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Abstra
t. Motivated by the ri
h geometry of 
onformal Riemannian mani-

folds and by the re
ent development of geometries modeled on homogeneous

spa
es G=P with G semisimple and P paraboli
, Weyl stru
tures and preferred


onne
tions are introdu
ed in this general framework. In parti
ular, we extend

the notions of s
ales, 
losed and exa
t Weyl 
onne
tions, and Rho{tensors, we


hara
terize the 
lasses of su
h obje
ts, and we use the results to give a new

des
ription of the Cartan bundles and 
onne
tions for all paraboli
 geometries.

1. Introdu
tion

Cartan's generalized spa
es are 
urved analogs of the homogeneous spa
es G=P

de�ned by means of an absolute parallelism on a prin
ipal P{bundle. This very

general framework was originally built in 
onne
tion with the equivalen
e problem

and Cartan's general method for its solution, 
f. e.g. [11℄. Later on, however, these

ideas got mu
h more attention. In parti
ular, several well known geometries were

shown to allow a 
anoni
al obje
t of that type with suitable 
hoi
e of semisimple

G and paraboli
 P , see e.g. [21℄. Cartan's original approa
h was generalized and

extended for all su
h groups, 
f. [31, 25, 35, 8℄, and links to other areas were dis
ov-

ered, see e.g. [4, 3, 12℄. The best known examples are the 
onformal Riemannian,

proje
tive, almost quaternioni
, and CR stru
tures and the 
ommon name adopted

is paraboli
 geometries .

The relation to twistor theory renewed the interest in a good 
al
ulus for su
h

geometries, whi
h had to improve the te
hniques in 
onformal geometry and to

extend them to other geometries. Many steps in this dire
tion were done, see for

example [32, 33, 34, 16℄ for 
lassi
al methods in 
onformal geometry, and [2, 1, 15,

17, 18℄ for generalizations.

A new approa
h to this topi
, motivated mainly by [26, 3, 4℄, was started in

[9, 10℄. The novelty 
onsists in the 
ombination of Lie algebrai
 tools with the

frame bundle approa
h to all obje
ts and we 
ontinue in this spirit here. Our general

setting for Weyl stru
tures and s
ales has been also inspired by [1, 14℄.

In Se
tion 2 we �rst outline some general aspe
ts of paraboli
 geometries and then

we present the basi
 obje
ts like tangent and 
otangent bundles and the 
urvature

of the geometry in a somewhat new perspe
tive. This will pave our way to the Weyl

stru
tures in the rest of the paper. Our basi
 referen
es for Se
tion 2 are [8℄ and [29℄,

the reader may also 
onsult [10℄. For the 
lassi
al point of view of over{determined

systems, we refer to [31, 35℄ and the referen
es therein.

The Weyl stru
tures are introdu
ed in the beginning of Se
tion 3. Exa
tly as in

the 
onformal Riemannian 
ase, the 
lass of Weyl stru
tures underlying a paraboli


geometry on a manifold M is always an aÆne spa
e modeled on one{forms on M

and ea
h of them determines a linear 
onne
tion on M . Moreover, the di�eren
e

between the linear 
onne
tion indu
ed by a Weyl stru
ture and the 
anoni
al Car-

tan 
onne
tion is en
oded in the so 
alled Rho{tensor (used heavily in 
onformal

geometry sin
e the beginning of the 
entury). Next, we de�ne the bundles of s
ales

as 
ertain aÆne line bundles generalizing the distinguished bundles of 
onformal
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metri
s, and we des
ribe the 
orresponden
e between 
onne
tions on these line bun-

dles and the Weyl stru
tures, see Theorem 3.12. On the way, we a
hieve expli
it

formulae for the deformation of Weyl stru
tures and the related obje
ts in Propo-

sition 3.9, whi
h o�ers a generalization for the basi
 ingredients of various 
al
uli.

The exa
t Weyl geometries are given by s
ales, i.e. by (global) se
tions of the bun-

dles of s
ales, thus generalizing the 
lass of Levi{Civita 
onne
tions for 
onformal

geometries. At the same time, this point of view leads to a new presentation of

the 
anoni
al Cartan bundle as the bundle of 
onne
tions on the bundle of s
ales

(pulled ba
k to the de�ning in�nitesimal 
ag stru
ture, 
f. 2.7 and 3.12). In the end

of Se
tion 3, we de�ne another 
lass of distinguished lo
al Weyl stru
tures whi
h

a
hieve the best possible approximation of the 
anoni
al Cartan 
onne
tions, see

Theorem 3.16. In the 
onformal 
ase, these normal Weyl stru
tures improve the


onstru
tion of the Graham's normal 
oordinates, 
f. [24℄.

The last se
tion is devoted to 
hara
terizations of all the obje
ts related to a


hoi
e of a Weyl stru
ture. More expli
itly, the ultimate goal is to give a re
ipe how

to de
ide whi
h soldering forms and linear 
onne
tions on a manifold M equipped

with a regular in�nitesimal 
ag stru
ture are obtained from a Weyl{stru
ture and

to 
ompute the 
orresponding Rho{tensor. For this purpose, we de�ne the general

Weyl forms and their Weyl 
urvatures and the main step towards our aim is a
hieved

in Theorem 4.4. Next, we introdu
e the total 
urvature of a Weyl form whi
h

is easier to interpret on the underlying manifold than the Weyl 
urvature. The


hara
terization is then obtained by 
arefully analyzing the relation between these

two 
urvatures.

This entire paper fo
uses on the introdu
tion of new stru
tures and their ni
e

properties. We should like to mention that essential use of these new 
on
epts has

appeared already in [10℄ and [5℄.

A
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Institute for Mathemati
al Physi
s in Vienna. The se
ond author also a
knowledges

the support from GACR, Grant Nr. 201/99/0296. Our thanks are also due to our


olleagues for many dis
ussions.

2. Some ba
kground on paraboli
 geometries

2.1. jkj{graded Lie algebras. Let G be a real or 
omplex semisimple Lie group,

whose Lie algebra g is equipped with a grading of the form

g = g

�k

� � � � � g

0

� � � � � g

k

:

Su
h algebras g are 
alled jkj{graded Lie algebras.

Throughout this paper we shall further assume that no simple ideal of g is


ontained in g

0

and that the (nilpotent) subalgebra g

�

= g

�k

�� � ��g

�1

is generated

by g

�1

. Su
h algebras are sometimes 
alled e�e
tive semisimple graded Lie algebras

of k-th type, 
f. [19, 31℄. By p

+

we denote the subalgebra g

1

�� � �� g

k

and by p the

subalgebra g

0

� p

+

. We also write g

�

= g

�k

� � � � � g

�1

, and g

j

= g

j

� � � � � g

k

,

j = �k; : : : ; k.

It is well known that then p is a paraboli
 subalgebra of g, and a
tually the

grading is 
ompletely determined by this subalgebra, see e.g. [35℄, Se
tion 3. Thus

all 
omplex simple jkj{graded g are 
lassi�ed by subsets of simple roots of 
omplex

simple Lie algebras (i.e. arbitrary pla
ement of 
rosses over the Dynkin diagrams

in the notation of [4℄), up to 
onjugation. The real jkj{graded simple Lie algebras

are 
lassi�ed easily by means of Satake diagrams: the jkj{grading of the 
omplex

simple g indu
es a jkj{grading on a real form if and only if (i) only `white' nodes
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in the Satake diagram have been 
rossed out, and, (ii) if a node is 
rossed out,

then all nodes 
onne
ted to this one by the double arrows in the Satake diagram

have to be 
rossed out too, see [19℄ or [35℄ for more details. Very helpful notational


onventions and 
omputational re
ipes 
an be found in [4℄.

2.2. Let us re
all basi
 properties of Lie groups G with (e�e
tive) jkj{graded Lie

algebras g. First of all, there is always a unique element E 2 g

0

with the property

[E; Y ℄ = jY for all Y 2 g

j

, j = �k; : : : ; k, the grading element. Of 
ourse, E belongs

to the 
enter z of the redu
tive part g

0

of p � g.

The Killing form provides isomorphisms g

�

i

' g

�i

for all i = �k; : : : ; k and, in

parti
ular, its restri
tions to the 
enter z and the semisimple part g

ss

0

of g

0

are

non{degenerate.

Now, there is the 
losed subgroup P � G of all elements whose adjoint a
tions

leave the p{submodules g

j

= g

j

�� � ��g

k

invariant, j = �k; : : : ; k. The Lie algebra

of P is just p and there is the subgroup G

0

� P of elements whose adjoint a
tion

leaves invariant the grading by g

0

{modules g

i

, i = �k; : : : ; k. This is the redu
tive

part of the paraboli
 Lie subgroup P , with Lie algebra g

0

. We also de�ne subgroups

P

j

+

= exp(g

j

� � � � � g

k

), j = 1; : : : ; k, and we write P

+

instead of P

1

+

. Obviously

P=P

+

= G

0

and P

+

is nilpotent. Thus P is the semidire
t produ
t of G

0

and the

nilpotent part P

+

. More expli
itly, we have (
f. [8℄, Proposition 2.10, or [31, 35℄)

2.3. Proposition. For ea
h element g 2 P , there exist unique elements g

0

2 G

0

and Z

i

2 g

i

, i = 1; : : : ; k, su
h that

g = g

0

expZ

1

expZ

2

: : : expZ

k

:

2.4. Paraboli
 geometries. Following Elie Cartan's idea of generalized spa
es

(see [28℄ for a re
ent reading), a 
urved analog of the homogeneous spa
e G=P is a

right invariant absolute parallelism ! on a prin
ipal P{bundle G whi
h reprodu
es

the fundamental ve
tor �elds. In our approa
h, a (real) paraboli
 geometry (G; !)

of type G=P is a prin
ipal �ber bundle G with stru
ture group P , equipped with a

smooth one{form ! 2 


1

(G; g) satisfying

(1) !(�

Z

)(u) = Z for all u 2 G and fundamental �elds �

Z

, Z 2 p

(2) (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P

(3) !j

T

u

G

: T

u

G ! g is a linear isomorphism for all u 2 G.

In parti
ular, ea
h X 2 g de�nes the 
onstant ve
tor �eld !

�1

(X) de�ned by

!(!

�1

(X)(u)) = X , u 2 G. In this paper, we shall deal with smooth real par-

aboli
 geometries only. The one forms with properties (1){(3) are 
alled Cartan


onne
tions, 
f. [28℄.

The morphisms between paraboli
 geometries (G; !) and (G

0

; !

0

) are prin
ipal

�ber bundle morphisms ' whi
h preserve the Cartan 
onne
tions, i.e. ' : G ! G

0

and '

�

!

0

= !.

2.5. The 
urvature. The stru
ture equations de�ne the horizontal smooth form

K 2 


2

(G; g) 
alled the 
urvature of the Cartan 
onne
tion !:

d! +

1

2

[!; !℄ = K:

The 
urvature fun
tion � : G ! ^

2

g

�

�


g is then de�ned by means of the parallelism

�(u)(X;Y ) = K(!

�1

(X)(u); !

�1

(Y )(u)) = [X;Y ℄� !([!

�1

(X); !

�1

(Y )℄):

In parti
ular, the 
urvature fun
tion is valued in the 
o
hains for the se
ond 
oho-

mology H

2

(g

�

; g). Moreover, there are two ways how to split �. We may 
onsider

the target 
omponents �

i

a

ording to the values in g

i

. The whole g

�

{
omponent
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�

is 
alled the torsion of the Cartan 
onne
tion !. The other possibility is to


onsider the homogeneity of the bilinear maps �(u), i.e.

� =

3k

X

`=�k+2

�

(`)

; �

(`)

: g

i

� g

j

! g

i+j+`

:

Sin
e we deal with semisimple algebras only, there is the 
odi�erential �

�

whi
h

is ajoint to the Lie algebra 
ohomology di�erential �, see e.g. [23℄. Consequently,

there is the Hodge theory on the 
o
hains whi
h enables to deal very e�e
tively

with the 
urvatures. In parti
ular, we may use several restri
tions on the values of

the 
urvature whi
h turn out to be quite useful.

2.6. De�nition. The paraboli
 geometry (G; !) with the 
urvature fun
tion � is


alled 
at if � = 0, torsion{free if �

�

= 0, normal if �

�

Æ � = 0, and regular if it is

normal and �

(j)

= 0 for all j � 0.

Obviously, the morphisms of paraboli
 geometries preserve the above types and

so we obtain the 
orresponding full sub
ategories of regular, normal, torsion free,

and 
at paraboli
 geometries of a �xed type G=P . See [10℄, Se
tion 2, for more

details.

2.7. Flag stru
tures. The homogeneous models for paraboli
 geometries are the

real generalized 
ag manifolds G=P . Curved paraboli
 geometries look like G=P

in�nitesimally. Indeed, the �ltration of g by the p{submodules g

j

is transfered to

the right invariant �ltration T

j

G on the tangent spa
e TG by the parallelism !. The

tangent proje
tion Tp : TG ! TM then provides the �ltration TM = T

�k

M �

T

�k+1

M � � � � � T

�1

M of the tangent spa
e of the underlying manifold M .

Moreover, the stru
ture group of the asso
iated graded tangent spa
e GrTM =

(T

�k

M=T

�k+1

M) � � � � � (T

�2

M=T

�1

M) � T

�1

M redu
es automati
ally to G

0

sin
e G

0

= G=P

+


learly plays the role of its frame bundle. The following lemma is

not diÆ
ult to prove, see e.g. [27℄, Lemma 2.11.

Lemma. Let (G; !) be a paraboli
 geometry, � its 
urvature fun
tion. Then �

(j)

= 0

for all j < 0 if and only if the Lie bra
ket of ve
tor �elds on M is 
ompatible with

the �ltration, i.e. [�; �℄ is a se
tion of T

i+j

M for all se
tions � of T

i

M , and �

of T

j

M . Hen
e it de�nes an algebrai
 bra
ket f ; g

Lie

on GrTM . Moreover, this

bra
ket 
oin
ides with the algebrai
 bra
ket f ; g

g

0

de�ned on GrTM by means of

the G

0

{stru
ture if and only if �

(j)

= 0 for all j � 0.

We 
all the �ltrations of TM with redu
tion of GrTM to G

0

satisfying the very

last 
ondition of the lemma the regular in�nitesimal 
ag stru
tures of type g=p. In

fa
t, the stru
tures 
learly depend on the 
hoi
e of the Lie group G with the given

Lie algebra g. This 
hoi
e is always en
oded already in G

0

. On the other hand,

there are always several distinguished 
hoi
es, e.g. the full automorphism group of

g, the adjoint group, and the unique 
onne
ted and simply 
onne
ted group. In

the 
onformal geometries these 
hoi
es lead to 
onformal Riemannian manifolds,

oriented 
onformal menifolds, and (oriented) 
onformal spin manifolds, respe
tively.

Obviously, the various 
hoi
es of G do not matter mu
h lo
ally and we shall not

dis
uss them expli
itly in this paper.

The G

0

stru
tures on GrTM are equivalent to the frame forms of length one

de�ned and used in [8℄ while the 
ondition �

(j)

= 0 for all j � 0 is equivalent to the

stru
ture equations for these frame forms imposed in the 
onstru
tion of [8℄. In view

of this relation, we also 
all our bundles G

0

equipped with the regular in�nitesimal


ag stru
tures the P{frame bundles of degree one. In parti
ular, we obtain (see [8℄,

Se
tion 3)
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2.8. Theorem. There is the bije
tive 
orresponden
e between the isomorphism


lasses of regular paraboli
 geometries of type G=P and the regular in�nitesimal


ag stru
tures of type g=p on M , ex
ept for one series of one{graded, and one se-

ries of two{graded Lie algebras g for whi
h H

1

(g

�

; g) is nonzero in homogeneous

degree one.

Both types of the ex
eptional geometries from the Theorem will be mentioned

in the examples below.

2.9. Example. The paraboli
 geometries with j1j{graded Lie algebras g are 
alled

irredu
ible. Their tangent bundles do not 
arry any nontrivial natural �ltration

and this irredu
ibility of TM is re
e
ted in the name. The 
lassi�
ation of all su
h

simple real Lie algebras is well known (
f. [22℄ or 2.1 above). We may list all the


orresponding geometries, up to the possible 
hoi
es of the groups G

0

, roughly as

follows:

A

`

the split form, ` > 2 | the almost Grassmannian stru
tures with homoge-

neous models of p{planes in R

`+1

, p = 1; : : : ; `. The 
hoi
e p = 1 yields the

proje
tive stru
tures whi
h represent one of the two ex
eptions in 2.8.

A

`

the quaternioni
 form, ` = 2p + 1 > 2 | the almost quaternioni
 geome-

tries in dimensions 4p, and more general geometries modeled on quaternioni


Grassmannians.

A

`

one type of geometry for the algebra su(p; p), ` = 2p� 1.

B

`

the (pseudo) 
onformal geometries in all odd dimensions 2m+ 1 � 3.

C

`

the split form, ` > 2 | the almost Lagrangian geometries modeled on the

Grassmann manifold of maximal Lagrangian subspa
es in the symple
ti
 R

2`

.

C

`

another type of geometry 
orresponding to the algebra sp(p; p), ` = 2p.

D

`

the (pseudo) 
onformal geometries in all even dimensions m � 4.

D

`

the real almost spinorial geometries with g = so(p; 2`� p), p = 1; : : : ; `� 2.

D

`

the quaternioni
 almost spinorial geometries with g = u

�

(`; H ).

E

6

the split form EI | exa
tly one type with g

0

= so(5; 5)� R and g

�1

= R

16

.

E

6

the real form EIV | exa
tly one type with g

0

= so(1; 9)�R and g

�1

= R

16

.

E

7

the split form EV | exa
tly one type with g

0

= EI � R and g

�1

= R

27

.

E

7

the real form EV II { exa
tly one type with g

0

= EIV � R and g

�1

= R

27

.

2.10. Example. The paraboli
 
onta
t geometries form another important 
lass.

They 
orrespond to j2j{graded Lie algebras g with one{dimensional top 
omponents

g

2

. Thus the regular in�nitesimal stru
tures are equivalent to 
onta
t geometri


stru
tures, together with the redu
tion of the graded tangent spa
e to the subgroup

G

0

in the group of 
onta
t transformations. The only ex
eptions are the so 
alled

proje
tive 
onta
t stru
tures (C

`

series of algebras) where more stru
ture has to be

added, see e.g. [8℄. The general 
lassi�
ation s
heme allows a simple formulation for

the 
onta
t 
ases: The dimension one 
ondition on g

2

yields the pres
ription whi
h

simple roots have to be 
rossed while the pres
ribed length two of the grading gives

further restri
tions. The out
ome may be expressed as (see [19, 35℄):

Proposition. Ea
h non{
ompa
t real simple Lie algebra g admits a unique grad-

ing of 
onta
t type (up to 
onjuga
y 
lasses), ex
ept g is one of sl(2;R), sl(`; H ),

sp(p; q), so(1; q), EIV , FII and in these 
ases no su
h gradings exist.

The best known examples are the non{degenerate hypersurfa
e type CR ge-

ometries (with signature (p; q) of the Levi form) whi
h are exa
tly the torsion free

regular paraboli
 geometries with g = su(p+1; q+1), see e.g. [8℄, Se
tion 4.14{4.16.

The real split forms of the same 
omplex algebras give rise to the so 
alled almost

Lagrangian 
onta
t geometries, 
f. [30℄.
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2.11. Example. The previous two lists of geometries in
lude those with most sim-

ple in�nitesimal 
ag stru
tures. The other extreme is provided by the real paraboli


geometries with most 
ompli
ated 
ags in ea
h tangent spa
e, i.e. those 
orrespond-

ing to the Borel subgroups P � G. Here we need to 
ross out all nodes in the Satake

diagram and so there must not be any bla
k ones. Thus all real split forms, su(p; p),

so(`� 1; `+ 1), and EII list all real forms whi
h admit the right grading.

2.12. Natural bundles. Consider a �xed paraboli
 geometry (G; !) over a man-

ifold M . Then ea
h P{module V de�nes the asso
iated bundle VM = G �

P

V

over M . In fa
t, this is a fun
torial 
onstru
tion whi
h may be restri
ted to all

sub
ategories of paraboli
 geometries mentioned in 2.6.

Similarly, we may treat bundles asso
iated to any a
tion P ! Di�(S) on a

manifold S, the standard �ber for SM = G�

P

S. We shall meet only natural ve
tor

bundles de�ned by P{modules in this paper, however.

There is a spe
ial 
lass of natural (ve
tor) bundles de�ned byG{modules W . Su
h

natural bundles are 
alled tra
tor bundles, see [2, 7℄ for histori
al remarks. We shall

distinguish them by the s
ript letters here and often omit the base manifold M

from the notation. We may view ea
h su
h tra
tor bundleWM as asso
iated to the

extended prin
ipal �ber bundle

~

G = G �

P

G, i.e. W =

~

G �

G

W . Now, the Cartan


onne
tion ! on G extends uniquely to a prin
ipal 
onne
tion form ~! on

~

G, and

so there is the indu
ed linear 
onne
tion on ea
h su
h W . With some more 
areful

arguments, this 
onstru
tion may be extended to all (g; P ){modules W , i.e. P{

modules with a �xed extension of the indu
ed representation of p to a representation

of g 
ompatible with the P{a
tion, see [7℄, Se
tion 2. One of the a
hievements of

the latter paper is the equivalent treatment of the regular paraboli
 geometries

entirely within the framework of the tra
tor bundles, in
lusive the dis
ussion of the


anoni
al 
onne
tions.

2.13. Adjoint tra
tors. It seems that the most important natural bundle is the

adjoint tra
tor bundle A = G �

P

g with respe
t to the adjoint a
tion Ad of G on g.

The P{submodules g

j

� g give rise to the �ltration

A = A

�k

� A

�k+1

� � � � � A

0

� A

1

� � � � � A

k

by the natural subbundles A

j

= G �

P

g

j

. Moreover, the asso
iated graded natural

bundle (often denoted by the abuse of notation by the same symbol again)

GrA = A

�k

� � � � � A

�1

�A

0

�A

1

� � � � � A

k

with A

j

= A

j

=A

j+1

is available. By the very de�nition, there is the algebrai


bra
ket on A de�ned by means of the Lie bra
ket in g (sin
e the Lie bra
ket is

Ad-equivariant), whi
h shows up on the graded bundle as

f ; g : A

i

�A

j

! A

i+j

:

For the same reason, the Killing form de�nes a pairing on GrA su
h that A

�

i

= A

�i

,

and the algebrai
 
odi�erential �

�

, 
f. 2.5, de�nes natural algebrai
 mappings

�

�

: ^

k+1

A

1


A ! ^

k

A

1


A

whi
h are homogeneous of degree zero with respe
t to the gradings in GrA.

Similarly to the notation for g, we also write A

+

= A

1

, A

�

= A=A

0

for bundles

asso
iated either to G or G

0

. Thus A = A

�

+ A

0

+ A

+

, understood either as


omposition series indu
ed by the �ltration, or dire
t sum of invariant subbundles,

respe
tively.
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2.14. Tangent and 
otangent bundles. For ea
h paraboli
 geometry (G; !),

p : G !M , the absolute parallelism de�nes the identi�
ation

G �

P

(g=p) ' TM; G � g

�

3 (u;X) 7! Tp(!

�1

(X)(u)):

In other words, the tangent spa
es TM are natural bundles equipped with the

�ltrations whi
h 
orrespond to the Lie algebras g

�

viewed as the P{modules g=p

with the indu
ed Ad{a
tions. Equivalently, the tangent spa
es are the quotients

TM = A=A

0

of the adjoint tra
tor bundles. Therefore, the indu
ed graded tangent spa
es GrTM

are exa
tly the negative parts of the graded adjoint tra
tor bundles

GrTM = A

�k

� � � � � A

�1

:

Moreover, the de�nition of the algebrai
 bra
ket on A implies immediately that the

bra
ket indu
ed by the Lie bra
ket of ve
tor �elds on GrTM for regular in�nitesimal


ag stru
tures on M 
oin
ides with f ; g.

Now, the 
otangent bundles 
learly 
orrespond to

T

�

M = G �

P

p

+

' A

1

and so the graded 
otangent spa
e is identi�ed with

GrT

�

M = A

1

� � � � � A

k

:

Finally, the pairing of a one{form and a ve
tor �eld is given exa
tly by the 
anoni
al

pairing of A=A

1

and A

1

indu
ed by the Killing form.

2.15. The �rst important observation about the adjoint tra
tors and their links

to tangent and 
otangent spa
es is that the 
urvature K of the paraboli
 geometry

(G; !) is in fa
t a se
tion of �

2

(A=A

0

)

�


 A whose frame form is the 
urvature

fun
tion �. Thus, the 
urvature is a two{form on the underlying manifoldM valued

in the adjoint tra
tors and all the 
onditions on the 
urvature dis
ussed in 2.6 are

expressed by natural algebrai
 operations on the adjoint tra
tors.

The remarkable relation of both tangent and 
otangent spa
es to the positive and

negative parts of the adjoint tra
tors is the most important tool in what follows.

In parti
ular, let us noti
e already here that on
e we are given a redu
tion of the

stru
ture group P of G to its redu
tive part G

0

, the adjoint tra
tor bundles are

identi�ed with their graded versions and both tangent and 
otangent bundles are

embedded inside of A.

3. Weyl{stru
tures

3.1. De�nition. Let (p : G !M;!) be a paraboli
 geometry on a smooth manifold

M , and 
onsider the underlying prin
ipalG

0

{bundle p

0

: G

0

!M and the 
anoni
al

proje
tion � : G ! G

0

. A Weyl{stru
ture for (G; !) is a global G

0

{equivariant

smooth se
tion � : G

0

! G of �.

3.2. Proposition. For any paraboli
 geometry (p : G ! M;!), there exists a

Weyl{stru
ture. Moreover, if � and �̂ are two Weyl{stru
tures, then there is a

unique smooth se
tion � = (�

1

; : : : ;�

k

) of A

1

� � � � � A

k

su
h that

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)):

Finally, ea
h Weyl-stru
ture � and se
tion � de�ne another Weyl-stru
ture �̂ by

the above formula.
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Proof. We 
an 
hoose a �nite open 
overing fU

1

; : : : ; U

N

g of M su
h that both G

and G

0

are trivial over ea
h U

i

. Sin
e by Proposition 2.3 P is the semidire
t produ
t

of G

0

and P

+

it follows immediately that there are smooth G

0

{equivariant se
tions

�

i

: p

�1

0

(U

i

) ! p

�1

(U

i

). Moreover, we 
an �nd open subsets V

i

su
h that

�

V

i

� U

i

and su
h that fV

1

; : : : ; V

N

g still is a 
overing of M .

Now from Proposition 2.3 and the Baker{Campbell{Hausdor� formula it fol-

lows that there is a smooth mapping 	 : p

�1

0

(U

1

\ U

2

) ! p

+

su
h that �

2

(u) =

�

1

(u) exp(	(u)). Equivarian
e of �

1

and �

2

immediately implies that 	(u�g) =

Ad(g

�1

)(	(u)) for all g 2 G

0

. Now let f : M ! [0; 1℄ be a smooth fun
tion with

support 
ontained in U

2

, whi
h is identi
ally one on V

2

and de�ne � : p

�1

0

(U

1

[V

2

)!

p

�1

(U

1

[ V

2

) by �(u) = �

1

(u) exp(f(p

0

(u))	(u)) for u 2 U

1

and by �(u) = �

2

(u)

for u 2 V

2

. Then obviously these two de�nitions 
oin
ide on U

1

\V

2

, so � is smooth.

Moreover, from the equivarian
e of the �

i

and of 	 one immediately 
on
ludes that

� is equivariant. Similarly, one extends the se
tion next to U

1

[ V

2

[ V

3

and by

indu
tion one rea
hes a globally de�ned smooth equivariant se
tion.

If �̂ and � are two global equivariant se
tions, then applying Proposition 2.3

dire
tly, we see that there are smooth maps �

i

: G

0

! g

i

for i = 1; : : : ; k su
h that

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)). As above, equivarian
e of �̂ and � implies

that �

i

(u�g) = Ad(g

�1

)(�

i

(u)) for all g 2 G

0

. Hen
e, �

i


orresponds to a smooth

se
tion of A

i

. The last statement of the Proposition is obvious now.

3.3. Weyl 
onne
tions. We 
an easily relate a Weyl{stru
ture � : G

0

! G to

obje
ts de�ned on the manifold M by 
onsidering the pullba
k �

�

! of the Cartan


onne
tion ! along the se
tion �. Clearly, �

�

! is a g{valued one{form on G

0

, whi
h

by 
onstru
tion is G

0

{equivariant, i.e. (r

g

)

�

(�

�

!) = Ad(g

�1

) Æ �

�

! for all g 2 G

0

.

Sin
e Ad(g

�1

) preserves the grading of g, in fa
t ea
h 
omponent �

�

!

i

of �

�

! is a

G

0

{equivariant one form with values in g

i

.

Now 
onsider a verti
al tangent ve
tor on G

0

, i.e. the value �

A

(u) of a funda-

mental ve
tor �eld 
orresponding to some A 2 g

0

. Sin
e � is G

0

{equivariant, we


on
lude that T

u

���

A

(u) = �

A

(�(u)), where the se
ond fundamental ve
tor �eld is

on G. Consequently, we have �

�

!(�

A

) = !(�

A

) = A 2 g

0

. Thus, for i 6= 0 the form

�

�

!

i

is horizontal, while �

�

!

0

reprodu
es the generators of fundamental ve
tor

�elds.

From this observation, it follows immediately, that for i 6= 0, the form �

�

!

i

des
ends to a smooth one form on M with values in A

i

, whi
h we denote by the

same symbol, while �

�

!

0

de�nes a prin
ipal 
onne
tion on the bundle G

0

. This


onne
tion is 
alled the Weyl 
onne
tion of the Weyl stru
ture �.

3.4. Soldering forms and Rho-tensors. We view the positive 
omponents of

�

�

! as a one{form

P = �

�

(!

+

) 2 


1

(M ;A

1

� � � � � A

k

)

with values in the bundle A

1

� � � � � A

k

. We 
all it the Rho{tensor of the Weyl{

stru
ture �. This is a generalization of the tensor P

ab

well known in 
onformal

geometry.

Sin
e ! restri
ts to a linear isomorphism in ea
h tangent spa
e of G, we see that

the form

�

�

!

�

= (�

�

!

�k

; : : : ; �

�

!

�1

) 2 


1

(M;A

�k

� � � � � A

�1

)

indu
es an isomorphism

TM

�

=

A

�k

� � � � � A

�1

�

=

GrTM:

We will denote this isomorphism by

� 7! (�

�k

; : : : ; �

�1

) 2 A

�k

� � � � � A

�1
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for � 2 TM . In parti
ular, ea
h �xed u 2 G

0

provides the identi�
ation of T

p

0

(u)

M

�

=

g

�


ompatible with the grading. Thus, the 
hoi
e of a Weyl stru
ture � provides

a redu
tion of the stru
ture group of TM to G

0

(by means of the soldering form

�

�

!

�

on G

0

), the linear 
onne
tion on M (the Weyl 
onne
tion �

�

!

0

), and the

Rho{tensor P.

3.5. Remarks. As dis
ussed in 2.7{2.8 above, there is the underlying frame form

of length one on G

0

whi
h is the basi
 stru
ture from whi
h the whole paraboli


geometry (G; !) may be re
onstru
ted, with ex
eptions mentioned expli
itly in 2.9

and 2.10. By de�nition, for i < 0 and � 2 T

i

G

0

this frame form 
an be 
omputed by


hoosing any lift of � to a tangent ve
tor on G and then taking the g

i

{
omponent of

the value of ! on this lift. In parti
ular, we 
an use T��� as the lift, whi
h implies

that the restri
tion of �

�

!

i

(viewed as a form on G

0

) to T

i

G

0


oin
ides with the g

i

{


omponent of the frame form of length one. This in turn implies that the restri
tion

of �

�

!

i

(viewed as a form on M) to T

i

M 
oin
ides with the 
anoni
al proje
tion

T

i

M ! A

i

= T

i

M=T

i+1

M .

There is also another interpretation of the obje
ts onM indu
ed by the 
hoi
e of

a Weyl{stru
ture that will be very useful in the sequel. Namely, 
onsider the form

�

�

!

�0

= �

�

!

�k

� � � � � �

�

!

0

2 


1

(G

0

; g

�k

� � � � � g

0

):

We have seen above that this form is G

0

{equivariant, it reprodu
es the generators

of fundamental ve
tor �elds, and restri
ted to ea
h tangent spa
e, it is a linear

isomorphism. Thus �

�

!

�0

de�nes a Cartan 
onne
tion on the prin
ipal G

0

{bundle

p

0

: G

0

!M . In the 
ase of the irredu
ible paraboli
 geometries, these 
onne
tions

are 
lassi
al aÆne 
onne
tions on the tangent spa
e TM belonging to its redu
ed

stru
ture group G

0

.

3.6. Bundles of s
ales. As we have seen in 3.3, 3.4 above, 
hoosing a Weyl{

stru
ture � : G

0

! G leads to several obje
ts on the manifold M . Now the next

step is to show that in fa
t a small part of these data is suÆ
ient to 
ompletely

�x the Weyl{stru
ture. More pre
isely, we shall see below that even the linear


onne
tions indu
ed by the Weyl 
onne
tion �

�

!

0

on 
ertain oriented line bundles

suÆ
e to pin down the Weyl{stru
ture. Equivalently, one 
an use the 
orresponding

frame bundles, whi
h are prin
ipal bundles with stru
ture group R

+

. The prin
ipal

bundles appropriate for this purpose are 
alled bundles of s
ales .

To de�ne these bundles, we have to make a few observations: A prin
ipal R

+

{

bundle asso
iated to G

0

is determined by a homomorphism � : G

0

! R

+

. The

derivative of this homomorphism is a linear map �

0

: g

0

! R. Now g

0

splits as the

dire
t sum z(g

0

) � g

ss

0

of its 
enter and its semisimple part, and �

0

automati
ally

vanishes on the semisimple part. Moreover, as dis
ussed in 2.2 the restri
tion of the

Killing form B of g to the subalgebra g

0

is non{degenerate, and one easily veri�es

that this restri
tion respe
ts the above splitting. In parti
ular, the restri
tion of B

to z(g

0

) is still non{degenerate and thus there is a unique element E

�

2 z(g

0

) su
h

that �

0

(A) = B(E

�

; A) for all A 2 g

0

.

Next, the a
tion of the element E

�

2 z(g

0

) on any G

0

{irredu
ible representation


ommutes with the a
tion of G

0

, and thus is given by a s
alar multiple of the

identity by S
hur's lemma.

De�nition. An element E

�

of z(g

0

) is 
alled a s
aling element if and only if E

�

a
ts

by a nonzero real s
alar on ea
h G

0

{irredu
ible 
omponent of p

+

. A bundle of s
ales

is a prin
ipal R

+

bundle L

�

! M whi
h is asso
iated to G

0

via a homomorphism

� : G

0

! R

+

, whose derivative is given by �

0

(A) = B(E

�

; A) for some s
aling

element E

�

2 z(g

0

).
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Having given a �xed 
hoi
e of a bundle L

�

of s
ales, a (lo
al) s
ale on M is a

(lo
al) smooth se
tion of L

�

.

3.7. Proposition. Let G be a �xed semisimple Lie group, whose Lie algebra g is

endowed with a jkj{grading. Then the following holds:

(1) There are s
aling elements in z(g

0

).

(2) Any s
aling element E

�

2 z(g

0

) gives rise to a 
anoni
al bundle L

�

of s
ales

over ea
h manifold endowed with a paraboli
 geometry of the given type.

(3) Any bundle of s
ales admits global smooth se
tions, i.e. there always exist global

s
ales.

Proof. (1) The grading element E 2 z(g

0

), 
f. 2.2, a
ts on g

i

by multipli
ation

with i, so it is a s
aling element. More generally, one 
an 
onsider the subspa
e of

z(g

0

) of all elements whi
h a
t by real s
alars on ea
h irredu
ible 
omponent of p

+

.

Then ea
h irredu
ible 
omponent determines a real valued fun
tional and thus a

hyperplane in that spa
e, and the 
omplement of these �nitely many hyperplanes

(whi
h is open and dense) 
onsists entirely of s
aling elements.

(2) Let p

+

= �p

�

be the de
omposition of p

+

into G

0

{irredu
ible 
omponents,

and for a �xed grading element E

�

denote by a

�

the s
alar by whi
h E

�

a
ts

on p

�

. The adjoint a
tion de�nes a smooth homomorphism G

0

!

Q

�

GL(p

�

),

whose 
omponents we write as g 7! Ad

�

(g). Then 
onsider the homomorphism

� : G

0

! R

+

de�ned by

�(g) :=

Y

�

j det(Ad

�

(g))j

2a

�

:

The derivative of this homomorphism is given by �

0

(A) =

P

�

2a

�

tr(ad(A)j

p

�

).

Now g

�

= �

�

(p

�

)

�

, and E

�

a
ts on (p

�

)

�

by �a

�

and on g

0

by zero, and thus

B(E

�

; A) = tr(ad(A) Æ ad(E

�

)) =

P

�

a

�

tr(ad(A)j

p

�

) �

P

�

a

�

tr(ad(A)j

(p

�

)

�

) =

�

0

(A).

(3) This is just due to the fa
t that orientable real line bundles and thus prin
ipal

R

+

{bundles are automati
ally trivial and hen
e admit global smooth se
tions.

3.8. Lemma. Let � : G

0

! G be a Weyl{stru
ture for paraboli
 geometry (G !

M;!) and let L

�

be a bundle of s
ales.

(1) The Weyl 
onne
tion �

�

!

0

2 


1

(G

0

; g

0

) indu
es a prin
ipal 
onne
tion on the

bundle of s
ales L

�

.

(2) L

�

is naturally identi�ed with G

0

= ker(�), the orbit spa
e of the free right a
tion

of the normal subgroup ker(�) � G

0

on G

0

.

(3) The form �

0

Æ �

�

!

0

2 


1

(G

0

) des
ends to the 
onne
tion form of the indu
ed

prin
ipal 
onne
tion on L

�

= G

0

= ker(�).

(4) The 
omposition of �

0

with the 
urvature form of �

�

!

0

des
ends to the 
urvature

of the indu
ed 
onne
tion on L

�

.

Proof. All 
laims are straightforward 
onsequen
es of the de�nitions.

To see that the Weyl{stru
ture � is a
tually uniquely determined by the indu
ed

prin
ipal 
onne
tion on L

�

(
f. Theorem 3.12 below), we have to 
ompute how the

prin
ipal 
onne
tion �

�

!

0


hanges when we 
hange �. For later use, we also 
ompute

how the other obje
ts indu
ed by � 
hange under the 
hange of the Weyl{stru
tures.

So let us assume that �̂ is another Weyl{stru
ture and � = (�

1

; : : : ;�

k

) is the

se
tion of A

1

� � � � � A

k


hara
terized by �̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)).

We shall use the 
onvention that we simply denote quantities 
orresponding to �̂

by hatted symbols and quantities 
orresponding to � by unhatted symbols. Conse-

quently, (�

�k

; : : : ; �

�1

) and (

^

�

�k

; : : : ;

^

�

�1

) denote the splitting of � 2 TM a

ording

to �, respe
tively �̂, and P and

^

P are the Rho{tensors. Finally, let us 
onsider any

ve
tor bundle E asso
iated to the prin
ipal bundle G

0

. Then for any Weyl{stru
ture
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the 
orresponding prin
ipal 
onne
tion on G

0

indu
es a linear 
onne
tion on E,

whi
h is denoted by r for � and by

^

r for �̂.

To write the formulae eÆ
iently, we need some further notation. By j we denote

a sequen
e (j

1

; : : : ; j

k

) of nonnegative integers, and we put kjk = j

1

+2j

2

+� � �+kj

k

.

Moreover, we de�ne j! = j

1

! : : : j

k

! and (�1)

j

= (�1)

j

1

+���+j

k

, and we de�ne (j)

m

to be the subsequen
e (j

1

; : : : ; j

m

) of j. By 0 we denote sequen
es of any length


onsisting entirely of zeros.

3.9. Proposition. Let � and �̂ be two Weyl{stru
tures related by

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u));

where � = (�

1

; : : : ;�

k

) is a smooth se
tion of A

1

� � � � � A

k

. Then we have:

^

�

i

=

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

);(1)

^

P

i

(�) =

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

) +(2)

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(P

`

(�)) +

k

X

m=1

X

(j)

m�1

=0

m+kjk=i

(�1)

j

(j

m

+ 1)j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

m

)

j

m

(r

�

�

m

);

where ad denotes the adjoint a
tion with respe
t to the algebrai
 bra
ket f ; g.

If E is an asso
iated ve
tor bundle to the prin
ipal bundle G

0

, then we have:

^

r

�

s = r

�

s+

X

kjk+`=0

(�1)

j

j!

(ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

)) � s;(3)

where � denotes the map A

0

�E ! E indu
ed by the a
tion of g

0

on the standard

�ber of E.

Proof. The essential part of the proof is to 
ompute the tangent map T

u

�̂ in a

point u 2 G

0

. By de�nition, �̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)). Thus, we 
an

write the evaluation of the tangent map, T

u

�̂��, as the sum of T

�(u)

r

g

�T

u

���, where

g = exp(�

1

(u)) : : : exp(�

k

(u)) 2 P

+

, and the derivative at t = 0 of

�(u) exp(�

1

(
(t))) : : : exp(�

k

(
(t)));

where 
 : R ! G

0

is a smooth 
urve with 
(0) = u and 


0

(0) = �. By 
onstru
tion,

the latter derivative lies in the kernel of T�, where � : G ! G

0

is the proje
tion, so

we 
an write it as �

�(�)

(�̂(u)) for suitable �(�) 2 p

+

.

Now, for � 2 T

u

G

0

, we have �̂

�

!(�) = !(�̂(u))(T

u

�̂��). By equivarian
e of the

Cartan 
onne
tion !, we get !(�(u)�g)(Tr

g

�T���) = Ad(g

�1

)(!(u)(T���)). Conse-

quently,

�̂

�

!(�) = Ad(g

�1

)(�

�

!(�)) + �(�):

Sin
e �(�) 2 p

+

, this term a�e
ts only the transformation of the Rho{tensor, and

does not in
uen
e the 
hanges of �

�

!

i

for i � 0. In parti
ular, for the 
omponents

�̂

�

!

i

with i < 0, we only have to take the part of the right degree in

e

ad(��

k

(u))

Æ : : : Æ e

ad(��

1

(u))

(�

�

!(u)(�));(4)

and expanding the exponentials, this immediately leads to formula (1).
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To 
ompute the 
hange in the 
onne
tion, we have to noti
e that �̂

�

!

0

(�) is

the 
omponent of degree zero in (4) above. Consequently, if we apply �̂

�

!

0

to the

horizontal lift of a tangent ve
tor on M , the out
ome is just this degree zero part.

Otherwise put, the horizontal lift with respe
t to �̂

�

!

0

is obtained by subtra
ting

the fundamental ve
tor �eld 
orresponding to the degree zero part of (4) from

the horizontal lift with respe
t to �

�

!

0

. Applying su
h horizontal ve
tor �eld to a

smooth G

0

{equivariant fun
tion with values in any G

0

{representation and taking

into a

ount that a fundamental ve
tor �elds a
ts on su
h fun
tions by the negative

of its generator a
ting on the values, this immediately leads to formula (3) by

expanding the exponentials.

Finally, we have to deal with the 
hange of the Rho{tensor. Re
all that we view

this as a tensor on the manifold M , so we 
an 
ompute

^

P

i

(�) by applying �̂

�

!

i

to

any lift of �. In parti
ular, we may use the horizontal lift �

h

with respe
t to �

�

!

0

,

so we may assume �

�

!

0

(�) = 0. But then expanding the exponentials in (4) and

taking the part of degree i we see that we exa
tly get the �rst two summands in

formula (2). Thus we are left with proving that the last summand 
orresponds to

�(�). For this aim, let us rewrite the 
urve that we have to di�erentiate as

�̂(u) exp(��

k

(u)) : : : exp(��

1

(u)) exp(�

1

(
(t))) : : : exp(�

k

(
(t))):

Di�erentiating this using the produ
t rule we get a sum of terms in whi
h one �

i

is di�erentiated, while all others have to be evaluated at t = 0, i.e. in u. So ea
h of

these terms reads as the derivative at t = 0 of

�̂(u)�
onj

exp(��

k

(u))

Æ : : : Æ 
onj

exp(��

i+1

(u))

�

exp(��

i

(u)) exp(�

i

(
(t)))

�

;

where 
onj

g

denotes the 
onjugation by g, i.e. the map h 7! ghg

�1

. This expression

is just the prin
ipal right a
tion by the value of a smooth 
urve in P whi
h maps zero

to the unit element, so its result is exa
tly the value at �̂(u) of the fundamental

ve
tor �eld generated by the derivative at zero of this 
urve. This derivative is


learly obtained by applying

e

ad(��

k

(u))

Æ : : : Æ e

ad(��

i+1

(u))

to the derivative at zero of t 7! exp(��

i

(u)) exp(�

i

(
(t))). By [20℄, 4.26, and the


hain rule, the latter derivative equals the left logarithmi
 derivative of exp applied

to the derivative at zero of t 7! �

i

(
(t)). Moreover, the proof of [20℄, Lemma 4.27,


an be easily adapted to the left logarithmi
 derivative, showing that this gives

1

X

p=0

(�1)

p

(p+ 1)!

ad(�

i

(u))

p

(�

h

��

i

):

Finally, we have to observe that �

h

��

i


orresponds to r

�

�

i

and to sort out the

terms of the right degree in order to get the remaining summand in (2).

3.10. Example. For all irredu
ible paraboli
 geometries, the formulae from Propo-

sition 3.9 be
ome extremely simple. In fa
t they 
oin
ide 
ompletely with the known

ones in the 
onformal Riemannian geometry: The grading of TM is trivial, the 
on-

ne
tion transforms as

^

r

�

s = r

�

s� f�; �g � s;

where � is a se
tion of A

1

= T

�

M , and the bra
ket of � and � is a �eld of

endomorphisms of TM a
ting on s in an obvious way. Indeed, there are no more

terms on the right{hand side of 3.9(3) whi
h make sense. Next, the Rho{tensor

transforms as

^

P(�) = P(�) +r

�

�+

1

2

f�; f�; �gg:
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The formulae for the j2j{graded examples are a bit more 
ompli
ated. The splitting

of TM and the 
onne
tion and Rho{tensors 
hange as follows

^

�

�2

= �

�2

^

�

�1

= �

�1

� f�

1

; �

�2

g

^

r

�

s = r

�

s+

�

1

2

f�

1

; f�

1

; �

�2

gg � f�

2

; �

�2

g � f�

1

; �

�1

g) � s;

^

P

1

(�) = P

1

(�)�

1

6

f�

1

; f�

1

; f�

1

; �

�2

ggg+ f�

2

; f�

1

; �

�2

gg+

1

2

f�

1

; f�

1

; �

�1

gg � f�

2

; �

�1

g+r

�

�

1

^

P

2

(�) = P

2

(�)� f�

1

;P

1

(�)g+r

�

�

2

�

1

2

f�

1

;r

�

�

1

g+

1

24

ad(�

1

)

4

(�

�2

)�

1

2

f�

2

; f�

1

; f�

1

; �

�2

ggg+

1

2

f�

2

; f�

2

; �

�2

gg �

1

6

ad(�

1

)

3

(�

�1

) + f�

2

; f�

1

; �

�1

gg:

3.11. Remark. In appli
ations, one is often interested in questions about the de-

penden
e of some obje
ts on the 
hoi
e of the Weyl{stru
tures and then the in-

�nitesimal form of the available 
hange of the splittings, Rho's and 
onne
tions is

important. In our terms, this amounts to sorting out the terms in formulae 3.9(1){

(3) whi
h are linear in upsilons. Thus, the in�nitesimal version of Proposition 3.9

for the variations Æ�

i

, Ær, and ÆP

i

reads

Æ�

i

= � f�

1

; �

i�1

g � � � � � f�

k+i

; �

�k

g(1)

ÆP

i

(�) = r

�

�

i

� f�

1

;P

i�1

(�)g � � � � � f�

i�1

;P

1

(�)g �(2)

f�

i+1

; �

�1

g � � � � � f�

k

; �

�k+i

g

Ær

�

s = � (f�

1

; �

�1

g+ � � �+ f�

k

; �

�k

g) � s:(3)

3.12. Proposition 3.9 not only allows us to show that a Weyl{stru
ture is uniquely

determined by the indu
ed 
onne
tion on any bundle of s
ales, but it also leads to

a des
ription of the Cartan bundle p : G ! M . To get this des
ription, re
all that

for any prin
ipal bundle E ! M there is a bundle QE ! M whose se
tions are

exa
tly the prin
ipal 
onne
tions on E, see [20℄, 17.4.

Theorem. Let p : G ! M be a paraboli
 geometry on M , and let L

�

! M be a

bundle of s
ales.

(1) Ea
h Weyl{stru
ture � : G

0

! G determines the prin
ipal 
onne
tion on L

�

in-

du
ed by the Weyl 
onne
tion �

�

!

0

. This de�nes a bije
tive 
orresponden
e between

the set of Weyl{stru
tures and the set of prin
ipal 
onne
tions on L

�

.

(2) There is a 
anoni
al isomorphism G

�

=

p

�

0

QL

�

, where p

0

: G

0

! M is the pro-

je
tion. Under this isomorphism, the 
hoi
e of a Weyl stru
ture � : G

0

! G is the

pullba
k of the prin
ipal 
onne
tion on the bundle of s
ales L

�

, viewed as a se
tion

M ! QL

�

. Moreover, the prin
ipal a
tion of G

0

is the 
anoni
al a
tion on p

�

0

QL

�

indu
ed from the a
tion on G

0

, while the a
tion of P

+

is des
ribed by equation (3)

from Proposition 3.9.

Proof. (1) Consider the map �

0

: g

0

! R de�ning the bundle L

�

of s
ales. Take

elements Z 2 p

+

and X 2 g

�

, and 
onsider �

0

([Z;X ℄). By assumption, this is given

by B(E

�

; [Z;X ℄) = B([E

�

; Z℄; X) for some s
aling element E

�

2 z(g

0

). Hen
e if

we assume that Z lies in a G

0

{irredu
ible 
omponent of p

+

this is just a nonzero

real multiple of B(Z;X). In parti
ular, this implies that for ea
h 0 6= Z 2 p

i

, we


an �nd an element X 2 g

�i

, su
h that �

0

([Z;X ℄) 6= 0. Moreover, sin
e E

�

2 z(g

0

)

we get Ad(g)(E

�

) = E

�

for all g 2 G

0

and this immediately implies that mapping

Z 2 g

i

to X 7! �

0

([Z;X ℄) indu
es an isomorphism g

i

�

=

g

�

�i

of G

0

{modules.
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Cartan 
onne
tion !

G

//

��

QL

�

��
G

0

= G=P

+

Weyl-stru
ture �

@@

//
M

prin
ipal 
onne
tion

indu
ed by �

�

!

0

^^

soldering form �

�

!

�

2 


1

(G

0

; g

�

)

Weyl 
onne
tion �

�

!

0

2 


1

(G

0

; g

0

)

Rho{tensor P = �

�

!

+

2 


1

(G

0

:p

+

)

�

�

!

�

2 


1

(M ;A

�

)

P 2 


1

(M ;A

+

)

Figure 1. Pullba
k diagram with further obje
ts related to Weyl{stru
tures

To prove (1), we may as well use the indu
ed linear 
onne
tion on the line bundle

L

�

= L

�

�

R

+
R 
orresponding to the standard representation. For this bundle, the

map � from Proposition 3.9 is 
learly given by (A � s)(x) = �

0

(A(x))s(x), where we

denote by �

0

: A

0

!M � R also the mapping indu
ed by �

0

: g

0

! R.

We �rst 
laim that the map from Weyl{stru
tures to linear 
onne
tions is in-

je
tive. So assume that � and �̂ indu
e the same linear 
onne
tion on L

�

and

let � be the se
tion of A

1

� � � � � A

k

des
ribing the 
hange from � to �̂. For

� 2 T

�1

M , we have �

i

= 0 for all i < �1, hen
e formula (3) of 3.9 redu
es

to

^

r

�

s = r

�

s + �

0

(f�

1

; �g)s in this 
ase. If �

1

would be nonzero, then by the

above argument we 
ould �nd � su
h that �

0

(f�

1

; �g) 6= 0, whi
h would 
ontradi
t

^

r = r, so �

1

must be identi
ally zero. But then for � in T

�2

M , the 
hange redu
es

to

^

r

�

s = r

�

s + �

0

(f�

2

; �

�2

g)s and as above, we 
on
lude that �

2

is identi
ally

zero. Indu
tively, we get � = 0 and thus �̂ = �.

To see surje
tivity, assume that

^

r is any linear 
onne
tion on L

�

, and let �

be any Weyl{stru
ture with indu
ed linear 
onne
tion r on L

�

. Then there is a

one{form � 2 


1

(M) su
h that

^

r

�

s = r

�

s+ �(�)s. Restri
ting � to T

�1

M , we 
an

�nd a unique smooth se
tion �

1

of A

1

su
h that �(�) = ��

0

(f�

1

; �g) for all � in

T

�1

M . Next, 
onsider the map T

�2

M !M � R given by

� 7! �(�) + �

0

(f�

1

; �

�1

g)�

1

2

�

0

(f�

1

; f�

1

; �

�2

gg);

where the �

i

are the 
omponents of � with respe
t to the Weyl{stru
ture �. By


onstru
tion, this vanishes on T

�1

M , so it fa
tors to a map de�ned onA

�2

, and thus

there is a unique se
tion �

2

of A

2

su
h that it equals ��

0

(f�

2

; �

�2

g). Indu
tively,

we �nd a se
tion � su
h that the Weyl{stru
ture �̂ 
orresponding to � and �

indu
es the linear 
onne
tion

^

r, 
f. formula 3.9(3).

(2) Consider any point u 2 G. Proposition 3.2 implies that there is a Weyl{stru
ture

� : G

0

! G su
h that u = �(�(u)). If r is the linear 
onne
tion on L

�

indu
ed by �,

then we see from Proposition 3.9 that the value of r

�

s(p(u)) for a ve
tor �eld � on

M and a se
tion s of L

�

depends only on �(p(u)), sin
e its 
hange under a 
hange of

the Weyl{stru
ture depends only on the value of � in p(u). Thus, mapping u to the

value at p(u) of the prin
ipal 
onne
tion on L

�

indu
ed by �

�

!

0

is independent of

the 
hoi
e of �, so we get a well de�ned bundle map from the bundle G ! G

0

to the

bundle QL

�

!M 
overing the proje
tion p

0

: G

0

!M . Moreover, from part (1) of

this proof it follows that this map indu
es isomorphisms in ea
h �ber, so it leads
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to an isomorphism G ! p

�

0

QL

�

of bundles over G

0

. Obviously, the G

0

{equivariant

se
tions of p

�

0

QL

�

! G

0


orrespond exa
tly to the indu
ed prin
ipal 
onne
tions

on L

�

, i.e. the se
tions of QL

�

!M .

In order to des
ribe the prin
ipal a
tion of P on p

�

0

QL

�

obtained by the above

isomorphism, one just has to note that for u 2 G

0

and g 2 G

0

the �bers of p

�

0

QL

�

over u and u�g are 
anoni
ally isomorphi
 sin
e p

0

(u) = p

0

(u�g). Thus, the prin
ipal

right a
tion of G

0

is simply given by a
ting on G

0

. On the other hand, �x u 2 G

0

and

an element exp(Z

1

) : : : exp(Z

k

) 2 P

+

for Z

i

2 g

i

. Via u, the element Z

i


orresponds

to an element �

i

2 A

i

at the point p

0

(u). Then the prin
ipal right a
tion of P

+

is

des
ribed by the formula (3) of Proposition 3.9 as required.

3.13. Closed and exa
t Weyl{stru
tures. Let us �x a bundle of s
ales L

�

for some paraboli
 geometry. Then the bije
tive 
orresponden
e between Weyl{

stru
tures and prin
ipal 
onne
tions on L

�

immediately leads to two distinguished

sub
lasses of Weyl{stru
tures. Namely, we 
all a Weyl{stru
ture � : G

0

! G 
losed ,

if the indu
ed prin
ipal 
onne
tion on L

�

(or equivalently the indu
ed linear 
on-

ne
tion r on L

�

) is 
at.

Moreover, by Proposition 3.7 the bundle L

�

of s
ales admits global smooth se
-

tions, and any su
h se
tion gives rise to a 
at prin
ipal 
onne
tion on L

�

(whi
h

in addition has trivial holonomy) and hen
e to a 
losed Weyl{stru
ture. The 
losed

Weyl{stru
tures indu
ed by su
h global se
tions are 
alled exa
t.

Note that in the 
ase of 
onformal stru
tures, the 
anoni
al 
hoi
e for the bundle

of s
ales is simply the R

+

{bundle whose smooth se
tions are the metri
s in the


onformal 
lass. Thus, the exa
t Weyl{stru
tures in 
onformal geometry 
orrespond

exa
tly to the Levi{Civita 
onne
tions of the metri
s in the 
onformal 
lass.

The reason for the names \
losed" and \exa
t" be
omes apparent, on
e one

studies the aÆne stru
tures on the sets of 
losed and exa
t Weyl{stru
tures. So let

us assume that � is a 
losed Weyl{stru
ture, and 
onsider any other Weyl{stru
ture

�̂ 
orresponding to the se
tion � = (�

1

; : : : ;�

k

) of A

1

� � � � � A

k

. Now we 
an

reinterpret theorem 3.12(1) together with proposition 3.9 as showing that the set

of Weyl{stru
tures is an aÆne spa
e over 


1

(M), in su
h a way that �xing � the

se
tion � 
orresponds to the one{form �

�;�

de�ned by

�

�;�

(�) =

X

kjk+`=0

(�1)

j

j!

�

0

�

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(�

`

)

�

:

This identi�
ation is obtained simply by pulling ba
k the aÆne stru
ture on the

spa
e of prin
ipal 
onne
tions on L

�

to the spa
e of Weyl{stru
tures. In parti
u-

lar, the 
hange of the prin
ipal 
onne
tions � and �̂ on L

�

indu
ed by � and �̂,

respe
tively, is just given by �̂ = � +�

�;�

. But then their 
urvatures 
hange simply

by �̂ = � + d�

�;�

, so in parti
ular if � is 
losed then �̂ is 
losed if and only if

d�

�;�

= 0. Thus, in the same way as Weyl{stru
tures are aÆne over all one{forms,


losed Weyl{stru
tures are aÆne over 
losed one{forms.

For exa
t Weyl{stru
tures, the situation is even simpler. If s and ŝ are two global

se
tions of L

�

, then there is a unique smooth fun
tion f su
h that ŝ(x) = e

�f(x)

s(x).

It is then well known that the asso
iated prin
ipal 
onne
tions simply 
hange by

�̂ = � + df , so exa
t Weyl{stru
tures are aÆne over the spa
e of exa
t one{forms.

3.14. Remark. Another useful observation about exa
t Weyl geometries is related

to the identi�
ation of L

�

with G

0

= ker� from 3.8(2). By the general properties of


lassi
al G{stru
tures, the se
tions of su
h bundles are in bije
tive 
orresponden
e

with redu
tions of the stru
ture groups to ker� � G

0

. Thus the holonomy of

the Weyl 
onne
tions given by 
losed Weyl stru
tures is always at most ker�. In

parti
ular, in j1j{graded 
ases the s
aling element is unique up to s
alar multiples,
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and the kernel of � is exa
tly the semisimple part of G

0

. The same observation is

then true for the 
losed Weyl geometries lo
ally.

3.15. Normal Weyl{stru
tures. Besides the rather obvious 
losed and exa
t

Weyl{stru
tures dis
ussed above there is a se
ond kind of spe
ial Weyl{stru
tures,

the so{
alled normal Weyl{stru
tures . In several respe
ts, they are quite di�erent

from 
losed and exa
t Weyl{stru
tures. On one hand, they are \more 
anoni
al"

sin
e their de�nition does not involve the 
hoi
e of a bundle of s
ales. On the other

hand, in 
ontrast to 
losed and exa
t Weyl{stru
tures, whi
h always exist globally,

normal Weyl{stru
tures in general exist only lo
ally (over M). Their existen
e is


losely related to the existen
e of normal 
oordinates for paraboli
 geometries. This

subje
t will be taken up elsewhere. We would like to point out at this pla
e that

the existen
e of normal Weyl{stru
tures seems to be a new result even in the 
ase

of 
onformal stru
tures, where it signi�
antly improves the result on the existen
e

of Graham normal 
oordinates, see [24℄.

Sin
e the Rho tensors give the information about the di�eren
e of the 
ovariant

derivative with respe
t to the Weyl 
onne
tion and the invariant derivative with

respe
t to ! along the image of the 
hosen Weyl{stru
ture �, the \normality" we

have in mind will be des
ribed in terms of 
ertain minimality of P. More expli
itly,

a Weyl{stru
ture � will be 
alled normal at the point x 2 M if it satis�es the

properties imposed in Theorem 3.16. This Theorem also des
ribes 
ompletely the

freedom in the 
hoi
e.

Re
all that on
e we have 
hosen a Weyl{stru
ture, we get an identi�
ation of the

tangent bundle with its asso
iated graded ve
tor bundle. Thus TM is asso
iated

to G

0

and so there is the indu
ed linear Weyl 
onne
tion on TM . Sin
e the Weyl{

stru
ture indu
es 
ovariant derivatives on all 
omponents of the asso
iated graded

of the tangent bundle, the Weyl 
onne
tion on TM preserves the grading. For the

same reason, we 
an form 
ovariant derivatives of the Rho{tensor, viewed as a

one{form with values in T

�

M

�

=

A

1

� � � � � A

k

, whi
h again preserve the grading.

3.16. Theorem. Let p : G ! M be a paraboli
 geometry with underlying G

0

{

bundle p

0

: G

0

!M and let � : G ! G

0

be the 
anoni
al proje
tion. Let x 2M be a

point and let u

0

2 G

0

and u 2 G be points su
h that �(u) = u

0

and p

0

(u

0

) = x. Then

there exists an open neighborhood U of x in M and a Weyl{stru
ture � : p

�1

0

(U)!

p

�1

(U) su
h that �(u

0

) = u and the Rho{tensor P of � has the property that for

all k 2 N the symmetrization over all �

i

of (r

�

k

: : :r

�

1

P)(�

0

) vanishes at x, so in

parti
ular P(x) = 0. Moreover, this 
ondition uniquely determines the in�nite jet

of � in u

0

.

Proof. Consider the Cartan 
onne
tion ! on G. Sin
e ! restri
ts to a linear isomor-

phism, for ea
h element A 2 g we get the 
onstant ve
tor �eld

~

A 2 X(G) de�ned

by

~

A(v) = !(v)

�1

(A), 
f. 2.4. (Note that for A 2 p this is just the fundamental

ve
tor �eld.) In parti
ular, we may 
onsider the ve
tor �elds

~

X for X 2 g

�

. Now

we 
an �nd a neighborhood V of zero in g

�

, su
h that for all X 2 V the 
ow of

X in the point u exists up to time t = 1. De�ne ' : V ! G by '(X) = Fl

~

X

1

(u).

Sin
e T

u

p Æ T

0

' : g

�

! T

x

M is obviously a linear isomorphism, we may assume

(possibly shrinking V ) that the maps ', � Æ ' and p Æ ' are all di�eomorphisms

onto their images, and we put U = p('(V )). For a point v

0

2 p

�1

0

(U) there 
learly

exist unique elements X 2 V and g 2 G

0

su
h that v

0

= �('(X))�g, and we

de�ne �(v

0

) := '(X)�g. Obviously, this de�nes a smooth G

0

{equivariant se
tion

� : p

�1

0

(U)! p

�1

(U) and �(u

0

) = u.

Next, 
onsider a tangent ve
tor � 2 T

x

M , and its horizontal lift �

h

2 T

u

0

G

0

with

respe
t to the prin
ipal 
onne
tion �

�

!

0

. Sin
e �

�

!

�0

de�nes a Cartan 
onne
-

tion on p

�1

0

(U) (see 3.5) we 
an extend �

h

uniquely to a ve
tor �eld

~

�

h

su
h that
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�

�

!

�0

(

~

�

h

) is 
onstantly equal to some X 2 g

�

. Moreover,

~

�

h

is proje
table to a

ve
tor �eld

~

� on U and it is exa
tly the horizontal lift of

~

� (whi
h also justi�es the

notation).

Now 
onsider the 
ow line 
(t) = Fl

~

X

t

(u) = '(tX) in G, whi
h is de�ned for

suÆ
iently small t. By 
onstru
tion, we have �(�(
(t))) = 
(t) for all t. But this

implies that T��(� Æ 
)

0

(t) = 


0

(t), so �

�

(!)((� Æ 
)

0

(t)) is 
onstantly equal to X and

thus (� Æ 
)(t) = Fl

~

�

t

(u

0

). On the other hand, from the 
onstru
tion it is 
lear that

!(


0

(t)) = X 2 g

�

, so if we 
onsider the fun
tion P : G

0

! L(g

�

; p

+

) des
ribing

the Rho{tensor, then P(�(
(t)))(X) = 0 for all t. Consequently, all derivatives

of this 
urve in t = 0 vanish. But sin
e � Æ 
 is an integral 
urve of

~

�

h

these

iterated derivatives exa
tly 
orrespond to iterated 
ovariant derivatives of P in

dire
tion � evaluated at �. Thus, we obtain (r

�

: : :r

�

P)(�) = 0 for any number of


ovariant derivatives. Using polarization, this implies that the symmetrization of

(r

�

k

: : :r

�

1

P)(�

0

) over all �

i

vanishes at x.

To see that our 
ondition �xes the in�nite jet of the Weyl{stru
ture suppose

that �̂ is another normal Weyl stru
ture with �̂(u

0

) = u and let � = (�

1

; : : : ;�

k

)

be the se
tion of A

1

� � � � � A

k

des
ribing the 
hange from � to �̂. We want to

show that the in�nite jet of � vanishes at x = p(u). Sin
e both Weyl{stru
tures

map u

0

to u, we must have �(x) = 0. Next, we know that P(x) =

^

P(x) = 0.

Sin
e all �

i

vanish in x, formula (2) from Proposition 3.9 immediately shows that

this implies r�

i

(x) = 0 for all i = 1; : : : ; k, so r�(x) = 0. Now,

^

P = 0 and

� = 0. On one hand, it follows that

^

rP(x) = rP(x) and on the other hand that

(r

�

^

P)(�)(x) = r

�

(

^

P(�))(x). But hitting formula (2) from Proposition 3.9 with r

�

and symmetrizing over � and �, we always get terms involving some �

i

or r

�

�

i

or

r

�

P(�) whi
h all vanish at x, ex
ept for one term in the very last line, in whi
h we

get a se
ond 
ovariant derivative of some �

i

. So we see that the symmetrizations

of

^

r

�

^

P(�) and r

�

r

�

� 
oin
ide. Thus vanishing of the symmetrization of the �rst


ovariant derivative implies that the symmetrized se
ond derivative of � is zero,

and thus the two{jet of � at x must be zero. Iteratively, one similarly sees that in

the expression of an symmetrized iterated 
ovariant derivative of P we always get

terms involving symmetrized iterated 
ovariant derivatives of �

i

's or P's ex
ept for

one term 
oming from the very last line of the transformation formula. As above,

one then 
on
ludes that vanishing of the symmetrization of the k{fold 
ovariant

derivative of

^

P is equivalent to vanishing of the symmetrization of the (k + 1){fold


ovariant derivative of � and thus to the k + 1{jet of � in x being trivial.

4. Chara
terization of Weyl{stru
tures

In the last se
tion, we started with a Weyl{stru
ture for a paraboli
 geometry

(G !M;!) and we 
onstru
ted several underlying obje
ts on the manifold M , see

Figure 1 for an illustration. Now we are going to 
hara
terize when general obje
ts

of that type a
tually 
ome from a Weyl stru
ture. In the �nal stage, this will mean

expli
it 
onditions relating the soldering form, linear 
onne
tion and its torsion and


urvature, together with a pro
edure building the 
orresponding Rho{tensors. This

is quite simple for irredu
ible geometries, where the soldering form is �xed, and

the whole 
ondition pres
ribes uniquely the torsion of a G

0

{
onne
tion. The Rho{

tensor is then given by a simple formula in terms of the 
urvature, see Example

4.8 below. Of 
ourse, the same story gets mu
h more 
ompli
ated for the general

jkj{graded 
ase. The main step is done in Theorem 4.4 and then a detailed analysis

of the 
urvature ful�lls our goal.
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Throughout this se
tion we restri
t to the 
ase of regular paraboli
 geometries

asso
iated to a jkj{graded semisimple Lie algebra g su
h that H

1

(g

�

; g) is 
on
en-

trated in homogeneous degrees � 0, i.e. su
h that none of the simple jk

i

j{graded

ideals is of one of the two types mentioned in 2.8. In the 
ase that su
h ideals are

present, a similar 
hara
terization is possible, but the 
onditions are more 
ompli-


ated to formulate.

4.1. De�nition. Let p

0

: G

0

! M be a regular in�nitesimal 
ag stru
ture, see

2.7. A Weyl{form for M is a one{form � 2 


1

(G

0

; g) whi
h is G

0

{equivariant,

i.e. (r

g

)

�

� = Ad(g

�1

) Æ � for all g 2 G

0

, reprodu
es the generators of fundamental

ve
tor �elds, i.e. �(�

A

) = A for all A 2 g

0

and has the property that for ea
h i < 0

the restri
tion of �

i

to T

i

G

0


oin
ides with the g

i

{
omponent of the frame form of

degree one on G

0

indu
ed by the regular in�nitesimal 
ag stru
ture, see 2.7 and 3.5.

By 3.3 and 3.4, for any Weyl{stru
ture � : G

0

! G, the pullba
k �

�

! is a Weyl{

form for M . As in 3.4, the 
ondition of the restri
tion of �

i

to T

i

G

0

, i < 0, means

on M exa
tly that the restri
tion of �

i

to T

i

M 
oin
ides with the 
anoni
al pro-

je
tion T

i

M ! A

i

. In parti
ular, this implies that �

�

= �

�k

� � � � � �

�1

indu
es a

linear isomorphism T

u

G

0

=V

u

G

0

�

=

g

�

, and thus �

�0

is a Cartan 
onne
tion on G

0

.

Completely parallel to the development in 3.3{3.5 we 
an equivalently interpret a

Weyl{form for M as a one form �

�

2 


1

(M;A

�k

� � � � �A

�1

) indu
ing an isomor-

phism between TM and its asso
iated graded bundle, plus a prin
ipal 
onne
tion

�

0

2 


1

(G

0

; g

0

) on G

0

, plus a Rho{tensor P = P

�

2 


1

(M;A

1

� � � � � A

k

), so a

Weyl{form essentially 
onsists of obje
ts living on M .

4.2. Weyl{
urvature. Next, for a Weyl{form � for M , we de�ne the Weyl{


urvature W of � . As a g{valued two form on G

0

, it is de�ned by

W (�; �) = d�(�; �) + [�(�); �(�)℄:

From the fa
t that � is G

0

{equivariant and reprodu
es the generators of funda-

mental ve
tor �elds, one immediately 
on
ludes that W is horizontal and G

0

{

equivariant, so it des
ends to an A{valued two form on M . Taking into a

ount the

identi�
ation of TM with A

�

, we 
an also view W as a se
tion of L(�

2

A

�

;A).

Finally note that any se
tion � of L(�

2

A

�

;A) 
an be split a

ording to homoge-

neous degrees. We denote by �

(`)

the homogeneous part of degree `, i.e. �

(`)

(�; �) 2

A

i+j+`

for se
tions � of A

i

and � of A

j

with i; j < 0.

Lemma. Let p

0

: G

0

! M be a regular in�nitesimal 
ag stru
ture. Then any

Weyl{form � 2 


1

(G

0

; g) has the property that W

(`)

= 0 for all ` � 0.

Proof. Consider � 2 �(A

i

) and � 2 �(A

j

), for i; j < 0. Then �

n

(�) = 0 for n < i

and �

m

(�) = 0 for m < j, so for ` < 0 if m+ n = i+ j + ` then [�

n

(�); �

m

(�)℄ = 0.

Thus, in this 
ase, the de�nition of W

(`)

(�; �) 
an be rewritten as W

(`)

(�; �) =

d�

i+j+`

(�; �) = ��

i+j+`

([�; �℄). By de�nition of a Weyl{form,W

(`)

(�; �) thus equals

the 
lass of the bra
ket �[�; �℄ in T

i+j+`

M=T

i+j+`+1

M . But a

ording to 2.7, we

in parti
ular know that the bra
ket of any se
tion of T

i

M with a se
tion of T

j

M

lies in T

i+j

M , so sin
e ` < 0, we must have W

(`)

= 0.

Next, for ` = 0, we 
an write

W

(0)

(�; �) = d�

i+j

(�; �) + f�; �g = ��

i+j

([�; �℄) + f�; �g:

Again, �

i+j

([�; �℄) is just the 
lass of the bra
ket in T

i+j

M=T

i+j+1

M and so the

vanishing ofW

(0)

is just the remaining part of the de�nition of regular in�nitesimal


ag stru
tures, see 2.7.
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4.3. De�nition. Let p

0

: G

0

! M be a regular in�nitesimal 
ag stru
ture. Then

a Weyl{form � 2 


1

(G

0

; g) is 
alled normal if and only if its Weyl{
urvature W 2

�(L(�

2

A

�

;A)) satis�es �

�

(W ) = 0, where �

�

: L(�

2

A

�

;A)) ! L(A

�

;A) is the

bundle map indu
ed by the Lie algebra 
odi�erential, see 2.13.

4.4. Theorem. Let (p : G ! M;!) be a regular paraboli
 geometry and let p

0

:

G

0

! M be the underlying regular in�nitesimal 
ag stru
ture. Then a Weyl{form

� 2 


1

(G

0

; g) for M is 
oming from some Weyl{stru
ture � : G

0

! G, i.e. � = �

�

!,

if and only if � is normal.

Proof. First we show that for any Weyl{stru
ture � : G

0

! G the Weyl{form �

�

!

is normal. By the de�nition in 4.2 the Weyl{
urvature W is a g{valued two{form

on G

0

, given by

W (�; �) = d�

�

!(�; �) + [�

�

!(�); �

�

!(�)℄ = �

�

(d! +

1

2

[!; !℄)(�; �):

Thus, W is simply the pullba
k along � of the 
urvature of the Cartan 
onne
tion

! on G

0

. By de�nition of a normal paraboli
 geometry, this 
urvature is �

�

{
losed,

so the same is true for W .

Now, let us assume that we have given an arbitrary normal Weyl{form � 2




1

(G

0

; g). Moreover, let us 
hoose any bundle L

�

of s
ales for the paraboli
 geometry

in question. Sin
e �

0

is a prin
ipal 
onne
tion on G

0

, it indu
es a prin
ipal 
onne
tion

on L

�

, whi
h by Theorem 3.12 in turn gives rise to a unique Weyl{stru
ture � : G

0

!

G su
h that the 
onne
tion on L

�

indu
ed by �

�

!

0


oin
ides with the 
onne
tion

indu
ed by �

0

. We 
laim that � = �

�

!, whi
h will 
on
lude the proof.

Consider the di�eren
e � � �

�

! 2 


1

(G

0

; g). For i < 0, we know from our

assumptions that both �

i

and �

�

!

i


oin
ide on T

i

G

0

with the frame form of degree

one. In parti
ular, the di�eren
e �

i

��

�

!

i

vanishes on T

i

G

0

for all i < 0. Sin
e T

0

G

0

is just the verti
al bundle of G

0

and sin
e both �

0

and �

�

!

0

are prin
ipal 
onne
tions

on G

0

, we see that �

0

� �

�

!

0

vanishes on T

0

G

0

, too. Finally, if we put T

i

G

0

to be

the zero se
tion for i > 0, then �

i

��

�

!

i

vanishes on T

i

G

0

for all i = �k; : : : ; k. Let

us indu
tively assume that �

i

� �

�

!

i

vanishes on T

i�n+1

G

0

for all i and some n.

Then 
onsider the restri
tion of �

i

� �

�

!

i

to T

i�n

G

0

, whi
h 
an be viewed as

a map T

i�n

G

0

=T

i�n+1

G

0

! g

i

. For ea
h i su
h that i � n � 0, the forms �

i�n

and �

�

!

i�n


oin
ide on T

i�n

G

0

and indu
e an isomorphismT

i�n

G

0

=T

i�n+1

G

0

!

G

0

� g

i�n

. Consequently, we get a unique map � : G

0

! L(g

�

; g) whi
h has values

in maps homogeneous of degree n, su
h that (�

i

� �

�

!

i

)(�) = �(�

i�n

(�)) for all

� 2 T

i�n

G

0

.

Next, letW

(n)

be the homogeneous 
omponent of degree n of the Weyl{
urvature

of � viewed as a fun
tion G

0

! L(�

2

g

�

; g) (having values in the maps homogeneous

of degree n), and let

~

W

(n)

be the 
orresponding obje
t for �

�

!. We 
laim that for

all X , Y 2 g

�

~

W

(n)

(X;Y ) =W

(n)

(X;Y )� [X;�(Y )℄ + [Y;�(X)℄ + �([X;Y ℄) =(1)

=W

(n)

(X;Y )� (� Æ�)(X;Y ):

Let us postpone the proof of this 
laim and assume it is true for a while. Sin
e

bothW

(n)

and

~

W

(n)

are �

�

{
losed, this implies �

�

Æ�Æ� = 0, whi
h implies �Æ� = 0

sin
e � and �

�

are adjoint, see 2.5. Sin
e H

1

(g

�

; g) is 
on
entrated in non-positive

degrees of homogeneity, this implies � = 0 for n > k and �(X) = [Z;X ℄ for some

smooth Z : G

0

! g

n

for n � k. But in the latter 
ase, the proof of Theorem 3.12(1)

shows that sin
e �

0

and �

�

!

0

indu
e the same prin
ipal 
onne
tion on L

�

, we must

have Z = 0, and thus � = 0. Hen
e, �

i

and �

�

!

i


oin
ide on T

i�n

G

0

for all i < n,

for i = n this follows sin
e n > 0 and thus both �

n

and �

�

!

n

are horizontal, while

for i > n it is trivially satis�ed. Thus the result follows by indu
tion.
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So we are left with the proof of (1) only. Let us �x X 2 g

i

, Y 2 g

j

, i; j < 0. By

de�nition,

W

(n)

(u)(X;Y ) = d�

i+j+n

(�

�1

�0

(X); �

�1

�0

(Y )) + [�(�

�1

�0

(X)); �(�

�1

�0

(Y ))℄

i+j+n

;

where the index in the bra
ket means that we just have to take the 
omponent in

g

i+j+n

. For

~

W

(n)

we get the analogous formula with all � 's repla
ed by �

�

!.

Next, observe that both �

�1

�0

(X) and �

�

!

�1

�0

(X) lie in T

i

G

0

� T

i+j

G

0

and sim-

ilarly for Y . From above, we know that �

�

!

i+j+n

(�) = �

i+j+n

(�) � �(�

i+j

(�)) for

all � in T

i+j

G

0

. Taking the exterior derivative of this equation and keeping in mind

that �

i+j

vanishes on T

i

G

0

and T

j

G

0

, we see that for � 2 T

i

G

0

and � 2 T

j

G

0

we

get

d�

�

!

i+j+n

(�; �) = d�

i+j+n

(�; �)� �(d�

i+j

(�; �)):

Sin
e W

(0)

= 0, the se
ond term (in
luding the � sign) 
an be rewritten as

�([�

i

(�); �

j

(�)℄), and we may as well repla
e � by �

�

! in this expression. Thus,

we see that

~

W

(n)

(X;Y ) = d�

i+j+n

(�

�

!

�1

�0

(X); �

�

!

�1

�0

(Y )) + �([X;Y ℄) +

+ [�

�

!(�

�

!

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

:

Now we have to distinguish a few 
ases: Let us �rst assume that i + n > 0. Then

�

�

!

�1

�0

(X) = �

�1

�0

(X), and �

�

!(�

�

!

�1

�0

(X)) = �(�

�1

�0

(X)) � �(X), and �(X) 2

g

i+n

� p

+

. In parti
ular, this implies that

[�

�

!(�

�

!

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

=

= [�(�

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

� [�(X); Y ℄:

Se
ondly, if i+n = 0 then �(X) 2 g

0

, and thus �

�

!

�1

�0

(X) = �

�1

�0

(X) + �

�(X)

. The

in�nitesimal version of equivarian
e of �

i+j+n

then implies that

d�

i+j+n

(�

�

!

�1

�0

(X); �

�

!

�1

�0

(Y )) = d�

i+j+n

(�

�1

�0

(X); �

�

!

�1

�0

(Y ))� [�(X); Y ℄;

sin
e i + j + n = j in this 
ase. On the other hand both �

�

!(�

�

!

�1

�0

(X)) and

�(�

�1

�0

(X)) in this 
ase are 
ongruent to X modulo p

+

, so

[�

�

!(�

�

!

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

= [�(�

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

:

Finally, suppose that i+n < 0, so �(X) 2 g

i+n

� g

�

. Then �

�

!

�1

�0

(X) is 
ongruent

to �

�1

�0

(X+�(X)) modulo T

i+n+1

G

0

. Sin
e the bra
ket of a se
tion of this subbundle

with a se
tion of T

j

G

0

is a se
tion of T

i+j+n+1

G

0

and �

i+j+n

vanishes on the latter

subbundle, we 
on
lude that

d�

i+j+n

(�

�

!

�1

�0

(X); �

�

!

�1

�0

(Y )) = d�

i+j+n

(�

�1

�0

(X); �

�

!

�1

�0

(Y )) +

+ d�

i+j+n

(�

�1

�0

(�(X)); �

�

!

�1

�0

(Y )):

Sin
e W

(0)

= 0, the last term 
an be rewritten as �[�(X); Y ℄. As above, both

�

�

!(�

�

!

�1

�0

(X)) and �(�

�1

�0

(X)) are 
ongruent toX modulo p

+

, so again the bra
ket

term makes no problem.

Hen
e we see, that in any 
ase we get

~

W

(n)

(X;Y ) = d�

i+j+n

(�

�1

�0

(X); �

�

!

�1

�0

(Y )) + [�(�

�1

�0

(X)); �

�

!(�

�

!

�1

�0

(Y ))℄

i+j+n

�

� [�(X); Y ℄ + �([X;Y ℄):

Doing the same 
hanges to Y instead of X we obtain the required equality (1), and

the whole proof of the theorem is �nished.
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4.5. Remark. If one does not assume that H

1

(g

�

; g) is 
on
entrated in non-

positive degrees, i.e. if one allows g to 
ontain one of the two simple fa
tors men-

tioned in 2.8, then H

1

(g

�

; g) is 
on
entrated in homogeneous degrees less or equal

to one. Thus, the above proof shows that � = �

�

! if � is normal and has the prop-

erty that the restri
tions of �

i

and �

�

!

i

to T

i�1

G

0


oin
ide for all i. This 
ondition

is then fairly simple to interpret for any 
on
rete 
hoi
e of su
h stru
ture.

4.6. In the proof of Theorem 4.4, we observed that for aWeyl{stru
ture � : G

0

! G

the Weyl{
urvatureW of the Weyl{form �

�

! is exa
tly the pullba
k along � of the


urvature � of the normal Cartan 
onne
tion ! on G. This allows us to 
ompute

the 
hange of the Weyl{
urvature under a 
hange of the Weyl{stru
ture. Suppose

that �̂ is another Weyl{stru
ture and � = (�

1

; : : : ;�

k

) is the smooth se
tion of

A

1

� � � � � A

k

des
ribing the 
hange from � to �̂, see Proposition 3.2, i.e.

�̂(u) = �(u) exp(�

1

(u)) : : : exp(�

k

(u)):

Equivarian
e of the Cartan 
onne
tion ! immediately implies that the 
urvature

� is equivariant, i.e. viewing � as a two form on G with values in g, we have

�(v�g)(Tr

g

��; T r

g

��) = Ad(g

�1

)(�(v)(�; �)) for g 2 P and �; � 2 T

v

G. Putting

v = �(u) and g = exp(�

1

(u)) : : : exp(�

k

(u)), we see from the proof of Proposition

3.9 that for � 2 T

u

G

0

the element T

u

�̂�� is 
ongruent to Tr

g

T

u

��� modulo verti
al

elements, whi
h are killed by the 
urvature anyhow. Thus, viewing W and

^

W as

g{valued two forms on G

0

, we get

^

W (�; �) = Ad(g

�1

)(W (�; �)). Moreover, to get

the interpretation of our two Weyl 
urvatures W and

^

W as A{valued two forms on

M , we just have to apply the above de�nition to lifts of ve
tor �elds on M , and

the result is independent of the 
hoi
e of the lifts sin
e W is horizontal. Keeping

in mind that the Lie{bra
ket in g 
orresponds to the algebrai
 bra
ket of se
tions

of A and expanding the exponentials in Ad(g

�1

) as in the proof of Proposition 3.9

we arrive (with notation as in 3.9) at

^

W

i

(�; �) =

X

kjk+`=i

(�1)

j

j!

ad(�

k

)

j

k

Æ : : : Æ ad(�

1

)

j

1

(W

`

(�; �)):(1)

From this formula, one 
an also derive a formula des
ribing the 
hange ofW viewed

as a se
tion of L(�

2

A

�

;A) taking into a

ount the 
hange of the identi�
ation

of TM with A

�

des
ribed by (1) in Proposition 3.9, and thus a formula for the


hange of the individual homogeneous 
omponents W

(`)

. The only point that is

important for us here is that the homogeneous 
omponent W

(1)

of degree one is

a
tually independent of �. This 
an be immediately veri�ed from the above formula,

taking into a

ount that W

(`)

= 0 for all ` � 0.

4.7. Remark. The results obtained so far in prin
iple allow to give a des
ription

of the Cartan bundle and the Cartan 
onne
tion 
ompletely in terms of data on the

manifold M . More pre
isely, if we start from a regular in�nitesimal 
ag stru
ture

underlying some paraboli
 geometry, then we may pro
eed as follows: Choose a

s
aling element E

�

2 z(g

0

), and 
onsider the 
orresponding homomorphism � :

G

0

! R

+

des
ribed in the proof of Proposition 3.8. Then form L

�

= G

0

�

G

0

R

+

.

From Theorem 3.12(2) we then know that the Cartan bundle G is just the pullba
k

of the bundle of prin
ipal 
onne
tions on L

�

, and we have a des
ription of the

prin
ipal a
tion. Moreover, a 
hoi
e of a prin
ipal 
onne
tion on L

�

is just the


hoi
e of a global se
tion of the bundle of 
onne
tions, so its pullba
k is a smooth

G

0

{equivariant se
tion � : G

0

! G. Any Cartan 
onne
tion ! on G is uniquely

determined by its pullba
k �

�

! by equivarian
e. Thus, des
ribing the 
anoni
al

normal Cartan 
onne
tion on G is equivalent to �nding a normal Weyl{form on G

0

whi
h indu
es a given 
onne
tion on L

�

.
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4.8. Example. Let us look more 
losely at the irredu
ible paraboli
 geometries.

Here the regular in�nitesimal 
ag stru
tures are just G

0

{stru
tures on M in the

sense of 
lassi
al G{stru
tures. The Weyl forms are � = �

�1

+ �

0

+ �

1

where �

�1

:

TG

0

! g

�1

is the �xed soldering form for M , �

0

is any linear 
onne
tion on M

belonging to the �xed G

0

{stru
ture and �

1

is any one{form in 


1

(M ;T

�

M). Now,

W

�1

= d�

�1

+ [�

�1

; �

0

℄;

i.e. the torsion of the 
onne
tion �

0

. The individual 
omponents of W have ho-

mogeneities one, two, and three and so they have to be �

�

{
losed separately. The


ondition �

�

W

�1

= 0 means that the torsion of �

0

is harmoni
 and this is the part

of W independent of the 
hoi
e of the Weyl{stru
ture. Next,

W

0

= d�

0

+

1

2

[�

0

; �

0

℄ + [�

�1

; �

1

℄

whi
h is the 
urvature R of the 
onne
tion �

0

plus some additional term. The


o{
losedness of W

0

imposes a 
ondition on the 
hoi
e of �

1

, while �

�

W

1

always

vanishes sin
e its values are in the trivial ve
tor spa
e.

We shall see later that the resulting system of equations for the tensor �

1

is

always solvable, ex
ept for the proje
tive stru
tures (where the �rst 
ohomology is


on
entrated in degree one). Moreover, we shall prove an expli
it algebrai
 formula

for the ne
essary 
hoi
e for the Rho{tensor: �

1

= �

�1

�

�

R. Expanding this formula

in the 
ase of the 
onformal (pseudo) Riemannian geometry, we obtain the well

known Rho{tensor used heavily by many authors sin
e the beginning of this 
entury,

while d�

1

happens to be exa
tly another well known tensor, the Cotton{York tensor.

As mentioned above, this 
omputation may be understood as an alternative

for the expli
it 
onstru
tion of the 
anoni
al Cartan 
onne
tion for all irredu
ible

paraboli
 geometries.

4.9. Total 
urvature. The expli
it 
onstru
tion of a normal Weyl{form depends

a lot on the stru
ture in question, a detailed treatment in the 
ase of partially

integrable almost CR{stru
tures of hypersurfa
e type will appear in [6℄. Here we

just des
ribe the basi
 ingredient of this pro
edure. The upshot of this is that

the 
ondition on a Weyl{form � being normal 
an be step by step redu
ed to a


ondition on �

�0

only, at the same time 
omputing step by step the 
omponents of

the Rho{tensor P = �

+

.

The �rst step in this dire
tion is to repla
e the Weyl 
urvature of a Weyl{form

� by 2{forms de�ned by splitting the stru
ture equations for � . The 
urvature of

the Cartan 
onne
tion �

�0

is the 2{form K

�0

2 


2

(G

0

; g

�

) given by

K

�0

(�; �) = d�

�0

(�; �) + [�

�0

(�); �

�0

(�)℄:

On the other hand, we de�ne the 2{form K

+

2 


2

(G

0

; p

+

) by

K

+

(�; �) = d�

+

(�; �) + [�

+

(�); �

+

(�)℄:

Motivated by 
onformal geometry, we 
all K

+

the Cotton{York{tensor asso
iated

to the Weyl{form � . We write K = K

�0

+K

+

and we 
all it the (total) 
urvature of

� . Sin
e �

�0

is a Cartan 
onne
tion, it is well known that its 
urvature is horizontal

and G

0

{equivariant, so it 
an be viewed as a two form on M , with values in the

bundle A

�k

�� � ��A

0

. On the other hand, sin
e �

+

is by assumption G

0

{equivariant

and horizontal, the part K

+

des
ends to M , too. Finally, taking into a

ount the

isomorphism TM

�

=

A

�

= A

�k

� � � � � A

�1

, we 
an �nally view K as a smooth

se
tion of the bundle L(�

2

A

�

;A) over M .

The reason for introdu
ing this 
urvature is that it is more 
losely related to

usual invariants of the Weyl{form than the Weyl{
urvature, 
f. Example 4.8. On

the other hand, we shall see that there still is a simple relation between 
urvature

and Weyl{
urvature.
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To get expli
it expressions for the 
omponents of K, re
all that the 
omponent

�

0

of any Weyl{form � is a prin
ipal 
onne
tion on G

0

, and thus indu
es a linear


onne
tion r on ea
h of the bundles A

i

. Let us also re
all that �

i

are identi�ed

with forms 


1

(M ;A

i

) for all negative i.

4.10. Proposition. Let p

0

: G

0

! M be a regular in�nitesimal 
ag stru
ture, let

� 2 


1

(G

0

; g) be a Weyl{form for M , and let K be its total 
urvature, viewed as an

A{valued two form on M with A

`

{
omponent K

`

. Then for all ve
tor �elds � and

� on M we have:

(1) K

`

(�; �) = r

�

(�

`

(�))�r

�

(�

`

(�))� �

`

([�; �℄) +

P

i;j<0

i+j=`

f�

i

(�); �

j

(�)g, for ` < 0.

(2) For � 2 A

m

we get fK

0

(�; �); �g = R

m

(�; �)(�), where R

m

is the 
urvature of

the linear 
onne
tion r on A

m

.

Moreover, if we view K as a se
tion of L(�

2

A

�

;A) and 
onsider ` > 0, then the

homogeneous 
omponent K

(`)

of K depends only on the restri
tions of �

i

to T

i�`

G

0

for all i � 0 and on the restri
tions of �

i

to T

i�`+1

G

0

for i > 0.

Proof. By de�nition, for ` < 0 the fun
tion G

0

! g

`


orresponding to K

`

(�; �) is

given by

d�

`

(�

h

; �

h

) +

X

i;j�0;i+j=`

[�

i

(�

h

); �

j

(�

h

)℄ =

= �

h

��

`

(�

h

)� �

h

��

`

(�

h

)� �

`

([�

h

; �

h

℄) +

X

i;j�0;i+j=`

[�

i

(�

h

); �

j

(�

h

)℄;

where the supers
ript h denotes the horizontal lift with respe
t to the prin
ipal 
on-

ne
tion �

0

. But now �

`

(�

h

) : G

0

! g

`

is exa
tly the smooth fun
tion 
orresponding

to the se
tion �

`

(�) of A

`

, so the fun
tion �

h

��

`

(�

h

) 
orresponds to r

�

(�

`

(�)) and

similarly for the se
ond term. On the other hand, [�

h

; �

h

℄ is a lift of the ve
tor �eld

[�; �℄, so sin
e �

`

is horizontal for ` < 0, we see that the fun
tion �

`

([�

h

; �

h

℄) 
orre-

sponds to the se
tion �

`

([�; �℄) of A

`

. Finally, for the last sum one only has to take

into a

ount that �

0

vanishes on horizontal lifts and the bra
ket in g 
orresponds

to the algebrai
 bra
ket on A.

If ` = 0, the de�nition ofK

0

redu
es to d�

0

(�

h

; �

h

) and this exa
tly represents the


urvature of the prin
ipal 
onne
tion �

0

, so the result follows immediately, taking

into a

ount that the a
tion of g

0

on g

m

is given by the Lie bra
ket in g and thus


orresponds to the algebrai
 bra
ket A

0

�A

m

! A

m

.

To verify the statements about homogeneous degrees, take se
tions � of A

i

and

� of A

j

, and let

~

� be the (unique) se
tion of T

i

M su
h that �

n

(

~

�) = 0 for all

i < n < 0, �

i

(

~

�) = �, and similarly for ~�. Then for ` > 0, K

(`)

(�; �) = K

i+j+`

(

~

�; ~�).

If i+ j + ` < 0, then the above formula just gives us

Æ

0

i+`

r

~

�

� � Æ

0

j+`

r

~�

� � �

i+j+`

([

~

�; ~�℄):

This is 
ompletely independent of the 
omponents �

n

for n > 0. If we allow a 
hange

of � without 
hanging the restri
tion of �

n

to T

n�`

for all n � 0, then this means

that

~

� is 
hanged at most by a se
tion of T

i+`+1

M . In parti
ular, if the �rst term

in the above expression a
tually o

urs, i.e. i+ ` = 0 then

~

� is �xed, and moreover,

sin
e the restri
tion of �

0

to T

�`

G

0

= T

i

G

0

is �xed, also the 
ovariant derivative is

�xed. Similarly one analyzes the se
ond term. Finally, the last term depends only

on the restri
tion of � sin
e the bra
ket of a se
tion of T

i+`+1

M with a se
tion of

T

j

M is a se
tion of T

i+j+`+1

M and this subbundle lies in the kernel of �

i+j+`

.

If i+ j + ` = 0, then K

(`)

(�; �) = d�

0

((

~

�)

h

; (~�)

h

), and as above, we see that (

~

�)

h

and (~�)

h

depend only on the appropriate restri
tion of � . Moreover, the bra
ket

[(

~

�)

h

; (~�)

h

℄ by 
onstru
tion is a se
tion of T

i+j

G

0

, so the whole expression depends

only on the restri
tion of �

0

to T

i+j

G

0

= T

0�`

G

0

.
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Finally, we have to 
onsider the 
ase i + j + ` > 0, so we are dealing with a


omponent of K having values in A

+

. As before, one veri�es that all extensions

and horizontal lifts depend only on the appropriate restri
tions of �

�0

, so what

remains to be dis
ussed is the dependen
e on P. But viewing P as a se
tion of

L(A

�

;A

+

), the statement to be proved redu
es to the fa
t that a homogeneous


omponent of K depends only on homogeneous 
omponents of P of stri
tly smaller

degree. But this is obvious from the de�nition of K

+

.

4.11. Remark. The previous Proposition reveals that the A

�

{
omponents of the

total 
urvature give exa
tly the torsion of the linear 
onne
tion �

0


orre
ted by the

algebrai
 
ontribution of the Lie bra
ket in g

�

, while the 
omponent K

0

is just the

standard 
urvature of �

0

. For a normal Weyl form � this means (using Proposition

4.12 below) that the torsion of �

0

has the algebrai
 bra
ket as its homogeneous


omponent of degree zero, no 
omponents of negative degrees, and some positive

degree 
omponents. The torsion 
omponent of degree one is an invariant of the

paraboli
 stru
ture in question.

The key point in the further analysis is that while the total 
urvature of a Weyl{

form is mu
h easier to relate to the underlying stru
ture than its Weyl{
urvature,

there is the quite simple relation between them des
ribed in the next Proposition.

4.12. Proposition. Let � 2 


1

(G

0

; g) be a Weyl{form forM , let P 2 �(L(A

�

;A

+

))

be its Rho{tensor, and let K;W 2 �(L(�

2

A

�

;A)) be its total 
urvature and its

Weyl{
urvature, respe
tively. Then

W (�; �) = K(�; �) + fP(�); �g � fP(�); �g:

In parti
ular, W

(i)

= K

(i)

for all i � 1.

Proof. Let � be a se
tion of A

i

and � be a se
tion of A

j

, with i; j < 0. To 
ompute

W (�; �), we �rst have to view � and � as ve
tor �elds on M via �

�

: TM

�

=

A

�

.

Then, by 
onstru
tion the se
tion W (�; �) of A 
orresponds to the fun
tion G

0

! g

given by

d�(�

h

; �

h

) + [�(�

h

); �(�

h

)℄;

where the subs
ript h denotes the horizontal lift with respe
t to the prin
ipal 
on-

ne
tion �

0

. Thus, the g

0

{
omponents of �(�

h

) and �(�

h

) are automati
ally zero, so

we may write

[�(�

h

); �(�

h

)℄ = [�

�

(�

h

); �

�

(�

h

)℄ + [�

+

(�

h

); �

�

(�

h

)℄ +

[�

�

(�

h

); �

+

(�

h

)℄ + [�

+

(�

h

); �

+

(�

h

)℄:

On the other hand, from the de�nition of the 
urvature it is 
lear, that the se
tion

K(�; �) 
orresponds to the fun
tion

d�(�

h

; �

h

) + [�

�

(�

h

); �

�

(�

h

)℄ + [�

+

(�

h

); �

+

(�

h

)℄:

Now �

+

(�

h

) is exa
tly the fun
tion 
orresponding to P(�), while �

�

(�

h

) is the

fun
tion 
orresponding to �. (A
tually, by 
onstru
tion �

�

(�) has values in g

j

only,

but this is not important here.) Sin
e the algebrai
 bra
ket f ; g is simply indu
ed

by the Lie bra
ket on g, the formula for W (�; �) follows immediately.

To see the se
ond statement, one just has to noti
e that the algebrai
 bra
ket is by

de�nition homogeneous of degree zero, while all nonzero homogeneous 
omponents

of P have degree at least two.

4.13. Remark. Note that the latter result, together with the formula (1) for the


hange of the Weyl{
urvature of a Weyl{stru
ture from 4.6 and the formula (2) for

the 
hange of the Rho{tensor from 3.9, gives us a formula for the 
hange of the

total 
urvature of a Weyl{stru
ture under the 
hange of the Weyl{stru
ture.
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4.14. The 
onstru
tion of normal Weyl{forms. Now we are ready to des
ribe

the pro
edure of step by step redu
ing the 
ondition of normality of a Weyl{form

� 2 


1

(G

0

; g) to a 
ondition on �

�0

and at the same time 
omputing step by step

the Rho{tensor. From Proposition 4.12 we know that W

(1)

= K

(1)

and from 4.6 we

know that this is a
tually the same expression for any normal Weyl{form. Usually,

this 
an be 
omputed in advan
e, and thus gives us a 
ondition on the restri
tion

of �

i

to T

i�1

G

0

for i � 0. Next, by Proposition 4.12, we have

W

(2)

(�; �) = K

(2)

(�; �) + fP

(2)

(�); �g � fP

(2)

(�); �g

= (K

(2)

� �P

(2)

)(�; �):

If W

(2)

is to be �

�

{
losed, then this implies that �

�

(K

(2)

) = �

�

�P

(2)

. On the other

hand, sin
e H

1

(g

�

; g) is 
on
entrated in homogeneous degrees less or equal to one

and H

0

(g

�

; g) = g

�k

, the Hodge de
omposition implies that P

(2)

= �

�1

�

�

�P���

2

for a unique smooth se
tion �

2

of A

2

. Moreover, sin
e P

(2)

has to have values in

A

+

, it follows that the restri
tion of �

�1

�

�

(K

(2)

) to A

�k

� � � � � A

�2

must be

given by �(�

2

), whi
h gives a 
ondition on the restri
tion of �

i

to T

i�2

G

0

for i � 0.

If this is satis�ed, then �

2

is uniquely determined, and we 
an 
ompute P

(2)

as

�

�1

�

�

(K

(2)

) � ��

2

. Let us noti
e, how simple the latter step gets for j1j{graded

examples: then there is no �

2

, the entire forms P and K

0

are of homogeneous degree

two, and so P is simply obtained in the unique way by the formula P = �

�1

�

�

K

0

promised in Example 4.8.

Now this pro
ess 
an be easily iterated. We next 
onsider K

(3)

whi
h depends

only on the (known) 
omponent P

(2)

of the Rho{tensor and on the restri
tions of

�

i

to T

i�3

G

0

for i � 0. As above, the restri
tion of �

�1

�

�

(K

(3)

) to A

�k

�� � ��A

�3

must be given by �(�

3

) for a se
tion �

3

of A

3

, whi
h gives 
onditions on the

restri
tions of �

i

for i � 0. If these are satis�ed, �

3

is uniquely determined, and we


an 
ompute P

(3)

. Finally, on
e we have rea
hedK

(k)

, there are no more 
onditions,

sin
e �

�0

is already 
ompletely determined at this stage, so we only get a way to


ompute the remaining homogeneous 
omponents of the Rho{tensor.
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