degree -1
Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $[\cdot \cdot]$

\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces

\mathbb{C}-gmod — category of finite dimensional graded \mathbb{C}-vector spaces

$\text{Com}^b(\mathbb{C}\text{-gmod})$ — category of finite complexes over \mathbb{C}-gmod

$[\cdot \cdot]$ takes values in $\text{Com}^b(\mathbb{C}\text{-mod})$

V — \mathbb{C} in degree 1 \oplus \mathbb{C} in degree -1
Main idea: [Khovanov] Upgrade Kauffman bracket to a new bracket $[\cdot,\cdot]$

\mathbb{C}-mod — category of finite dimensional \mathbb{C}-vector spaces

\mathbb{C}-gmod — category of finite dimensional graded \mathbb{C}-vector spaces

$\text{Com}^b(\mathbb{C}\text{-gmod})$ — category of finite complexes over \mathbb{C}-gmod

$[\cdot,\cdot]$ takes values in $\text{Com}^b(\mathbb{C}\text{-mod})$

$V = \mathbb{C}$ in degree 1 \oplus \mathbb{C} in degree -1
Example: Khovanov homology — categorification

Categorification of normalization conditions:

\[[\emptyset] = 0 \rightarrow C \rightarrow 0 \]

\[[\bigcirc L] = V \otimes [L] \]

Categorification of the Kauffman bracket:

\[
\begin{bmatrix}
\begin{array}{c}
\times
\end{array}
\end{bmatrix} = \text{Total} \left(0 \rightarrow \begin{bmatrix}
\begin{array}{c}
\bigcirc
\end{array}
\end{bmatrix} \rightarrow \begin{bmatrix}
\begin{array}{c}
\bigcirc
\end{array}
\end{bmatrix} \rightarrow \begin{bmatrix}
\begin{array}{c}
\bigcirc
\end{array}
\end{bmatrix} \right) \langle -1 \rangle \rightarrow 0
\]

Main difficulty: Definition of \(d \).
Example: Khovanov homology — categorification

Categorification of normalization conditions:

\[\emptyset = 0 \to \mathbb{C} \to 0 \]

\[\circ L = V \otimes [L] \]

Categorification of the Kauffman bracket:

\[
\begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array}
= \text{Total} \left(0 \to \begin{array}{c}
\begin{array}{c}
\circlearrowleft \\
\end{array}
\end{array} \xrightarrow{d} \begin{array}{c}
\begin{array}{c}
\circlearrowright \\
\end{array}
\end{array} \right) \left(\langle -1 \rangle \to 0 \right)
\]

Main difficulty: Definition of \(d \).
Example: Khovanov homology — categorification

Categorification of normalization conditions:

\[[\emptyset] = 0 \rightarrow \mathbb{C} \rightarrow 0 \]

\[[\bigcirc L] = \mathbb{V} \otimes [L] \]

Categorification of the Kauffman bracket:

\[\begin{array}{ccc}
\times & \rightarrow & \text{Total} \\
\downarrow & & \downarrow \quad \rightarrow \\
0 & \rightarrow & \begin{bmatrix}
\quad & \quad & d \\
\quad & \rightarrow & \end{bmatrix} \\
\end{array} \]

Main difficulty: Definition of \(d \).
Example: Khovanov homology — categorification

Categorification of normalization conditions:

\[[\emptyset] = 0 \to \mathbb{C} \to 0 \]

\[[\bigcirc L] = V \otimes [L] \]

Categorification of the Kauffman bracket:

\[
\begin{pmatrix}
\begin{array}{c}
\times
\end{array}
\end{pmatrix} = \text{Total} \left(0 \to \begin{pmatrix}
\begin{array}{c}
\bigcirc
\end{array}
\end{pmatrix} \xrightarrow{d} \begin{pmatrix}
\begin{array}{c}
\bigcirc
\end{array}
\end{pmatrix} \langle -1 \rangle \to 0 \right)
\]

Main difficulty: Definition of \(d \).
Example: Khovanov homology — categorification

Categorification of normalization conditions:

\[
[\emptyset] = 0 \rightarrow \mathbb{C} \rightarrow 0
\]

\[
[\bigcirc L] = V \otimes [L]
\]

Categorification of the Kauffman bracket:

\[
\begin{bmatrix}
\begin{array}{c}
\bigotimes
\end{array}
\end{bmatrix}
= \text{Total}
\begin{bmatrix}
\begin{array}{c}
0 \rightarrow \\
\bigotimes
\end{array}
\end{bmatrix}
\xrightarrow{d}
\begin{bmatrix}
\begin{array}{c}
-1 \rightarrow
\end{array}
\end{bmatrix}
\]

Main difficulty: Definition of \(d \).
Example: Khovanov homology — categorification

Categorification of normalization conditions:

\[
\begin{bmatrix} \varnothing \end{bmatrix} = 0 \rightarrow \mathbb{C} \rightarrow 0
\]

\[
\begin{bmatrix} \bigcirc L \end{bmatrix} = V \otimes \begin{bmatrix} L \end{bmatrix}
\]

Categorification of the Kauffman bracket:

\[
\begin{bmatrix} \times \end{bmatrix} = \text{Total} \left(\begin{bmatrix} 0 \rightarrow \begin{bmatrix} \cong \end{bmatrix} \end{bmatrix} \xrightarrow{d} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \langle -1 \rangle \rightarrow 0 \end{bmatrix} \right)
\]

Main difficulty: Definition of \(d \).
Categorification of normalization conditions:

\[
[\emptyset] = 0 \rightarrow C \rightarrow 0
\]

\[
[\circ L] = V \otimes [L]
\]

Categorification of the Kauffman bracket:

\[
\begin{bmatrix}
\begin{array}{c}
\times \\
\end{array}
\end{bmatrix} = \text{Total} \left(0 \rightarrow \begin{bmatrix}
\begin{array}{c}
\end{array}
\end{bmatrix} \stackrel{d}{\rightarrow} \begin{bmatrix}
\begin{array}{c}
\end{array}
\end{bmatrix} \langle -1 \rangle \rightarrow 0 \right)
\]

Main difficulty: Definition of \(d\).
Example: Khovanov homology — the result

\[\cdot\] — shift in homological position

\langle \cdot \rangle — shift in grading

Theorem. [Khovanov]
Homology of \([\cdot][n_-]\langle n_+ - 2n_- \rangle\) is an invariant of an oriented link.

Note: \([\cdot][n_-]\langle n_+ - 2n_- \rangle\) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L][n_-]\langle n_+ - 2n_- \rangle\) equals \(\hat{J}(L)\).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

[[]] — shift in homological position

⟨·⟩ — shift in grading

Theorem. [Khovanov]
Homology of \([\cdot][n_-]⟨n_+ − 2n_-⟩\) is an invariant of an oriented link.

Note: \([\cdot][n_-]⟨n_+ − 2n_-⟩\) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L][n_-]⟨n_+ − 2n_-⟩\) equals \(\hat{J}(L)\).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

[·] — shift in homological position

⟨·⟩ — shift in grading

Theorem. [Khovanov]
Homology of \([·][n−]⟨n_+ − 2n_−⟩\) is an invariant of an oriented link.

Note: \([·][n−]⟨n_+ − 2n_−⟩\) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L][n−]⟨n_+ − 2n_−⟩\) equals \(\hat{J}(L)\).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

\[\cdot \] — shift in homological position

\(\langle \cdot \rangle \) — shift in grading

Theorem. [Khovanov]
Homology of \([\cdot][n_-]\langle n_+ - 2n_- \rangle \) is an invariant of an oriented link.

Note: \([\cdot][n_-]\langle n_+ - 2n_- \rangle \) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L][n_-]\langle n_+ - 2n_- \rangle \) equals \(\hat{J}(L) \).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

[·] — shift in homological position

⟨·⟩ — shift in grading

Theorem. [Khovanov]
Homology of $[[n]][n_−]⟨n_+ − 2n_−⟩$ is an invariant of an oriented link.

Note: $[[n]][n_−]⟨n_+ − 2n_−⟩$ is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of $[[L]][n_−]⟨n_+ − 2n_−⟩$ equals $\hat{J}(L)$.

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

\[
\langle \cdot \rangle \quad \text{— shift in grading}
\]

\[
\langle \cdot \rangle \quad \text{— shift in grading}
\]

Theorem. [Khovanov]
Homology of \([[\cdot]][n_-]\langle n_+ - 2n_- \rangle\) is an invariant of an oriented link.

Note: \([[\cdot]][n_-]\langle n_+ - 2n_- \rangle\) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L][n_-]\langle n_+ - 2n_- \rangle\) equals \(\hat{J}(L)\).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

[\cdot] — shift in homological position

\langle \cdot \rangle — shift in grading

Theorem. [Khovanov]
Homology of \([\cdot][n_-]\langle n_+ - 2n_- \rangle\) is an invariant of an oriented link.

Note: \([\cdot][n_-]\langle n_+ - 2n_- \rangle\) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L][n_-]\langle n_+ - 2n_- \rangle\) equals \(\hat{J}(L)\).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

[.] — shift in homological position

⟨·⟩ — shift in grading

Theorem. [Khovanov]
Homology of \([.] [n_-] \langle n_+ - 2n_- \rangle\) is an invariant of an oriented link.

Note: \([.] [n_-] \langle n_+ - 2n_- \rangle\) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L] [n_-] \langle n_+ - 2n_- \rangle\) equals \(\hat{J}(L)\).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Example: Khovanov homology — the result

\[\cdot\] — shift in homological position

\langle \cdot \rangle — shift in grading

Theorem. [Khovanov]
Homology of \([\cdot][n_-] \langle n_+ - 2n_- \rangle \) is an invariant of an oriented link.

Note: \([\cdot][n_-] \langle n_+ - 2n_- \rangle \) is not an invariant of an oriented link.

Decategorification theorem. [Khovanov]
Graded Euler characteristic of \([L][n_-] \langle n_+ - 2n_- \rangle \) equals \(\hat{J}(L) \).

Benefit: Khovanov homology is a strictly stronger invariant than Jones polynomial. For example:

Theorem. [Kronheimer-Mrowka] Khovanov homology detects the unknot.
Theorem. [Alexander] Every link is a closure of a braid

Elementary diagrams:

the cup diagram
the cap diagram
right crossing
left crossing

Corollary. Every oriented link is a composition of elementary diagrams.
Theorem. [Alexander] Every link is a closure of a braid

Elementary diagrams:

the cup diagram the cap diagram right crossing left crossing

Corollary. Every oriented link is a composition of elementary diagrams.
Alternative approach — Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid

Elementary diagrams:

- the cup diagram
- the cap diagram
- right crossing
- left crossing

Corollary. Every oriented link is a composition of elementary diagrams.
Theorem. [Alexander] Every link is a closure of a braid

Elementary diagrams:

- the cup diagram
- the cap diagram
- right crossing
- left crossing

Corollary. Every oriented link is a composition of elementary diagrams.
Alternative approach — Alexander theorem

Theorem. [Alexander] Every link is a closure of a braid

Elementary diagrams:

- **the cup diagram**
- **the cap diagram**
- **right crossing**
- **left crossing**

Corollary. Every oriented link is a composition of elementary diagrams.
Theorem. [Alexander] Every link is a closure of a braid

Elementary diagrams:

- the cup diagram
- the cap diagram
- right crossing
- left crossing

Corollary. Every oriented link is a composition of elementary diagrams.
Example. For the Hopf link we could take:
Alternative approach — quantum groups

\(\mathfrak{g} \) — simple finite dimensional Lie algebra

\(U(\mathfrak{g}) \) — the universal enveloping algebra of \(\mathfrak{g} \)

Fact. \(U(\mathfrak{g}) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\(U_v(\mathfrak{g}) \) — the quantum enveloping algebra of \(\mathfrak{g} \)

Fact. \(U_v(\mathfrak{g}) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

\[g \] — simple finite dimensional Lie algebra

\[U(g) \] — the universal enveloping algebra of \(g \)

Fact. \(U(g) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\[U_q(g) \] — the quantum enveloping algebra of \(g \)

Fact. \(U_q(g) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

g — simple finite dimensional Lie algebra

\(U(g) \) — the universal enveloping algebra of \(g \)

Fact. \(U(g) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\(U_q(g) \) — the quantum enveloping algebra of \(g \)

Fact. \(U_q(g) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

\[g \] — simple finite dimensional Lie algebra

\[U(g) \] — the universal enveloping algebra of \(g \)

Fact. \(U(g) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\[U_v(g) \] — the quantum enveloping algebra of \(g \)

Fact. \(U_v(g) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

\[\mathfrak{g} \] — simple finite dimensional Lie algebra

\[U(\mathfrak{g}) \] — the universal enveloping algebra of \(\mathfrak{g} \)

Fact. \(U(\mathfrak{g}) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\[U_q(\mathfrak{g}) \] — the quantum enveloping algebra of \(\mathfrak{g} \)

Fact. \(U_q(\mathfrak{g}) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

\(\mathfrak{g} \) — simple finite dimensional Lie algebra

\(U(\mathfrak{g}) \) — the universal enveloping algebra of \(\mathfrak{g} \)

Fact. \(U(\mathfrak{g}) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\(U_q(\mathfrak{g}) \) — the quantum enveloping algebra of \(\mathfrak{g} \)

Fact. \(U_q(\mathfrak{g}) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

\(\mathfrak{g} \) — simple finite dimensional Lie algebra

\(U(\mathfrak{g}) \) — the universal enveloping algebra of \(\mathfrak{g} \)

Fact. \(U(\mathfrak{g}) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\(U_v(\mathfrak{g}) \) — the quantum enveloping algebra of \(\mathfrak{g} \)

Fact. \(U_v(\mathfrak{g}) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

\[\mathfrak{g} \] — simple finite dimensional Lie algebra

\[U(\mathfrak{g}) \] — the universal enveloping algebra of \(\mathfrak{g} \)

Fact. \(U(\mathfrak{g}) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\[U_q(\mathfrak{g}) \] — the quantum enveloping algebra of \(\mathfrak{g} \)

Fact. \(U_q(\mathfrak{g}) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — quantum groups

\(\mathfrak{g} \) — simple finite dimensional Lie algebra

\(U(\mathfrak{g}) \) — the universal enveloping algebra of \(\mathfrak{g} \)

Fact. \(U(\mathfrak{g}) \) is a cocommutative Hopf algebra.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is involutive.

\(U_v(\mathfrak{g}) \) — the quantum enveloping algebra of \(\mathfrak{g} \)

Fact. \(U_v(\mathfrak{g}) \) is a Hopf algebra, not cocommutative.

Consequence. The isomorphism \(V \otimes W \cong W \otimes V \) is not involutive.
Alternative approach — tangles

Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: $n \in \{0, 1, 2, \ldots \}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: \(n \in \{0, 1, 2, \ldots \} \) should be thought of as a collection of \(n \) points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: \(n \in \{0, 1, 2, \ldots \} \) should be thought of as a collection of \(n \) points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.
Example 2: An oriented cap diagram is a morphism from 2 to 0.
Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented **tangles**

Objects: Non-negative integers

Informally: $n \in \{0, 1, 2, \ldots \}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: \(n \in \{0, 1, 2, \ldots \} \) should be thought of as a collection of \(n \) points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented **tangles**

Objects: Non-negative integers

Informally: \(n \in \{0, 1, 2, \ldots \} \) should be thought of as a collection of \(n \) points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented **tangles**

Objects: Non-negative integers

Informally: $n \in \{0, 1, 2, \ldots \}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: \(n \in \{0, 1, 2, \ldots \} \) should be thought of as a collection of \(n \) points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: \(n \in \{0, 1, 2, \ldots \} \) should be thought of as a collection of \(n \) points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Alternative approach — tangles

Tang — the category of oriented tangles

Objects: Non-negative integers

Informally: $n \in \{0, 1, 2, \ldots \}$ should be thought of as a collection of n points.

Morphisms: Oriented diagrams generated by (oriented) elementary diagrams (up to isotopy), connecting the corresponding points, read from bottom to top.

Composition: Concatenation

Example 1: An oriented cup diagram is a morphism from 0 to 2.

Example 2: An oriented cap diagram is a morphism from 2 to 0.

Example 3: An oriented crossing is a morphism from 2 to 2.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_v(g)$.

V — the “natural” $U_v(g)$-module

Define a functor $F : \text{Tang} \rightarrow U_v(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(\nu)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of } U_v(g)\text{-modules}$

oriented link $L \rightarrow$ tangle $T_L \rightarrow \text{endom. } F(T_L)$ of $\mathbb{C}(\nu)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_v(g)$.

V — the “natural” $U_v(g)$-module

Define a functor $F : \text{Tang} \to U_v(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(v)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of } U_v(g)\text{-modules}$

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(v)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Alternative approach — idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_v(g)$.

V — the “natural” $U_v(g)$-module

Define a functor $F : \text{Tang} \rightarrow U_v(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(v)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of } U_v(g)\text{-modules}$

oriented link $L \rightarrow$ tangle $T_L \rightarrow \text{endom. } F(T_L)$ of $\mathbb{C}(v)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_v(g)$.

V — the “natural” $U_v(g)$-module

Define a functor $F : \text{Tang} \rightarrow U_v(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(v)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of } U_v(g)\text{-modules}$

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(v)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Alternative approach — idea of quantum knot invariants

Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_v(g)$.

V — the "natural" $U_v(g)$-module

Define a functor $F : \text{Tang} \rightarrow U_v(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(v)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of } U_v(g)\text{-modules}$

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(v)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_v(g)$.

V — the “natural” $U_v(g)$-module

Define a functor $F : \text{Tang} \to U_v(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(\nu)$

$F(\text{elementary diagram}) :=$ certain explicit homomorphisms of $U_v(g)$-modules

oriented link $L \to$ tangle $T_L \to$ endom. $F(T_L)$ of $\mathbb{C}(\nu)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_{\nu}(\mathfrak{g})$.

V — the "natural" $U_{\nu}(\mathfrak{g})$-module

Define a functor $F : \text{Tang} \rightarrow U_{\nu}(\mathfrak{g})\text{-mod}$

$F(n) := V \otimes^n$, where $F(0) := \mathbb{C}(\nu)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of } U_{\nu}(\mathfrak{g})\text{-modules}$

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(\nu)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_\nu(g)$.

V — the “natural” $U_\nu(g)$-module

Define a functor $F : \text{Tang} \rightarrow U_\nu(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(\nu)$

$F(\text{elementary diagram}) :=$ certain explicit homomorphisms of $U_\nu(g)$-modules

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(\nu)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U\gamma$.

V — the “natural” $U\gamma$-module

Define a functor $F : \text{Tang} \to U\gamma$-mod

$F(n) := V \otimes^n$, where $F(0) := \mathbb{C}(\gamma)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of}$ $U\gamma$-modules

oriented link $L \to$ tangle $T_L \to$ endom. $F(T_L)$ of $\mathbb{C}(\gamma)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_\nu(g)$.

V — the “natural” $U_\nu(g)$-module

Define a functor $F : \text{Tang} \rightarrow U_\nu(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(\nu)$

F(elementary diagram) $:= \text{certain explicit homomorphisms of } U_\nu(g)$-modules

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(\nu)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_v(g)$.

V — the “natural” $U_v(g)$-module

Define a functor $F : \text{Tang} \rightarrow U_v(g)\text{-mod}$

$F(n) := V^\otimes n$, where $F(0) := \mathbb{C}(v)$

$F($elementary diagram$) :=$ certain explicit homomorphisms of $U_v(g)$-modules

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(v)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Idea of quantum knot invariants. [Reshetikhin-Turaev]

Consider some $U_{\nu}(\mathfrak{g})$.

V — the “natural” $U_{\nu}(\mathfrak{g})$-module

Define a functor $F : \text{Tang} \rightarrow U_{\nu}(\mathfrak{g})\text{-mod}$

$F(n) := V \otimes^n$, where $F(0) := \mathbb{C}(\nu)$

$F(\text{elementary diagram}) := \text{certain explicit homomorphisms of } U_{\nu}(\mathfrak{g})\text{-modules}$

oriented link $L \rightarrow$ tangle $T_L \rightarrow$ endom. $F(T_L)$ of $\mathbb{C}(\nu)$

Consequence: $F(T_L)(1)$ is an invariant of L.
Quantum invariants — $U_q(\mathfrak{sl}_2)$

Definition: $U_q(\mathfrak{sl}_2)$ has generators E, F, K, K^{-1} and relations

\[
KE = v^2 EK, \quad KF = v^{-2} FK, \quad KK^{-1} = K^{-1} K = 1,
\]

\[
EF - FE = \frac{K - K^{-1}}{v - v^{-1}}.
\]

Hopf structure:

\[
\Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1, \quad \Delta(K^{\pm 1}) = K^{\pm 1} \otimes K^{\pm 1}.
\]
Quantum invariants — $U_q(\mathfrak{sl}_2)$

Definition: $U_v(\mathfrak{sl}_2)$ has generators E, F, K, K^{-1} and relations

\[KE = v^2 EK, \quad KF = v^{-2} FK, \quad KK^{-1} = K^{-1}K = 1, \]

\[EF - FE = \frac{K - K^{-1}}{v - v^{-1}}. \]

Hopf structure:

\[\Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1, \quad \Delta(K^\pm) = K^\pm \otimes K^\pm. \]
Quantum invariants — $U_q(\mathfrak{sl}_2)$

Definition: $U_q(\mathfrak{sl}_2)$ has generators E, F, K, K^{-1} and relations

\[KE = v^2 EK, \quad KF = v^{-2} FK, \quad KK^{-1} = K^{-1} K = 1, \]

\[EF - FE = \frac{K - K^{-1}}{v - v^{-1}}. \]

Hopf structure:

\[\Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1, \quad \Delta(K^\pm) = K^\pm \otimes K^\pm. \]
Quantum invariants — $U_q(\mathfrak{sl}_2)$

Definition: $U_v(\mathfrak{sl}_2)$ has generators E, F, K, K^{-1} and relations

\[
KE = v^2 EK, \quad KF = v^{-2} FK, \quad KK^{-1} = K^{-1} K = 1,
\]

\[
EF - FE = \frac{K - K^{-1}}{v - v^{-1}}.
\]

Hopf structure:

\[
\Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1, \quad \Delta(K^{\pm 1}) = K^{\pm 1} \otimes K^{\pm 1}.
\]
Quantum invariants — $U_q(\mathfrak{sl}_2)$

Definition: $U_q(\mathfrak{sl}_2)$ has generators E, F, K, K^{-1} and relations

\[KE = v^2 Ek, \quadKF = v^{-2} FK, \quad KK^{-1} = K^{-1}K = 1, \]

\[EF - FE = \frac{K - K^{-1}}{v - v^{-1}}. \]

Hopf structure:

\[\Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1, \quad \Delta(K^{\pm 1}) = K^{\pm 1} \otimes K^{\pm 1}. \]
Quantum invariants — $U_q(\mathfrak{sl}_2)$

Definition: $U_q(\mathfrak{sl}_2)$ has generators E, F, K, K^{-1} and relations

\[KE = v^2 EK, \quad KF = v^{-2} FK, \quad KK^{-1} = K^{-1} K = 1, \]

\[EF - FE = \frac{K - K^{-1}}{v - v^{-1}}. \]

Hopf structure:

\[\Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1, \quad \Delta(K^{\pm 1}) = K^{\pm 1} \otimes K^{\pm 1}. \]
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

$E w_k = [k + 1] w_{k+1}$, $F w_k = -[n - k + 1] w_{k-1}$,

$K^{\pm 1} w_k = -v^{\pm (2k-n)} w_k$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1 i_2 \ldots i_k$

Consequence: Basis in $V^\otimes n$ consists of 0-1-sequences of length n.
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

$Ew_k = [k + 1]w_{k+1}$, \hspace{1cm} $Fw_k = -[n - k + 1]w_{k-1}$,

$K^{\pm 1}w_k = -v^{\pm(2k-n)}w_k$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1i_2\ldots i_k$

Consequence: Basis in $V \otimes^n$ consists of 0-1–sequences of length n.
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

\[
E w_k = [k + 1] w_{k+1}, \quad F w_k = -[n - k + 1] w_{k-1}, \\
K^\pm w_k = -v^{\pm(2k-n)} w_k
\]

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1 i_2 \ldots i_k$

Consequence: Basis in $V \otimes^n$ consists of 0-1-sequences of length n.
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

$Ew_k = [k + 1]w_{k+1}$, \quad $Fw_k = -[n - k + 1]w_{k-1}$, \quad $K^{\pm 1}w_k = -v^{\pm (2k-n)}w_k$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1 i_2 \cdots i_k$

Consequence: Basis in $V \otimes^n$ consists of 0-1–sequences of length n.
Quantum invariants — natural $U_v(sl_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}, \ a \in \mathbb{Z}$

V — the “natural” $U_v(sl_2)$-module

Basis: w_0 and w_1

Action:

$$Ew_k = [k + 1]w_{k+1}, \quad Fw_k = -[n - k + 1]w_{k-1},$$

$$K^\pm w_k = -v^\pm(2k-n)w_k$$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1 i_2 \cdots i_k$

Consequence: Basis in $V^\otimes n$ consists of 0-1–sequences of length n.
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

$Ew_k = [k + 1]w_{k+1}, \quad Fw_k = -[n - k + 1]w_{k-1},$

$K^{\pm 1}w_k = -v^{\pm(2k-n)}w_k$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1 i_2 \ldots i_k$

Consequence: Basis in $V^\otimes n$ consists of 0-1–sequences of length n.
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

$$Ew_k = [k + 1]w_{k+1}, \quad Fw_k = -[n - k + 1]w_{k-1},$$

$$K^{\pm 1}w_k = -v^{\pm(2k-n)}w_k$$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1 i_2 \cdots i_k$

Consequence: Basis in $V^\otimes n$ consists of 0-1–sequences of length n.
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

$Ew_k = [k + 1]w_{k+1}, \quad Fw_k = -[n - k + 1]w_{k-1}, \quad K^{\pm 1}w_k = -v^{\pm(2k-n)}w_k$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1i_2\ldots i_k$

Consequence: Basis in $V^\otimes n$ consists of 0-1–sequences of length n.
Quantum invariants — natural $U_v(\mathfrak{sl}_2)$-module

Quantum numbers: $[a] := \frac{v^a - v^{-a}}{v - v^{-1}}$, $a \in \mathbb{Z}$

V — the “natural” $U_v(\mathfrak{sl}_2)$-module

Basis: w_0 and w_1

Action:

$$Ew_k = [k + 1]w_{k+1}, \quad Fw_k = -[n - k + 1]w_{k-1},$$

$$K^{\pm 1}w_k = -v^{\pm (2k-n)}w_k$$

Notation: $w_{i_1} \otimes w_{i_2} \otimes \cdots \otimes w_{i_k}$ denoted by $i_1i_2\ldots i_k$

Consequence: Basis in $V^\otimes n$ consists of 0-1–sequences of length n.
Quantum invariants — action of tangles

Definition. The functor $F : \text{Tang} \to U_V(\mathfrak{sl}_2)\text{-mod}$ is given by:

$\cup : \mathbb{C}(v) \to \hat{\mathcal{Y}}_1^\otimes 2$ is given by:

$$1 \mapsto 01 + v10.$$

$\cap : \hat{\mathcal{Y}}_1^\otimes 2 \to \mathbb{C}(v)$ is given by:

$$00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto v^{-1}, \quad 10 \mapsto 1.$$

right crossing: $\hat{\mathcal{Y}}_1^\otimes 2 \to \hat{\mathcal{Y}}_1^\otimes 2$ is given by:

$$00 \mapsto -v00, \quad 11 \mapsto -v11, \quad 01 \mapsto 10 + (v^{-1} - v)01, \quad 10 \mapsto 01.$$

left crossing: $\hat{\mathcal{Y}}_1^\otimes 2 \to \hat{\mathcal{Y}}_1^\otimes 2$ is given by:

$$00 \mapsto -v^{-1}00, \quad 11 \mapsto -v^{-1}11, \quad 01 \mapsto 10, \quad 10 \mapsto 01 + (v - v^{-1})10.$$
Quantum invariants — action of tangles

Definition. The functor $F : \text{Tang} \to U_\nu(\mathfrak{sl}_2)\text{-mod}$ is given by:

$\cup : \mathbb{C}(\nu) \to \hat{V}_1^\otimes 2$ is given by:

$$1 \mapsto 01 + \nu 10.$$

$\cap : \hat{V}_1^\otimes 2 \to \mathbb{C}(\nu)$ is given by:

$$00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto \nu^{-1}, \quad 10 \mapsto 1.$$

right crossing: $\hat{V}_1^\otimes 2 \to \hat{V}_1^\otimes 2$ is given by:

$$00 \mapsto -\nu 00, \quad 11 \mapsto -\nu 11, \quad 01 \mapsto 10 + (\nu^{-1} - \nu)01, \quad 10 \mapsto 01.$$

left crossing: $\hat{V}_1^\otimes 2 \to \hat{V}_1^\otimes 2$ is given by:

$$00 \mapsto -\nu^{-1}00, \quad 11 \mapsto -\nu^{-1}11, \quad 01 \mapsto 10, \quad 10 \mapsto 01 + (\nu - \nu^{-1})10.$$
Quantum invariants — action of tangles

Definition. The functor $F : \text{Tang} \to U_{\nu}(\mathfrak{sl}_2)\text{-mod}$ is given by:

$\cup : \mathbb{C}(\nu) \to \hat{V}_1 \otimes \mathbb{C}(\nu)$ is given by:

\[
1 \mapsto 01 + \nu 10.
\]

$\cap : \hat{V}_1 \otimes \mathbb{C}(\nu) \to \mathbb{C}(\nu)$ is given by:

\[
00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto \nu^{-1}, \quad 10 \mapsto 1.
\]

Right crossing: $\hat{V}_1 \otimes \mathbb{C}(\nu) \to \hat{V}_1 \otimes \mathbb{C}(\nu)$ is given by:

\[
00 \mapsto -\nu 00, \quad 11 \mapsto -\nu 11, \quad 01 \mapsto 10 + (\nu^{-1} - \nu)01, \quad 10 \mapsto 01.
\]

Left crossing: $\hat{V}_1 \otimes \mathbb{C}(\nu) \to \hat{V}_1 \otimes \mathbb{C}(\nu)$ is given by:

\[
00 \mapsto -\nu^{-1}00, \quad 11 \mapsto -\nu^{-1}11, \quad 01 \mapsto 10, \quad 10 \mapsto 01 + (\nu - \nu^{-1})10.
\]
Quantum invariants — action of tangles

Definition. The functor $F : \text{Tang} \to U_v(sl_2)\text{-mod}$ is given by:

$\cup : \mathbb{C}(v) \to \hat{V}_1 \otimes^2$ is given by:

$$1 \mapsto 01 + v10.$$

$\cap : \hat{V}_1 \otimes^2 \to \mathbb{C}(v)$ is given by:

$$00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto v^{-1}, \quad 10 \mapsto 1.$$

right crossing: $\hat{V}_1 \otimes^2 \to \hat{V}_1 \otimes^2$ is given by:

$$00 \mapsto -v00, \quad 11 \mapsto -v11, \quad 01 \mapsto 10 + (v^{-1} - v)01, \quad 10 \mapsto 01.$$

left crossing: $\hat{V}_1 \otimes^2 \to \hat{V}_1 \otimes^2$ is given by:

$$00 \mapsto -v^{-1}00, \quad 11 \mapsto -v^{-1}11, \quad 01 \mapsto 10, \quad 10 \mapsto 01 + (v - v^{-1})01.$$
Quantum invariants — action of tangles

Definition. The functor $F : \text{Tang} \to U_{\nu}(\mathfrak{sl}_2)\text{-mod}$ is given by:

$\cup : \mathbb{C}(\nu) \to \hat{V}_1 ^{\otimes 2}$ is given by:

$$1 \mapsto 01 + \nu 10.$$

$\cap : \hat{V}_1 ^{\otimes 2} \to \mathbb{C}(\nu)$ is given by:

$$00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto \nu^{-1}, \quad 10 \mapsto 1.$$

right crossing: $\hat{V}_1 ^{\otimes 2} \to \hat{V}_1 ^{\otimes 2}$ is given by:

$$00 \mapsto -\nu 00, \quad 11 \mapsto -\nu 11, \quad 01 \mapsto 10 + (\nu^{-1} - \nu)01, \quad 10 \mapsto 01.$$

left crossing: $\hat{V}_1 ^{\otimes 2} \to \hat{V}_1 ^{\otimes 2}$ is given by:

$$00 \mapsto -\nu^{-1}00, \quad 11 \mapsto -\nu^{-1}11, \quad 01 \mapsto 10, \quad 10 \mapsto 01 + (\nu - \nu^{-1})10.$$
Definition. The functor $F : \text{Tang} \to U_v(\mathfrak{sl}_2)\text{-mod}$ is given by:

$\cup : \mathbb{C}(v) \to \hat{\mathcal{V}}^\otimes_1$ is given by:

$$1 \mapsto 01 + v10.$$

$\cap : \hat{\mathcal{V}}^\otimes_1 \to \mathbb{C}(v)$ is given by:

$$00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto v^{-1}, \quad 10 \mapsto 1.$$

right crossing: $\hat{\mathcal{V}}^\otimes_1 \to \hat{\mathcal{V}}^\otimes_1$ is given by:

$$00 \mapsto -v00, \quad 11 \mapsto -v11, \quad 01 \mapsto 10 + (v^{-1} - v)01, \quad 10 \mapsto 01.$$

left crossing: $\hat{\mathcal{V}}^\otimes_1 \to \hat{\mathcal{V}}^\otimes_1$ is given by:

$$00 \mapsto -v^{-1}00, \quad 11 \mapsto -v^{-1}11, \quad 01 \mapsto 10, \quad 10 \mapsto 01 + (v - v^{-1})10.$$
Quantum invariants — action of tangles

Definition. The functor $F : \text{Tang} \to \text{U}_\nu(\mathfrak{sl}_2)\text{-mod}$ is given by:

\[\cup : \mathbb{C}(\nu) \to \hat{\mathcal{V}} \otimes \hat{\mathcal{V}} \text{ is given by:} \]

\[1 \mapsto 01 + \nu 10. \]

\[\cap : \hat{\mathcal{V}} \otimes \hat{\mathcal{V}} \to \mathbb{C}(\nu) \text{ is given by:} \]

\[00 \mapsto 0, \quad 11 \mapsto 0, \quad 01 \mapsto \nu^{-1}, \quad 10 \mapsto 1. \]

right crossing: $\hat{\mathcal{V}} \otimes \hat{\mathcal{V}} \to \hat{\mathcal{V}} \otimes \hat{\mathcal{V}}$ is given by:

\[00 \mapsto -\nu 00, \quad 11 \mapsto -\nu 11, \quad 01 \mapsto 10 + (\nu^{-1} - \nu)01, \quad 10 \mapsto 01. \]

left crossing: $\hat{\mathcal{V}} \otimes \hat{\mathcal{V}} \to \hat{\mathcal{V}} \otimes \hat{\mathcal{V}}$ is given by:

\[00 \mapsto -\nu^{-1} 00, \quad 11 \mapsto -\nu^{-1} 11, \quad 01 \mapsto 10, \quad 10 \mapsto 01 + (\nu - \nu^{-1})10. \]
Theorem. [Reshetikhin-Turaev]

Let L be an oriented link. Then

the polynomials $F(T_L)(1)$ and $\hat{J}(L)$ coincide.
Quantum $U_v(\mathfrak{sl}_2)$-invariants and Jones polynomial

Theorem. [Reshetikhin-Turaev]

Let L be an oriented link. Then the polynomials $F(T_L)(1)$ and $\hat{J}(L)$ coincide.
Theorem. [Reshetikhin-Turaev]

Let L be an oriented link. Then

the polynomials $F(T_L)(1)$ and $\hat{J}(L)$ coincide.
Theorem. [Reshetikhin-Turaev]

Let \(L \) be an oriented link. Then

the polynomials \(F(T_L)(1) \) and \(\hat{J}(L) \) coincide.
Quantum $U_v(\mathfrak{sl}_2)$-invariants and Jones polynomial

Theorem. [Reshetikhin-Turaev]

Let L be an oriented link. Then

the polynomials $F(T_L)(1)$ and $\hat{J}(L)$ coincide.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — the idea

Cat — category of categories

Idea: Construct a functor from Tang to Cat?

Results in: Khovanov’s “functor-valued invariants of tangles”
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — the idea

Cat — category of categories

Idea: Construct a functor from Tang to Cat?

Results in: Khovanov’s “functor-valued invariants of tangles”
Categorification of quantum $U_q(\mathfrak{sl}_2)$-invariants — the idea

Cat — category of categories

Idea: Construct a functor from **Tang** to **Cat**?

Results in: Khovanov’s “functor-valued invariants of tangles”
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — the idea

Cat — category of categories

Idea: Construct a functor from **Tang** to **Cat**?

Results in: Khovanov’s “functor-valued invariants of tangles”
Categorification of quantum $U_q(\mathfrak{sl}_2)$-invariants — the idea

Cat — category of categories

Idea: Construct a functor from **Tang** to **Cat**?

Results in: Khovanov’s “functor-valued invariants of tangles”
Approach via category \mathcal{O}

\mathfrak{gl}_n — reductive Lie algebra over \mathbb{C}

$\mathfrak{gl}_n = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ — standard triangular decomposition

\mathcal{O} — BGG category \mathcal{O}

S_n — the Weyl group of \mathfrak{gl}_n

Fact: S_n acts on \mathfrak{h}^* in the natural way

$M(\lambda)$ — Verma module with highest weight $\lambda - \rho$
\mathfrak{gl}_n — reductive Lie algebra over \mathbb{C}

$\mathfrak{gl}_n = n_- \oplus \mathfrak{h} \oplus n_+$ — standard triangular decomposition

\mathcal{O} — BGG category \mathcal{O}

S_n — the Weyl group of \mathfrak{gl}_n

Fact: S_n acts on \mathfrak{h}^* in the natural way

$M(\lambda)$ — Verma module with highest weight $\lambda - \rho$
"\mathfrak{gl}_n" — reductive Lie algebra over \(\mathbb{C}\)

\(\mathfrak{gl}_n = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+\) — standard triangular decomposition

\(\mathcal{O}\) — BGG category \(\mathcal{O}\)

\(S_n\) — the Weyl group of \(\mathfrak{gl}_n\)

Fact: \(S_n\) acts on \(\mathfrak{h}^*\) in the natural way

\(M(\lambda)\) — Verma module with highest weight \(\lambda - \rho\)
Approach via category \mathcal{O}

\mathfrak{gl}_n — reductive Lie algebra over \mathbb{C}

$\mathfrak{gl}_n = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ — standard triangular decomposition

\mathcal{O} — BGG category \mathcal{O}

S_n — the Weyl group of \mathfrak{gl}_n

Fact: S_n acts on \mathfrak{h}^* in the natural way

$M(\lambda)$ — Verma module with highest weight $\lambda - \rho$
\mathfrak{gl}_n — reductive Lie algebra over \mathbb{C}

$\mathfrak{gl}_n = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ — standard triangular decomposition

\mathcal{O} — BGG category \mathcal{O}

S_n — the Weyl group of \mathfrak{gl}_n

Fact: S_n acts on \mathfrak{h}^* in the natural way

$M(\lambda)$ — Verma module with highest weight $\lambda - \rho$
\(\mathfrak{gl}_n \) — reductive Lie algebra over \(\mathbb{C} \)

\(\mathfrak{gl}_n = n_- \oplus \mathfrak{h} \oplus n_+ \) — standard triangular decomposition

\(\mathcal{O} \) — BGG category \(\mathcal{O} \)

\(S_n \) — the Weyl group of \(\mathfrak{gl}_n \)

Fact: \(S_n \) acts on \(\mathfrak{h}^* \) in the natural way

\(M(\lambda) \) — Verma module with highest weight \(\lambda - \rho \)
\mathfrak{gl}_n — reductive Lie algebra over \mathbb{C}

$\mathfrak{gl}_n = n_- \oplus \mathfrak{h} \oplus n_+$ — standard triangular decomposition

\mathcal{O} — BGG category \mathcal{O}

S_n — the Weyl group of \mathfrak{gl}_n

Fact: S_n acts on \mathfrak{h}^* in the natural way

$M(\lambda)$ — Verma module with highest weight $\lambda - \rho$
Approach via category \mathcal{O}

\[\mathfrak{gl}_n \text{ — reductive Lie algebra over } \mathbb{C} \]

\[\mathfrak{gl}_n = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+ \text{ — standard triangular decomposition} \]

\mathcal{O} — BGG category \mathcal{O}

S_n — the Weyl group of \mathfrak{gl}_n

Fact: S_n acts on \mathfrak{h}^* in the natural way

$M(\lambda)$ — Verma module with highest weight $\lambda - \rho$
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}^{(k,n-k)}_0$ — parabolic subcategory of locally p_k-finite modules

Definition: $\mathcal{C}_n := \bigoplus_{k=0}^{n} \mathcal{O}^{(k,n-k)}_0$

Fact: \mathcal{C}_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(\mathcal{C}_n)$ is the Grothendieck group of \mathcal{C}_n
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}^{(k,n-k)}_0$ — parabolic subcategory of locally p_k-finite modules

Definition: $C_n := \bigoplus_{k=0}^{n} \mathcal{O}^{(k,n-k)}_0$

Fact: C_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(C_n)$ is the Grothendieck group of C_n
O_0 — the principal block of O

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$O_{0}^{(k,n-k)}$ — parabolic subcategory of locally p_k-finite modules

Definition: $C_n := \bigoplus_{k=0}^{n} O_{0}^{(k,n-k)}$

Fact: C_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(C_n)$ is the Grothendieck group of C_n
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}_{(k,n-k)}$ — parabolic subcategory of locally p_k-finite modules

Definition: $\mathcal{O}_n := \bigoplus_{k=0}^{n} \mathcal{O}_{(k,n-k)}$

Fact: \mathcal{O}_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(\mathcal{O}_n)$ is the Grothendieck group of \mathcal{O}_n
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}_0^{(k,n-k)}$ — parabolic subcategory of locally p_k-finite modules

Definition: $\mathcal{C}_n := \bigoplus_{k=0}^{n} \mathcal{O}_0^{(k,n-k)}$

Fact: \mathcal{C}_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(\mathcal{C}_n)$ is the Grothendieck group of \mathcal{C}_n
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}_0^{(k,n-k)}$ — parabolic subcategory of locally p_k-finite modules

Definition: $\mathcal{C}_n := \bigoplus_{k=0}^{n} \mathcal{O}_0^{(k,n-k)}$

Fact: \mathcal{C}_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(\mathcal{C}_n)$ is the Grothendieck group of \mathcal{C}_n
\(\mathcal{O}_0 \) — the principal block of \(\mathcal{O} \)

\(k \in \{0, 1, 2, \ldots, n\} \)

\(S_k \times S_{n-k} \subset S_N \) — maximal Young subgroup

\(p_k \) — corresponding parabolic subalgebra

\(\mathcal{O}_0^{(k,n-k)} \) — parabolic subcategory of locally \(p_k \)-finite modules

Definition: \(\mathcal{C}_n := \bigoplus_{k=0}^{n} \mathcal{O}_0^{(k,n-k)} \)

Fact: \(\mathcal{C}_n \) has \(2^n \) simple objects up to isomorphism.

Definition: \(\text{Gr}(\mathcal{C}_n) \) is the Grothendieck group of \(\mathcal{C}_n \)
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}_0^{(k,n-k)}$ — parabolic subcategory of locally p_k-finite modules

Definition: $C_n := \bigoplus_{k=0}^{n} \mathcal{O}_0^{(k,n-k)}$

Fact: C_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(C_n)$ is the Grothendieck group of C_n
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}^{(k,n-k)}_0$ — parabolic subcategory of locally p_k-finite modules

Definition: $C_n := \bigoplus_{k=0}^{n} \mathcal{O}_0^{(k,n-k)}$

Fact: C_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(C_n)$ is the Grothendieck group of C_n
Blocks in \mathcal{O}

\mathcal{O}_0 — the principal block of \mathcal{O}

$k \in \{0, 1, 2, \ldots, n\}$

$S_k \times S_{n-k} \subset S_N$ — maximal Young subgroup

p_k — corresponding parabolic subalgebra

$\mathcal{O}^{(k,n-k)}_0$ — parabolic subcategory of locally p_k-finite modules

Definition: $\mathcal{C}_n := \bigoplus_{k=0}^{n} \mathcal{O}^{(k,n-k)}_0$

Fact: \mathcal{C}_n has 2^n simple objects up to isomorphism.

Definition: $\text{Gr}(\mathcal{C}_n)$ is the Grothendieck group of \mathcal{C}_n
Categorification of $V^\otimes n$ for $v = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(C_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)} : \mathcal{O}^q \subset \mathcal{O}^p$ — natural inclusion

$Z_{(p,q)} : \mathcal{O}^p \subset \mathcal{O}^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action: $E : D^b(\mathcal{O}(k,n-k)) \xrightarrow{1} D^b(\mathcal{O}(k,1,n-k-1)) \xrightarrow{\mathcal{L}Z} D^b(\mathcal{O}(k+1,n-k-1))$

Action: F — adjoint to E

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $v = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$.
Categorification of $V^\otimes n$ for $v = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(C_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)} : O^q \subset O^p$ — natural inclusion

$Z_{(p,q)} : O^p \subset O^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action:

$E : D^b(O^{(k,n-k)}) \xrightarrow{\text{I}} D^b(O^{(k,1,n-k-1)}) \xrightarrow{\text{LZ}} D^b(O^{(k+1,n-k-1)})$

Action:

F — adjoint to E

Theorem. [Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $v = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$.

Volodymyr Mazorchuk

Algebraic categorification and its applications, I

23/29
Observation: \(\dim V^\otimes n = \text{rank}(\text{Gr}(C_n)) \)

\(p \subset q \) — parabolic subalgebras

\(I_{(p,q)}: O^q \subset O^p \) — natural inclusion

\(Z_{(p,q)}: O^p \subset O^q \) — adjoint Zuckerman functors

Note: \(Z_{(p,q)} \) is only right exact

Action: \(E: D^b(O(k,n-k)) \xrightarrow{1} D^b(O(k,1,n-k-1)) \xrightarrow{\mathcal{L}Z} D^b(O(k+1,n-k-1)) \)

Action: \(F \) — adjoint to \(E \)

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies \(V^\otimes n \) for \(v = 1 \).

Meaning: Taking the Grothendieck group results in \(V^\otimes n \)
Categorification of $V^\otimes n$ for $v = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(C_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)} : O^q \subset O^p$ — natural inclusion

$Z_{(p,q)} : O^p \subset O^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action: $E : D^b(O^{(k,n-k)}) \xrightarrow{1} D^b(O^{(k,1,n-k-1)}) \xrightarrow{LZ} D^b(O^{(k+1,n-k-1)})$

Action: F — adjoint to E

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $v = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$.
Observation: \(\dim V^\otimes n = \text{rank}(\text{Gr}(C_n)) \)

\(p \subset q \) — parabolic subalgebras

\(I_{(p,q)} : O^q \subset O^p \) — natural inclusion

\(Z_{(p,q)} : O^p \subset O^q \) — adjoint Zuckerman functors

Note: \(Z_{(p,q)} \) is only right exact

Action: \(E : D^b(O(k,n-k)) \xrightarrow{1} D^b(O(k,1,n-k-1)) \xrightarrow{\mathcal{L}Z} D^b(O(k+1,n-k-1)) \)

Action: \(F \) — adjoint to \(E \)

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies \(V^\otimes n \) for \(v = 1 \).

Meaning: Taking the Grothendieck group results in \(V^\otimes n \).
Categorification of $V^\otimes n$ for $\nu = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(C_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)} : O^q \subset O^p$ — natural inclusion

$Z_{(p,q)} : O^p \subset O^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action: $E : D^b(O(k,n-k)) \xrightarrow{1} D^b(O(k,1,n-k-1)) \xrightarrow{\text{LZ}} D^b(O(k+1,n-k-1))$

Action: F — adjoint to E

Theorem. [Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $\nu = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$.
Categorification of $V^\otimes n$ for $\nu = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(C_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)} : \mathcal{O}^q \subset \mathcal{O}^p$ — natural inclusion

$Z_{(p,q)} : \mathcal{O}^p \subset \mathcal{O}^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action: $E : D^b(\mathcal{O}(k,n-k)) \xrightarrow{I} D^b(\mathcal{O}(k,1,n-k-1)) \xrightarrow{LZ} D^b(\mathcal{O}(k+1,n-k-1))$

Action: F — adjoint to E

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $\nu = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$.
Categorification of $V^\otimes n$ for $\nu = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(\mathcal{C}_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)}: \mathcal{O}^q \subset \mathcal{O}^p$ — natural inclusion

$Z_{(p,q)}: \mathcal{O}^p \subset \mathcal{O}^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action: $E: \mathcal{D}^b(\mathcal{O}(k,n-k)) \xrightarrow{I} \mathcal{D}^b(\mathcal{O}(k,1,n-k-1)) \xrightarrow{\mathcal{L}Z} \mathcal{D}^b(\mathcal{O}(k+1,n-k-1))$

Action: F — adjoint to E

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $\nu = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$.
Observation: \(\dim V^\otimes n = \text{rank}(\text{Gr}(C_n)) \)

\(p \subset q \) — parabolic subalgebras

\(I_{(p,q)} : \mathcal{O}^q \subset \mathcal{O}^p \) — natural inclusion

\(Z_{(p,q)} : \mathcal{O}^p \subset \mathcal{O}^q \) — adjoint Zuckerman functors

Note: \(Z_{(p,q)} \) is only right exact

Action: \(E : D^b(\mathcal{O}(k,n-k)) \overset{I}{\longrightarrow} D^b(\mathcal{O}(k,1,n-k-1)) \overset{\text{LZ}}{\longrightarrow} D^b(\mathcal{O}(k+1,n-k-1)) \)

Action: \(F \) — adjoint to \(E \)

Theorem. [Bernstein-Frenkel-Khovanov] This categorifies \(V^\otimes n \) for \(v = 1 \).

Meaning: Taking the Grothendieck group results in \(V^\otimes n \)
Categorification of $V^\otimes n$ for $\nu = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(C_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)} : \mathcal{O}^q \subset \mathcal{O}^p$ — natural inclusion

$Z_{(p,q)} : \mathcal{O}^p \subset \mathcal{O}^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action: $E : \mathcal{D}^b(\mathcal{O}(k,n-k)) \xrightarrow{I} \mathcal{D}^b(\mathcal{O}(k,1,n-k-1)) \xrightarrow{LZ} \mathcal{D}^b(\mathcal{O}(k+1,n-k-1))$

Action: F — adjoint to E

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $\nu = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$
Categorification of $V^\otimes n$ for $v = 1$

Observation: $\dim V^\otimes n = \text{rank}(\text{Gr}(C_n))$

$p \subset q$ — parabolic subalgebras

$I_{(p,q)}: \mathcal{O}^q \subset \mathcal{O}^p$ — natural inclusion

$Z_{(p,q)}: \mathcal{O}^p \subset \mathcal{O}^q$ — adjoint Zuckerman functors

Note: $Z_{(p,q)}$ is only right exact

Action: $E: \mathcal{D}^b(\mathcal{O}(k,n-k)) \xrightarrow{I} \mathcal{D}^b(\mathcal{O}(k,1,n-k-1)) \xrightarrow{LZ} \mathcal{D}^b(\mathcal{O}(k+1,n-k-1))$

Action: F — adjoint to E

Theorem.[Bernstein-Frenkel-Khovanov] This categorifies $V^\otimes n$ for $v = 1$.

Meaning: Taking the Grothendieck group results in $V^\otimes n$
Categorification of ν

Question: Where can we find ν?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

\tilde{C}_n — graded version of C_n

Theorem. [Stroppel] The action of graded Zuckerman functors on $D^b(\tilde{C}_n)$ categorifies $V^\otimes n$

Here: ν corresponds to shift of grading.
Question: Where can we find ν?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

\tilde{C}_n — graded version of C_n

Theorem. [Stroppel] The action of graded Zuckerman functors on $D^b(\tilde{C}_n)$ categorifies $V^\otimes n$

Here: ν corresponds to shift of grading.
Question: Where can we find v?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

$\tilde{\mathcal{C}}_n$ — graded version of \mathcal{C}_n

Theorem. [Stroppel] The action of graded Zuckerman functors on $D^b(\tilde{\mathcal{C}}_n)$ categorifies $V^\otimes n$

Here: v corresponds to shift of grading.
Question: Where can we find v?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

\tilde{C}_n — graded version of C_n

Theorem. [Stroppel] The action of graded Zuckerman functors on $\mathcal{D}^b(\tilde{C}_n)$ categorifies $V^\otimes n$

Here: v corresponds to shift of grading.
Categorification of ν

Question: Where can we find ν?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

$\tilde{\mathcal{C}}_n$ — graded version of \mathcal{C}_n

Theorem. [Stroppel] The action of graded Zuckerman functors on $\mathcal{D}^b(\tilde{\mathcal{C}}_n)$ categorifies $V^\otimes n$.

Here: ν corresponds to shift of grading.
Categorification of \(v \)

Question: Where can we find \(v \)?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \(\mathcal{O} \) is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

\[\tilde{C}_n \text{ — graded version of } C_n \]

Theorem. [Stroppel] The action of graded Zuckerman functors on \(D^b(\tilde{C}_n) \) categorifies \(V \otimes^n \)

Here: \(v \) corresponds to shift of grading.
Question: Where can we find v?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

\tilde{C}_n — graded version of C_n

Theorem. [Stroppel] The action of graded Zuckerman functors on $\mathcal{D}^b(\tilde{C}_n)$ categorifies $V^\otimes n$

Here: v corresponds to shift of grading.
Categorification of v

Question: Where can we find v?

Answer: Introduce grading.

Theorem. [Soergel] Each block of (parabolic) \mathcal{O} is equivalent to the category of (ungraded) modules over a finite dimensional positively graded and even Koszul algebra.

\tilde{C}_n — graded version of C_n

Theorem. [Stroppel] The action of graded Zuckerman functors on $D^b(\tilde{C}_n)$ categorifies $V^\otimes n$

Here: v corresponds to shift of grading.
Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.

Need: Categorification of $V^\otimes m$ for $m < n$

Use: Singular and singular-parabolic blocks of \mathcal{O}
Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.

Need: Categorification of $V^\otimes m$ for $m < n$

Use: Singular and singular-parabolic blocks of \mathcal{O}
Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.

Need: Categorification of $V^\otimes m$ for $m < n$

Use: Singular and singular-parabolic blocks of \mathcal{O}
Definition. [Bernstein-S. Gelfand] A projective functor on \(\mathcal{O} \) is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.

Need: Categorification of \(V \otimes^m \) for \(m < n \)

Use: Singular and singular-parabolic blocks of \(\mathcal{O} \)
Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.

Need: Categorification of $V^\otimes m$ for $m < n$

Use: Singular and singular-parabolic blocks of \mathcal{O}
Definition. [Bernstein-S. Gelfand] A projective functor on \mathcal{O} is a functor isomorphic to a direct summand of tensoring with a finite dimensional module.

Fact. Projective functors commute with Zuckerman functors.

Need: Categorification of $V^\otimes m$ for $m < n$

Use: Singular and singular-parabolic blocks of \mathcal{O}
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — shuffling functors

$s \in S_n$ — simple reflection

θ_s — wall-crossing functor

Fact. There are adjunctions $\theta_s \to \text{Id}$ and $\text{Id} \to \theta_s$

Definition. [Carlin] Shuffling functor $C_s := \text{Coker}(\text{Id} \to \theta_s)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.
Categorification of quantum $U_{q}(\mathfrak{sl}_2)$-invariants — shuffling functors

$s \in S_n$ — simple reflection

θ_s — wall-crossing functor

Fact. There are adjunctions $\theta_s \to \text{Id}$ and $\text{Id} \to \theta_s$

Definition. [Carlin] Shuffling functor $C_s := \text{Coker}(\text{Id} \to \theta_s)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — shuffling functors

$s \in S_n$ — simple reflection

θ_s — wall-crossing functor

Fact. There are adjunctions $\theta_s \to \text{Id}$ and $\text{Id} \to \theta_s$

Definition.[Carlin] Shuffling functor $C_s := \text{Coker}(\text{Id} \to \theta_s)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — shuffling functors

$s \in S_n$ — simple reflection

θ_s — wall-crossing functor

Fact There are adjunctions $\theta_s \rightarrow \text{Id}$ and $\text{Id} \rightarrow \theta_s$

Definition.[Carlin] Shuffling functor $C_s := \text{Coker}(\text{Id} \rightarrow \theta_s)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — shuffling functors

$s \in S_n$ — simple reflection

θ_s — wall-crossing functor

Fact. There are adjunctions $\theta_s \rightarrow \text{Id}$ and $\text{Id} \rightarrow \theta_s$

Definition. [Carlin] Shuffling functor $C_s := \text{Coker}(\text{Id} \rightarrow \theta_s)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — shuffling functors

$s \in S_n$ — simple reflection

θ_s — wall-crossing functor

Fact. There are adjunctions $\theta_s \to \text{Id}$ and $\text{Id} \to \theta_s$

Definition.[Carlin] Shuffling functor $C_s := \text{Coker} (\text{Id} \to \theta_s)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — shuffling functors

$s \in S_n$ — simple reflection

θ_s — wall-crossing functor

Fact There are adjunctions $\theta_s \to \text{Id}$ and $\text{Id} \to \theta_s$

Definition.[Carlin] Shuffling functor $C_s := \text{Coker}(\text{Id} \to \theta_s)$ (adjoint: coshuffling)

Fact. Shuffling is right exact.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
Categorification of quantum $U_v(\mathfrak{sl}_2)$-invariants — assignments

Assign:

Cap diagram: Translation onto a wall.

Cup diagram: Translation out of a wall.

Right crossing: Derived shuffling functor.

Right crossing: Derived coshuffling functor.
Theorem. [Stroppel] This gives rise to a functor $\mathcal{F} : \text{Tang} \rightarrow \text{Cat}$ (up to position and degree shifts).

Theorem. [Stroppel] For L oriented link, the functor $\mathcal{F}(T_L)[n_-] \langle n_+ - 2n_- \rangle$ is an invariant of L.

Theorem. [Brundan-Stroppel] This is equivalent to Khovanov's categorification of Jones polynomial.
Theorem.[Stroppel] This gives rise to a functor $\mathcal{F} : \text{Tang} \rightarrow \text{Cat}$ (up to position and degree shifts).

Theorem.[Stroppel] For L oriented link, the functor $\mathcal{F}(T_L)[n_-]\langle n_+ - 2n_- \rangle$ is an invariant of L.

Theorem.[Brundan-Stroppel] This is equivalent to Khovanov’s categorification of Jones polynomial.
Theorem. [Stroppel] This gives rise to a functor $\mathcal{F} : \text{Tang} \rightarrow \text{Cat}$ (up to position and degree shifts).

Theorem. [Stroppel] For L oriented link, the functor $\mathcal{F}(T_L)[n_-]\langle n_+ - 2n_- \rangle$ is an invariant of L.

Theorem. [Brundan-Stroppel] This is equivalent to Khovanov’s categorification of Jones polynomial.
Theorem. [Stroppel] This gives rise to a functor $\mathcal{F} : \text{Tang} \to \text{Cat}$ (up to position and degree shifts).

Theorem. [Stroppel] For L oriented link, the functor $\mathcal{F}(T_L)[n_-] \langle n_+ - 2n_- \rangle$ is an invariant of L.

Theorem. [Brundan-Stroppel] This is equivalent to Khovanov’s categorification of Jones polynomial.
Theorem. [Stroppel] This gives rise to a functor $\mathcal{F} : \text{Tang} \to \text{Cat}$ (up to position and degree shifts).

Theorem. [Stroppel] For a L oriented link, the functor $\mathcal{F}(T_L)[n_-] \langle n_+ - 2n_- \rangle$ is an invariant of L.

Theorem. [Brundan-Stroppel] This is equivalent to Khovanov’s categorification of Jones polynomial.
THANK YOU!!!