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Preface

Since my lecture series on conformal Riemannian geometries at the University of

Vienna in 1991/1992, I have been interested in a better understanding of this fasci-

nating topic. This e�ort led quickly to a joint project with Andreas

�

Cap (University

of Vienna) and Vladim��r Sou�cek (Charles University, Prague), which resulted in a

series of publications, see e.g. [CSS1, CSS2, CSS3, Slo1, Cap]. Our approach

was based on consistent usage of the Lie algebra language and the principal �ber

bundle framework. This allowed us to deal in a uni�ed way with a whole class of

geometries, the so called almost Hermitian symmetric structures (as introduced in

[Bas]) and all their real forms. Thus we had got a sort of universal `calculus' for all

these geometries and we were able to deduce new results even for the best known

example, the conformal Riemannian structures. At the same time, it was more and

more clear that the methods had to admit a generalization which should lead to a

similar calculus for a much wider class of geometries and that we should be able to

discuss all of them in a nice and uni�ed way.

The last mentioned ideas seem to have opened a new promising area of research

and the main aim of this text is to summarize recent achievements, yet mostly

unpublished. I have tried to present a clear and consistent description of a new

general model, accompanied by a series of examples of particular geometries. I

believe that each of these examples (and many similar ones) deserves a separate

deep research and I hope these `research lecture notes' will make the new area

accessible.

The general theory of parabolic geometries is developed here along the lines of

the special cases dealt with in [CSS1], however with special emphasis on various

new ideas. Some inspiration comes from classical results on Weyl geometries and

the papers [Gau] and [BaiE] have been most helpful.

The whole work has been, of course, in
uenced by fruitful contacts with many

mathematicians. In particular, the long term cooperation with my collaborators

in the project [CSS1{3] and many discussions with Michael Eastwood have been

extremely useful. Furthermore, the whole research wouldn't be possible without

the institutional support by the Erwin Schr�odiger Institute in Vienna, the Grant

Agency of Czech Republic, and �rst of all the Australian Research Council and

University of Adelaide. Most of this research was done during my recent stay in

Adelaide as ARC Senior Research Fellow in 1996/1997.

Brno, October 1997 Jan Slov�ak
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1. Introduction

Roughly speaking, the geometries introduced by Cartan under the name `es-

pace generalis�e' are curved deformations of homogeneous spaces G=P where P is a

(closed) subgroup in a Lie group G. All such possibilities for G and P give the 
at

models G! G=P of the geometries in question. The properties of G are encoded in

the (left) Maurer-Cartan form ! 2 


1

(G; g) and the latter form is the subject of the

deformations we have in mind. Thus instead of the principal P -bundle G ! G=P

we shall deal with a general principal P -bundle G ! M , equipped with a one-

form ! 2 


1

(G; g), subject to the following properties (�

X

denotes the fundamental

vector �eld given by X):

Curved geometry Flat model

G !M , ! 2 


1

(G; g) G! G=P , Maurer-Cartan form !

!(�

X

) = X for all X 2 p !(�

X

) = X for all X 2 g

(r

b

)

�

! = Ad(b

�1

) � ! 8b 2 P (r

b

)

�

! = Ad(b

�1

) � ! 8b 2 G

!

jT

u

G

: T

u

G ! g iso 8u 2 G !

jT

u

G

: T

u

G! g iso 8u 2 G

A form ! 2 


1

(G; g) with the three properties listed above is called Cartan connec-

tion (of the type G=P ). Let us notice in particular the third property, which yields

the horizontal vector �eld !

�1

(X) on G for each element X 2 g. The �rst condition

then tells that the latter �elds are the fundamental �elds �

X

for all X 2 p. The

extent of the deformation is measured by the curvature of the Cartan connection,

the two-form � 2 


2

(G; g) given by the structure equation

d! +

1

2

[!;!] = �:

In particular, (G; !) is locally isomorphic to (G;!) if and only if � vanishes. It

follows immediately from the de�nition, that � is a horizontal form and due to

the presence of the horizontal vector �elds we can view � as a function valued in

�

2

(g=p)

�


g, i.e. � 2 C

1

(G;�

2

(g=p)

�


g). All these old ideas go back to E. Cartan

and his concept of `generalized spaces', but it is di�cult to point back to a paper

by Cartan and say `there it is, look!'. In fact these beautiful concepts developed

during Cartan's work on concrete examples of equivalence problems, see e.g. [Sha]

for many illuminating comments.

We shall be interested in the special class of such geometries where either P is a

parabolic subgroup in a (complex) semisimple Lie group G, or P and G represent

a real form of such a situation. Following Fe�erman and Graham, we are using the

name parabolic geometries in this context, cf. [FefG]. As we shall see, this is justi�ed

by the nice explicit links of purely geometrical questions to the representation theory

of parabolic subgroups.

More explicitly, we deal with a pair (g; p) where g is a (real) semisimple Lie

algebra of the Lie group G equipped with a �nite grading g = g

�`

� � � � � g

`

,

p = g

0

� � � � � g

`

. The group P is then the Lie subgroup corresponding to the

subalgebra p. We also write g

�

for g

�`

� � � � � g

�1

and p

+

for g

1

� � � � � g

`

. Then

g

�

' (g=p) and the Killing form yields (g

�

)

�

' p

+

. In the case of complex Lie

Version of November 22, 1997



CONFORMAL RIEMANNIAN STRUCTURES 3

groups P � G this just means that P is a parabolic subgroup. See the beginning

of Section6 for explicit de�nitions and more information on the Lie algebras.

In fact, the de�nition of a particular geometry on M in terms of such a `mys-

terious bundle' G and the global parallelism ! seems to be quite unusual and we

should rather prefer to have a theorem establishing their (unique) existence from

some more familiar data. On the other hand, once we have a Cartan connection !

of type G=P on the manifoldM , there is an extremely rich geometry hidden behind.

The main source for various underlying concepts and their relations lies in the grad-

ing of the Lie algebra g. In particular, we can decompose the g-valued curvature

form � in two ways: according to values in the particular components of g (denoted

by subscripts like the components in g themselves) and by the homogeneity degrees

(denoted by superscripts). This means

� =

`

X

i=�`

�

i

; � =

3`

X

k=�`+2

�

k

where �

k

(u)(X;Y ) 2 g

i+j+k

for all u 2 G, X 2 g

i

, Y 2 g

j

. Sometimes, we shall

also decompose � into �

�

+ �

0

+ �

+

, according to the values. The negative part

�

�

= �

�`

+ � � �+�

�1

will be called the torsion part of the curvature, the component

�

0

will be called the Weyl part of the curvature. If the length of the grading is ` = 1

(the so called j1j-graded case), then both decompositions coincide (�

i

= �

i+2

).

We shall present a general model for all these geometries in Section 2 and the

application to explicit examples will be indicated in Sections 4-5. However, in

order to present some indication of what sort of concepts we are looking for, we

�rst conclude this introduction with a review of the best known case. Whenever

we shall not give explicit proofs of our claims and if no other source will be men-

tioned explicitly, the reader should consult the papers [CSS1, CSS2] or [Slo2] for

further information. The whole lecture notes [Slo1] are devoted to the conformal

Riemannian geometries.

Conformal Riemannian structures

Most easily, a conformal Riemannian structure on a manifold M is given by a

choice of a Riemannian metric g on M . The metric g then de�nes the line bundle

of metrics in S

2

T

�

M which are all conformal, i.e. each of them is given by e

2f

g for

a unique smooth function f on M . Equivalently, we can de�ne the structure by

reducing the structure group of TM to the subgroup G

0

= CO(m;R)� GL(m;R),

m = dimM . None of the conformal metrics is privileged and a choice of one of

them means a choice of a scale in each tangent space. It is well known, that this is

a geometry of �nite type and that all conformal isometries are fully determined by

their 2-jets at a single point. In the 
at case, the space of all (local) isomorphisms

is parameterized by g = so(m + 1; 1;R), while those keeping a given point �xed

correspond to the subalgebra p. If g is de�ned by the quadratic form

J =

0

@

0 0 1

0 I

m

0

1 0 0

1

A

Version of November 22, 1997



4 1. INTRODUCTION

then the grading can be described in block matrix form as follows

g

�1

=

0

@

0 0 0

X 0 0

0 �X

T

0

1

A

; g

0

=

0

@

�a 0 0

0 A 0

0 0 a

1

A

; g

1

=

0

@

0 Z 0

0 0 �Z

T

0 0 0

1

A

:

The Lie group P is the Poincar�e conformal group.

The complete information on the structure is well encoded in the classical �rst

prolongation of the de�ning G

0

-structure on M , which can be found in a way

producing the desired principal P -bundle G !M . Now, it is a (well known) theorem

that the latter bundle comes equipped with the normal Cartan connection !, which

is normalized by the trace vanishing condition on its curvature (and vanishing of the

whole torsion part). In fact, the construction of G �xes the (g

�1

� g

0

) component

of ! in a way minimizing the torsion of the structure. The last component is then

chosen to �t the normalization. Another class of well known objects related to

conformal Riemannian structures are the Weyl geometries which are given by a

choice of any torsion free linear connection 
 on M preserving the conformal class

of metrics.

The basic idea of our approach to parabolic geometries is that everything must

be de�ned and expressed by means of the algebras in question. So let us try to

recover all the above mentioned objects just from the pair (so(m + 1; 1;R); p).

First, we have to �x the Lie groupsG, P . Since g

�

is abelian, this choice does not

in
uence much the general procedure (but it does e�ect the topological obstructions

to the existence of the corresponding structures on particular manifolds). In general,

we usually requireG

0

to be the adjoint group acting on g

�

. The geometric structure

is then de�ned by requiring T

x

M to be isomorphic to g

�

up to elements in G

0

for

all x 2 M . In our case, this means exactly a reduction of TM to G

0

.) The

standard prolongation construction provides the principal P -bundle G overM with

the Cartan connection !, see [CSS2] for more details.

The group P is the semi-direct product of its Levi part G

0

and the nilpotent Lie

group P

+

= exp g

1

and there is the a�ne space of global G

0

-equivariant sections

� : G

0

! G of the quotient projection G ! G

0

:= G=P

+

, modeled over one-forms on

M (cf. [CSS1, Lemma 3.6]). The pullbacks of the g

0

-component of ! by the sections

� are torsion free linear connections on M which preserve the conformal structure

by de�nition. Thus they coincide with the Weyl geometries. The Levi part G

0

is

the product of its semisimple part G

s

0

= O(m;R) and the one-dimensional center

Z = fexp tEg, where E is the unique element in g such that ad

E

(X) = j:X for

all X 2 g

j

, j = �1; 0; 1. The quotient bundle L := G

0

=G

s

0

is isomorphic to the

associated bundle G

0

�

G

0

fexp tEg and it is easy to show that there is a bijective

correspondence between the sections � (i.e. the corresponding Weyl structures 


�

)

and the induced connections 


L

�

on L. In particular, the sections of L correspond

to trivial connections and they represent the metrics in the conformal class. No-

tice also that all connections 


�

share the same `minimal torsion' given by the

g

�1

-component �

�1

of the curvature �. This is of course vanishing for conformal

Riemannian structures.

Version of November 22, 1997



2. THE GENERAL THEORY 5

L

�

�

�

�
��

��

�

�

�
�

scales

G

w

u

Weyl geometries

G

0

4

4

4

446

��

�

�

�

reductions











�

M

G

0

=Z

A

A

A

AC

Any Weyl geometry 


�

(thus in particular any Levi-Civita connection from the

class of metrics) de�nes, together with the canonical soldering form � 2 


1

(G

0

; g

�1

),

the Cartan connection (�+


�

) 2 


1

(G

0

; g

�1

�g

0

) and there is the unique �-related

Cartan connection !

�

on G. The forms ! and !

�

di�er only in the g

1

-component

and so there must be a mapping P 2 C

1

(G; g

�

�1


 g

1

) such that ! = !

�

�P �!

�1

.

An easy check shows that P is in fact a tensor in T

�

M 
 T

�

M , the so called Rho-

tensor which is a trace adjusted Ricci part of the curvature of 


�

(cf. [CSS1, Lemma

3.10 and formula 6.3.(1)]). By de�nition, the g

1

-component �

�

1

of the curvature of

!

�

vanishes at all frames u 2 �(G

0

) and a straightforward computation yields the

relation between � and �

�

on �(G

0

) (of course, all these results will also follow from

the general formulae in Section 2):

j (�

�

j

� �

j

)(u)(X;Y ) what is �

j

?

�1 0 the �xed torsion of 


�

0 [X;P:Y ]� [Y;P:X] Weyl part of curvature of 


�

1 r




�

X

P:Y �r




�

Y

P:X + P:�

�1

(X;Y ) Cotton-York tensor (torsion adjusted)

What we want to say is that the trace vanishing condition on � forces the choice of

P and then the curvature � itself is described by the right hand column. In partic-

ular, a simple computation yields the Rho-tensor well known from the conformal

Riemannian geometry.

The canonical Cartan connection can be also easily de�ned on vector bundles

coming from representations of whole G by means of restriction to P . Indeed,

there is the classical principal connection ~! on the extension

~

G = G �

P

G given

by ! and therefore also the induced linear connections on all bundles coming from

G-modules. Any choice of a Weyl geometry yields a reduction of the structure

group P to G

0

, thus also a decomposition of the latter bundles into G

0

-invariant

subbundles. This recovers easily the twistor connections and their explicit formulae

by means of covariant derivatives and the tensor P. A choice of a Weyl geometry

also provides decompositions of all bundles coming from P -modules, however there

is no canonical linear connection on them.

2. The general theory

The aim of this chapter is to provide the general model and several basic results

and formulae. At the end we try to give a sort of recipe, how to understand any

particular case and we shall try to illustrate its usage in the next chapters. Most

of the material has not been published yet, so we present many full proofs here.

Version of November 22, 1997



6 2. THE GENERAL THEORY

Joint papers with Andreas

�

Cap and Vladimir Sou�cek covering these topics and some

deeper applications are in preparation.

We mainly extend and generalize the development from [CSS1], but the existence

results for the regular normal Cartan connections are taken from the recent paper

[CSch]. The latter paper provides a much more general and complete version of

Tanaka's results on di�erential systems, cf. also [Tan, Yam].

Recently, also the book by R.W. Sharpe appeared, see [Sha]. Although it has

not in
uenced the development of the present exposition, a careful reading of that

book will de�nitely help a lot to understand broader context of our theory. The

book also provides links to the original ideas by E. Cartan and many other great

mathematicians. On the other hand, Sharpe's setting is very general and, in partic-

ular, he does not touch the impact of the gradings of our Lie algebras and the rich

representation theoretic tools, which are in the center of our attention. Also only

the projective and conformal geometries among all our examples are mentioned

explicitly there.

Basic de�nitions and existence results

Let us recall that for any j`j-graded Lie algebra g we write p = g

0

� � � � � g

`

,

p

+

= g

1

�� � ��g

`

and further p

k

+

= g

k

�� � ��g

`

= [p

+

; p

k�1

+

]. Thus p = g

0

�p

+

and

we also write g = g

�

� p. Let G be a Lie group with Lie algebra g, P the subgroup

corresponding to p, and G

0

the Levi part of P (with Lie algebra g

0

), P

+

� P , etc.

Let us also recall the existence of the Lie algebra cohomology di�erential @ and its

adjoint codi�erential @

�

on the spaces �

k

(g

�

)

�


 g, see 6.8, 6.9.

2.1. De�nition. A parabolic geometry of type G=P on a manifold M is given

by the principal �ber bundle G ! M with structure group P equipped by the

Cartan connection ! 2 


1

(G; g). We say that the Cartan connection is normal if

its curvature � 2 C

1

(G; g

�

�

^ g

�

�


 g) is co-closed, i.e. @

�

� � = 0. The Cartan

connection is said to be regular if all non-positive homogeneous components �

j

,

j � 0 vanish, and it is called torsion-free if the whole component �

�

vanishes.

2.2. The induced �ltrations. As already mentioned, we would like to under-

stand (and de�ne) the parabolic geometries in terms of some objects more intrinsic

to the underlying manifoldM . First of all, the quotients of G by the actions of the

closed subgroups P

k

+

� P are principal �ber bundles

G

k

= G=P

k+1

+

; k = 0; : : : ; `:

The global parallelism ! transfers the �ltration of the p-module g (with respect to

the adjoint representation) into the �ltration of the tangent bundle TG = T

�`

G �

� � � � T

`

G, which is P -invariant. Thus there also is the induced invariant �ltration

of the tangent spaces of all G

k

and also of the underlying tangent bundle TM , where

T

i

M = Tp(T

i

G), i = �`; : : : ;�1. Moreover, each choice of a frame u 2 G provides

the identi�cation of T

x

M with the �ltered P -module g=p ' g

�

. On the level of

the associated graded vector spaces we then obtain GrT

x

M ' (g

�`

� � � � � g

�1

)

Version of November 22, 1997



BASIC DEFINITIONS AND EXISTENCE RESULTS 7

as graded G

0

-modules. This in turn provides a reduction of the structure group of

GrTM to G

0

.

Assume now we are given a �ltration T

`

M � � � � � T

�1

M on TM and a re-

duction of GrTM to the structure group G

0

. Since the Lie bracket on g

�

is G

0

-

equivariant, the choice of the reduction of GrTM to structure group G

0

transfers

the Lie bracket [ ; ] on g

�

to an algebraic bracket f ; g

0

on GrTM . More explicitly,

choosing a frame u : GrT

x

M ! g

�

we de�ne for all �

x

; �

x

2 T

x

M the bracket by

the formula

f�

x

; �

x

g

0

= u

�1

([u(�

x

); u(�

x

)]):

A replacement of u by u:g = Ad

g

�1 �u leads to the same value

f�

x

; �

x

g

0

= u

�1

�Ad

g

([Ad

g

�1 u(�

x

);Ad

g

�1 u(�

x

)]) = u

�1

([u(�

x

); u(�

x

)]):

If our reduction of GrTM to G

0

comes from a Cartan connection ! on G as

above, then clearly the bracket is given by

(1) f�

x

; �

x

g

0

= �(!

�1

([!(�); !(�)])(u))

where � is the obvious projection TG ! TM ! GrTM and �; � are any vectors in

TG covering �

x

; �

x

.

On the other hand, for all vector �elds � 2 T

i

M , � 2 T

j

M and functions f , g

on M we obtain

[f�; g�] = fg[�; �]modT

k

M; where k = minfi; jg:

Thus the induced brackets T

i

M�T

j

M ! TM=T

k

M with k as above are algebraic

as well.

Assume that our �ltration of TM comes from a Cartan connection !. Vanishing

of homogeneous components of the curvature � then imposes restrictions on the

non-integrability of the subspaces T

i

M . Let us formulate this claim more explicitly:

Proposition. If ! 2 


1

(G; g) is a Cartan connection on M and �

i

= 0 for all

i < 0, then the induced �ltration of TM satis�es [T

i

M;T

j

M ] � T

i+j

M and the

Lie bracket of vector �elds de�nes an algebraic bracket f ; g

Lie

on the graded

vector bundle GrTM . Moreover, if �

0

vanishes too, then the latter bracket

coincides with the algebraic bracket f ; g

0

on GrTM .

Proof. The �ltration is de�ned by

T

i

M = �(!

�1

(g

i

� � � � � g

�1

)):

The de�ning equation for �

k

(u)(X;Y ), u 2 G, X 2 g

i

, Y 2 g

j

is

(2) �

k

(u)(X;Y ) =

�

[X;Y ]� !

i+j

(u)([!

�1

(X)(u); !

�1

(Y )(u)]) if k = 0

�!

i+j+k

(u)([!

�1

(X)(u); !

�1

(Y )(u)]) if k 6= 0.
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8 2. THE GENERAL THEORY

Now, consider vector �elds � in T

i

M , � in T

j

M and let us choose elements X

r

,

Y

s

in g

�

such that � = � �

P

r

f

r

!

�1

(X

r

), � = � �

P

s

g

s

!

�1

(Y

s

) with suitable

functions f

r

, g

s

on G. Then

[�; �] = � �

X

r;s

f

r

g

s

[!

�1

(X

r

); !

�1

(Y

s

)] modT

i+j

M:

Since all X

r

2 g

i

�� � ��g

�1

and Y

s

2 g

j

�� � ��g

�1

, equality (2) with k < 0 implies

[�; �] � T

i+j

M .

Once we know that the Lie bracket de�nes a mapping T

i

M � T

j

M ! T

i+j

M ,

then the algebraic bracket f ; g

Lie

on GrTM is clearly de�ned and the �rst claim

of the Proposition has been proved.

Finally, equality (2) with �

0

(u) = 0 yields for all X 2 g

i

, Y 2 g

j

!

�1

([X;Y ]) � !

�1

(!

i+j

([!

�1

(X); !

�1

(Y )])) = 0:

Thus, vanishing of �

<0

implies for all �

x

= �(!

�1

(X)(u)) and �

x

= �(!

�1

(Y )(u))

f�

x

; �

x

g

0

= �(!

�1

([X;Y ])(u))

= �(!

�1

(!

i+j

([!

�1

(X); !

�1

(Y )](u))))

= �([!

�1

(X); !

�1

(Y )](u) mod T

i+j+1

G)

= [� � !

�1

(X); � � !

�1

(Y )](x) mod T

i+j+1

M

= f�

x

; �

x

g

Lie

: �

2.3. De�nition. Let TM be equipped with a �ltration satisfying [T

i

M;T

j

M ] �

T

i+j

M for all i; j, and assume that a reduction of the structure group of GrTM

to G

0

is given. We say that the structure equation holds if the two algebraic

brackets coincide, i.e f ; g

0

= f ; g

Lie

.

In fact, Proposition 2.2 shows that every regular Cartan connection induces a

�ltration on TM and a reduction of GrTM , such that the structure equation holds.

It is remarkable that in nearly all cases these data are also su�cient to recover such a

regular and normal Cartan connection !, inclusive the construction of the principal

�ber bundle G. Let us make this statement more explicit. We say that two Cartan

connections ! and �! on principal P -bundles G and

�

G are isomorphic, if there is a

principal �ber bundle isomorphism ' : G !

�

G such that '

�

�! = !.

2.4. Theorem. ([CSch]) Let M be a manifold equipped with a �ltration TM =

T

�`

M � T

�`+1

M � � � � � T

�1

M � f0g such that [T

i

M;T

j

M ] � T

i+j

M for

all i; j, and with a reduction of the associated graded vector bundle GrTM =

T

�`

M=T

�`+1

M � � � � � T

�2

M=T

�1

M � T

�1

M to the structure group G

0

. Let

us further assume that the structure equation holds. If H

1

k

(g

�

; g) vanishes for

all k > 0, then there is the unique Cartan connection ! on the unique principal

P -bundle G !M such that its curvature is @

�

-closed, up to isomorphisms.
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2.5. The exceptional geometries. Up to completely degenerate cases like g =

sl(2; C ) with the Borel subalgebra, or semisimple algebras with simple components

in g

0

, there are just two series of pairs (g; p) which admit a �rst cohomology with

non-vanishing components of positive homogeneity:

Exceptional pairs (g; p) The obstructing cohomologies

g =

1

�

0

� � � �

0

�

1

�

0

�

1

�

0

� � � �

0

�

2

� 2 H

1

1

(g

�

; g)

g =

2

�

0

� � � �

0

� <

0

�

�2

�

3

�

0

� � � �

0

� <

0

� 2 H

1

1

(g

�

; g)

This is also shown in [CSch]. Let us notice, that in both cases the obstructions

appear in homogeneity one. A more careful discussion then shows that we can

still construct the canonical Cartan connections after making a further choice (see

[CSch] again), and explicit computations of the second cohomologies then show that

the principal bundles G de�ning the structures will be reductions of the second order

In fact, the C

`

case

seems to be a usual

�rst order structure as

well!

frame bundle to the appropriate subgroup P , see Section 5 and [Slo3].

In fact, all real forms of these complex graded algebras lead to examples of such

geometries. In particular, the �rst of these series involves the well known projective

would be nice to look

at them really!

geometries. Since G

0

is the whole general linear group in this case, we have no

structure on the G

0

level. The 
at models for some of the other structures are the

Grassmannians of isotropic lines in R

2n

with the standard symplectic structure,

G

0

is the conformal symplectic linear group and the corresponding Lie algebra is

j2j-graded (see 6.3 and Section 5 for more details).

2.6. Remark. In view of the latter Theorem, we could use the following alter-

native de�nition: A (regular and normal) parabolic geometry of type G=P on a

manifold M is given by a �ltration

TM = T

�`

M � T

�`+1

M � � � � � T

�1

M � f0g

with the property [T

i

M;T

j

M ] � T

i+j

M for all i; j, and a reduction of the associ-

ated graded vector bundle

GrTM = T

�`

M=T

�`+1

M � � � � � T

�2

M=T

�1

M � T

�1

M

to the structure group G

0

, such that the structure equation holds.

We may also say that (regular and normal) parabolic geometries of type G=P

on M are given by �ltrations, subject to the right dimensions and quite subtle

non-integrability conditions, which make GrTM �ber-wise isomorphic to g

�

.

Notice also that the structure equation gets void for all j1j-graded algebras g

while the �ltrations are trivial in these cases. Then the whole de�nition reduces to

the usual G

0

-structures on the manifoldsM .

2.7. Remark. Another description of the parabolic geometries follows rather

the analogy to the classical �rst order G-structures and their soldering forms: In-

stead of a principal �ber bundle equipped with the soldering form, we have to

de�ne a principal G

0

-bundle p : G

0

! M over a �ltered manifold M , equipped

with the so called frame form of length one. The latter form is a sequence of G

0

-

equivariant (partially de�ned) forms (�

�`

; : : : ; �

�1

), �

i

2 


1

((Tp)

�1

T

i

M; g

i

) such
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10 2. THE GENERAL THEORY

that (Tp)

�1

T

i+1

M = ker �

i

and each �

j

induces at each frame u a linear isomor-

phism T

i

M=T

i+1

M ! g

�i

. Moreover, the frame form has to satisfy the structure

equation (the explicit meaning of which needs some further thoughts)

d�

i+j

+ [�

i

; �

j

] = 0 mod T

i+j+1

M

see [CSch] for a more explicit exposition. These frame forms are exactly what

survives from a Cartan connection ! on a principal P -bundle after factoring out

the action of P

+

. On the other hand, given such a frame form, we can carefully

extend the principal �ber bundle and construct longer frame forms, until we reach

a Cartan connection after 2` prolongation steps. Requiring suitable normalizing

conditions, we end up with the normal Cartan connection ! on M . This is the

beautiful procedure suggested and worked out in great detail in [CSch].

Generalized Weyl geometries

In the rest of the Section, we shall suppose that G is a principal P -bundle over

M equipped with a �xed Cartan connection !, i.e. a parabolic geometry on M in

the most general sense.

2.8. Lemma. On each principal P -bundle G ! M , there is the a�ne space

of global G

0

-equivariant sections � : G

0

= G=P

+

! G of the quotient projection,

modeled over the vector space of all one-forms on M . The sum of a global G

0

-

equivariant section � and a 1-form � 2 C

1

(G; p

+

) is given by the formula

(1) (� +�)(u) = �(u): exp(�(�(u))):

Proof. Let us �rst show that there is at least one such section. We have to

construct a global G

0

-equivariant trivialization of G ! G

0

. This can be achieved

step by step, building G

0

-equivariant trivializations of the principal bundles G

k

=

G=P

k+1

+

! G=P

k

+

with abelian structure groups P

k

+

=P

k+1

+

, k = 1; 2; : : : . Recall

that P = G

0

o P

+

and each b 2 P allows the unique expression in the form

b = b

0

expX

1

: : : expX

`

with b

0

2 G

0

, X

i

2 g

i

(see e.g. [CSch, Proposition 2.17]).

In particular, all bundles G

k

are also equipped by the right action of G

0

.

Via the exponential mapping, we can view the latter principal bundles as a�ne

bundles modeled over g

k

. So we can always choose a cocycle of local G

0

-equivariant

trivializations �

�

over a covering U

�

of G

k�1

= G=P

k

+

with transition functions

�

��

: G

k�1

! P

k

+

=P

k+1

+

. Now, we can form the a�ne sum �

k

of all �

�

by means

of a partition of unity subordinated to U

�

. By the construction, �

k

will be G

0

-

equivariant as well. The composition of such �

k

, k = 1; : : : ; ` provides the required

section.

It remains to show that formula (1) de�nes another G

0

-equivariant section and

that given two such sections �, �

0

, there is the uniquely de�ned 1-form � such that

� + � = �

0

. For each b 2 G

0

(� + �)(u:b) = �(u):b: exp(Ad

b

�1
:�(�(u)))

= �(u):b:b

�1

: exp(�(�(u))):b = (� + �)(u):b
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GENERALIZED WEYL GEOMETRIES 11

and the formula �

0

(u) = �(u): exp(�(�(u))) de�nes the mapping � on the image of

�. The previous computation, read backwards, shows that � is G

0

-equivariant on

the image of �. But since P = G

0

o P

+

, there is the uniquely de�ned mapping

G ! p

+

coinciding with � on �(G

0

) and satisfying �(u:b) = Ad

b

�1 :�(u) for all

u 2 G, b 2 P . �

2.9. De�nition. Let ! 2 


1

(G; g) be a Cartan connection de�ning the parabolic

geometry onM . A (generalized) Weyl geometry onM is given by aG

0

-equivariant

section � of G ! G

0

.

Let us notice that our de�nition of a (generalized) Weyl geometry does not use

explicitly the one form ! but remember that the Weyl geometries on conformal Rie-

mannian manifolds are linear connections. We observed in the Introduction that

these connections are in bijective correspondence with G

0

-equivariant sections of

appropriate principal bundles. The next Lemma describes such a class of distin-

guished linear connections in our general situation which, of course, depend on the

Cartan connection ! explicitly. Moreover, the relation between such connections

and their de�ning sections will be shown to be bijective as well. In this context, we

shall also use the name `Weyl geometry' for each of these connections.

All quotient projections p

j

k

: G=P

j+1

+

! G=P

k+1

+

, j > k are G

0

-equivariant too.

Thus each choice of a global G

0

-equivariant section � yields reductions of all the

intermediate bundles G

k

= G=P

k+1

+

, k = 0; : : : ; ` to the structure group G

0

. In

particular, each principal connection 
 on G

0

de�nes principal connections on all

bundles G

k

(their connection forms coincide with 
 on the image of G

0

and are

de�ned uniquely by the equivariance elsewhere). We shall keep the same symbol 


for all of them.

2.10. Lemma. For each Cartan connection ! = !

�

� !

0

� !

+

2 


1

(G; g) and

each G

0

-equivariant global section �, the pullback 


�

:= �

�

(!

0

) is a principal

connection on G

0

.

In particular, the choice of a Weyl geometry � de�nes also the principal con-

nection 


�

on G

`�1

, i.e. a linear connection on M .

Proof. The equivariance of !, restricted toG

0

, ensures the required equivariance of




�

. At the same time, T�:�

Y

(u) = �

Y

(�(u)) for each Y 2 g

0

and so the fundamental

�elds are recovered as well. �

2.11. The tangent bundle. Obviously, the tangent bundle TM on a manifold

with a parabolic geometry of the type G=P is associated to G via the adjoint

representation of P on g

�

' g=p. The subgroup P

`

+

acts trivially and the e�ective

structure group of TM is always P=P

`

+

. The component !

�

of the canonical Cartan

connection ! survives on G

`�1

= G=P

`

+

as the soldering form for TM .

Now, each choice of a generalized Weyl geometry � on M provides further re-

duction of the structure group of TM to G

0

. In fact, we obtain explicit splittings

of the projections T

i

M ! T

i

M=T

i+1

M � GrTM . Moreover, the induced linear

connections 


�

always belong to the G

0

structure on M and so they have to pre-

serve all G

0

-invariant subspaces. In particular all the subspaces corresponding to

g

i

are preserved.
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12 2. THE GENERAL THEORY

2.12. Similarly, each P -module V enjoys a �ltration by P -submodules, which gives

rise to �ltrations of the associated vector bundles V := G �

P

V , cf. 6.7. Each

choice of a Weyl geometry then de�nes splittings of the quotient projections and

yields a decomposition of V into irreducible associated bundles corresponding to

G

0

-modules. Of course, the linear connection 


�

then induces linear connections

on all these subbundles.

Each G-module can be considered as P -module by restriction and all the above

considerations apply. On the other hand, there is the extension

~

G = G �

P

G

endowed with the unique principal connection form ~! 2 


1

(

~

G; g) which coincides

with the Cartan connection ! on the image of G �

~

G. Thus there are the induced

linear connections on all bundles coming from G-representations. Of course, we

shall be able to express them explicitly by means of any of the Weyl geometries

�, i.e. by means of the induced connections 


�

, and decompositions of the bundles

into G

0

-invariant subbundles. These procedures will recover analogies to twistor

bundles, and more general objects in conformal Riemannian geometries, cf. [Eas].

2.13. The invariant di�erential. For each Cartan connection ! 2 


1

(G; g),

there is the obvious operator de�ned by Lie derivative of functions in the directions

of the horizontal vector �elds: For each P -module E we de�ne

r

!

: C

1

(G; E) ! C

1

(G; g

�

�


 E)

r

!

s(u)(X) = L

!

�1

(X)

s(u); for all X 2 g

�

, u 2 G

We call this operation the invariant derivative (with respect to the Cartan connec-

tion !). We also write r

!

X

s for the values on a �xed vector X 2 g

�

. An easy

computation yields the (generalized) Ricci identity for sections of E = G �

P

E (i.e.

s 2 C

1

(G; E)

P

)

(r

!

X

� r

!

Y

�r

!

Y

� r

!

X

)s = r

!

[X;Y ]

s + �(�

p

(X;Y ) � s) �r

!

�

�

(X;Y )

s

Also the (generalized) Bianchi identity for the curvature � is easily obtained:

X

cycl

�

[�(X;Y ); Z]� �([X;Y ]; Z)� �(�

�

(X;Y ); Z)�r

!

Z

�(X;Y )

�

= 0

for all X, Y , Z 2 g

�1

, where

P

cycl

denotes the sum over all cyclic permutations of

the arguments. (The proofs of both claims in [CSS1] still apply.) In terms of the

Lie algebra cohomology di�erential @ we may rewrite the latter formula as

�@�(X;Y;Z) =

X

cycl

�

r

!

Z

�(X;Y ) + �(�(X;Y ); Z)

�

:

In the very special case of a�ne connections (i.e. principal connections on the

linear frame bundles together with the soldering forms), we recover exactly the

classical identities.
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Formulae in terms of Weyl geometries

In order to understand better our generalizedWeyl geometries, we shall work out

formulae relating the covariant di�erential r




�

of the induced linear connections




�

and the invariant di�erential r

!

of the canonical Cartan connection !. We

shall also discuss the transformation of the covariant di�erentials under the change

of the generalized Weyl geometry, i.e. in terms of the one-forms �, see 2.8. The

resulting general formulae are somewhat messy, but quite simple. Since they get a

bit more handy on the whole G, we start with this case. As a straightforward con-

sequence of our formulae, we shall be able to de�ne distinguished Weyl geometries

parameterized by closed forms. These are the analogues to metrics and Levi-Civita

connections in conformal Riemannian geometries. The next Lemma also provides

the analogy to the so called Rho tensors in conformal Riemannian geometry.

2.14. Lemma. For each Cartan connection ! = !

�

� !

0

� !

+

2 


1

(G; g) and

each G

0

-equivariant global section �, there is the unique Cartan connection !

�

on G which is �-related to �

�

(!

�

� !

0

). Then ! = !

�

� P � !

�

for a 2-tensor

P 2 C

1

(G; g

�

�


 p

+

)

P

' C

1

(G; g

�

�


 g

�

�

)

P

on M .

Proof. The Cartan connection !

�

is de�ned by its restriction

!

�

jT�(TG

0

)

= (!

�

� !

0

)

jT�(TG

0

)

and by the properties required for any Cartan connection. The easy check that the

de�nition is consistent is left to the reader.

The Cartan connections ! and !

�

di�er only in the p

+

-component and they both

have to recover the fundamental vector �elds on G. Thus there must be a uniquely

de�ned smooth function P 2 C

1

(G; g

�

�


p

+

), such that the horizontal vector �elds

satisfy

!

�1

(u)(X) = (!

�

)

�1

(u)(X) + �

P(u):X

(u)

for all X 2 g

�

and u 2 G. Evaluation of !

�

on � = !

�1

(u)(X) yields

!

�

(u) = !(u)� P(u) � !

�

(u); for all u 2 G:

The equivariance of ! and !

�

implies for all b 2 P

(r

b

)

�

(P � !

�

) = (r

b

)

�

(! � !

�

) = Ad b

�1

� (! � !

�

) = Ad b

�1

� (P � !

�

):

On the other hand,

(r

b

)

�

(P � !

�

)(u)(�) = P(u:b)(!

�

(u:b)(Tr

b

:�)) = P(u:b)(Ad

�

b

�1

� !

�

(u)(�)):

Now, the choice X = Ad

�

b

�1

� !

�

(u)(�) yields

P(u:b) = Ad b

�1

� P(u) �Ad

�

b:
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14 2. THE GENERAL THEORY

The pairing p

+

� g

�

! R de�ned by the Killing form then yields a mapping

(X;Y ) 7! hP(u):X; Y i with the required equivariance

hP(u:b):X; Y i = hAd(b

�1

):P(u):Ad

�

(b)X;Y i = hP(u):Ad

�

(b)X;Ad

�

(b)Y i:

Thus, we may view P as the frame form of a 2-tensor in this way. �

Following the tradition, the tensor P will be called the Rho tensor but also

deformation tensor for � (since P describes the deformation of !

�

into !). We shall

also write P

�

whenever the speci�cation of the chosen (generalized) Weyl geometry

will be necessary.

Let us notice that the above proof works for all Cartan connections �,  sharing

the g

�

and g

0

components. The same computation shows that given a Cartan con-

nection � and a 2-tensor P onM , the 1-form  = ��P��

�

obeys the equivariance

required for Cartan connections and the other two properties are clearly satis�ed

as well. Thus, all Cartan connection on a �xed principal bundle G which share the

g

�

and g

0

components are sections of an a�ne bundle modeled over 2-tensors on

the base manifold M .

The Rho tensors play a key role in conformal Riemannian geometry, but they

proved to be useful also in projective and almost Grassmannian geometries, cf.

[BaiE], [Eas], [Slo1], [Slo2]. Usually the authors introduced them because of their

`nice transformation properties' or via decompositions of the curvatures into irre-

ducible components.

2.15. Notation. Given a G

0

-equivariant section � : G

0

! G, we de�ne the

mapping �

�

2 C

1

(G; p

+

) by

u = �(p(u)): exp �

�

(u):

We often omit the subscript � if the dependence on � is clear from the context.

Next we are going to compare the invariant di�erential r

!

with the covariant

di�erential r




�

for the principal connection 


�

on G, cf. 2.10. Recall that for each

representation �

P

: P ! GL(E

�

), the sections of the associated bundle G�

P

E

�

are

viewed as equivariant mappings s 2 C

1

(G; E

�

)

P

and the covariant derivative r




�

of s in the direction of a vector � = fu;Xg 2 TM is given by the usual derivative of

s in the direction of the horizontal lift of � with respect to 


�

at u. This observation

justi�es also our notation r




�

X

s(u) for the covariant derivative.

As usual, we shall write � for the representation of p on E

�

induced by �

P

. Since

!

�1

(X) = (!

�

)

�1

(X) + �

P

�

:X

, we have

(r

!

X

�r




�

X

)s(u) = (r

!

�

X

�r




�

X

)s(u) � �(P

�

(u):X)(s(u))

for all representations � : p ! gl(E

�

), u 2 G, and s 2 C

1

(G; E

�

)

P

. Thus the main

task will be to compare r

!

�

and r




�

on G.

Let us notice that this comparison yields also formulae for the canonical covariant

derivatives r

~!

on bundles coming from G-modules, cf. 2.12. More explicitly, the

value of the horizontal lift of a tangent vector fu;Xg 2 TM with respect to the
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principal connection ~! at the frame fu; [e]g 2 G �

~

G is !

�1

(X)(u)��

X

(u). Thus the

covariant di�erentialr

~!

X

is given by the sum of our invariant di�erentialr

!

X

and the

action ofX. In particular, we shall obtain the expression of the canonical convariant

derivatives by means of the Weyl geometries and the induced decompositions into

G

0

-submodules, as promised in 2.12.

2.16. Lemma. For each generalized Weyl geometry � : G

0

! G, any section

s 2 C

1

(G; E

�

)

P

, and X 2 g

�

we have

(r

!

X

�r




�

X

)s = ��

�

P:X +Adexp(�� ):(Ad exp �:X)

p

�

� s

= ��

�

P:X +

`

X

j=0

(�1)

j

j!

ad

j

�

:

�

2`

X

i=1

1

i!

(ad

i

�

:X)

p

��

� s:

In particular, if X 2 g

�1

we obtain

(r

!

X

�r




�

X

)s = ��([�;X]�

1

2

[�; [�;X]] + � � �+

(�1)

`

(`+1)!

ad

`+1

�

:X + P:X) � s:

Furthermore, if p

+

acts trivially on E

�

, then

(r

!

X

�r




�

X

)s = ��

�

`

X

i=1

1

i!

(ad

i

�

:X)

g

0

�

� s for all X 2 g

�

,

(r

!

X

�r




�

X

)s(u) = �([X; � (u)]

g

0

)(s(u)) for all u 2 G, X 2 g

�1

:

Proof. For technical reason, let us simplify our notation for a moment. We �x the

G

0

-equivariant section � : G

0

! G, we write 
 for 


�

and � for !

�

, and 


�1

(X)(u)

will denote the value of the horizontal vector �eld determined by the tangent vector

fu;Xg 2 G �

P

g

�

.

The horizontal lifts of vectors � 2 TM with respect to 
 are right-invariant

vector �elds on the �bers and fu;Xg = fu:b;Ad

�

b

�1

:Xg 2 TM . Thus

Tr

b

:(


�1

(u)(X)) = 


�1

(Ad

�

b

�1

:X)(u:b):

On the other hand, the equivariance of the Cartan connections yields for all b 2 P ,

u 2 G, X 2 g

�

Tr

b

:(�

�1

(u)(X)) = �

�1

(Ad b

�1

:X)(u:b):

Now, we insert b = exp � (u) and Ad

�

b:X or Ad b:X instead of X, respectively, and

compute

r




s(u)(X) = r




s(�(p(u)): exp � (u))(X)

= Tr

exp �(u)

:


�1

(Ad

�

(exp � (u)):X)(�(p(u))):s

= TsTr

exp �(u)




�1

(X + [� (u);X]

g

�

+ � � �+

1

2`!

(ad

2`

�(u)

:X)

g

�

)(�(p(u)))

r

�

s(u)(X) = TsTr

exp �(u)

�

�1

(X + [� (u);X] + � � �+

1

2`!

(ad

2`

�(u)

:X))(�(p(u)))
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16 2. THE GENERAL THEORY

and since the values of �

�1

(X) and 


�1

(X) coincide on the image of �, the sub-

traction of these expressions yields

(r

�

�r




)s(u)(X) = Ts:T r

exp �(u)

:�

�1

(

2`

X

i=1

1

i!

(ad

i

�(u)

:X)

p

)(�(p(u)))

= Ts:�

�1

�

Ad(exp(�� (u))):

2`

X

i=1

1

i!

(ad

i

�(u)

:X)

p

�

(u)

This implies already the �rst claim in the Lemma since the equivariance of s implies

that the latter expression is

(r

�

�r




)s(X) = ��

�

2`

X

i=1

1

i!

(ad

i

�

:X)

p

�

�

�;

2`�1

X

i=1

1

i!

(ad

i

�

:X)

p

�

+ : : :

�

�s

= ��([�;X]

p

+

1

2

[�; [�;X]]

p

� [�; [�;X]

p

] + : : : ) � s:

If X 2 g

�1

, then all brackets in this formula happen to be in p and collecting

all coe�cients at ad

i

�

we obtain

P

i�1

j=0

(�1)

j

(i�j)!j!

. Rewriting this sum by means of

binomial coe�cients, an easy computation yields the required coe�cients

(�1)

i+1

i!

.

The last claim is then obvious. �

2.17. Now, let us rewrite the formulae from the last lemma for �xed Weyl geome-

tries. We shall write 
̂ and 
 for two choices of (generalized) Weyl geometries, �

for the corresponding one-form, and �̂, � for the G

0

-equivariant sections of G ! G

0

.

In particular, �̂(v) = �(v):�(v) for all v 2 G

0

. Using the obvious equality

r


̂

X

s �r




X

s = (r

!

X

s �r




X

s) � (r

!

X

s �r


̂

X

s)

at the frame u = �(v) we obtain

(1)

r


̂

X

s(�(v)) = r




X

s(�(v)) + �

�

(

^

P� P)(�(v)):X

��

s(�(v))

�

+ �

�

Adexp�(v):(Ad exp��(v):X)

p

)

��

s(�(v))

�

Next, observe

r


̂

X

s(u) = r


̂

Ad

�

b

�1

:X

s(u:b):

Thus we can evaluate (1) with `new coordinates'

^

X = Ad

�

exp(��(v)):X of the

same tangent vector at the frame �̂(v). The result can be easily interpreted in

terms of the decompositions of the associated bundle E

�

= G �

P

E

�

determined by

the choices of Weyl geometries �̂, �. This means, we interpret s as the sections

� := s �� = �

1

+ � � �+ �

k

2 C

1

(G

0

; V

1

� : : : V

k

)

G

0

and �̂ := s � �̂, and we obtain the

relation between the covariant derivatives of � and �̂ with respect to the pricipal

connections 
 and 
̂ on G

0

:

(2)

r


̂

^

X

�̂(v) = r




X

s

0

(v)+�

�

(

^

P�P)(�(v)):X+Ad exp�(v):(Ad exp(��(v)):X)

p

�

(�(v))
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In the very special case of an irreducible P -module E

�

, there is no di�erence

between �̂ and � and we obtain for all � 2 C

1

(G

0

; E

�

)

G

0

, X 2 g

�

, v 2 G

0

,

(3) r


̂

X

�(v) = r




X+

P

`�1

i=1

1

i!

(ad

i

�(v)

:X)

g

�

�(v)� �

�

`

X

i=1

1

i!

(ad

i

�(v)

:X)

g

0

�

(�(v))

These formulae reduce heavily if we restrict values of X and � suitably with

respect to the grading. Let us also recall that the whole g

�

is generated by g

�1

and

this is re
ected on the tangent bundles too, so that the case of X 2 g

�1

is always

of a particular interest. In particular,

^

X = X in formula (2) while (3) reduces to

the extremely simple equation

(4) r


̂

�(X) = r




�(X) + �([X;�]) � �:

Thus, for all j1j-graded algebras we get exactly the formulae well known from con-

formal Riemannian geometries.

Our next aim is to express also the terms

^

P� P via the one-forms �. This will

�ll the last gap in our understanding of the formulae.

2.18. Lemma. Let G be a principal P -bundle, ! a Cartan connection on G and

let �

1

, �

2

be G

0

-equivariant sections of G ! G

0

, � the one-form satisfying �

2

=

�

1

: exp�. Further, let 


1

and 


2

be the principal connections on G

0

corresponding

to �

1

and �

2

. Then !

�

2

= !

�

1

� P � !

�

with

P(�

2

(u))(X) = Ad(exp��)

�

X

k�0

1

(k+1)!

ad

k

�

:r




2

X

�� (Ad exp�:X)

p

+

�

(u)

= r




2

X

�(u) � [�(u);X]

p

+

�

1

2

[�(u);r




2

X

�(u)]�

1

2

[�(u); [�(u);X]]

p

+

+ [�(u); [�(u);X]

p

+

] + : : :

Proof. We shall use the brief notation !

i

for the induced Cartan connections !

�

i

,

i = 1; 2. By de�nition, we have to compute

�

P(�

2

(u))(X)

(�

2

(u)) = (!

�1

2

(X) � !

�1

1

(X))(�

2

(u)):

The horizontal lifts of the vector fu;Xg 2 TM are given by




�1

i

(X)(u) = Tp

`

0

:!

�1

(X)(�

i

(u)) 2 TG

0

:

In particular we obtain




�1

2

(X)(u) = Tp

`

0

:T r

exp �(u)

!

�1

(Ad exp�(u):X)(�

1

(u))

= Tp

`

0

!

�1

(Ad

�

exp�(u):X)(�

1

(u)) + Tp

`

0

!

�1

((Ad exp�(u):X)

g

0

)(�

1

(u))

= 


�1

1

(Ad

�

exp�(u):X) + �

(Adexp�(u):X)

g

0

(u)
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18 2. THE GENERAL THEORY

Further, !

�1

i

(X)(�

i

(u)) = T�

i

(


�1

i

(X)(u)), i = 1; 2. Thus, the equivariance of the

horizontal �elds and the de�nition of � yield

(1)

�

P(�

2

(u))(X)

(�

2

(u)) = T�

2

:


�1

2

(X)(u) � T�

1

:


�1

1

(X)(u)

= Tr:(T�

1

; T exp�):


�1

2

(X)(u)

� Tr

exp(�(u))

:!

�1

1

(Ad exp�(u):X)(�

1

(u))

In order to resolve the �rst term in (1), let us choose a curve c(t) in G

0

such that

@

@t

j0

c(t) = 


�1

2

(X)(u). Then

Tr:(T�

1

; T exp�):


�1

2

(X)(u) =

=

@

@t

j0

(�

1

(u): exp�(c(t))) + Tr

exp �(u)

:T�

1

(


�1

2

(X))(u)

= Tr

exp�(u)

:

@

@t

j0

(�

1

(u): exp�(c(t)): exp��(u))+

Tr

exp�(u)

:T�

1

(


�1

1

(Ad

�

exp�(u):X) + �

(Adexp�(u):X)

g

0

)(u)

Now, the �rst term is of the form Tr

exp�(u)

�

A

(�

1

(u)) where A is the right loga-

rithmic derivative � of the function exp�: G

0

! G, evaluated on 


�1

2

(X). Thus

A = (Tr

exp��(u)

) � (T exp) � (T�)(

@

@t

j0

c(t)) = (� exp)(�(u)):(r




2

X

�(u))

=

X

k�0

1

(k+1)!

ad

k

�(u)

:r




2

X

�(u)

see e.g. [KMS, p.39] for the formula for � exp.

Next, the second term in (1) splits as

�Tr

exp(�(u))

:

�

!

�1

1

(Ad

�

exp�(u):X) + �

(Ad exp�(u):X)

p

�

(�

1

(u))

and we can collect easily all terms in (1). We obtain

�

P(�

2

(u))(X)

(�

2

(u)) = Tr

exp �(u)

�

B

(�

1

(u))

where

B =

X

k�0

1

(k+1)!

ad

k

�(u)

:r




2

X

�(u)� (Ad exp�(u):X)

p

+

:

Finally, the equivariance of P yields the required formula

P(�

2

(u))(X) = Ad(exp��(u))

�

X

k�0

1

(k+1)!

ad

k

�(u)

:r




2

X

�(u)� (Adexp�(u):X)

p

+

�

:

�

Now, we can insert the formula from the last Lemma into 2.17.(1) and 2.17.(2).
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2.19. Proposition. Let 
̂ and 
 be two choices of (generalized) Weyl geometries

on G !M given by sections �̂, �, and �̂(v) = �(v):�(v) for all v 2 G

0

. Then for

each section s 2 C

1

(G; E

�

), v 2 G

0

, X 2 g

�

,

^

X = Ad

�

exp��(u):X

(1)

r


̂

^

X

s(�

2

(v)) = r




X

s(�

1

(v)) + �

P

(exp�(v))

�

�

�

Ad exp��(v):X)

g

0

�

X

k�0

1

(k+1)!

ad

k

��(v)

r




X

�(v)

��

s(�̂(v))

�

�

Proof. We have just to insert the expression for

^

P�P into 2.17.(1). Since (in the

notation of 2.18)

! = !

�

2

� P

�

2

� !

�

= !

�

1

� P

�

1

� !

�

we have to replace 


1

, 


2

, �

1

, �

2

, � in 2.18 by 
̂, 
, �̂, �, ��, respectively.

Finally, we can use the relation �(Ad b:Z)(s(v)) = �

P

(b)(�(Z)(s(v:b))) to extract

the common term Ad exp�(v). This yields our formula. �

2.20. Corollaries. In the notation of 2.19 and 2.17, the formula 2.17.(2) gets

(1)

r


̂

^

X

�̂ = r




X

�+ �

P

(exp�)

�

�

�

Ad exp��(v):X)

g

0

�

X

k�0

1

(k+1)!

ad

k

��

r




X

�

��

�̂

�

�

:

The part of this formula up to linear terms in � is as follows

(2) r


̂

^

X

�̂ = r




X

�+ �

�

[X;�]

g

0

�r




X

�

��

�

�

+ higher order terms in �.

Let us also notice that two G

0

-equivariant sections �

1

; �

2

: G

0

! G de�ne the

same G

0

-structure if and only if their compositions with p

`

`�1

coincide, which in

turn means that the corresponding one-form �: G

0

! p

+

has values in g

`

only.

Also in this case, the formulae become particularly simple.

Scales and closed Weyl geometries

2.21. De�nition. Let M be a manifold equipped with a parabolic geometry of

type G=P . A (generalized) Weyl geometry � : G

0

! G is called closed if the curva-

ture of the corresponding principal connection 


�

on G satis�es h�

�

(u)(X;Y ); Ei =

0 for all u 2 G, X;Y 2 g

�

.
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In conformal Riemannian geometry, the Weyl geometry 


�

is closed if and only

if it locally coincides with Levi-Civita connections. Our aim is to establish a�ne

bundles similar to the line bundles of conformal metrics.

Let us observe that the de�ning condition for closed Weyl geometries is given by

vanishing of the representation � : p! R, �(X) = hX;Ei. Similarly, we may start

with an arbitrary � : p ! R, i.e. with an arbitrary complement of E in the center

z � g

0

.

2.22. Distinguished line bundles. Consider a �xed representation �

P

: P !

GL

+

(R) and the corresponding Lie algebra representation � : p! R, such that the

grading element E acts by �(E) = 1. Clearly P= ker � ' GL

+

(R) = R

+

. The

nilpotent part P

+

of P and the semisimple part G

0

� G

0

are both in ker �

P

, and

the factor group P= ker � is identi�ed with the one-parametric subgroup exp tE

generated by the grading element E.

The Lie algebra g

0

of the reductive part G

0

of P decomposes as the sum of

two ideals, its center z and its semisimple part g

0;s

= [g

0

; g

0

]. Whenever we �x a

complement z

0

of the one-dimensional subspace z

E

= hEi in z, there is the unique

representation � : p ! R with �(E) = 1 and z

0

� ker �, but the existence of �

P

to

this data is not always available. In fact a very natural � is de�ned by the Killing

form, simply we de�ne z

0

= E

?

. Unfortunately, even such a natural choice does

not always leed to integrable representations. We shall meet an example in Section

5. Thus we have to leave the subtle disscusion on the proper choices of �

P

to the

study of the particular geometries, while working with a general �

P

here.

On the other hand, given a parabolic geometry on G ! M of type G=P and

�

P

, there is the one-dimensional principal �ber bundle S = G= ker �. The mapping

G 3 u 7! (u; 1) 2 G � R

+

yields the identi�cation S = G �

�

R

+

. The exponential

mapping z

E

! fexp tEg de�nes the structure of the a�ne bundle on S with the

trivial modeling line bundle M � z

E

We call S the a�ne bundle of scales. If necessary, we shall write S

�

P

to indicate

the chosen representation �

P

.

2.23. Lemma. Let 


�

2 


1

(G; p) be the principal connection on G de�ned by

the choice of a G

0

-equivariant section � : G

0

! G. The induced connection on S

is the principal connection 


�

S

with connection form � � 


�

. Its curvature �

�

S

is

given by the composition �

�

S

= � � �

�

, where �

�

is the curvature of 


�

.

If the one-dimensional othogonal complement to z\ker � in z acts non-trivially

on the whole p

+

, then the correspondence � 7! 


�

S

between the (generalized) Weyl

geometries and the induced connections on the a�ne bundle of scales is bijective.

Proof. Let us recall some general features of induced connections on associated

bundles. If 
 is a principal connection on G, then its vertical projection is given by

� = � � 
, i.e. by the composition of the fundamental vector �eld mapping with 
.

The vertical projection of the connection induced on a associated bundle G �

P

V

is then given by f�; id

V

g. Moreover, if V is a vector bundle and the action of P

on V is given by �

P

: P ! GL(V ), then the curvature of the induced connection is

de�ned by the composition of the corresponding representation � : p! gl(V ) with

the curvature form of 
 (see e.g. [KMS, 11.8-11.16]).
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In our case, V is the quotient of P by the normal subgroup ker � and the in-

duced connections 


�

S

are again principal connections. Obviously, the above vertical

projetion f� � 


�

; id

R

g is now given by the composition of the fundamental vector

�eld mapping �

S

: p= ker � ! X (S) with the quotient of the original connection

form 
 2 


1

(G; p). Now, due to our assumption �(E) = 1, we additionally identify

p= ker � with z

E

' R via � itself.

Next, let us prove the injectivity of the correspondence � 7! 


�

S

. It su�ces to

study the horizontal lifts 


�

S

� of a �xed tangent vector � = fu;Xg 2 TM and the key

observation is that the formulae 2.17.(1) and 2.18 yield the necessary comparison

of 


�̂

� and 


�

� in terms of � (see also 2.19). After factoring out the kernel of �

P

,

we obtain




�̂

S

�([u]) = 


�

S

�([u])� �

�

(Ad exp(��(u)):X)

p= ker�

�

([u]):

Thus we have to show that for each �xed �(u), there always is some X 2 g

�

with

�(Ad exp(��(u)):X) 6= 0. Assume that g

i

� p

+

is the �rst component with non-

zero values of �(u) and take X 2 g

�i

. Then the only interesting contribution is

�([X;�(u)]). Let us assume that dim z = k � ` and choose an orthogonal basis

E

1

; : : : ; E

k�1

of g

0

= g \ ker � with respect to the Killing form. Completing the

orthogonal basis of z by

~

E = E +'(E

1

; : : : ; E

k

) with a suitable linear combination

'(E

1

; : : : ; E

k

), the action �([X;�(u)]) 2 R equals

1

k

~

Ek

2

h[X;�(u)];

~

Ei =

1

k

~

Ek

2

h�(u); [

~

E;X]i:

Now, g

�

splits into irreducible components with respect to the adjoint action of g

0

and each element in z acts by a scalar on each of those components. According to

our assumption, the action of

~

E is non-zero everywhere. Thus all X 2 g

�i

, except

the hyperplane �(u)(X) = 0, provide the required element.

Finally, let us observe that the connection forms on S have values in the one-

dimensional Lie algebra R. So they form an a�ne space modeled over one-forms

on M . The same is true for the Weyl geometries �. Thus the rest of our claims

follows pointwise by dimension reasons. �

2.24. Under the technical assumption on the orthogonal complement to ker �, the

previous Lemma yields the promised generalization of the class of Levi-Civita con-

nections in conformal geometries. Since the �bers of S are di�eomorpic to R, this

principal �ber bundle always admits global sections. Each section of S de�nes a

trivial connection on S, thus also a distinguished (generalized) Weyl geometry on

G !M . Obviously, �

P

comes from a representation of G

0

, extended trivially to P

and so S can be also viewed as the quotient of G

0

= ker �. In particular, sections of

S are in bijective correspondence with reductions of G

0

to ker �

P

\G

0

. The latter

reduction can be identi�ed with G

0

=fexp tEg.

fsmooth sections of Lg u w

u

u

ftrivial connections on Lg

u

u

�

distinguished class of reduc-

tions of G

0

to G

0

\ ker �

P

�

u w

�

distinguished subclass of

connections 


�

on G

0

�
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2.25. De�nition. Let M be a manifold equipped with a parabolic geometry

of type G=P . An admissible bundle of scales is the a�ne bundle S

�

P

such that

the corresponding Lie algebra representation � : p ! gl(R) has a kernel whose

orthogonal complement in the center z acts non-trivially on the whole p

+

. Let

S be such a bundle. A scale on M is a section of S ! M . Weyl geometries 


�

whose curvatures �

�

satisfy � � �

�

= 0 are called closed with respect to �. Weyl

geometries determined by scales are called exact (we shall often call them also

scales).

2.26. Remarks. As already mentioned, the problems with the existence of all

these objects are hidden in the existence of the representation �

P

itself. We shall

see on examples that only some of the reasonable representations of the Lie algebra

do integrate to the group level, but even then a particular choice of G may be

necessary. This will of course put additional requirements on the geometries in

question and the scales might then exist only locally. On the other hand, the

de�nition of the closed Weyl geometries with respect to � does depend on the Lie

algebra representation � only and could be used independently of the existence

problems with the scales.

The whole situation is nicely visible on the following diagram. Recall that all

compositions of a section � with the quotient projections are also G

0

-equivariant

and we obtain principal connections 


�

on all levels in the diagram. The last but

one level G=P

`

+

is of particular interest because its structure group P=P

`

+

is the

e�ective transformation group of g

�

.

S = G

0

= ker �

P

�

�

�

��

��

�

�

�

scales

G w G=P

`

+

w : : : w G

0

= G=P

+

'

'

'

')

��

�

�

�
�

reductions

�

�

�

�
��

M

u

�

`Weyl geometries'

G

0

=fexp tEg

4

4

4

4
46

Let us come back to the natural candidate for �, the representation given by the

Killing form and recall that the evaluation of the one-form � on X is also given by

the Killing form. Chosing two Weyl geometries �

2

, �

1

, with �

2

(u) = �

1

(u):�(u),

the equivariance of the Killing form implies for all X 2 g

j

� � (


�

2

� 


�

1

)(�

u

) =

1

hE;Ei

hAd

exp��(u)

:X;Ei =

1

hE;Ei

hX;Ad

exp�(u)

:Ei

=

1

hE;Ei

hX;E + [�(u); E] +

1

2

[�(u); [�(u); E]] + : : : i

=

�1

hE;Ei

hX;

P

`

i=1

i�

i

(u) + higher order terms in �'si

=

1

hE;Ei

j�(u)(X) + higher order terms in �'s.

Consequently, the variation of the connection forms on S is linked to the one forms

� in this way. In particular, they coincide for all j1j-graded Lie algebras g.
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If we choose two scales, i.e. two global sections ŝ, s of S and ŝ = f:s for a positive

smooth function f , then

r


̂

S

�

s = r


̂

S

�

f

�1

ŝ = �f

�1

df(�):s

Thus the one-form corresponding to f is always the closed form �f

�1

df .

Curvatures and torsions

In order to complete the discussion of the basic objects along the lines of the

conformal geometries, we should understand better the curvatures and torsions of

the Weyl geometries. First step towards this task is the next Proposition.

Let us recall that given the Weyl geometry � : G

0

! G, the induced Cartan

connection !

�

is �-related to the principal connection 


�

on G

0

. Thus the torsion

and curvature of 


�

are �-related to the g

�

�g

0

component of the curvature �

�

of !

�

as well. The next Proposition describes the di�erence between �

�

and the canonical

curvature � on G. This is only one of the sources of the variation of torsions and

curvatures of the Weyl geometries, in general. The other contribution comes then

from the evaluations in di�erent frames in G. The results admit a nice presentation

in terms of the Lie algebra di�erential @. In particular, the values P(u) can be

viewed as cochains P(u) 2 g

�

�


 p

+

� C

1

(g

�

; g) and then @P 2 C

1

(G; C

2

(g

�

; g)),

@P(u)(X;Y ) = [X;P(u):Y ]� [Y;P(u);X] � P(u):[X;Y ]:

2.27. Proposition. Let �

�

be the curvature of !

�

, let P be the corresponding

deformation tensor. Then for all u 2 �(G

0

)

(�

�

� �)(u)(X;Y ) = @P(u)(X;Y ) +r

X

P(u):Y �r

Y

P(u):X

� [P(u):X;P(u):Y ] + P(u) � �

�

�

(u)(X;Y )

Proof. We shall prove the Proposition for arbitrary two Cartan connections  

and � which di�er only in the p

+

-components. Let us write �

 

and �

�

for their

curvatures.

By de�nition

(�

�

� �

 

)(X;Y ) =  ([ 

�1

(X);  

�1

(Y )])� [X;Y ]� �([�

�1

(X); �

�1

(Y )]) + [X;Y ]

= (� � P � �

�

)([�

�1

(X); �

�1

(Y )] + [�

P:X

; �

�1

(Y )]+

[�

�1

(X); �

P:Y

] + [�

P:X

; �

P:Y

]) � �([�

�1

(X); �

�1

(Y )])

In order to resolve the individual terms, we are going to evaluate the structure

equation on appropriate data.

d�(�

�1

(P:X); �

�1

(Y )) = �[P:X; Y ] + 0

= L

�

�1

(Y )

�(�

�1

(P:X)) � �([�

�1

(P:X); �

�1

(Y )])

d�(�

�1

(P:X); �

�1

(P:Y )) = �[P:X;P:Y ] + 0

= L

�

�1

(P:X)

�(�

�1

(P:Y )) � L

�

�1

(P:Y )

�(�

�1

(P:X))� �([�

�1

(P:X); �

�1

(P:Y )])
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Further, for any Z 2 p we have

L

�

�1

(Z)

(P:Y ) =

@

@t

j0

�

Ad(exp�tZ)(P:(Ad(exp tZ):Y ))

�

= P:[Z; Y ]� [Z;P:Y ]

and so the second equality above yields

�([�

�1

(P:X); �

�1

(P:Y )]) = P:[P:X; Y ]� P:[P:Y;X]� [P:X;P:Y ]

Finally, we can collect (and cancel) all terms

(�

�

� �

 

)(X;Y ) =

8

>

>

>

<

>

>

>

:

P � �

�

�

(X;Y ) � P:[X;Y ]+

[P:X; Y ]� P:[P:X; Y ]�r

�

Y

P:X�

[P:Y;X] + P:[P:Y;X] +r

�

X

P:Y+

P:[P:X; Y ]� P:[P:Y;X]� [P:X;P:Y ]

= @P(X;Y ) + (r

�

X

P:Y �r

�

Y

P:X)

� [P:X;P:Y ] + P � �

�

�

(u)(X;Y ) �

Let us collect some corollaries for the curvatures and torsions of the Weyl ge-

ometries which are �-related to the curvature �

�

.

2.28. Observations.

(1) We meet exactly the same behavior as in the conformal Riemannian ge-

ometries for all j1j-graded algebras g.

(2) Only the Lie algebra cohomology di�erential of P

�

can be involved in

the g

�

component (i.e. in the torsion part) and in the g

0

component (the

Weyl curvature).

(3) We have rather to decompose �

�

by the homogeneities than by com-

ponents in g. The non-vanishing component �

i

of the lowest degree is

constant on the �bers of G.

(4) Clearly, @P (u)(g

i

^ g

j

) � g

minfi;jg+1

� � � � � g

`

and so all torsion compo-

nents g

i

^ g

j

! g

�minfi;jg

of �

�

are equal to those of �. In particular, all

�

i

with i � 1 are always shared by all �

�

.

(5) The homogeneous components of �

�

of degrees k � 2 depend explicitly

on P

�

The next theorem, together with the Kostant's version of the Bott-Borel-Weil

theorem, yields a very e�cient tool for discussions on local invariants of normal

parabolic geometries. The proof can be found in [CSch]. See also 6.8-6.10 for basic

exposition of the Lie algebra cohomology H

�

�

(g

�

; g), its Hodge structure, and the

BBW-theorem.

2.29. Theorem. The curvature � of a normal Cartan connection vanishes if

and only if its harmonic part does. Moreover, if all homogeneous components of

� of degrees less than j vanish identically and there is no cohomology H

2

j

(g

�

; g),

then also the curvature component of degree j vanishes.
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2.30. Consequences. The latter theorem shows that it is again the Lie algebra

cohomology (this time H

2

(g

�

; g)) which causes vanishing of many parts of �. In

fact the behavior of regular and normal parabolic geometries is always similar to

conformal Riemannian geometries. There, in dimensions m > 3, �

+

is essentially

the Cotton-York tensor, which is non-zero in general but vanishes automatically

whenever the Weyl curvature does. On three-dimensional manifolds, �

1

is the �rst

non-vanishing part of the curvature, thus it is constant along the �bers of G and

yields an invariant, the Cotton-York tensor.

As an immediate corollary we see that the �rst possibly non-vanishing homo-

geneity in the curvature � of a normal parabolic geometry is that one corresponding

to the �rst non-vanishing cohomology. If the geometry is regular, this must be of

positive homogeneous degree. Unfortunately, even for regular and normal geome-

tries only the homogeneous component of degree one is shared by all torsions of the

Weyl geometries, since the values of the deformation tensors P

�

enter otherwise,

together with the e�ect of the evaluation in di�erent frames. Thus even if there

is no cohomology in the torsion part, this could only imply that some parts of the

torsions of the Weyl geometries will vanish in general (analogously to the behavior

of the curvature in the conformal Riemannian case).

2.31. Remark. Proposition 2.27 also helps a bit to understand the curvatures

of the connections on the a�ne bundles of scales S

�

P

in terms of the deformation

tensors of the corresponding Weyl geometries. In fact, we have to study � � �

�

,

evaluated at �(v), v 2 G

0

.

For the sake of simplicity, let us deal directly with the z

E

component of the cur-

vature �

�

for closed Weyl geometries. This will also give the required information

of the curvature �

�

S

with � de�ned by means of the Killing form, whenever this

bundle exists. Only the following part of hE;Ei:�(�

!

� �

!

�

) survives (notice also

hE;Ei = 2

P

`

i=1

i

2

dimg

j

)

h[X;P:Y ]� [Y;P:X]; Ei = jP(X;Y )� iP(Y;X); X 2 g

�i

; Y 2 g

�j

which is a sort of weighted antisymmetrization of P, viewed as a 2-tensor. This

gives us two conclusions:

� For all closed Weyl geometries �, the z

E

component of the curvature � of

the de�ning Cartan connection ! equals to the weighted antisymmetric part

of P

�

on the image �(G

0

)

� In the presence of the a�ne bundle of scales S

�

P

, the curvatures of the

induced connections 


�

S

on S are given by the di�erences of the component

�

z

E

of the canonical curvature � and the weighted antisymmetrizations of

the Rho tensors P

�

.

Analogies to conformal circles

The conformal circles and their various generalizations have been studied in-

tensively, see e.g. [BaiE], [Eas], [CheM]. We present an extremely simple approach

to such distinguished curves for all parabolic geometries. In fact, we simply ex-

tend the classical results on a�ne connections, which say that a curve is a (non-

parameterized) geodesic line if and only if its development is a line.
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2.32. Cartan's circles. Let M be a manifold with a parabolic geometry of the

type G=P , i.e. we are given p : G ! M , ! 2 


1

(G; g). We can de�ne a family of

distinguished curves on M as follows: For each X 2 g

�

there is the horizontal

vector �eld !

�1

(X) on G and every frame u 2 G determines the unique 
ow line

(integral curve) Fl

!

�1

(X)

t

(u). We call the curves

R 3 t 7! �

u;X

(t) = p(Fl

!

�1

(X)

t

(u)) 2M

the horizontal 
ows (also Cartan's circles or simply generalized circles, cf. [Sha,

p. 210]).

The tangent bundle TM is identi�ed with G �

Ad

(g=p), where g=p is viewed as

g

�

. This identi�cation may be realized by fu;Xg 7! Tp(!

�1

(X)(u)). Thus, for

each �xed tangent vector � = fu;Xg 2 T

p(u)

M , the horizontal 
ow �

u;X

is tangent

to �. Of course, the curve �

u;X

depends heavily on the choice of both u and X.

We shall see, that there may be many horizontal 
ows tangent to the same vector,

but there could be also only one (up to reparametrization). In certain sense, this

behavior is similar to that of a family of circles tangent to a given vector in the

plane.

2.33. Developments of curves. First we embed the manifoldM into the canon-

ical bundle FM = G �

P

(G=P ) '

~

G �

G

(G=P ) '

~

G=P

M 3 p(u) 7! fu; og 2 G �

P

(G=P )

where u 2 G, o = [e] 2 G=P . (Of course, the value is independent of the choice

of u.) Since

~

G carries the canonical principal connection ~!, there is the induced

connection on FM . This is a general connection on the associated bundle FM .

We shall write Pt

~!

(c; t; y) for its parallel transport of the point y along the curve

c(s) at the time s = t. Let us notice that the �bers of FM are di�eomorphic to

the homogeneous space G=P , but there is no distinguished di�eomor�sm available.

On the other hand, the existence of the global section M ! FM provides some

analogy to the tangent bundle onM . More explicitly, it is not di�cult to prove that

the restrition of the vertical bundle V FM to M � FM is canonically isomorphic

to the tangent bundle TM = G �

P

g

�

T

x

M 3 fu;Xg 7! f0

u

;Xg 2 V

x

FM � TG �

P

T (G=P ):

The (local) development of a curve �(t) � M � FM at its point x = �(0) is

the curve � : R! F

x

M de�ned for all t close to zero by the condition

Pt

~!

t

(�; t; �(t)) = �(t):

2.34. Lemma. The development of each horizontal 
ow �

u;X

in the point

x = p(u) 2 M is the curve �

u;X

(t) = fu; [exp tX]g.
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Proof. We claim that the parallel transport of u 2 G �

~

G, along �

u;X

, is

(1) Pt

~!

(�

u;X

; t; u) = Fl

!

�1

(X)

t

(u): exp(�tX)

and the Lemma then follows easily: We have just to write down the parallel trans-

port of fu; [exp tX]g along our curve �

u;X

fu; [exp tX]g 7! fFl

!

�1

(X)

t

(u): exp(�tX); [exp tX]g = fFl

!

�1

(X)

t

(u); [e]g

which is exactly the required formula.

So we are left with the proof of formula (1). The parallel transport is de�ned

uniquely by the conditions

(a) ~p(Pt

~!

(�

u;X

; t; u)) = �

u;X

(t)

(b) Pt

~!

(�

u;X

; 0; u) = u

(c) ~!(

@

@t

jt=0

Pt

~!

(�

u;X

; t+ s; u)) = 0

which are required whenever all expressions exist. Clearly, the right hand side of

(1) satis�es (a) and (b) and we have to compute the derivative in (c).

@

@t

jt=0

�

Fl

!

�1

(X)

s+t

(u): exp�(s+ t)X

�

=

=

@

@t

jt=0

�

Fl

!

�1

(X)

s

(u): exp�(s + t)X

�

+ Tr

exp(�sX)

:!

�1

(X)(Fl

!

�1

(X)

s

(u))

= ��

X

(Fl

!

�1

(X)

s

(u): exp(�sX)) + Tr

exp(�sX)

:!

�1

(X)(Fl

!

�1

(X)

s

(u))

= Tr

exp(�sX)

:

�

��

Ad exp(�sX):X

(Fl

!

�1

(X)

s

(u)) + !

�1

(X)(Fl

!

�1

(X)

s

(u))

�

By de�nition, the horizontal vector in T

u

~

G over � = fu;Xg 2 T

x

M , with respect

to ~!, is !

�1

(X)(u) � �

X

(u). Thus, using the right-invariance of ~!, we obtain

~!(Fl

!

�1

(X)

s

(u))

�

Tr

exp(�sX)

:

�

��

X

(Fl

!

�1

(X)

s

(u)) + !

�1

(X)(Fl

!

�1

(X)

s

(u))

��

=

= Ad exp(sX) � ~!(!

�1

(X) � �

X

)(Fl

!

�1

(X)

s

(u)) = 0

and (c) holds as well. �

2.35. In the rest of this subsection we shall study the links between the horizon-

tal 
ows and the Weyl geometries, but let us �rst touch the question `how many

di�erent horizontal 
ows leaving a �xed point in a given direction are there?'.

By the previous Lemma, there is a bijective correspondence between local hor-

izontal 
ows leaving x 2 M and distinct distinguished curves �

u;X

. At the same

time, it su�ces to discuss the curves t 7! [exp tX] 2 G=P .

If the tangent space TM is irreducible (i.e. g is j1j-graded), then for each tangent

vector � = fu;Xg, all curves �

u: expZ;X

= �

u;Ad

(expZ)

X

, Z 2 g

1

are tangent to �.

On the other hand, the Baker-Campbell-Hausdor� formula yields

expAd

(expZ)

tX = exp(tX + t[Z;X] +

1

2

t[Z; [Z;X]])

= exp tX: exp(�tX): exp(tX + : : : )

= exp tX: exp t

2

(

1

2

[X; [X;Z]] + terms in p or higher order in t)

= exp(tX +

1

2

t

2

[X; [X;Z]]): exp(o(t

2

)) modP
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Thus, if [X; [X;Z]] is not zero, then already the second derivative of the curve �

u;X

at the origin changes. For general gradings, the behavior is much more subtle.

2.36. Lemma. For each X 2 g

�

, u 2 G, there locally exists a G

0

-equivariant

section � : G

0

! G, such that Fl

!

�1

(X)

t

(u) 2 �(G

0

) for all t. For each such �,

the deformation tensor P

�

vanishes on the tangent vectors to the horizontal 
ow

�

u;X

.

Proof. Let us write c(t) = p

`

0

(Fl

!

�1

(X)

t

(u)). The requirement on � then reads

�(c(t)) = Fl

!

�1

(X)

t

(u). We can start with some equivariant section �

0

and look

for a one-form � which will give us the right �. It su�ces to de�ne the values of

�(c(t)) by

Fl

!

�1

(X)

t

(u) = �

0

(c(t)): exp �(c(t)):

Such a one form � locally always exists because the mapping t 7! c(t) is locally

injective.

In the 1-graded we

can start with a scale

and choose � closed,

so that the Lemma

works with a scale

as well. Look at the

more general case!

Let us write u

t

:= Fl

!

�1

(X)

t

(u), i.e. Tp(!

�1

(X)(u

t

)) = fu

t

;Xg 2 TM is tangent

to �

u;X

(t) at t. Now, given a � as above, we know !

�1

(X)(u

t

) = (!

�

)

�1

(X)(u

t

)+

�

P

�

:X

(u

t

). But since !

�1

(X)(u

t

) 2 T�(G

0

), we have !

�

(!

�1

(X)(u

t

)) = X as well.

Thus P

�

(u

t

):X = 0 for all t for which the horizontal 
ow is de�ned. �

2.37. Corollary. A curve � : R! M is a (non-parameterized) horizontal 
ow

on some neighborhood of the origin if and only if there is a generalized Weyl

geometry � : G

0

! G, such that � is a geodesic for 


�

and at the same time the

deformation tensor P

�

vanishes along the curve � on this neighborhood.

Proof. Follows directly from Lemma 2.36 and the fact that auto-parallel �elds

with respect to ! and 


�

coincide if P vanishes. �

2.38. Normal coordinates. Let us de�ne `canonical coordinates' '

u

: g

�

! M

given by a choice of the frame u, at least locally around the origin in g

�

. For each

u 2 G, there is a neighborhood U of 0 2 g

�

such that the 
ows Fl

!

�1

(X)

t

(u) exist

for all X 2 U and t � 1. We de�ne

�'

u

: g

�

� U ! G; �'

u

(X) = Fl

!

�1

(X)

1

(u)

'

u

: g

�

� U !M; '

u

(X) = p( �'

u

(X)):

By the de�nition of the Cartan connections, the mapping ! � � : TG ! g �G is a

global di�eomorphismand so '

u

is a locally de�ned di�eomorphism. The projection

p

`

0

: G ! G

0

also determines the local G

0

-equivariant section �

u

: G

0

! G satisfying

�

u

� p

`

0

� �' = �':

We shall see in a moment that these special coordinates '

u

and the generalized

Weyl geometries �

u

have particularly nice properties. Let us also observe that the

choice of the frame u de�nes also a local trivialization of G !M .
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In fact, the situation is quite analogous to the Riemannian geometries and their

normal coordinates, only the discussion on the transformations under the change

of the frame u is quite subtle in general. More explicitly, for each b 2 P , X 2 g

�

(Fl

!

�1

(Ad b:X)

1

(u)):b = Fl

!

�1

(X)

1

(u:b)

which implies

'

u:b

(X) = p(Fl

!

�1

(Ad b:X)

1

(u)):

If b 2 G

0

, then Ad b:X 2 g

�

again, and we can recognize the transformation rules

for normal coordinates known from Riemannian geometry. Once b = expZ 2 P

+

we have to distill the part in X + [X;Z] + : : : contributing to the horizontal 
ows.

2.39. Theorem. Let ! 2 


1

(G; g) be a Cartan connection on p : G ! M . The

normal coordinates '

u

determined by the frame u 2 G, the corresponding general-

ized Weyl geometry �

u

, and its Rho tensor P

�

u

have the following properties

(1) the symmetrization of the iterated invariant di�erential

G w

(r

!

)

k

P

�

u




k+1

g

�

�


 p

+

w

Sym

�

k+1

g

�

�


 p

+

vanishes at u, for all orders k � 0. In particular, P

�

u

(u) 2 g

�

�


p

+

vanishes.

(2) all geodesics of 


�

going through p(u) are generalized circles on a neighbor-

hood of p(u)

(3) the curvature R

�

u

of the principal connection 


�

at p

`

0

(u) 2 G

0

coincides

with the g

0

-component of the curvature � of ! at u.

Proof. Let us write brie
y P instead of P

�

. Its value at u vanishes according to

Lemma 2.36.

Next, we shall look at the �rst derivative of P. We have

r

!

Z

P(u)(X) =

@

@t

j0

P(Fl

!

�1

(Z)

t

(u))(X) =

@

@t

j0

P(Fl

!

�1

(tZ)

1

(u))(X):

Thus, Lemma 2.36 implies r

!

Z

P(u)(Z) = 0 2 p

+

, for all Z 2 g

�

. Consequently the

mapping (X;Z) 7! r

!

Z

P(u)(X) is antisymmetric.

Surprisingly enough, the same elementary argument works in general. Let us

consider the (k + 1)-linear mapping �




k

g

�

� g� 3 (Y

1

; : : : ; Y

k

;X) 7! r

!

Y

k

: : :r

!

Y

1

P(u)(X) 2 p

+

:

By de�nition,

�(Y

1

; : : : ; Y

k

;X) =

@

@t

k

j0

�

: : :

@

@t

1

j0

�

P � Fl

!

�1

(t

1

Y

1

)

1

� : : : � Fl

!

�1

(t

k

Y

k

)

1

(u)(X)

�

: : :

�

:

Thus, �(X;X; : : : ;X) =

@

@t

k

j0

: : :

@

@t

1

j0

(P � Fl

!

�1

(X)

t

1

+���+t

k

)(u)(X) vanishes for all X 2

g

�

. The complete symmetrization of � equals to the polarization of the mapping

X 7! �(X; : : : ;X) and so it vanishes as well.

The other two claims are now obvious from the construction: The Rho tensor

P

�

vanishes along all geodesics of 


�

and so the conditions from Corollary 2.37

are satis�ed. The di�erence of the curvature of 


�

and the pullback of the g

0

-

component of � via � is given by the g

0

-component of @P, i.e. the mapping (X;Y ) 7!

[X;P:Y ]� [Y;P:X], see 2.27. Since P vanishes at u, the third claim is obvious. �
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Correspondence spaces

Our general approach to parabolic geometries o�ers a straightforward general-

ization of the extremely useful twistor correspondences. We have just to mimic the

treatment of the 
at models in [BasE].

Let M be a manifold endowed with a parabolic structure of type G=P . Thus,

we have the canonical bundle G ! M , endowed with the Cartan connection !.

Now, let us choose a parabolic subgroup Q � P � G, so that we have the manifold

Q = G=Q and the principal Q-bundle G ! Q.

2.40. Lemma. For each parabolic subgroupQ � P � G, the Cartan connection

! 2 


1

(G; g) is also a Cartan connection for the bundle G ! Q. Moreover, if !

is a normal Cartan connection on M , then it is also normal on Q.

Proof. Since Q � P , ! is still a Cartan connection on the principal Q-bundle

G ! Q, cf. the de�nition. The formula for the codi�erential reads (cf. 6.9)

@

�

�(u)(X) =

X

�

[�

�

; �(X; �

�

)]�

1

2

X

�

�([�

�

;X]

g

�

; �

�

)

where �

�

, �

�

are dual basis of g

�

and p

+

. We can choose the basis for p

+

in a way

which admits its extension to basis of q

+

and the additional elements �

�

0

will all be

in the reductive part of p. Thus, if we apply the formula for @

�

in the case of the

parabolic Q, all the additional terms in the sums will be killed by the horizontality

of the curvature �. Therefore the Cartan connection ! remains normal also on

G ! Q. �

We say that ! de�nes the induced parabolic structure on Q.

2.41. Observations.

(1) The induced parabolic geometry on Q is 
at if and only if the original

parabolic geometry on M is 
at on Q.

(2) The parabolic geometry induced by a torsion-free one onM is not torsion-

free in general.

(3) Whenever there is some cohomology of the pair (g; q) with non-positive

homogeneity, the parabolic structure induced on Q by a regular Cartan

connection ! on G !M need not be regular any more.

Proof. The �rst observation is obvious since the Cartan connection ! 2 


1

(G; g)

is the same one for both geometries and so the curvature is given by the same

structure equation. The length of the grading of g given by q is strictly bigger

than that of (g; p). In particular, the homogeneities of elements in g

�

decrease in

general. On the other hand, the curvature � is the same one on Q but with di�erent

splitting into homogeneous components. The available degrees of homogeneity can

only decrease though. This explains the remaining claims. We shall meet explicit

examples later. �
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2.42. Remarks. In fact, due to the construction, the induced parabolic geometries

on the correspondence space Q are somewhat special. Indeed, some parts of the

curvature on G ! Q have to vanish automatically (more or less these must be those

enabling the `integration of the �bers' in G=Q over individual points in M).

In terms of the Dynkin diagrams with some crossed nodes (describing P � G),

we obtain the correspondence spacesQ for each choice of a set of further nodes to be

crossed. Of course, in order to complete the analogy to the twistor correspondences,

we should be able to reverse this construction as well. This means, we should like

to start with a parabolic geometry on Q, to remove some crosses (i.e. to choose

P

0

� Q) and to seek for a manifold M

0

equipped with the compatible geometry

of type G=P

0

. This would clearly require certain integrability conditions on the

curvature of !. Together with the automatic partial 
atness of the correspondence

space Q, the latter conditions will probably force vanishing of the whole curvature

� of ! in many cases. A careful study of this problem has to be done yet.

How to deal with examples?

Let us formulate a sequence of steps which should lead quickly to a better un-

derstanding of the basics of any particular parabolic geometry. We shall work out

several explicit examples in Sections 4-5.

2.43. Recipe.

(1) Find the �ltration of the p-module g with respect to the adjoint action of

P and understand the individual g

0

-submodules; �nd a suitable base of

the center of g

0

including the grading element E and compute the actions

of these base elements on g

0

-modules; understand the geometries in terms

of this �ltration.

(2) Find all g

0

-submodules in H

2

(g

�

; g) and relate them to submodules in

g

�

�


 g

�

�


 g; understand the local invariants of the goemetries.

(3) Find a reasonable bundle of scales S (at least locally) and describe ex-

plicitly its relation to the G

0

-structures on TM and (generalized) Weyl

geometries induced by scales.

(4) Understand explicitly the generalized Weyl geometries, their torsions and

curvatures, the twistor connections, horizontal 
ows, etc.

Of course, only the �rst two steps are completely algorithmic. The decomposi-

tion of the �ltrations is a standard task in �nite dimensional representation theory

(starting with the highest root of g we �nd all the submodules, one after the other;

the actions of central elements are easily readable from the Dynkin diagram and

the inverse to the Cartan matrix, see Section 6 for more details). The second step

requires to use Konstant's BBW theorem and to �nd explicit information about

the generators of the cohomologies.

The third step will always need some insight in the special geometry in ques-

tion. The aim is in fact to identify the bundle S with some line bundle intrinsic

to the particular geometric situation. The archetypical example is the conformal

Riemannian geometry: we understand S as a square root of the line bundle of the
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distinguished conformal metrics.

The rest should be a separate interesting research project for many choices of G

and P .

3. Invariant Operators

Each action � of the Lie group P on a manifold S yields natural bundles E(�) =

G�

P

S over all manifoldsM with parabolic geometries of type G=P . In particular,

if � is a linear representation of P on a vector space E then E(�) is a natural vector

bundle. Di�erential operators between such bundles E(�), E(�) are most suitably

described by mappings on the jet prolongations J

k

E(�).

Roughly speaking, the invariant operators are those di�erential operators which

are de�ned for all bundles E(�), E(�) with certain �xed � and �, in a sort of universal

way, independent of any further choices. On the subcategory of locally 
at geome-

tries of type G=P , we can employ the standard de�nition of natural operators, i.e.

we consider the di�erential operators commuting with the action of morphisms (see

[KMS] for a general theory for such questions). Since there are many representa-

tions of P but very few morphisms in general, this de�nition does not extend easily

to the whole category. We will not discuss the possibilities for axiomatic de�nitions

of invariant operators now. Rather we shall present some procedures producing

families of operators, which clearly are invariant in any reasonable sense.

We shall begin with a detailed discussion on the algebraic structure of jets of

sections of natural bundles on manifolds with parabolic geometries. In view of our

general aims, we shall restrict ourselves to linear representations � of P on E. The

symbol E

�

will always denote the resulting P -module (and also the p-module), we

shall also use the same � for the Lie algebra homomorphism p ! gl(E

�

). In fact

the whole P is always the semi-direct product of its reductive Levi part G

0

and

exp p

+

, so that may work with (G

0

; p)-modules.

Algebraic structure of jets

3.1. First order jets. In the special case of the homogeneous vector bundle

E(�) = G �

P

E

�

over the homogeneous space G ! G=P , the jet prolongations

J

k

E(�) inherit the action of G. If we view sections in C

1

E(�) as P -equivariant

functions s 2 C

1

(G; E

�

)

P

, then the 1-jets of sections at the distinguished point

o 2 G=P are identi�ed with 1-jets of these equivariant functions at the unit e 2 G

and the action is given by g:(j

1

e

s) = j

1

e

(s � `

g

�1) for all g 2 G. Indeed, for each

section s and any local section u of G we have

g:j

1

o

(x 7! fu(x); s(u(x))g) = j

1

o

(x 7! f`

g

� `

g

�1
� u(x); s(`

g

�1
� u(x))g)

= j

1

0

(x 7! fu(x); s � `

g

�1(u(x))g):

Thus the induced action of Z 2 p on the section s is given by di�erentiation in the

direction of the right invariant vector �eld �

R

Z

on G, Z:j

1

e

s = �j

1

e

�

R

Z

:s.

We shall write the jets as j

1

e

s = (v; ') 2 E

�

� (g

�

�


 E

�

), where we identify

T

e

G ' g

�

� p via !, i.e. v = s(e) and '(X) = !

�1

(X):s(e). Now we can express
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the action of Z 2 p in these terms (we use the commuting of the left invariant �elds

and the right invariant �elds and the fact that their values at e coincide)

(1)

(v; ') 7! �j

1

e

�

R

Z

:s =

�

��

R

Z

:s(e); (X 7! �!

�1

(X):(�

R

Z

:s)(e))

�

=

�

�!

�1

(Z):s(e); (X 7! �!

�1

(Z):(!

�1

(X):s)(e))

�

=

�

�(Z)(v); (X 7! �!

�1

(X):(!

�1

(Z):s)(e) � [!

�1

(Z); !

�1

(X)]:s(e))

�

=

�

�(Z)(v); (X 7! �(Z) � '(X)� ' � ad

�

(Z)(X) + �(ad

p

(Z)(X)(v)))

�

=

�

�(Z)(v); �(Z) � '� ' � ad

�

(Z) + �(ad

p

(Z)( ))(v)

�

:

So we de�ne the p-module J

1

E

�

as E

�

� (g

�

�


 E

�

) with the p-action given by

(1). We call this module the �rst jet prolongation of E

�

. Obviously, for each p-

module homomorphism � : E

�

! E

�

the mapping J

1

� : (v; ') 7! (�(v); � � ') is

a well de�ned p-module homomorphism J

1

E

�

! J

1

E

�

. Thus J

1

is a functor on

p-modules. We shall also write J

1

� for the corresponding representation.

Next, consider an arbitrary principal P -bundle G with Cartan connection !. The

P -module E

�

gives rise to the associated bundle E(�) and its �rst jet prolongation

J

1

E(�).

3.2. Proposition. The invariant di�erentiation r

!

de�nes the mapping

� : C

1

(G; E

�

)

P

! C

1

(G; J

1

E

�

)

P

; �(s)(u) = (s(u); (X 7! r

!

s(u)(X)))

which yields a di�eomorphism J

1

E(�) ' G �

P

J

1

E

�

. For each �ber bundle

morphism f : E(�) ! E(�) given by a P -module homomorphism � : E

�

! E

�

,

the �rst jet prolongation J

1

f corresponds to the P -module homomorphism J

1

�.

Proof

1

. Let us recall that r

!

s(u)(X) = !

�1

(X)(u):s. Thus the mapping � : s 7!

(s;r

!

s) is well de�ned and depends on �rst jets only, but we have to check its

equivariance. This means exactly the commuting with the derivatives in the di-

rections of fundamental vector �elds !

�1

(Z), Z 2 p. So we aim at ��

Z

�(s)(u) =

J

1

�(Z) � �(s)(u). To see this, we just have to copy the computation 3.1.(1) and to

remember that the curvature of any Cartan connection is horizontal:

��

Z

:�(s)(u) =

�

�!

�1

(Z):s(u); (X 7! �!

�1

(Z):(!

�1

(X):s)(u))

�

=

�

�(Z)(s(u)); (X 7! �!

�1

(X):(!

�1

(Z):s)(u) � !

�1

([Z;X]):s(u))

�

=

�

�(Z)(s(u)); (X 7! �(Z) � r

!

s(u)(X) �r

!

s(u) � ad

�

(Z)(X)

+ �(ad

p

(Z)(X))(s(u)))

�

Clearly, we have constructed a di�eomorphism J

1

E(�) ! E �

P

J

1

E

�

.

Finally, consider a homomorphism � : E

�

! E

�

. The corresponding homomor-

phism f : E(�) ! E(�) is de�ned by fu; vg 7! fu;�(v)g, and so the induced action

on sections is (x 7! fu(x); s(u(x))g) 7! (x 7! fu(x); � � s(u(x))g). Taking 1-jet of

this expression we obtain just the homomorphism J

1

�. �

1

Similar arguments appeared �rst implicitly in [CSS1] and in a very special case in the Master

Thesis by Martin Pan�ak
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3.3. Semi-holonomic jets. Since we have posed no restrictions on the represen-

tation � above, we can iterate the functors J

1

on the associated vector bundles

as well as on the P -modules. Proposition 3.2 then implies that the kth itera-

tion J

1

: : : J

1

E(�) is an associated bundle to G with the corresponding P -module

J

1

: : : J

1

E

�

.

Let us look more carefully at J

1

J

1

E

�

and J

1

J

1

E(�). There are two obvious

p-module homomorphisms J

1

J

1

E

�

! J

1

E

�

, the �rst one given by the projection

p

�

: (v; ') 7! v de�ned on each �rst jet prolongation and the other obtained by the

action of J

1

on p

�

. Thus there is a submodule

�

J

2

E

�

in J

1

J

1

E

�

on which these two

projections coincide. As a vector space, this is

�

J

2

E

�

= E

�

� (g

�

�


 E

�

) � (g

�

�


 g

�

�


 E

�

):

The two p-module homomorphisms J

1

p

�

, p

J

1

�

give rise to �ber bundle morphisms

J

1

J

1

E(�) ! J

1

E(�) which are just the two standard projections on second non-

holonomic jet prolongations. So we conclude that the second semi-holonomic pro-

longation

�

J

2

E(�) is naturally equivalent to G �

P

�

J

2

E

�

.

Iterating this procedure, we obtain the kth semi-holonomic jet prolongations and

J

1

(

�

J

k

E

�

) equipped with two natural projections onto

�

J

k

E

�

, which correspond to

the usual projections on the �rst jet prolongation of semi-holonomic jets. Their

equalizer is then the submodule

�

J

k+1

E

�

. As a vector space (and G

0

-module),

�

J

k

E

�

=

k

M

i=0

(


i

g

�

�


 E

�

):

3.4. Proposition. For each integer k, the kth semi-holonomic jet prolonga-

tion

�

J

k

E(�) carries the natural structure of associated �ber bundle G �

P

�

J

k

E

�

.

Moreover, the invariant di�erential de�nes the natural embedding

J

k

E(�) 3 j

k

u

s 7! fu; (s(u);r

!

s(u); : : : ; (r

!

)

k

s(u))g 2

�

J

k

E

�

' G �

P

�

J

k

E

�

:

Proof. The �rst part of the statement has been already shown. What remains is

to discuss the equivariance properties of the invariant di�erentials. However also

this follows from the �rst order case easily by induction, using only the de�nition

of the semi-holonomic prolongations. �

3.5. Remarks. A few observations and comments are in place.

It is just the existence of the natural associated bundle structure on

�

J

k

E(�) (i.e.

depending on ! only) which gives rise to the di�erential operator D

�

: C

1

E(�) !

C

1

E(�) for each P -module homomorphism �:

�

J

k

E

�

! E

�

. In view of the exis-

tence of the canonical Cartan connections on the parabolic geometries, this means

that each such P -module homomorphism de�nes an invariantly de�ned operator

on manifolds with the appropriate geometric structures. On the other hand, not

all invariant operators arise in this way, as well known e.g. from the conformal

Riemannian geometry, see e.g. [CSS1, Eas, EasS, Slo1,Slo2].
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The existence of the canonical embedding provided by the iterated di�eren-

tial suggests a straightforward method for explicit constructions of such operators.

Given a P -module homomorphism �:

�

J

k

E

�

! E

�

we compose this with the it-

erated di�erentials to obtain quite explicit analytic expressions for the operators.

On the other hand, we can also start with an arbitrary G

0

-module homomorphism

�, compose it with the di�erentials and discuss the equivariance of the resulting

expression. Its expansion in terms of the underlying generalized Weyl geometries

yields an algorithmic method for �nding operators, see e.g. [CSS1, Slo2].

While the semi-holonomic prolongations

�

J

k

E(�) are constructed by a purely

algebraic construction, the embedding of J

k

E(�) depends of course heavily on the

curvature of the Cartan connection. This makes the discussion on the algebraic

conditions for the existence of invariant operators which are not coming from P -

module homomorphisms much more di�cult.

3.6. Weighted orders. The general Ricci identity for invariant di�erentials (see

2.13) shows that the iterated invariant di�erentials of a section are in certain extent

determined by their evaluation on the elements X 2 g

�1

. What we need is the

additional condition �

i

(X;Y ) = 0 for all X;Y 2 g

�1

and i < �1. This is always

true if �

i

= 0 for all i � 0, which is a consequence of the structure equation on G,

see 2.2. Thus, for regular parabolic geometries, the evaluation of the `th iterated

di�erential (r

!

)

`

s on g

�1

in order to know the �rst di�erential on the whole g

�

(here ` is the length of the grading of g as usual).

The latter observation suggests to re�ne the notion of the order of an operator:

For each X 2 g

�k

, 1 � k � `, we say that the operator r

!

X

, has the weighted

order k. The total order of an operator D

�

for a P -module homomorphism � is

then de�ned as usual.

Restricted jets

3.7. Our next goal is to de�ne an algebraic object corresponding to partially de-

�ned jets, i.e. describing derivatives in some directions only. First we rewrite slightly

the p-action on E

�

� (g

�

�


 E

�

). Since the Killing form provides the dual pairing

g

�

�

' p

+

we have for all Y 
 v 2 g

�

�


 E

�

, X 2 g

�

, Z 2 p

(Y 
 v) � ad

�

(Z)(X) = had

�

(Z)(X); Y iv

= h[Z;X]; Y iv (since p

+

is orthogonal to p)

= �hX; [Z; Y ]iv (the invariance of the Killing form)

= �([Z; Y ]
 v)(X):

For a �xed dual linear basis �

�

2 g

�

, �

�

2 p

+

we can also rewrite the term

�(ad

p

(Z)(X))(v) =

X

�

�

�


 [Z; �

�

]

p

:v
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Thus the 1-jet action on J

1

E

�

= E

�

� (p

+


 E

�

) is (the dots indicate the p-action

given by �)

(1) J

1

�(Z)(v

0

; Y

1


 v

1

) = (Z:v

0

; Y

1


 Z:v

1

+ [Z; Y

1

]
 v

1

+

X

�

�

�


 [Z; �

�

]

p

:v

0

):

There is the p-invariant vector subspace f0g� (p

2

+


 E

�

) � J

1

E

�

and we de�ne the

p-module

J

1

R

E

�

= J

1

E

�

=(f0g � (p

2

+


 E

�

)) ' E

�

� ((p

+

=p

2

+

) 
 E

�

) ' E

�

� (g

�

�1


 E

�

):

The formula for the p-action J

1

R

� reads

(2) J

1

R

�(Z)(v

0

; Y

1


 v

1

) = (Z:v

0

; Y

1


Z:v

1

+ [Z; Y

1

]

g

1


 v

1

+

X

�

0

�

�

0


 [Z; �

�

0

]

p

:v

0

)

where �

�

0

and �

�

0

are dual bases of g

�1

. The latter formula gets much simpler if

� is a G

0

-representation extended trivially to the whole p. Then for each W 2 g

0

,

Z 2 g

1

J

1

R

�(W )(v

0

; Y

1


 v

1

) = (W:v

0

; Y

1


W:v

1

+ [W;Y

1

]
 v

1

)(3)

J

1

R

�(Z)(v

0

; Y

1


 v

1

) = (0;

X

�

0

�

�

0


 [Z; �

�

0

]:v

0

)(4)

while the action of p

2

+

is trivial. Exactly as with the functor J

1

, the action of J

1

R

on (G

0

; p)-module homomorphisms is given by the composition.

The associated �ber bundle J

1

R

E(�) := G �

P

J

1

R

E

�

will be called the re-

stricted �rst jet prolongation. The invariant di�erential provides a natural map-

ping J

1

E(�) ! J

1

R

E(�).

The inductive construction of the semi-holonomic jet prolongations of (G

0

; p)-

modules can be now repeated with the functor J

1

R

. The resulting p-modules are the

equalizers of the two natural projections J

1

R

(

�

J

k

R

E

�

) !

�

J

k

R

E

�

and, as g

0

-modules,

they are equal to

�

J

k

R

E

�

=

k

M

i=0

(


i

g

1


 E

�

):

We shall write

�

J

k

R

E(�) for the associated �ber bundles corresponding to the modules

�

J

k

R

E

�

. The resulting modules and bundles are called the restricted semi-holonomic

prolongations of E(�) and E

�

, respectively.

As before, the iterated invariant di�erential yields a natural mapping J

k

E(�) !

�

J

k

R

E(�), so that each P -module homomorphism �:

�

J

k

R

E

�

! E

�

de�nes the di�er-

ential operator D

�

: C

1

(E(�)) ! C

1

(E(�)).
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Jet-module homomorphisms

3.8. The algebraic structure of jet-modules. We shall deal with the restricted

jets together with the usual ones. The idea is very simple, we have just to iterate

the action on one-jets.

Let us start with the second order case. Each element (v

0

; Y

1


v

1

;W

1


W

2


v

2

) 2

�

J

2

E

�

is understood as

((v

0

; Y

1


 v

1

); Y

1


 (v

1

; 0)) + ((0; 0);W

1


 (0;W

2


 v

2

)) 2 J

1

J

1

E

�

and for all Z 2 p we have

(1)

�

J

2

�(Z)(v

0

; Y

1


 v

1

;W

1


W

2


 v

2

) =

=

�

J

2

�(Z)

�

((v

0

; Y

1


 v

1

); Y

1


 (v

1

; 0)) + ((0; 0);W

1


 (0;W

2


 v

2

))

�

=

=

�

Z:v

0

; Z:(Y

1


 v

1

) +

X

�

�

�


 [Z; �

�

]

p

:v

0

;

Z:(W

1


W

2


 v

2

) +

X

�

�

�

�


 [Z; �

�

]

p

:(Y

1


 v

1

) + Y

1


 �

�


 [Z; �

�

]

p

:v

1

�

+

X

�;�

�

�


 �

�


 [[Z; �

�

]

p

; �

�

]

p

:v

0

�

The action on the restricted jets is read o� these lines easily. Simply Y

1

;W

1

;W

2

have to be in g

1

' p

+

=p

2

+

. For Z 2 g

0

we obtain the tensorial product of the

obvious actions,

�

J

2

R

�(Z)(v

0

; Y

1


 v

1

;W

1


W

2


 v

2

) = (Z:v

0

; Z:(Y

1


 v

1

); Z:(W

1


W

2


 v

2

))

while for Z 2 p

+

essentially all summands survive. The formula, however, simpli�es

heavily if the action of p

+

on E

�

is trivial. Then Z

1

2 g

1

and Z

2

2 g

2

yield

�

J

2

R

�(Z

1

)(v

0

; Y

1


 v

1

;W

1


W

2


 v

2

) = (0;

X

�

0

�

�

0


 [Z

1

; �

�

0

]:v

0

);

X

�

0

(�

�

0


 [Z

1

; �

�

0

]:(Y

1


 v

1

) + Y

1


 �

�

0


 [Z

1

; �

�

0

]:v

1

))(2)

�

J

2

R

�(Z

2

)(v

0

; Y

1


 v

1

;W

1


W

2


 v

2

) =

(0; 0;

X

�

0

;�

0

�

�

0


 �

�

0


 [[Z

2

; �

�

0

]; �

�

0

]:v

0

)(3)

while all Z 2 p

3

+

act trivially.

The above computations can be easily generalized:
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3.9. Proposition. Let Y

1


 � � � 
 Y

r


 v 2 


r

p

+


 E

�

, (0; : : : ; Y

1


 � � � 
 Y

r




v; 0; : : : ; 0) 2

�

J

k+r

E

�

and Z 2 p. Then

�

J

k+r

�(Z)(0; : : : ; Y

1


 � � � 
 Y

r


 v; 0; : : : ; 0) = (0; : : : ; 0; '

r

; '

r+1

; : : : ; '

r+k

)

where

'

r+s

=

X

�

1

;:::;�

s

0�i

1

�����i

s

�r

Y

1


 � � � 
 Y

i

1


 �

�

1


 Y

i

1

+1


 � � � 
 Y

i

2


 �

�

2


 : : :


 Y

i

s


 �

�

s


 [: : : [Z; �

�

1

]

p

; : : : ; �

�

s

]

p

:(Y

i

s

+1


 � � � 
 Y

r


 v):

In particular, if s = 0 we obtain the standard tensor product of the representa-

tions, i.e. '

r

= Z:(Y

1


 � � � 
 Y

r


 v).

The action on the restricted jets

�

J

k+r

R

E

�

is obtained by restriction of this

formula to the dual basis �

�

0

, �

�

0

of g

�1

and the actions of the iterated brackets

on g

1

' p

+

=p

2

+

.

The obvious projection � :

�

J

k+r

E

�

!

�

J

k+r

R

E

�

is a P -module homomorphism.

Proof. We have already seen that the formula holds for 0 � r + k � 2. So let us

assume, it holds also for all k

0

+ r

0

< k + r. The semi-holonomic (k + r)-jet is a

1-jet of an (k + r � 1)-jet and what we have to do is to apply the standard �rst jet

prolongation of the representation

�

J

k+r�1

�. Thus we consider

�

(0; : : : ; Y

1


� � �
Y

r


v; 0; : : : ); Y

1


 (0; : : : ; Y

2


� � �
Y

r


v; 0; : : : )

�

2 J

1

�

J

k+r�1

E

�

and compute how J

1

(

�

J

k+r�1

�)(Z) acts. By the induction hypothesis, we obtain

�

�

0; : : : ; Z:(Y

1


 � � � 
 Y

r


 v); : : : ;

X

0�i

1

�����i

s

�r

�

1

;:::;�

s

�

Y

1


 � � � 
 Y

i

1


 �

�

1


 : : :


 Y

i

s


 �

�

s


 [: : : [Z; �

�

1

]

p

; : : : ; �

�

s

]

p

:(Y

i

s

+1


 � � � 
 Y

r


 v)

�

; : : :

�

;

Z:Y

1




�

0; : : :

�

+ Y

1




�

0; : : : ; Z:(Y

2


 : : : Y

r


 v); : : : ;

X

�

1

;:::;�

s

1�i

1

�����i

s

�r

Y

2


 : : : Y

i

1




�

�

1


 � � � 
 Y

i

s


 �

�

s


 [: : : [Z; �

�

1

]

p

; : : : ; �

�

s

]

p

:(Y

i

s

+1


 � � � 
 Y

r


 v); : : :

�

+

�

�

1




�

0; : : : ; [Z; �

�

1

]

p

:(Y

1


 : : : Y

r


 v); : : : ;

X

�

2

;:::;�

s

0�i

2

�����i

s

�r

Y

1


 � � � 
 Y

i

2




�

�

2


 � � � 
 Y

i

s


 �

�

s


 [: : : [Z; �

�

1

]

p

; : : : ; �

�

s

]

p

:(Y

i

s

+1


 � � � 
 Y

r


 v); : : :

�

�

All components up to the order k+ r� 1 clearly yield the required formula (in fact

this was the induction hypothesis) which appears once in the `value part' of the

1-jet, and once more in the `derivative part'. The (k + r)th component appears

already only in the derivative part and consists of two summands, where the �rst
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one exhausts all possibilities with Y

1

in the beginning of the term, while the other

summand produces all the remaining possibilities, i.e. those beginning with �

�

1

.

Thus their sum yields exactly the required formula. �

As a corollary of the latter Proposition, we obtain a useful criterion for homo-

morphisms of the restricted jets:

3.10. Proposition. Let E

�

, E

�

be irreducible P -modules and let � be a G

0

-

module homomorphism

�

J

k

R

E

�

� 


k

g

1


 E

�

! E

�

. Then � extends trivially to a

P -module homomorphism if and only if

�

�

X

0�i�k�1

Y

1


 � � � 
 Y

i


 �

�

0


 [Z; �

�

0

]:(Y

i+1


 � � � 
 Y

k�1


 v)

�

= 0

for all Z 2 g

1

, Y

1

; : : : ; Y

k�1

2 g

1

, v 2 E

�

. Moreover, each P -module homomor-

phism �:

�

J

k

R

E

�

! E

�

is obtained in this way.

Proof. We know that p

+

acts trivially on E

�

. For all Z 2 g

k

and (Y

1


� � �
Y

r


v) 2




r

g

1


 E

�

�

�

J

r+s

R

E

�

, s � k we obtain

�

J

r+s

R

�(Z)(Y

1


 � � � 
 Y

r


 v) =

X

0�i

1

�����i

k

�r

�

0

1

;:::;�

0

k

Y

1


 � � � 
 Y

i

1


 �

�

0

1


 Y

i

1

+1


 : : :


 Y

i

2


 �

�

0

2


 � � � 
 Y

i

k


 �

�

0

k


 [: : : [Z; �

�

0

1

]

p

; : : : ; �

�

0

k

]

p

:(Y

i

k

+1


 � � � 
 Y

r


 v)

In particular, if Z 2 g

1

, then the formula is:

�

J

r+s

R

(Z)(Y

1


 � � �
Y

r


 v) =

X

0�i�r

Y

1


 � � �
Y

i


 �

�

0


 [Z; �

�

0

]:(Y

i+1


 � � �
Y

r


 v)

By the hypothesis, E

�

, E

�

are irreducible, so in particular p

+

acts trivially. Then

the grading element in g

0

acts di�erently on each G

0

-module component 


r

g

1


E

�

in

�

J

k

R

E

�

and so each P -module homomorphism �:

�

J

k

R

E

�

! E

�

must be a G

0

-

module homomorphism 


r

g

1


 E

�

! E

�

trivially extended to the whole

�

J

k

R

E

�

, for

some 0 � r � k. Without any loss of generality, we may always assume r = k and

then the necessary and su�cient condition on a given g

0

-module homomorphism �

to be a p-module homomorphism is its vanishing on the image of the action of p

+

.

Moreover, since the whole p

+

is generated by g

1

, the image of the action intersected

with the top component 


k

g

1


 E

�

coincides with the image of the last but one

component under the action of g

1

. �

3.11. Remarks. The latter criterion provides a powerful tool for discussion on

natural di�erential operators. Each such �, composed with the projection � :

�

J

k

E

�

!

�

J

k

R

E

�

yields a P -module homomorphism on the semiholonomic jets, and

thus a di�erential operator D

���

.

The explicit realization of this operator through the embedding J

k

E(�) !

�

J

k

E(�)

via the iterated di�erential with respect to the canonical Cartan connection ! sug-

gests that we could consider the standard jets in J

k

E(�) as associated bundles
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corresponding to a sort of quotient of the semi-holonomic jet modules, where the

de�ning relations are given by the values of the curvature and its invariant deriva-

tives (cf. the Ricci identity in 2.13). Of course, the resulting modules happen to be

non-isomorphic at di�erent points, in general. In particular, on the homogeneous

spaces we recover the tautological embedding of the standard jet modules into the

semi-holonomic ones provided by !. This point of view de�nitely deserves further

investigation and might possibly help in the study of operators which do not come

from our algebraic jet module homomorphisms. (The symmetries of the curva-

ture and its derivatives imply certain restrictions on the structure of the resulting

quotients.)

There is also the interesting question, how far are the general P -module homo-

morphisms �:

�

J

k

E

�

! E

�

determined by their restrictions �

0

= �

j

�

J

k

R

E

�

to the

image of the embedding of the G

0

-module of the restricted jets. Obviously, �

0

is a

G

0

-module homomorphism and there is a good evidence that � is fully determined

by �

0

. However, � does not vanish on the G

0

-module complement of the restricted

jets, in general. Thus the problem: What are the conditions on a G

0

-module ho-

momorphism �

0

to extend to a P -homomorphism �, de�nitely deserves further

investigation. Proposition 3.9 gives a su�cient condition only.

3.12. First order operators. Let us discuss some simple applications of Propo-

sitions 3.10, 3.11. First we shall deal with �rst order operators. Each irreducible

representation � of g

0

is determined by the scalar action w of the grading element

E and the restriction �

0

of � to the orthogonal complement E

?

= g

0

0

. The scalar w

de�nes a generalization of the conformal weight of objects in conformal Riemann-

ian geometries. It seems to be reasonable to normalize the conformal weight of the

representation � in such a way, that the line bundle modeling the scale bundle S

will be of weight one.

Let us �x the representation �

0

and consider the scalar w as a free parameter. Our

aim is to �nd all homomorphisms�: J

1

E

w;�

0

! E

�

with irreducible representations

� = ( ~w;�

0

) of g

0

. Of course, � must be in particular a homomorphism of g

0

-

modules. Therefore, � is a projection to one irreducible component E

�

in J

1

E

�

.

Either � = � or E

�

� g

k


 E

�

for suitable k (notice that E acts di�erently for each

k). For all Z 2 g

i

, i > 0, and (v

0

; Y 
 v

1

) 2 J

1

E

�

, the formula in 3.9 then yields

the condition

0 = �

 

[Z; Y ]
 v

1

+

X

�

�

�


 [Z; �

�

]

g

0

:v

0

!

:

Inserting v

0

= 0 we conclude that � factors through the restricted jets J

1

R

E

�

. The

latter formula with Z 2 g

1

and v

1

= 0 then reads (with dual basis �

�

0

, �

�

0

of g

�1

)

0 = �

 

X

�

0

�

�

0


 [Z; �

�

0

]

g

0

:v

0

!

:

Now, � is the projection to an irreducible component in g

1


 E

�

and its argument

can be viewed as the mapping

g

1


 E

�

! g

�

�1


 E

�

; (Z; v) 7! (X 7! [Z;X]:v):
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Assume now that E

�

0

appears in g

1


 E

�

0

with multiplicity one. Then the above

mapping is a constant multiple of the identity on this component and the above

condition is a linear equation on w. Thus, for each multiplicity one component

E

0

�

2 g

1


 E

�

0

there is a uniquely de�ned scalar action w of the grading element E

such that � turns out to be a homomorphism J

1

R

E

w;�

0

! E

(w+1);�

0
. In fact, we can

say even more: g

1

usually splits into further irreducible components and the action

of the center of g

0

distinguishes them. Thus we can apply the above discussion to

the individual components of g

1

.

Similar considerations appeared �rst in [Feg] in the very special case of �rst order

invariant operators on conformal Riemannian manifolds.

3.13. Some more operators. The discussion on higher order jets is much more

di�cult in general, but we can treat similarly the morphisms on symmetrizations of

higher order restricted jets. The resulting scalars w can be also expressed explicitly

with the help of �nite dimensional representation theory of semisimple Lie algebras.

The case of j1j-graded algebras g has been treated in great detail in [CSS3].

Another interesting source of examples is provided by g-modules. Consider such

a module with its �ltration by P -submodules W = W

0

+ � � � +W

k

. In particular,

the top component W

k

decomposes as direct sum of irreducible P -modules E

�

. If

we pick up any of these components, we can take its semiholonomic jets

�

J

k

E

�

and

look for components in the individual levels 


i

p

+


 E

�

which also appear in the

g

0

-submodules W

k�i

. This will often lead to operators similar to the well known

D-operators in conformal Riemannian and similar geometries, see e.g. [Eas]. In

particular, we always obtain interesting operators for the adjoint representation on

W = g.

The dual picture

Instead of seeking for P -module homomorphisms �:

�

J

k

E

�

! E

�

, we can pass

to their dual morphisms �

�

: E

�

�

! (

�

J

k

E

�

)

�

. We shall see in a moment why this is

very reasonable.

3.14. Verma modules. It is well known for holonomic jets that the dual modules

J

k

E

�

enjoy the nice algebraic structure of a �nite dimensional part of the induced

module

V

p

(�) = U(g) 


U(p)

E

�

�

:

In particular, the dual to the inverse limit J

1

E

�

is the whole generalized Verma

module V

p

(�). Thus, instead of looking for homomorphisms de�ned on the highly

reducible P -modules J

k

E

�

we have only to discuss morphismsde�ned on the highest

weight modules V

p

(�). These are quite well known in representation theory, see e.g.

[BasE] for further links. Fortunately, our `less symmetric' modules

�

J

k

E

�

have quite

similar duals which were �rst studied in [EasS].

We start with a modi�cation of the de�nition of U(g). Our algebra

�

U(g) is de�ned

as the quotient of the free tensor algebra T (g) by the ideal I which is generated by

fX
Y �Y 
X� [X;Y ]; for all X 2 p; Y 2 gg. Thus, we force the compatibility of

the commutator with the bracket only for those brackets with at least one element

in p.
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3.15. De�nition. The semi-holonomic Verma module induced from the P -

module E

�

is the (g; P )-module

�

V

p

(�) =

�

U(g) 


U(p)

E

�

�

:

The obvious �ltration of

�

U(g) gives rise to the �ltration of the semi-holonomic

Verma module

E

�

= F

0

�

V

p

(�) � F

1

�

V

p

(�) � : : :

by U(p)-modules, with

F

k+1

�

V

p

(�)=F

k

�

V

p

(�) ' 


k+1

g

�


 E

�

as G

0

{modules.

3.16. Lemma. The U(p)-modules (

�

J

k

E

�

)

�

dual to the semi-holonomic jet

modules are naturally identi�ed with the U(p)-submodules F

k

�

V

p

(�) in the semi-

holonomic Verma module

�

V

p

(�).

Proof. The claim is obvious on the level of G

0

-modules. Consider Z 2 p

+

and let

us show the explicit computation for k = 1. The general case follows analogously

from the full formula in Proposition 3.9.

If X 
 v

�

2 g

�


 E

�

�

� (J

1

E

�

)

�

, Y 
 v 2 p

+


 E

�

� J

1

E

�

, then

hX 
 v

�

; Z:(Y 
 v)i = hX 
 v

�

; [Z; Y ]
 v + Y 
 Z:vi

= hX; [Z; Y ]ihv

�

; vi � hX;Y ihZ:v

�

; vi

= �h[Z;X]; Y ihv

�

; vi � hX;Y ihZ:v

�

; vi

If [Z;X] 2 g

�

, then the resulting expression equals to

h�[Z;X]
 v

�

+X 
 Z:v

�

; Y 
 Zi:

Otherwise, the �rst summand disappears and we are left with hX 
Z:v

�

; Y 
 vi.

The latter computation does not give the full information on Z:(X
v

�

) though.

We also have to consider its action on the image of the lower components. Given

v 2 E

�

� J

1

E

�

we have

hX 
 v

�

; Z:vi = hX 
 v

�

; Z:v + �

�


 [Z; �

�

]

p

:vi

= hX; �

�

ihv

�

; [Z; �

�

]

p

:vi

= �h[Z;X]

p

:v

�

; vi:

As the result of both computations we obtain the formula saying that Z 2 p

`bubbles' through the elements X leaving always a new term behind, the bracket

[Z;X]. The same happens then with the new term, until the resulting bracket

element is not in p. Then it remains were it appears. This is exactly the action of

Z in the semi-holonomic induced modules. �
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3.17. Remarks. The most powerful tool in the theory of the generalized Verma

modules is the central (or in�nitesimal) character, see 6.12. We do not have a

straightforward analogy for semi-holonomic Verma modules, but we can extend the

translation functors due to Zuckermann and Jantzen. In fact we can show that

once the essential homomorphisms building these functors would exist in the semi-

holonomic setting, then also the whole translation principal worked as well. Special

situations were studied in great detail in [EasS]. Roughly speaking, there are just

two main points: (1) usually there are many homomorphisms of semi-holonomic

Verma modules with a given symbol, (2) we have to �nd `initial data' to start

the translations with. It is known already from conformal Riemannian geometry,

that there are homomorphisms of (holonomic) Verma modules which do not have

semi-holonomic analogues, see again [EasS].

Thus, we are able to get very general structural results on the existence of the

homomorphisms of semi-holonomic Verma modules. On the other hand, even if we

would �nd the singular vectors in

�

V

p

(�) de�ning those homomorphisms, it is not

evident how to �nd analytic formulae for the operators in a direct algorithmic way.

A combination of the direct discussion on the jet level with the dual picture seems

to be most promissing.

4. j1j-graded examples

In the next two sections, we shall indicate how to follow the Recipe 2.43 in

concrete examples. We shall discuss the geometries in general dimensions, however

we usually draw the diagrams for some of them only. In fact, the main algebraic

tools from representation theory work with the complex modules, but we may use

all these results for our real objects with the help of the complexi�cation procedure.

In all our examples, this causes no essential problems.

This section is devoted to the parabolic geometries with the irreducible tangent

bundles, i.e. the length of the gradings must be ` = 1. In the notation of the

Dynkin diagrams with crossed nodes, this means that the sum of the coe�cients of

the highest root of g at the simple roots corresponding to the crossed nodes must

be one, see 6.3. Thus, there might be only one cross in the diagram and its position

is further restricted, the full list of the complex forms appears in Table 14.

Since the general theory of Section 2 simpli�es heavily for j1j-graded cases, we

start our exposition with brief review.

Review of general properties

4.1. Corollaries. Let g be a j1j-graded algebra, p = g

0

� g

1

. Consider a Lie

group G with Lie algebra g and let P be the subgroup of elements whose adjoint

representation respects the �ltration of g as p-module.

Each parabolic geometry of the type G=P , i.e. a Cartan connection on a principal

P -bundle G ! M , is regular. All normal parabolic geometries are uniquely con-

structed from reductions of the linear frame bundles P

1

M to the structure groups

G

0

, except g is a real form of sl(m+1; C ), cf. [CSS2], [CSch]. The exceptions were
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already discussed in 2.5.

The whole torsion part of the curvature � of the Cartan connection ! is constant

on the �bers of G.

All the Weyl geometries on M share the same torsion and each choice of a scale

yields also the reduction of TM to the semisimple part of G

0

. More generally, if the

parabolic geometry is normal, then the torsion is zero whenever the homogeneity

one component of the cohomology H

2

(g

�

; g) vanishes. In this case, all the Weyl ge-

ometries share a comon component of the curvature corresponding to non-vanishing

cohomology of homogeneity two. If only homogeneity three is available, then the

local invariant of the geometry in question is built of the �rst derivatives of the

curvatures.

All identities and formulae simplify heavily too. The main reason is the commu-

tativity of g

�1

.

4.2. Corollaries. In particular, the Ricci and Bianchi identities from 2.13 get

(r

!

X

� r

!

Y

�r

!

Y

� r

!

X

)s = �(�

p

(X;Y )) � s�r

!

�

�

(X;Y )

s

X

cycl

�

[�(X;Y ); Z]� �(�

�

(X;Y ); Z)�r

!

Z

�(X;Y )

�

= 0

The formulae in 2.16 and 2.17 for modules with trivial actions of g

1

specify always

to

(r

!

X

�r




�

X

)s(u) = �([X; � (u)]) � s(u)

r


̂

s(X) = r




s(X) + �([X;�]) � s

4.3. Corollaries. There is only one choice for the de�nition of closed (generalized)

Weyl geometries and a�ne bundles of scales, but the global existence of the bundle

of scales has to be discussed separately for the individual geometries.

The transformations of the Weyl geometries � and those of the induced connec-

tions 


�

S

on the scale bundles S are given by the same one forms �, up to a multiple

(cf. 2.23) and the curvature of 


�

S

is given by the di�erence of the z

E

-component of

the curvature � of the de�ning Cartan connection and the antisymmetrization of

the deformation tensor P

�

(cf. 2.31).

The transformation rule for P under the change � of the (generalized) Weyl

geometry � follows from 2.18

^

P:X = P:X �r




1

X

��

1

2

[�; [�;X]]

4.4. Proposition. For all torsion-free normal parabolic geometries of type G=P

on M with irreducible tangent bundles, the closed (generalized) Weyl geometries

are exactly those with symmetric Rho tensors.

Proof. Let ! be the normal and torsion-free Cartan connection, �

!

its curvature.

The Bianchi identity implies (here e

i

and e

i

form dual basis of g

�1

)

[�

!

g

0

(X;Y ); e

i

] = [�

!

g

0

(X; e

i

); Y ] + [�

!

g

0

(e

i

; Y );X]
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and so the @�-closedness implies

0 = @

�

�

!

g

0

(X)(Y )� @

�

�

!

g

0

(Y )(X)

=

X

i

([[�

!

g

0

(X; e

i

); Y ]; e

i

] + [[�

!

g

o

(e

i

; Y );X]; e

i

]) =

X

i

[[�

!

g

0

(X;Y ); e

i

]; e

i

]:

Now, the trace part in g

0

� gl(g

�1

) is given by the evaluation of the Killing form

X

i

h[�

!

(X;Y ); e

i

]; e

i

i = �

X

i

h[[�

!

g

0

(X;Y ); e

i

]; e

i

]; Ei = 0

Since the trace part is generated by E, its vanishing is equivalent to the vanishing

of the z

E

-component of �

!

and the claim follows from the general discussion in

2.31. �

4.5. Let us choose a closed Weyl geometry �

0

, any Weyl geometry �, and let � be

the one-form transforming � into �

0

. If the torsion of our structure is zero, then

the change of the curvature on S caused by � is (the free arguments from g

�1

are

denoted by (�))

Alt(h�r




�

(�)

�; (�)i�

1

2

h[�; [�; (�)]]; (�)i) = �d��

1

2

Alth[�; (�)]; [�; (�)]i = �d�

In particular, a choice of � does not change the curvature �

�

S

if and only if d� = 0.

This is nicely compatible with the fact that the scales are parametrized by functions

and the di�erence between the two connection forms on S is given by �, up to a

multiple.

Now, since p

+

is abelian, the consecutive change from �

1

to �

2

and �

3

, achieved

by means of � and �

0

, equals to the change determined by � + �

0

. Thus, for

each �xed �, there is a class of one-forms [�]

�

transforming � into a closed Weyl

geometry. They all di�er by closed forms. In the presence of Hodge theory on dif-

ferential forms, the latter observation picks up locally a distinguished scale for each

(generalized) Weyl geometry. This is exactly the case in the conformal Riemannian

geometries, see e.g. [Gau].

In the presence of the torsion, the antisymmetrization of the covariant derivative

does not equal to the exterior derivative and the formulae get more messy.

In the rest of this section, we shall illustrate the theory on several quite well

known geometries.

Conformal Riemannian geometries

The basic features of conformal Riemannian geometries were reviewed in the

introductory Section 1. Now we shall follow the steps in Recipe 2.43 in order to

recover them again and we shall comment the necessary arguments and computa-

tions. In the Dynkin diagram notation, the pair (g; p) is encoded by � � � � � �

�

�

�

�

in even dimensions and � � � � � � > � in odd dimensions.
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0

�

1

�

0

�

�

� 0

�

� 0

=

�2

�

1

�

0

�

�

� 0

�

� 0

+

�1

�

0

�

1

�

�

� 0

�

� 0

�

0

�

0

�

0

�

�

� 0

�

� 0

+

0

�

1

�

0

�

�

� 0

�

� 0

1

�

0

�

1

� =

1

�

�2

�

1

� +

2

�

�1

�

0

�

�

0

�

�1

�

2

�

�

0

�

0

�

0

�

+

1

�

0

�

1

�

Table 1

Step 1. In the even dimensional case, the �ltration of so(2n + 1; 1;R) is easily

found by looking at the orbit of the highest root

0

�

1

� � � �

0

�

�

� 0

�

� 0

. The zero weight

has to be added to g

0

, this is the one-dimensional center z

E

. The result is displayed

in Table 1.

As discussed in 6.7, the action of the grading element E on a highest weight

vector is expressed by the scalar product of the coe�cients over the nodes in the

Dynkin diagram with the �rst column in the inverse Cartan matrix. Thus we obtain

the vector (1 1 : : : 1

1=2

1=2

) in the even dimensional cases and (1 : : : 1

1

2

) in odd

dimensions.

The computations for odd dimensional geometries are slightly di�erent, since

there always are the zero weights in the de�ning representations which do not

belong to the orbit of the highest weight. Fortunately, the highest weights of

g

�1

, the semisimple part of g

0

, and g

1

are still in the orbit of

0

�

1

� � � �

0

� >

0

� ,

except the case g = so(5; C ). In the latter case, the orbit does not touch g

0

, but

we can locate it easily in the tensor product of g

1

= h

0

� >

2

� ;

2

� >

�2

� ;

1

� >

0

�i and

g

�1

= h

�2

� >

2

�;

0

� >

�2

� ;

�1

� >

2

�i. The results are displayed in Table 2.

0

�

1

�

0

� >

0

� =

�2

�

1

�

0

� >

0

� +

�1

�

0

�

1

� >

0

�

�

0

�

0

�

0

� >

0

�

+

0

�

1

�

0

� >

0

�

0

� >

2

� =

�2

� >

2

� +

�1

� >

2

�

�

0

� >

0

�

+

0

� >

2

�

Table 2

As in all j1j-graded cases, a conformal Riemannian structure on a manifold M

is de�ned by the reduction of TM to the structure group G

0

, i.e. to the group

CO(m;R). This means exactly the choice of a scalar product on each T

x

M , up to

multiples.
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Step 2. Konstant's version of the BBW theorem yields easily the G

0

-modules

in the cohomology H

2

(p

+

; g), which are dual to the cohomologies we need. The

homogeneity is then found by the action of E and because of the extremely simple

structure of g, this yields the complete information about the curvatures. See Table

3 for the results.

pair (g; p) cohomologies homogeneity curvature components

� � �

0

�

0

�

4

�

4

�

0

�

0

�

2

2

g

�1

^ g

�1

!

0

�

�1

�

2

�

g

�1

^ g

�1

!

2

�

�1

�

0

�

� � �

�

�

�

�

0

�

0

�

2

�

�

� 0

�

� 0

2 g

�1

^ g

�1

! g

0

� > �

1

� >

4

� 3 g

�1

^ g

�1

! g

1

� � � > �

0

�

0

�

2

� >

0

� 2 g

�1

^ g

�1

! g

0

Table 3

These cohomological results can be interpreted easily in the classical terms. The

common @

�

-closed torsion of all Weyl geometries is zero (because there is no coho-

mology of homogeneity one). If the dimension is greater then four, then there is

the unique local invariant of the structures which is given by the shared component

of the curvature of the Weyl geometries, valued in the bundle described in the sec-

ond column. On four dimensional conformal manifolds, this local invariant further

splits into the self-dual and anti self-dual parts. Finally, there is no shared part of

the curvatures of Weyl geometries in dimension three, but the Cotton-York tensor

yields the local invariant of the structure.

Step 3. By the general theory and the formula for the action of E, the mod-

eling line bundle of the scale bundle S should correspond to the highest weight

1

� � � � . Obviously such a representation of P exists. On the other hand, the

metrics in the distinguished conformal class live in an a�ne line bundle modeled

over densities with highest weight

2

� � � � . We should like to see, how our scales

(as sections of S) correspond to the metrics.

Recall again that metrics on M are reductions of the linear frame bundle P

1

M

to the structure group O(m;R). Thus they are in bijective correspondence with

the sections of the quotient P

1

M=O(m;R). Therefore, the metrics from the dis-

tinguished conformal class are in bijection with sections of G

0

=O(m;R) and the

orthogonal group plays the role of ker�

P

from 2.22. This correspondence is easily

understood locally: A section of P

1

R

m

is a GL(m;R)-valued function, say A(x).

Each value A(x) de�nes the positive de�nite matrix g(x) = A(x)A(x)

T

, which has

the property that A(x)

T

g(x)

�1

A(x) is the identity matrix I

m

for all x. In partic-

ular, if A(x) = e

f(x)

B(x) with B(x) 2 O(m;R), then g(x) = e

2f(x)

I

m

. This yields

the above identi�cation and we see, that our S plays the role of a square root of

the bundle of conformal metrics.

Step 4. Since g is j1j-graded, the interpretation of the Weyl geometries is simple.

By the general theory, the connections 


�

are all linear connections belonging to
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the bundle G

0

, which share the common minimal torsion. In our case, this torsion

must be zero since there is no cohomology in the homogeneity one. Thus we obtain

exactly all torsion free connections belonging to the G

0

structure on M .

Now, the application of our general formulae lead to all the well known objects

like the twistor connections, conformal circles, canonical coordinates, etc. See e.g.

[Eas] for much information on interesting objects in conformal Riemannian geome-

tries.

Projective and almost quaternionic geometries

The next two series of examples are special cases of the so called almost Grass-

mannian structures. They correspond to the choices � � � � � � (projective struc-

tures) and � � � � � � � (almost quaternionic structures).

Step 1. First of all we have to discuss which group G with the Lie algebra g

we choose. From the formal point of view, the most natural choice is with G

0

being the adjoint group of the g

0

module g

�1

, which does not impose any further

properties on our structures. This does not coincide with the most obvious choices,

e.g. G = SL(p + q; C ), p = 1; 2, in the complex case, since then the action of

G

0

= S(GL(p; C ) �GL(q; C )) on g

�1

has a non-trivial (discrete) kernel in general.

Thus, either we have to work modulo this kernel, or our manifolds M will be

oriented (as an additional ingredient of our structure). For the sake of simplicity,

we take the second option in our discussion below.

The projective geometries are one of the exceptional examples of second order

structures which were discussed in 2.5. The almost quaternionic geometries corre-

spond to the choice of the real form sl(1 + q;H ) of sl(2 + 2q; C ). The dimension

of the manifolds is 4q in this case. Table 4 shows the �ltrations of the complex

groups. The low dimensional almost quaternionic case (with q = 1) coincides with

the 4-dimensional conformal geometries (the last line in our table is related to

8-dimensional geometries). The �ltrations are computed easily starting with the

highest root of g.

1

�

0

�

0

�

0

�

1

� =

�2

�

1

�

0

�

0

�

0

� +

�1

�

1

�

0

�

0

�

1

�

�

0

�

0

�

0

�

0

�

0

�

+

1

�

0

�

0

�

0

�

1

�

1

�

1

� =

�2

�

1

�+

�1

�

2

�

�

0

�

0

�

+

1

�

1

�

1

�

0

�

0

�

0

�

1

� =

1

�

�2

�

1

�

0

�

0

� +

2

�

�1

�

0

�

0

�

0

�

�

0

�

�1

�

1

�

0

�

1

�

�

0

�

0

�

0

�

0

�

0

�

+

1

�

0

�

0

�

0

�

1

�

Table 4
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By the general theory, the action of the grading element E is given by the vector

1

m+1

(m (m � 1) : : : 1) in the m-dimensional projective case, or by the vector

1

2(q+1)

(2q 4q 2(2q � 1) : : : 2) in the 4q-dimensional almost quaternionic case.

Step 2. Again, the above data together with Kostant's version of BBW yield

the cohomologies as displayed in Table 5 (cf. 6.10). The computations for the

projective structures are very similar to the conformal Riemannian cases with an

analogy to Cotton-York tensor in the lowest dimension and the Weyl curvature

in all remaining ones. The computations for the other structures deserve more

comments. In particular, due to the location of the cross, we have exactly two

possibilities for actions with w 2 W of length two. This is the source for the two

di�erent components. In the lowest dimensions, both of them are of degree two

(see the 4-dimensional conformal case), but they split into a torsion part and a

Weyl part in all higher dimensions. A direct inspection of the weights in the tensor

product g

1


 g

1


 g

0

yields also the target of the curvature component (the other

two components could never produce the coe�cient 3).

pair (g; p) cohomologies hom. curvature components

� �

4

�

1

� 3 g

�1

^ g

�1

! g

1

� � � � �

1

�

1

�

0

�

1

�

1

� 2 g

�1

^ g

�1

! g

0

� � � � �

0

�

0

�

1

�

0

�

3

�

3

�

�2

�

1

�

1

�

0

�

2

1

g

�1

^ g

�1

!

0

�

�1

�

1

�

0

�

1

�

g

�1

^ g

�1

! g

�1

Table 5

Projective structures { Steps 3 & 4. Let us cosider the a�ne bundle of volume

forms on a oriented manifoldM . The modeling vector bundle is the line bundle of

densities corresponding to the highest weight

m

� � � � . Since M is oriented, we

can choose its mth root, a bundle of densities with the appropriate highest weight

m

� � � � . The choice of a scale leads to the reduction of the linear frame bundle

P

1

M = G

0

to the group SL(m;R). Such reductions are in correspondence with

sections of P

1

M=SL(m;R) and these sections can be again understood locally as

matrix valued functions. The correspondence to volume forms is then given by

their determinants. Thus, our scale bundle S can be considered as the mth root of

the bundle of volume forms. In particular, each global scale determines a volume

form globally.

Since the projective structures are exceptional (i.e. the structure group of G

0

is

too big to encode the whole structure), the Weyl geometries cannot be arbitrary

connections on G

0

with the minimal available torsion (which is zero again). Their

further restrictions come from the choice of the whole bundle G as a reduction of

the second order frame bundle on M . In fact it is easy to verify their classical

description using our tools: We claim that they all share the (non-parameterized)

geodesics. Indeed, the geodesics are 
ow lines of auto-parallel vector �elds and our

formula for the transformation of the covariant deirvatives says that r




�

X

�(u) with
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50 5. j2j-GRADED EXAMPLES

�(u) = X varies by [[X;�];X]. Now, in index notation, the iterated bracket is

given by

[[X

a

;�

b

]; Y

c

] = (X

a

�

b

+X

c

�

c

�

a

b

)Y

b

which is a scalar multiple of X

a

if Y

a

= X

a

. Thus we can always rescale the

original vector �eld in order to obtain an auto-parallel vector �eld again.

Almost-quaternionic structures { Steps 3 & 4. The almost quaternionic

structures are muchmore interesting. First of all we notice the presence of a possible

non-zero torsion, which will be shared by all the Weyl geometries. By de�nition,

the quaternionic structures are then just those where this torsion vanishes. There

still remains the Weyl part of the curvature which is shared by all Weyl geometries

for the quaternionic structures, but gets mixed with the torsion contributions in

general. The meaning of the structure is also clear from the description of g: There

are the `de�ning bundles' which correspond to the standard representations C

2�

and C

2q

of GL(2; C ) and GL(2q; C ) (viewed as G

0

representations in the obvious

way). The complexi�cation of the tangent bundle on the oriented manifold M is

identi�ed with the tensor product of these de�ning bundles. At the same time, the

top degree forms of these bundles have to be identi�ed since the structure group is

further reduced fromGL(2; C )�GL(2q; C ) to S(GL(2; C )�GL(2q; C )) (notice again

the role played by the chosen orientation of M). The line bundle �

(q+1)=2q

� � � � �

exists and so does the bundle of a�ne scales. Again, its relation to the volume

forms on M is easily understood: the sections of S correspond to reductions of the

complexi�ed tangent spaces from S(GL(2; C ) � GL(2q; C )) to its semisimple part

SL(2; C ) � SL(2q; C ), thus they determine the choice of a (complex) volume form

on TM 
 C which induces a real volume form on TM .

In the lowest possible dimension, i.e. for q = 1, we recover the spinor approach to

the (complexi�ed) conformal Riemannian geometries. Since we require vanishing

of half of the curvature in the de�nition of the higher dimensional quaternionic

structures, they behave similarly to the self-dual conformal structures.

Again, we can easily discuss analogies to twistor connections, D-operators, ana-

logues to conformal circles, etc. Many concepts and results discussed in [BaiE],

[BEG], [Sal] can be nicely achieved by our tools.

5. j2j-graded examples

A real version of CR-structures

Step 1. The algebras in question are g = sl(m+2;R). These are the split forms of

the complex algebras sl(m+ 2; C ) and the grading is given by the Dynkin diagram

with the most left and most right nodes crossed. Again, we have to discuss the

chosen Lie group G. The most obvious choice G = SL(m + 2;R) leads to G

0

=

S(GL(1;R)�GL(m;R)�GL(1;R)), P = G

0

oexp p

+

, and the action of this G

0

on

g

�

is not e�ective. Thus we either have to work modulo the kernel of this action,

or we have to involve a lift of the adjoint group to P into the de�nition of G and

the Cartan connection.
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Table 6 displays the �ltrations of g for m = 1 (which is an exceptional low

dimensional case) and m = 3 (which represents well the general behavior). Since

there are two crossed nodes in the diagram, g

�1

consist of two G

0

-submodules each,

which are pair-wise dual. In fact all our considerations apply to the other real forms

su(p+1; q+1) as well. So the expected behavior of our structures should be similar

to the standard CR-structures. The main advantage of our approach is that we can

involve torsion, i.e. we cover also the so called almost CR-structures (de�ned e.g.

on hypersurfaces in almost complex manifolds).

�1

�

�1

� +

1

�

�2

�

�

�2

�

1

�

+

0

�

0

�

�

0

�

0

�

+

�1

�

2

�

�

2

�

�1

�

+

1

�

1

�

�1

�

0

�

0

�

�1

� +

0

�

0

�

1

�

�2

�

�

�2

�

1

�

0

�

0

�

+

�1

�

1

�

1

�

�1

�

�

0

�

0

�

0

�

0

�

�

0

�

0

�

0

�

0

�

+

�1

�

1

�

0

�

1

�

�

1

�

0

�

1

�

�1

�

+

1

�

0

�

0

�

1

�

Table 6

The de�nition of the corresponding geometries is by far not so simple as in

the j1j-graded cases. Of course, our most general approach would say just `the

structure is de�ned by a choice of the principal P -bundle G equipped with the

Cartan connection !'. However, we prefer to show explicitly what is the structure

on the manifoldM which can be used to construct G and the normal regular Cartan

connection ! on G uniquely, in the sence of Remark 2.6 and Theorem 2.4.

We �rst have to understand the g

0

-module g

�

equipped with the G

0

-equivariant

Lie bracket. Obviously, the dimensions of the manifolds must be 2m + 1. In the

block matrix form, we can describe the grading of g as follows

0

@

� g

L

1

g

2

g

L

�1

� g

R

1

g

�2

g

R

�1

�

1

A

where the stars indicate the g

0

entries. Let us call g

L

�1

and g

R

�1

the `left' and `right'

submodules, respectively. Analogously we refer to the g

0

-submodules in g

1

.

The grading elementE acts on the coe�cients over the nodes in Dynkin diagrams

by the vector (1 1 : : : 1), the sum of the �rst and last columns in the inverse Cartan

matrix, cf. 6.7. Another element E

0

in the center acts by the di�erence of the same

columns, i.e. by the vector

1

m+2

(m (m � 2) : : : � (m � 2) �m). They are given

by block matrices (E

0

is found easily by its action on the simple root vectors)

E =

0

@

1 0 0

0 0 0

0 0 �1

1

A

; E

0

=

m

m+ 2

0

@

1 0 0

0 �

2

m

I

m

0

0 0 1

1

A

:
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Obviously,E

0

is orthogonal toE. The homogeneity degrees (d

1

; d

2

) of the individual

modules in the �ltration (with respect to actions of E and E

0

respectively) are

indicated in the following scheme

(0; 0)

(�1; 1) (1;�1)

(�2; 0) (0; 0) (2; 0)

(�1;�1) (1; 1)

(0; 0)

In particular, E

0

acts trivially on g

�2

and g

0

and it distinguishes the left and right

submodules in g

�1

. We also see that the submodules g

R

�1

are the upper ones in

the �ltration above. Clearly (g

L

�1

)

�

= g

L

1

as g

0

-module and similarly for g

R

�1

. The

bracket restricted to g

L

�1

�g

R

�1

is non-degenerate, while it vanishes on g

L

�1

^g

L

�1

and

g

R

�1

^ g

R

�1

. The adjoint group G

0

acting e�ectively on g

�

is obtained by choosing

G as the quotient of the group of all A 2 GL(m + 2;R) with jdetAj = 1 by its

center. For odd m this is exactly the special linear group, but we obtain a non

trivial center for even m and G

0

will have two components in that case.

Now we can de�ne a regular normal parabolic geometry of the type in ques-

tion: A real almost CR-structure on a manifold M is given by a �ltration TM =

T

�2

M � T

�1

M with dimT

�1

x

M = 2m for all x 2 M together with a reduction of

the associated graded vector bundle to the structure group G

0

, subject to the struc-

ture equation. The structure equation is speci�ed as follows. The grading and the

Lie bracket de�nes the Levi form

L : T

L

M � T

R

M ! TM=T

�1

M:

The existence of the G

0

-structure on GrTM de�nes another tensorial form T

L

M �

T

R

M ! TM=T

�1

M which is non-degenerate, and two G

0

-invariant complemen-

tary subbundles T

L

M , T

R

M � T

�1

M . The structure equation then requires that

the latter tensorial form coincides with the Levi form L. This has further conse-

quences. Since [g

L

�1

; g

L

�1

] = 0, the restriction of the Levi form to T

L

M ^ T

L

M

vanishes and analogously L restricted to T

R

M ^ T

R

M is zero. Thus there are two

additional tensorial forms on T

�1

M de�ned by means of the Lie bracket

L

L

: T

L

M ^ T

L

M ! T

R

M (the left Levi form)

L

R

: T

R

M ^ T

R

M ! T

L

M (the right Levi form)

In particular, the Lie bracket of vector �elds maps both C

1

(T

L

M)�C

1

(T

L

M)

and C

1

(T

R

M)�C

1

(T

R

M) into T

�1

M = T

L

M�T

R

M and the Levi form de�nes

a conformal symplectic structure on T

�1

M with two distinguished complementary

Lagrangian subbundles. Thus we also call these structures Lagrangian contact

structures. Special cases of such structures were also studied in [Tak].

Equivalently these structures are described just by the (local) contact structure

together with two distinguished complementary Lagrangian subbundles. The struc-

ture is called integrable if the distinguished Lagrangian subbundles are integrable,

i.e. if the left and right Levi forms vanish identically.
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pair (g; p) cohomologies actions of E, E

0

curvature components

� �

5

�

�1

�

�1

�

5

�

4; 2

4; �2

g

L

�1

� g

�2

! g

L

1

g

R

�1

� g

�2

! g

R

1

� � � �

2

�

1

�

1

�

�3

�

�3

�

1

�

1

�

2

�

�1

�

2

�

2

�

�1

�

1; 3

1; �3

2; 0

g

L

�1

� g

L

�1

! g

R

�1

g

R

�1

� g

R

�1

! g

L

�1

g

L

�1

� g

R

�1

!

�1

�

1

�

1

�

�1

�

Table 7

Step 2. The Kostant's BBW yields the necessary cohomologies. The knowledge

of the homogeneities of the components in g and some inspection of the weights in

their tensor products yield further explicit information, see Table 7.

As a consequence of these data we obtain

Proposition. The whole torsion component �

�

of the curvature of the canonical

Cartan connection vanishes if and only if the corresponding de�ning subbundles

T

L

M and T

R

M are integrable. The 3-dimensional Lagrangian contact structures

are always integrable.

Proof. The curvature component corresponding to the lowest homogeneity in the

cohomology is constant along the �bers. Since this component of �(u)(X;Y ) is

in the torsion part, we can evaluate it on the underlying tangent bundle T

x

M by

means of the isomorphism u : GrT

x

M ! g

�

. We obtain

[X;Y ]� u

�

Tp([!

�1

(X); !

�1

(Y )](u))

�

but this is exactly the sum of the values of the right and left Levi forms expressed

via u. Therefore the vanishing of these forms is equivalent to the vanishing of the

cohomology with the lowest homogeneity. By the general theorem, if this vanishes

then the next possibly non-zero component appears according to the next non-zero

cohomology. This does not belong to the torsion part in our case. �

Let us also notice, that the existence of the complementary Lagrangian subspaces

is dictated by the regularity requirement for the canonical normal connection. Of

course, there can be more general Cartan connections on M without this property.

On the other hand, the complete information on the second cohomology shows that

all normal Cartan connections are automatically regular.

Steps 3 & 4. Since the center of g

0

is 2-dimensional, the closed Weyl geometries

are de�ned by a choice of the complement of E in the center. We shall make the

most natural choice, the orthogonal complement spaned by E

0

. By the general

theory, the scalar actions of E and E

0

on the line bundle modeling the a�ne line

bundle of scales are then one and zero. Thus we should obtain the line bundle

1=2

�

0

� � � �

0

�

1=2

� .

The p-submodule g

2

� p gives rise to the invariant subbundle T

�

2

M � T

�

M , the

anihilator of T

�1

M . Let us assume now that we have chosen a lift G

0

0

of G

0

to a

principal bundle with structure group S(GL(1;R)�GL(m)�GL(1;R)). This makes
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no problems locally and the line bundle

1=2

�

0

� � � �

0

�

1=2

� exists as an assoicated

bundle to G

0

. Now, the action of (a;B; c) 2 S(GL(1;R)�GL(m;R)�GL(1;R)) on

g

2

is given by the scalar ac 2 R and the choice of a scale leads to the reduction of G

0

to elements of the form (a;B; a). Thus we can understand L locally as the square

root of the a�ne bundle of non-zero sections of T

�

2

M . Consequently, the choice of

a scale � yields a contact form �

�

annihilating T

�1

M . In particular, it determines

a vector �eld transversal to T

�1

M and hence a splitting TM = T

L

M �T

R

M �R.

We also obtain the symplectic structure on T

�1

M de�ned by the Levi form. The

linear connection 


�

is then just the connection which preserves �

�

(thus also the

two Lagrangian subspaces), belongs to the induced G

0

-structure on TM , and has

the minimal torsion. Let us notice, that even if the bundles T

L

M and T

R

M are

integrable, there still can appear some torsion, which comes from the contribution

of the mapping (X;Y ) 7! [P:X; Y ], X 2 g

�1

, Y 2 g

�2

.

The de�ning representation on R

m+2

gives rise to analogues of twistor bundles

equipped with a canonical connection, etc. We shall not go into details here, but

let us mention at least the horizontal 
ows �

u;X

in directions transversal to T

�1

M .

The transversality means that the tangent vector �(x) = fu;Xg 2 G �

P

g

�

at the

origin of the 
ow has a non-zero component of X in g

�2

. A horizontal 
ow �

u:g;

~

X

has the same tangent direction at x if and only if Ad

g

�

g:

~

X = X. In view of the

assumption on X this means g = expZ, Z 2 g

2

, and a computation similar to that

in 2.35 shows that the 
ows will coincide up to parametrizations. These transversal

horizontal 
ows are the analogues to the well known chains of Chern and Moser in

CR-geometry.

Let us also illustrate the idea of the general correspondence spaces on this exam-

ple. Following the general theory, there is a canonical �bration over each projective

manifold M , which is equipped with the Lagrangian contact structure. The latter

�bration is de�ned as the quotient M

0

= G=P of the canonical bundle G overM by

our subgroup P (which is a subgroup in the structure group P

0

of G ! M). Over

2-dimensional projective structures, we obtain integrable 3-dimensional Lagrangian

contact structures and the Cotton-York part of the curvature of the projective struc-

ture gives rise to the non-trivial component g

L

�1

� g

�2

! g

L

1

, while the other one

vanishes. In all higher dimensions, one of the torsions of the structure on M

0

van-

Check!

ishes while the other one vanishes if and only if the original projective structure is


at (and in that case also the third non-trivial component vanishes automatically).

The geometric construction ofM

0

goes as follows: LetM be a projective manifold

of dimensionm+1 and de�neM

0

= P(T

�

M). This is a manifold of dimension 2m+1

with �bration p : M

0

!M and there is the exact sequence

0! VM

0

! TM

0

! p

�

(TM) ! 0

Next, notice that each element x

0

2M

0

de�nes a nowhere vanishing linear form on

M , up to a multiple. Hence there are distinguished subspaces of rank m in p

�

(TM)

corresponding to the kernels. Now, each linear connection on M de�nes a splitting

p

�

(TM) ! TM

0

since M

0

is the associated bundle P

1

M �

G

0

P(R

(m+1)�

). Thus we

obtain the subspaces T

L

M

0

in TM

0

complementary to T

R

M = VM

0

which play

the role of the two de�ning subbundles. A direct check shows that a change of the

connection within the given projective class does not e�ect the subspaces T

L

M

0

.

See notes from

18/10/97 for details

Of course, the vertical bundle is involutive.
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These correspondence spaces for projective manifolds have been already dis-

cussed in [Tak]. However, only the evident result that the structure on M

0

is

locally 
at if and only if the projective structure on M is locally 
at was deduced

there.

The case � � � � � � �

In the last two examples, we shall only brie
y indicate what kinds of di�culties

we have to face. More detailed exposition of basic features of these very interesting

geometries will appear elsewhere. The �ltration of g = sl(k + 1;R) is described in

Table 8

�1

�

�1

�

1

�

0

� +

1

�

�2

�

1

�

0

�

�

�2

�

1

�

0

�

0

�

+

0

�

�1

�

1

�

1

�

�

0

�

0

�

0

�

0

�

�

0

�

0

�

0

�

0

�

+

�1

�

1

�

0

�

1

�

�

2

�

�1

�

0

�

0

�

+

1

�

0

�

0

�

1

�

Table 8

The grading element E is the block diagonal matrix of sizes (1; 1; k � 1) with

blocks

1

k+1

(2k � 1; k � 2;�3I

k�1

) and it acts on the coe�cients over the nodes

by the vector

1

k+1

((2k � 1) (3k � 3) (3k � 6) : : : 6 3). Let us take the comple-

mentary element E

0

which is the block diagonal matrix

1

k+1

(1;�k;I

k�1

). This

elements acts, similarly to the previous example, by the di�erence of the elements

in the appropriate columns in the inverse Cartan matrix. So it acts by the vector

1

k+1

(1 (1�k) (2�k) � � ��2 �1). Let us write g

R

�1

and g

L

�1

for the upper and lower

module in g

�1

, respectively. Then E acts by �1 on both, while E

0

acts by 1 on

g

R

�1

and by �1 on g

L

�1

. The lowest dimensional example � � has been already

discussed, the only di�erence for k = 3 is the module

0

�

�1

�

2

� � g

0

.

Now, the cohomologies are computed in Table 9.

pair (g; p) cohomologies action of E, E

0

curvature components

1

�

0

�

1

�

�4

�

4

�

0

�

4

�

�3

�

2

�

0

�

0

�

4

�

1;�3

2; 2

3;�1

g

R

�1

^ g

R

�1

! g

L

�1

g

�2

^ g

L

�1

! g

R

�1

g

�2

^ g

R

�1

! g

0

1

�

0

�

0

�

1

�

�3

�

1

�

2

�

0

�

4

�

�3

�

1

�

1

�

0

�

0

�

1

�

3

�

0;�2

2; 2

3;�1

g

R

�1

^ g

R

�1

! g

�2

g

�2

^ g

L

�1

! g

R

�1

g

�2

^ g

R

�1

! g

0

Table 9

The most interesting part is the existence of the cohomology of degree zero.

This implies that there might be a normal parabolic geometry which is not regular.
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Notice that then this part of the curvature will be constant along the �bers of

G ! G

0

and the component will obstruct the equality of the two algebraic brackets

T

R

^T

R

! TM=T

�1

M de�ned by the Lie bracket and the G

0

-structure on GrTM .

Also the next component of homogeneity two is extremely interesting. Our intuition

tells that this part of the curvature should be related to the possibly non-zero

algebraic bracket T

R

M ^ T

R

M ! T

L

M (an analogue to the rigth Levi form on

the real almost-CR structures), however this one would correspond to homogeneity

three.

Als the choice of the representation �

P

: P ! Gl

+

(R) needed for the de�ni-

tion of the a�ne bundle of scales is much more subtle. In fact, the most natural

choice of the orthogonal complement to E in the center of g

0

leads to the weight

a

�

a

�

0

� � � � , a =

m+2

5m+1

which does not seem to make much sense. On the

other hand, we can �x the complement in such a way that the line bundle G

0

�

P

g

L

1

turns out to be the modeling line bundle. The block matrix form of the correspond-

ing E

0

is (m;m;�2I

m

) and E

0

acts on weights by the vector (m 2m 2m� 2 : : : 2).

Thus the a�ne scale bundle S

�

exists for this choice and a global scale yields also

a global non-zero section � of T

L

M , and so the explicit splitting of TM .

The case � � � � � � < �

The last example deals with a case where we have crossed only one node in the

Dynkin diagram, but the coe�cient at that particular simple root in the expression

for the highest root of g is two. Thus we obtain a j2j-graded algebra with irreducible

g

�1

.

As already discussed, these are the other examples of the exceptional geometries

from 2.5.

It is more tricky now to compute the �ltration, since there are more non-trivial

orbits of the Weyl group in this case. The result is in the Table 10.

�2

�

0

�

0

� <

0

� +

�2

�

1

�

0

� <

0

� +

�2

�

2

�

0

� <

0

�

�

0

�

0

�

0

� <

0

�

+

0

�

1

�

0

� <

0

� +

2

�

0

�

0

� <

0

�

Table 10

In particular, we deal again with contact structures. The dimension of the man-

ifolds is (2k � 2) + 1, where k is the number of the nodes. The center of G

0

is this

time one-dimensional and the grading element E acts by the vector (1 1 : : : 1 1).

The low dimensional case � < � enjoys the same �ltration. The cohomologies are

listed in Table 11

The results are quite similar to projective geometries, there is a sort of Weyl

curvature in higher dimensions while a Cotton-York tensor appears in dimension

three. Since the center of g

0

is one-dimensional, there is only one choice for the

bundle of scales which will be modeled over the square root of G �

P

g

2

.
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pair (g; p) cohomologies action of E curvature components

2

� <

0

�

0

� <

3

� 3 g

�1

^ g

�1

! g

1

2

�

0

�

0

� <

0

�

�1

�

2

�

1

� <

0

� 2 g

�1

^ g

�1

! g

0

Table 11

6. Appendix: Some facts from Representation Theory

Here we add brief explanation of some concepts and results well known in repre-

sentation theory of semisimple Lie algebras and Lie groups. They are all available,

but rather scattered in the literature. Moreover, the notation and terminology do

not always coincide. The aim of this appendix is just to help a bit a di�erential

geometer, who knows some basic facts about representations of semisimple Lie alge-

bras and groups but who is not familiar with all this stu�. Much more information

is available from [BasE] or some standard monograph, see e.g. [Hum], [Nay], [Sam].

The symbol K will always mean R or C .

jkj-graded Lie algebras

6.1. Complex simple algebras. The complete classi�cation list consists of four

series of classical algebras A

`

, B

`

, C

`

, D

`

(labeled by their ranks) and four excep-

tional algebras E

6

, E

7

, E

8

, F

4

, G

2

. We shall be mainly interested in the classical

algebras. There are several simple objects encoding nicely all the information about

the algebras. We should like to know the Dynkin diagram (with the labeling of the

simple roots by its nodes), the highest root (expressed via simple roots �

i

), the

highest weight of the adjoint representation (expressed as linear combination of

fundamental weights, i.e. through coe�cients over the corresponding nodes), and

the inverse of the Cartan matrix (since the fundamental weights are related to the

simple roots by this matrix). Recall that the Cartan matrix (a

ij

) is de�ned by

a

ij

=

2h�

i

;�

j

i

h�

j

;�

j

i

and this is read easily of the Dynking diagram (a

ij

= 0 whenever

the ith and jth nod are not adjacent, a

ii

= 2, a

ij

= �1 for a simple link, �2 for

double link oriented from �

i

to �

j

, etc.). These four items are listed for all classical

algebras in Table 12 and Table 13.

6.2. Simple Lie algebras with gradings. A �nite grading on a Lie algebra is

its decomposition (as a vector space)

g = g

�p

� g

�p+1

� � � � � g

0

� g

1

� � � � � g

q

such that the Lie bracket satis�es [g

i

; g

j

] � g

i+j

. If p = q = k, we say that g is

jkj-graded. Let us collect some useful information (see e.g. [CSch] for the proofs).

Proposition. Let g be a semisimple Lie algebra with �nite grading. Then

(1) g is jkj-graded for some k � 0.

(2) There is the unique grading element E 2 g such that ad

E

is the multiplica-

tion by j on each g

j

. Moreover E 2 g

0

.
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sl(` + 1; C ) (type A

`

) so(2`+ 1; C ) (type B

`

)

�

1

�

�

2

� � � �

�

`�1

�

�

`

�

�

1

�

�

2

� � � �

�

`�1

� >

�

`

�

�

1

+ � � �+ �

`

�

1

+ 2�

2

+ � � � + 2�

`

1

�

0

� � � �

0

�

1

�

0

�

1

� � � �

0

� >

0

�

1

`+1

0

B

B

@

` ` � 1 : : : 2 1

` � 1 2(` � 1) : : : 4 2

.

.

.

.

.

. i(` � i + 1)

.

.

.

.

.

.

1 2 : : : `� 1 `

1

C

C

A

0

B

B

B

@

1 1 1 : : : 1 1

1 2 2 : : : 2 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2 3 : : : `� 1 ` � 1

1

2

1

3

2

: : :

`�1

2

`

2

1

C

C

C

A

Table 12

sp(2`; C ) (type C

`

) so(2`; C ) (type D

`

)

�

1

�

�

2

� � � �

�

`�1

� <

�

`

�

�

1

�

�

2

� � � � � �

`�2

�

� �

`�1

�

� �

`

2�

1

+ 2�

2

� � �+ 2�

`�1

+ �

`

�

1

+ 2�

2

+ � � �+ 2�

`�2

+ �

`�1

+ �

`

2

�

0

� � � �

0

� <

0

�

0

�

1

� � � �

0

�

�

� 0

�

� 0

0

B

B

B

B

@

1 1 1 : : : 1

1

2

1 2 2 : : : 2

2

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2 3 : : : ` � 1

`�1

2

1 2 3 : : : ` � 1

`

2

1

C

C

C

C

A

0

B

B

B

B

B

B

@

1 1 1 : : : 1

1

2

1

2

1 2 2 : : : 2

2

2

2

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2 3 : : : ` � 2

`�2

2

`�2

2

1

2

2

2

3

2

: : :

`�2

2

`

4

`�2

4

1

2

2

2

3

2

: : :

`�2

2

`�2

4

`

4

1

C

C

C

C

C

C

A

Table 13

(3) The Killing form h ; i induces the isomorphisms g

i

' g

�

�i

, while hg

i

; g

j

i = 0

whenever j + i 6= 0.

(4) [g

i+1

; g

�1

] = g

i

for all i < 0; if no simple factor of g is contained in g

0

, then

the same holds with i = 0.

(5) If Z 2 g

i

, i > 0 is an element with [Z;X] = 0 for all X 2 g

�1

, then Z = 0.

The same holds with i = 0 if no simple factor of g is contained in g

0

.

6.3. Standard parabolic subalgebras. Consider a simple complex Lie algebra g

with �xed Cartan subalgebra h and simple positive roots �

+

0

. If we choose a subset

� � �

+

0

, then there is the subalgebra p

�

generated by the Cartan algebra h and all

root spaces corresponding to those roots whose expressions as linear combinations

of the simple roots have positive coe�cients at elements in �, i.e.

p

�

=

0

@

h�

X

�2h�(�

+

0

n�)i

g

�

1

A

�

X

�2�

+

g

�

= l� u

+

Obviously, p

�

contains the whole Borel subalgebra and so is parabolic. The subal-

gebras p

�

are called the standard parabolic subalgebras and the latter decomposition
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provides also their Levi decompositions. All parabolic subalgebras are conjugate to

one of these.

The �-height of a root � is de�ned as the sum of its coe�cients at the simle roots

from �. Clearly, the decomposition according to the �-height yields a jkj-grading,

where k is the �-height of the highest root. In particular, g

0

= l and g

1

is generated

by the rootspaces corresponding to the simple roots in �

+

0

n �, as g

0

-module.

Conversely, given a jkj-graded simple complex algebra g, there is a Cartan algebra

h in g and a choice of positive roots such that p = g

0

� : : : g

k

corresponds to a

choice of simple roots � as above. We shall always write p

+

= g

1

� � � � � g

k

and

g

�

= g

�k

� : : : : : : g

�1

. Thus, g

�

�

' p

+

and g = g

�

� g

0

� p

+

.

6.4. We adopt the convention to indicate the simple roots in � by crossing out

the corresponding nodes in the Dynkin diagram. The list of all j1j-graded classical

complex simple algebras in Table 14 (up to isomorphisms) is obtained just by

looking at the highest weights in Tables 12, 13. The are only two more among the

exceptional algebras.

A

`

(

`

2

or

`+1

2

possibilities)

� � � � � � �

.

.

.

� � � � � � � � � � �

B

`

(one possibility) � � � � � � > �

C

`

(one possibility) � � � � � � < �

D

`

(two possibilities)

� � � � � �

�

�

�

�

� � � � � �

�

�

�

�

Table 14

6.5. Notation. Recall that the fundamental weights of a simple complex Lie

algebra correspond to the nodes of the Dynkin diagram for g. Since all weights of

g-modules can be written as linear combinations of the fundamental weights, we

denote them by labeling the correpsonding nodes by the coe�cients. In particular,

the fundamental weights have the coe�cient 1 over one node while all other nodes

are labled by zero. The weight is dominant for g if and only if all the coe�cients

are non-negative integers.

If there is a �xed parabolic subalgebra p � g, we use the same notation as above

but the Dynkin diagram has some nodes crossed. Notice that each weight denoted

in such a way can be understood as a weight for the reductive Levi part g

0

.

6.6. The Weyl group. As well known, all elements of the Weyl group W �

GL(h

�

0

) of a simple complex Lie algebra are compositions of simple re
ections, i.e.

re
ections with respect to hyperplanes orthogonal to simple roots.

For each root � 2 �, the re
ection S

�

acts on the weight � 2 h

�

0

by S

�

(�) =

� � h�;H

�

i� where H

�

is the coroot corresponding to �. Hence the coe�cients

over the nodes are given by hS

�

(�);H

i

i = h�;H

i

i � h�;H

�

ih�;H

i

i where H

i

are
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the simple coroots. If � is a simple root, then h�;H

i

i is the Cartan integer which

is encoded directly in the Dynkin diagram. This yields the formula for the new

coe�cients over the nodes after the action of a simple re
ection:

Let a be the coe�cient over the i-th node in the expression of �. In order to

get the coe�cients over the nodes corresponding to S

�

i

(�), add a to the adjacent

coe�cients, with the multiplicity if there is a multiple edge directed towards the

adjacent node, and replace a by �a.

For example, if � is

a

�

b

�

c

� and we act by the middle simple re
ection, we get

the weight

a+b

�

�b

�

b+c

� . Similarly

a

� >

b

� transforms under the action of the �rst

simple re
ection into

�a

� >

2a+b

� , while the second simple re
ection yields

a+b

� >

�b

� .

The a�ne action of the Weyl group is de�ned by

w:� = w(�+ �)� �

i.e. we have to apply the standard action to the weight shifted by the lowest form

� =

1

2

P

�2�

+

� and then shift the result back by ��. In terms of Dynkin diagrams

this means to add one over each node, then act with w and �nally subtract one

over each node.

For each w 2W , the number of positive roots � 2 �

+

which are transformed to

w:� 2 �

�

is called the length of w, we write jwj. Equivalently, the length of w is

the minimal number of simple re
ections in any expression for w in terms of simple

re
ections. We de�ne the sign of w as sgnw = (�1)

jwj

.

Let p � g be the parabolic subalgebra corresponding to � � �

+

0

. Then we de�ne

W

p

�W as the subset of all elements which map the weights dominant for g into

weights dominant for p.

6.7. p-modules. By the general theory, each irreducible p-module is a irreducible

g

0

-module equipped with the trivial action of p

+

. Each such module is de�ned by

the highest weight of the restriction of the representation to the semisimple part

of g

0

and by the action of the center z of g

0

. It is very handy to encode such a

representation by a weight of the whole g which is allowed to have non-positive

and non-integral weights over the crossed nodes. For each element in z we are able

to compute its action from these coe�cients. In particular, E acts by the scalar

product of the vector of the coe�cients with the vector computed as the sum of

those columns in the inverse Cartan algebra which correspond to the crossed nodes

(the reason is that E acts by zero on �

i

2 �

+

0

n� and it acts by one on �

j

2 �; the

fundamental weights are obtained for �

i

by multiplication by the inverse Cartan

matrix).

Most of the p modules V are not irreducible, but they are indecomposable. Still,

they enjoy a �ltration by p-submodules

V = V

1

+ V

2

+ � � �+ V

r

such that the `right hand ends' V

i

+ � � � + V

r

are submodules for 1 � i � r and

all quotients V

i

=V

i+1

, 1 � i � r (here V

i+1

= f0g) are direct sums of irreducible

p-modules. Of course, the `left ends' are then quotients of V .

We can encode each such �ltration by columns of the labled Dynkin diagrams

encoding the highest weights of the irreducible components in V

i

(as g

0

-modules).
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For example, a simple computation of the action of Weyl group on the highest

weight of the adjoint representations we obtain easily the �ltrations of p-modules

for sl(2; C ) with the standard Borel subalgebra p, and sl(3; C ) with the �rst node

crossed:

2

� =

�2

� +

0

� +

2

�

1

�

1

� =

�2

�

1

�+

�1

�

2

�

�

0

�

0

�

+

1

�

1

�

Cohomologies of Lie algebras

6.8. Consider for a moment an arbitrary Lie algebra g and a g-module A. The

cochains of degree q with coe�cients in A are de�ned as the space C

q

(g;A) of

all (continuous) skew-symmetric q-linear A-valued forms on g. By the de�nition,

C

q

(g; A) = Hom(�

q

g;A) carries a natural g-module structure. We de�ne the dif-

ferential @ : C

q

(g;A) ! C

q+1

(g;A) by the formula

@c(X

0

; : : : ;X

q

) =

X

0�i�q

(�1)

i

X

i

:c(X

0

; : : :

î

: : :X

q

)

+

X

0�i<j�q

(�1)

i+j

c([X

i

;X

j

];X

0

; : : :

î

: : :

ĵ

: : : ;X

q

)

One veri�es easily @

2

= 0 and we obtain a complex by setting C

q

(g;A) = 0 and

@(C

q

(g;A)) = 0 if q < 0. This complex is denoted by C

�

(g;A) and the correspond-

ing cohomologies are denoted by H

q

(g;A) and called the cohomologies of g with

coe�cients in A.

We need a special case only. Our jkj-graded algebras are g = g

�

� g

0

� p

+

and g is a g

�

-module via the restriction of the adjoint action. What we need is

the Lie algebra cohomology H

�

(g

�

; g). Now, the grading of g induces a natural

grading on the cochains, C

�

(g

�

; g) =

P

p;q

C

p

q

(g

�1

; g) where C

p

q

(g

�

; g) � C

p

(g

�

; g)

is the g

0

-submodule of homogeneous homomorphisms of degree q, i.e. those with

c(g

i

1

^� � �^g

i

p

) � g

i

1

+���+i

p

+q

. Obviously, @ respects the homogeneity, i.e. @ : C

p

q

!

C

p+1

q

. In the case of j1j-graded Lie algebras, g

�1

is abelian, only the �rst term in

@ remains, and we get the so called Spencer bigraded cohomology H

p;q

(g

�1

; g).

The action of g

0

on the homogeneous components induces an action on the

cochains which intertwines the di�erential and so there is a distinguished g

0

-module

structure on H

�

�

(g

�

; g).

6.9. The Hodge structure. Consider any g-module V , for example V = g.

Due to the duality g

�

' p

�

+

, the spaces C

q

(g

�

; V ) = �

q

g

�

�


 V are identi�ed

with (�

q

p

�

+


 V

�

)

�

. Thus the dual mapping to @ : C

q�1

(p

+

; V

�

) ! C

q

(p

+

; V

�

) is

understood as @

�

: C

q

(g

�

; V ) ! C

q�1

(g

�

; V ). Oviously, @

�

� @

�

= 0.

Our aim is to understand the structure of the cohomology H

�

�

(g

�

; g). The main

technical point is the existence of inner products on all C

p

q

(g

�

; g) such that @ and

@

�

are adjoint with respect to these products. Thus, we obtain the usual Hodge
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structure on C

�

�

(g

�

; g) and each C

p

q

(g

�

; g) decomposes as the direct sum of the

image of @, image of @

�

and kernel of � = @ � @

�

+ @

�

� @. In particular, each

cohomology class contains a unique harmonic representative, i.e. a closed and co-

closed cochain. There also is the (real) linear isomorphism

H

p

q

(g

�

; g) ' H

p

�q

(p

+

; g):

See [CSch] for a detailed exposition of all these properties.

A bit of e�ort leads to explicit formulae, e.g. for all c 2 C

2

(g

�

; g), X 2 g

�

, and

dual basis �

�

, �

�

of g

�

and p

+

@

�

c(X) =

X

�

[�

�

; c(X; �

�

)] �

1

2

X

�

c([�

�

;X]

g

�

; �

�

)

see [CSch] for more details.

6.10. Kostant's BBW-theorem. If A is a �nite dimensional irreducible g-

module of highest weight �, then the irreducible �nite dimensional representations

of g

0

with highest weight � occur in H

�

(p

+

;A) if and only if there is an element

w 2W

p

�W such that � = w:� = w(�+ �)� � and in that case it occurs in degree

jwj with multiplicity one.

See e.g. [Vog, p. 123] for the proof. The original Kostant's formulation involves

also an explicite description of the unique harmonic representative in terms of w,

see [Kos] or [CSch].

In our situation, � is the maximal root of g and the a�ne action of W

p

is

described in 6.6, and H

p

q

(g

�

; g) ' H

p

�q

(p; g)

�

as (real) g

0

-modules.

In particular, if we want to compute H

�

1

(g

�

; g), we have to evaluate the a�ne

action of those elements of length one which transform g-dominant weights into p-

dominant weights. Obviously, only the simple re
ections given by the crossed nodes

can do that. For example, we obtain (the duals are easily computed by evaluating

the action of E)

H

1

�

(

2

�) = (

�4

�)

�

=

4

� 2 H

1

2

(g

�

; g)

H

1

�

(

1

�

0

�

1

� ) = (

�3

�

2

�

1

� )

�

=

0

�

1

�

2

� 2 H

1

1

(g

�

; g)

Similarly, we can compute the second cohomologies. Now we have two simple

re
ections at disposal. Thus, we can either use two crossed nodes (if there so many),

or we might start at a adjacent node to a cross. For example,

H

1

�

(

1

�

1

� ) = (

�5

�

1

�)

�

=

4

�

1

� 2 H

1

3

(g

�

; g)

H

1

�

(

1

�

0

�

1

� ) = (

�4

�

1

�

2

� )

�

=

1

�

2

�

1

� 2 H

1

2

(g

�

; g)

The cohomologies of the complexi�ed real algebras are the complexi�cations of

the real cohomologies.
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6.11. The enveloping algebra.

Theuniversal enveloping algebra U(g) of a �nite dimensional Lie algebra g over K

is de�ned as the quotient T (g)=I of the (real or complex) tensor algebra generated

by the elements of g, with respect to the two-sided ideal I in T (g), I = hx
y�y


x � [x; y]; x; y 2 gi. There is the induced increasing �ltration U

k

(g) from that on

T (g) and the inclusion i : g! U(g). We have i([x; y]) = i(x)i(y)� i(y)i(x) for all x,

y 2 g and U(g) has the following universal property: For each associative algebra

A over K with identity and each linear mapping ' : g ! A satisfying '([x; y]) =

'(x)'(y) � '(y)'(x) for all x, y 2 g, there is a unique algebra homomorphism

�' : U(g)! A such that �' � i = ' and �'(1) = 1.

According to the Birkho�-Witt theorem, the canonical inclusion i extends to

vector space isomorphisms

P

k

0

S

k

(g) = U

k

(g). These isomorphismsbuild an algebra

isomorphism S(g) =

P

k

S

k

(g) = U(g) if and only if g is abelian.

As a consequence of the Birkho�-Witt theorem we get some canonical identi�-

cations. Given a vector space basis x

i

of g, the vector space U

k

(g) is generated by

the expressions x

i

1

: : : x

i

l

, i

1

� i

2

� � � � � i

l

, l � k. If g = a� b is a direct sum of

vector spaces, then U(g) = U(a)U(b) = U(a) 
 U(b) where U(a) means the linear

span of the elements x

1

: : : x

l

with x

i

2 a and similarly for U(b).

The real universal enveloping algebra U(g) of a Lie algebra of a connected Lie

groupG is isomorphic to the algebra of left invariant vector �elds (or right invariant

vector �elds) onG, i.e. to the enveloping algebra of left-invariant (or right-invariant)

di�erential operators on the smooth functions on G.

The adjoint representation ad

x

: g! g, x 2 g extends into a derivation on U(g).

If g is semisimple, then this representation is completely reducible. The subset

Z(g) � U(g) of elements y with ad

x

(y) = 0 for all x 2 g is called the center of U(g).

This is equivalent to the usual requirement that y commutes with all elements in

U(g).

6.12. U(g)-modules. Given a representation of a complex Lie algebra g, i.e. an

algebra homomorphism ' : g ! EndV for some complex vector space V , there is

the unique algebra homomorphism �' : U(g) ! EndV . If the representation is irre-

ducible, then the actions of the elements from the center Z(g) � U(g) of the complex

algebra must be multiplications by scalars. This can be viewed as an algebra ho-

momorphism � : Z(g) ! C , the so called central character of the representation '

(also called in�nitesimal character).

Suppose now, we have two irreducible representation V

�

, V

�

corresponding to

two dominant weights � and � for a semisimple complex Lie algebra g and an

intertwining linear mapping D : V

�

! V

�

, i.e. a U(g)-module homomorphism. Let

us write �

�

and �

�

for the in�nitesimal characters of V

�

and V

�

. For every v 2 V

�

,

z 2 Z(g) we have zD(v) = D(zv) = D(�

�

(z)v) = �

�

(z)D(v) and so either �

�

= �

�

or D = 0. The same conclusion is true if both representations are generated by a

single highest weight vector.

6.13. Verma modules. Let us consider �rst an arbitrary complex Lie algebra

g and its subalgebra p. Given a representation of p in a �nite dimensional vector
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space V , we de�ne the induced representation

Ind(g; V ) = U(g) 


U(p)

V:

The representation space V is canonically embedded into the induced representation

Ind(g; V ) via V 7! 1


C

V ' U(p) 


U(p)

V .

In particular, if g is semisimple, p is a Borel subalgebra and if we consider the one-

dimensional characters � of the Borel subalgebra p, then the induced representations

are called the Verma modules and denoted by V

�

(sometimes a shift in the weight

(by the lowest form) is used in the notation for symmetry reasons. Starting with a

highest weight �, the whole induced module is also a highest weight module.

In general, it is di�cult to work with the induced representations since the

structure of U(g) is complicated. However, if g is semisimple and p parabolic, the

whole situation is much more similar to the theory of Verma modules. Let us

recall g = g

�

� p as a vector space direct sum of Lie subalgebras. Thus, given a

�nite dimensional representation of p in E, we have U(g)


U(p)

E ' U(g

�

)


C

E (as

vector spaces) by virtue of the Birkho�-Witt theorem. We shall denote this call

such modules generalized Verma modules and we use the notation V

p

(E). If the

representation is irreducible and corresponds to a dominant weight � for p, then

the U(g)-module V

p

(E

�

) is generated by the highest weight vector 1
 v where v is

the highest weight vector in E

�

.

In particular, if the subalgebra g

�

is abelian, then U(g

�

) = S(g

�

), the symmetric

algebra and the latter is equal to the algebra S((g

�

)

�

) of polynomials on g

�

.

6.14. Homomorphisms of Verma modules. Consider dominant weights � and

� for complex parabolic p � g and a homomorphism D : V

p

(E

�

)! V

p

(E

�

) of U(g)-

modules. The whole modules are generated by the highest weight vectors 1 
 v

�

and 1
v

�

. Each element z 2 Z(g) from the center must preserve the highest weight

vectors and acts by scalar multiplication by �

�

(z) and �

�

(z), the central characters

of the representations. Hence a non-zero morphism can exist only if the in�nitesimal

characters coincide. A classical theorem by Harish-Chandra states that �

�

= �

�

if

and only if �+ � and �+ � are conjugate under the action of the Weyl groupW of

g, here � is the lowest form (half the sum of all positive roots). This means that

both weights have to be in the same orbit of the a�ne action.

In particular, if � is dominant for g, then all weights � dominant for p with the

same in�nitesimal character �

�

= �

�

are given by fw:� ; w 2W

p

g.
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