NON-STANDARD INVARIANT OPERATORS FOR
QUATERNIONIC GEOMETRIES

JAN SLOVAK

ABSTRACT. This is a survey along the lines of the talk at the conference Lie
ITI, held in Clausthal in July 1999. The aim is to present amazing problems
related to the invariant operators which are not curved analogues of the so
called standard operators in the Bernstein—Gelfand—Gelfand resolutions. On
the way, we provide some background and recent achievements, as well as a
guide to some of the old and new bibliography.

The lecture is based on a long time project of the author joint with Andreas Cap
and Vladimir Soucek, and further joint papers with Mike Eastwood, Rod Gover,
and Gerd Schmalz. The main reference is [22] and much more information can be
found in the recent research papers [7, 8, 9, 10, 11, 14, 27] and expository works
[13, 29, 30].

1. Quaternionic geometry — an example of Parabolic geometries. The
origin of various types of geometries goes back to the Cartan’s idea of generalized
spaces, i.e. certain deformations of the homogeneous spaces G/P defined by means
of an absolute parallelism on a principal P-bundle. Cartan developed these concepts
in close relation to his general equivalence problem. The quaternionic geometry
belongs to many geometries known to allow a canonical object of such type with a
suitable choice of semisimple G and parabolic P, cf. the theory of non—degenerate
CR-structures of hypersurface type due to [31, 12], and the pioneering series of
papers by Tanaka, see [32, 33, 25, 8] and references therein for more details and more
recent results. The current name parabolic geometry has been adopted in connection
to the parabolic invariants program initiated by Fefferman, [15]. There is a striking
relation to the twistor theory in the best known case of parabolic geometries, the
conformal Riemannian ones. This relation suggested to seek for a new calculus for
all similar geometries, with the aim to improve the techniques even in conformal
geometry, see e.g. the papers by Eastwood, Baston, Bailey, Gover, Cap, and the
author in the enclosed bibliography. For a different approach to similar questions
see [16, 17].

As well known, the quaternionic geometry is defined as a classical torsion free
G-structure on a 4m—dimensional manifold with structure group

Go = S(GL(p/2,H) x GL(g/2,H)) C GL(4m,R)

where 4m = pq, 2 = p < q even, cf. [26]. These geometries fit into a larger class of
G-structures with quaternionic forms of the complexified group G§ = S(GL(p, C) x
GL(q,C)) as structure groups and, more generally, other real forms with 1 < p < g.
On the level of the Lie algebras, these structure groups are distinguished by the
requirement that go is the component in a real graded Lie algebrag =g_1 P go P o
where the complexification is g© = sl(p + ¢, C).

There is a nice geometric way to describe these structures, which mimics the sit-
uation in the four—dimensional conformal spin geometry: The complexified tangent
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bundle is identified as a tensor product of two auxiliary complex vector bundles of
fiber dimensions p and ¢, in the realm of the Penrose’s abstract index notation

(TM)E =2 @ Ep,
together with the fixed identification of the top degree forms
APE4 = NIEL

Of course, the way how this tensorial decomposition is reflected on the real level
depends on the specific real form. In particular, we have such a real decomposition
of TM for the so called almost Grassmannian structures corresponding to the real
split form SL(p + ¢, R) of GC.

In the general case, all these geometries (except p = 1 and p = ¢ = 2) have
two irreducible components of the total curvature and one of them is the canonical
torsion. The quaternionic geometries are distinguished by the proper choice of G,
as above, and the vanishing of the torsion. In a remarkable extent, they generalize
the notion of the self dual four—dimensional conformal geometries.

2. General parabolic geometries. Let G be a semisimple real Lie group and
P C @ its parabolic subgroup. On the level of the Lie algebras, this amounts to the
existence of the |k|-grading

g=9g rD---DgoD--- D gk-

We assume that no simple ideal of g is contained in gy and that the (nilpotent)
subalgebra g =g_p ® -+ ® g_1 is generated by g_1. We write p; = g1 - D gi
and p = go @ py. We also write g_ = g_p D --- D g_y, and g/ = g; D -+ D gi,
j = —k,..., k. Then p is a parabolic subalgebra of g, and actually the grading is
completely determined by this subalgebra, see e.g. [33, Section 3].

A (real) parabolic geometry (G,w) of type G/ P is a smooth principal fiber bundle
G with structure group P, equipped by a smooth one-form w € Q!(G, g) satisfying

(1) w(¢z)(u) = Z for all u € G and fundamental fields 7, Z € p

(2) ("")*w=Ad(b Howforalbe P

(3) w|r,¢ : TuG — g is a linear isomorphism for all u € G.
In particular, each X € g defines the constant vector field w=*(X) defined by
ww ™ (X)(u)) = X, u € G. The oneforms with properties (1)—(3) are called
(smooth) Cartan connections, cf. [28]. The homogeneous space G — G/ P, together
with the left Maurer—Cartan form is the flat model of the geometries of type G/P.

The morphisms between parabolic geometries (G,w) and (G',w’) are principal
fiber bundle morphisms ¢ (over the identity on P) which preserve the Cartan
connections, i.e. ¢ : G — G’ and p*w' = w.

The structure equations define the principal obstruction against the local flat-
ness, the horizontal smooth form K € Q2(G,g) called the curvature of the Cartan
connection w:

1
dw + §[w,w] =K.
The curvature function & : G — A?g* ®g is then defined by means of the parallelism
K(u)(X,Y) = K (0™ (X)(u), 0 (V)(w) = [X, Y] = w(u) (™ (X),0 (V).

In particular, the curvature function is valued in the cochains for the second coho-
mology H?(g_,g). Moreover, there are two ways how to split k. We may consider
the target components k; according to the values in g;. The whole g_—component
k— is called the torsion of the Cartan connection w. The other possibility is to
consider the homogeneity of the two forms x(u).

Since we deal with semisimple algebras only, there is the adjoint codifferential
0* to the Lie algebra cohomology differential 0, see e.g. [24]. Consequently, there
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is the Hodge theory on the cochains which allows to deal very effectively with
the curvatures. In particular, we may use several restrictions on the values of the
curvature which turn out to be quite useful: The parabolic geometry (G,w) with
the curvature function & is called flat if kK = 0, torsion—free if k_ = 0, normal if
0* ok = 0, and regular if normal and (9 = 0 for all j < 0. In particular, the
normality ensures that the curvature is in certain sense minimal and is governed
by the Lie algebra cohomology H?(g_,g) in a nice way, see [33, 8] for more details.

For each parabolic geometry (G,w) over M, the filtration of g by the p—submo-
dules g’ is transferred to the right invariant filtration TiG on the tangent space TG
by the parallelism w. The tangent projection Tp : TG — T M then provides the
filtration

TM=T*M>T"'M> - ->T'M

of the tangent space of the underlying manifold M. Moreover, the structure group
of the associated graded tangent space

GrTM = (T*M/T* M) - & (T2M/T'M)e T™'M

reduces automatically to G since Gy = G/P; clearly plays the role of its frame
bundle. With some further simple conditions imposed, we talk about regular infin-
itesimal flag structures of type g/p and then a universal construction recovers both
the canonical Cartan bundle and the canonical normal Cartan connection, see [8, 9]
for details, [27] for some new applications.

3. Natural bundles and operators. Each P-module V defines for all parabolic
geometries (§ — M,w) of type G/P over a manifold M the associated bundle
VM = G xp V over M. In fact, this is a functorial construction which may be
restricted to all subcategories of parabolic geometries mentioned above and we call
such bundles natural (vector) bundles. Similarly, we may treat bundles associated
to any representation P — Diff(S) on a manifold S, the standard fiber for SM =
G xpS. The class of all natural (vector) bundles defined by G-modules W is called
tractor bundles, see [2, 7] for historical remarks. The remarkable feature of tractor
bundles is that the extension of the Cartan connection w to the principal connection
form @ on the extended Cartan bundle QN induces on them the canonical linear
connections, see [22, 7, 9] for much more information. The distinguished bundles
EA, €4, their duals £4, E4, and invariant components of their tensor products are
called, by analogy to the conformal geometry, the (generalized) spinor bundles.

The natural operators, for parabolic geometries of a fixed type G/P, are sys-
tems of differential operators Dy : T(VM) — T'(V'M) between sections of the
natural bundles, which intertwine the induced actions of the morphisms. Of course,
we obtain exactly the (translational) invariant operators D¢ p between the ho-
mogeneous bundles on the flat model. At the same time, each invariant operator
D¢/ p extends uniquely to a natural operator on the full subcategory of locally flat
parabolic geometries.

As we shall discuss below, the natural operators may be expressed by means of a
universal operation, the invariant differential defined as the derivative of functions
on G with respect to the constant vector fields w—! (X) on G. Thus, for each section
s of a natural bundle VM, i.e. s € C®(G, V), there is the differential V¥s €
C>(G,g* ®V). Though V¥s is not P—equivariant, as a rule, it provides an extremely
useful tool for the study of natural operators.

4. Semi—holonomic jet—modules. While the standard jet prolongations of ho-
mogeneous vector bundles are again homogeneous vector bundles corresponding to
certain jet—modules, this construction does not extend out of locally flat geome-
tries, i.e. those without curvature. On the other hand, the invariant differential
yields such a construction for one—jets and so we can go on to all orders with
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the semi—holonomic prolongations. This is the core of our approach to invariant
operators in [10, 11] and a straightforward iterative construction of suitable ho-
momorphisms between semi-holonomic jet-modules provides all the distinguished
operators in the BGG—sequences.

Let us consider a representation V of P, the corresponding homogeneous bundle
V(G/P) = G xpV and its first jet prolongation J'(V(G/P)) — G/P. This is again
a homogeneous bundle, and the corresponding action of P on its standard fiber

TJHV) == JY(V(G/P)), =V & (g~ @ V)

is defined by means of the action of fundamental vector fields on the equivariant
functions s € C*(G,V)P. The formula for the action of Z € py on elements of
JH(V) viewed as pairs (v, ), where v € V and ¢ is a linear map from g_ to V, is
given by

Z-(v,9) = (Zv,X = Z-(p(X)) = p(ad_(Z)(X)) + ady (Z)(X)-0),

i.e. we get the tensorial action plus one additional term mapping the value—part to
the derivative—part.
By iteration, we obtain the semi—holonomic jet modules

TV=Ve (@ oV)a ¢ @ aV)

with the appropriate action of P. Now, the semi—holonomic jet prolongations of
natural bundles with standard fiber V turn out to be natural bundles correspond-
ing to P-modules J*V and, moreover, the iterated invariant differential provides
the natural operator s — (s,V¥s,...,(V¥)*s) valued in the semi-holonomic jet
prolongation. This is just an explicit version of the embedding of holonomic jets
into the semi—holonomic ones, which restricts to the the usual embedding in the
flat case but involves the curvatures in general.

A straightforward consequence of the naturality of the semi—holonomic jet pro-
longation is that each P-module homomorphism

& TV > W

gives rise to a natural differential operator between the corresponding natural bun-
dles. Of course, the invariant differential provides explicit formulae for such opera-
tors.

5. The BGG-resolutions and the standard natural operators. In general,
the latter correspondence is not bijective as in the case of homogeneous bundles
and standard jets, i.e. a non—zero homomorphism may lead to a trivial operator and
there are natural operators which are not achieved in this way, cf. [23, 14]. However,
if we manage to express an invariant operator between homogeneous vector bundles
by means of a homomorphism ® of semi-holonomic jet modules (instead of the
holonomic ones as in the classical representation theoretical approach), then the
symbol of the resulting operator will remain always the same. In particular, the
whole operator is of the same order as in the flat case and we talk about the curved
analogue of the given invariant operator on the flat model.

As well known, the invariant differential operators between the homogeneous vec-
tor bundles are described in terms of the homomorphisms between the (generalized)
Verma modules (just dualization and the so called Frobenius reciprocity principle).
In the case of the Borel subgroup P C G, all these operators are compositions of
some basic ones, which form the so called Bernstein—Gelfand—Gelfand resolutions
of constant sheaves corresponding to G-modules. A remarkable feature of more
general parabolics appears: there are again some basic operators establishing the
(generalized) Bernstein-Gelfand—Gelfand resolutions, the standard operators, but
apart from these and their non—zero compositions which all come in certain sense
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from the Borel case, there are also the so—called non-standard operators. The latter
operators appear in situations where the prospective compositions of the standard
ones vanish and they have been studied in quite detail in conformal Riemannian
geometries.

While all standard invariant operators admit a distinguished curved analogue,
first constructed in full generality in [11], the problem of the existence of curved
analogues of the non—standard ones still remains open, partly even in the conformal
case, cf. [23, 14].

6. Back to quaternionic geometries — local twistor calculus. Let us fix one
of the real forms of G¢ = SL(p + ¢,C) mentioned in Section 1, for instance the
quaternionic one. We shall follow the notation established in [22] which extends the
standard conventions used in the twistor theory.

The standard representation of G on CP™¢ yields the filtered P-modules (recall
the notation used for the basic spinor bundles £4, €4/ in Section 1 and write V4
and Vi, or Vy, VA" for the corresponding P-modules and their duals)

Ve=VAL VA V,=Va +Va.

This notational convention means that the ‘right ends’ in the formal sums are
submodules while the ‘left ends’ are quotients. These filtrations determine filtrations
of the corresponding special case of tractor bundles, called twistor bundles

Eoz:gA_'_EA’, EQ:EA’_'_EA.

We also write X4, for the canonical section of £% which gives the injecting mor-
phism &4 = £2 via v4 — Xj,v“", etc. More generally, tensor products of the
twistor bundles and scalar densities (the latter ones are no more coming from G-
modules) are called the weighted twistor bundles. We denote them by €$f [w]
where w is the weight coming from the densities. Let us notice that the irreducible
components at the right hand ends of the filtrations of weighted twistor bundles
are invariant subbundles while those at the left hand ends are irreducible quotients.
In particular, all irreducible natural bundles are easily accommodated as both sub-
bundles and quotients of the weighted twistor bundles.

The invariant differential provides the formulae for the canonical linear connec-
tions on these bundles. For example on £¢ and &,

’ ’
P vB VivB 4+ 680P
1 = ! !
A vB VirvBl — Pi,f vB

P’ Pl P’B/ Pl P/
Va (up up) = (Vyup+Pup up Vi up —dgua),

where the nablas and P on the right hand side indicate the usual spinor connec-
tion and the so called Rho-tensor determined by a choice of (generalized) Weyl
structure, i.e. a choice of a reduction of the structure group P to its reductive (or
even semi-simple) part. Thus, we have extended the well known formulae from
the four—dimensional conformal Riemannian geometry. Of course, the formulae are
independent of any of these choices.

The definition of very important objects in our local twistor calculus, the D-
operators, is based on the observation that the spinor—twistor object

D4 f = (VA f wip f)
is invariant for all weighted twistors f € I'(€)[w]. We regard this as an injecting part
of the invariant twistor object Df f := X%D?I f. More generally, the operator Dj

is well defined and invariant on sections of the weighted twistor bundles 5.5 [w]
(here we exploit the canonical twistor connection V).
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The latter construction yields natural operators which admit compositions, but
they are highly redundant. The next step is to make their targets smaller and
symmetrized enough to kill many contractions. This is essentially the core of the
definition of the operators Dgf,’,’,‘f as a sort of symmetrized concatenations of Df in
[22].

7. The non—standard operators. The general results in [22] tell us that all
natural operators can be obtained via the latter operators Df,‘_'_'_',‘f but a first good
test of the actual power of this calculus is to try to construct some of the non—
standard operators. This task seems to be quite hard and a straightforward use of
representation theoretical tools for finding the homomorphisms of semi—holonomic
jet—modules has not brought a reasonable understanding yet.

We shall use the Young symmetrizers in order to describe the individual irre-
ducible components of the natural bundles. This notation should be clear from
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Figure 1, where the short arrows show the decomposition of the de Rham reso-
lution of (complex) functions into irreducible components, in the special case of
8-dimensional underlying manifolds M.

Now, the long arrows on the left—hand side describe the non—standard invariant
operators on the flat model. A quite lengthy verification in [22] reveals that the
operators Df,‘_'_'_',‘f give rise to the fourth order operators

A M 4 M

Oascn = (4 BEp) =K = (+32 [l Ep) [~k - 2),

for all quaternionic geometries, which are curved analogues of the above mentioned
long arrows.

Let us observe that the operator emanating from £ cannot come from a P-
module homomorphism on the corresponding semi-holonomic jet modules. Indeed,
this would imply the same property for the second power of the Laplacian in the
four—dimensional conformal geometry, which is excluded in [14]. We do not know the
answer for the rest of them, although this is a very appealing question. Indeed, those
operators which are given by the P-module homomorphisms on semi-holonomic
jets allow a curved version of the translation principle.

There is a good hope to extend the technique from [14] to all quaternionic ge-
ometries.
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