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Abstra
t. This is a survey along the lines of the talk at the 
onferen
e Lie

III, held in Clausthal in July 1999. The aim is to present amazing problems

related to the invariant operators whi
h are not 
urved analogues of the so


alled standard operators in the Bernstein{Gelfand{Gelfand resolutions. On

the way, we provide some ba
kground and re
ent a
hievements, as well as a

guide to some of the old and new bibliography.

The le
ture is based on a long time proje
t of the author joint with Andreas

�

Cap

and Vladim��r Sou�
ek, and further joint papers with Mike Eastwood, Rod Gover,

and Gerd S
hmalz. The main referen
e is [22℄ and mu
h more information 
an be

found in the re
ent resear
h papers [7, 8, 9, 10, 11, 14, 27℄ and expository works

[13, 29, 30℄.

1. Quaternioni
 geometry | an example of Paraboli
 geometries. The

origin of various types of geometries goes ba
k to the Cartan's idea of generalized

spa
es, i.e. 
ertain deformations of the homogeneous spa
es G=P de�ned by means

of an absolute parallelism on a prin
ipal P{bundle. Cartan developed these 
on
epts

in 
lose relation to his general equivalen
e problem. The quaternioni
 geometry

belongs to many geometries known to allow a 
anoni
al obje
t of su
h type with a

suitable 
hoi
e of semisimple G and paraboli
 P , 
f. the theory of non{degenerate

CR{stru
tures of hypersurfa
e type due to [31, 12℄, and the pioneering series of

papers by Tanaka, see [32, 33, 25, 8℄ and referen
es therein for more details and more

re
ent results. The 
urrent name paraboli
 geometry has been adopted in 
onne
tion

to the paraboli
 invariants program initiated by Fe�erman, [15℄. There is a striking

relation to the twistor theory in the best known 
ase of paraboli
 geometries, the


onformal Riemannian ones. This relation suggested to seek for a new 
al
ulus for

all similar geometries, with the aim to improve the te
hniques even in 
onformal

geometry, see e.g. the papers by Eastwood, Baston, Bailey, Gover,

�

Cap, and the

author in the en
losed bibliography. For a di�erent approa
h to similar questions

see [16, 17℄.

As well known, the quaternioni
 geometry is de�ned as a 
lassi
al torsion free

G{stru
ture on a 4m{dimensional manifold with stru
ture group

G

0

= S(GL(p=2; H ) �GL(q=2; H )) � GL(4m;R)

where 4m = pq, 2 = p � q even, 
f. [26℄. These geometries �t into a larger 
lass of

G{stru
tures with quaternioni
 forms of the 
omplexi�ed group G

C

0

= S(GL(p; C )�

GL(q; C )) as stru
ture groups and, more generally, other real forms with 1 � p � q.

On the level of the Lie algebras, these stru
ture groups are distinguished by the

requirement that g

0

is the 
omponent in a real graded Lie algebra g = g

�1

�g

0

�g

1

where the 
omplexi�
ation is g

C

= sl(p+ q; C ).

There is a ni
e geometri
 way to des
ribe these stru
tures, whi
h mimi
s the sit-

uation in the four{dimensional 
onformal spin geometry: The 
omplexi�ed tangent
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bundle is identi�ed as a tensor produ
t of two auxiliary 
omplex ve
tor bundles of

�ber dimensions p and q, in the realm of the Penrose's abstra
t index notation

(TM)

C

= E

A


 E

A

0

;

together with the �xed identi�
ation of the top degree forms

�

p

E

A

0

' �

q

E

A

:

Of 
ourse, the way how this tensorial de
omposition is re
e
ted on the real level

depends on the spe
i�
 real form. In parti
ular, we have su
h a real de
omposition

of TM for the so 
alled almost Grassmannian stru
tures 
orresponding to the real

split form SL(p+ q;R) of G

C

.

In the general 
ase, all these geometries (ex
ept p = 1 and p = q = 2) have

two irredu
ible 
omponents of the total 
urvature and one of them is the 
anoni
al

torsion. The quaternioni
 geometries are distinguished by the proper 
hoi
e of G,

as above, and the vanishing of the torsion. In a remarkable extent, they generalize

the notion of the self dual four{dimensional 
onformal geometries.

2. General paraboli
 geometries. Let G be a semisimple real Lie group and

P � G its paraboli
 subgroup. On the level of the Lie algebras, this amounts to the

existen
e of the jkj{grading

g = g

�k

� � � � � g

0

� � � � � g

k

:

We assume that no simple ideal of g is 
ontained in g

0

and that the (nilpotent)

subalgebra g

�

= g

�k

� � � � � g

�1

is generated by g

�1

. We write p

+

= g

1

� � � � � g

k

and p = g

0

� p

+

. We also write g

�

= g

�k

� � � � � g

�1

, and g

j

= g

j

� � � � � g

k

,

j = �k; : : : ; k. Then p is a paraboli
 subalgebra of g, and a
tually the grading is


ompletely determined by this subalgebra, see e.g. [33, Se
tion 3℄.

A (real) paraboli
 geometry (G; !) of type G=P is a smooth prin
ipal �ber bundle

G with stru
ture group P , equipped by a smooth one{form ! 2 


1

(G; g) satisfying

(1) !(�

Z

)(u) = Z for all u 2 G and fundamental �elds �

Z

, Z 2 p

(2) (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P

(3) !j

T

u

G

: T

u

G ! g is a linear isomorphism for all u 2 G.

In parti
ular, ea
h X 2 g de�nes the 
onstant ve
tor �eld !

�1

(X) de�ned by

!(!

�1

(X)(u)) = X , u 2 G. The one{forms with properties (1){(3) are 
alled

(smooth) Cartan 
onne
tions, 
f. [28℄. The homogeneous spa
e G! G=P , together

with the left Maurer{Cartan form is the 
at model of the geometries of type G=P .

The morphisms between paraboli
 geometries (G; !) and (G

0

; !

0

) are prin
ipal

�ber bundle morphisms ' (over the identity on P ) whi
h preserve the Cartan


onne
tions, i.e. ' : G ! G

0

and '

�

!

0

= !.

The stru
ture equations de�ne the prin
ipal obstru
tion against the lo
al 
at-

ness, the horizontal smooth form K 2 


2

(G; g) 
alled the 
urvature of the Cartan


onne
tion !:

d! +

1

2

[!; !℄ = K:

The 
urvature fun
tion � : G ! ^

2

g

�

�


g is then de�ned by means of the parallelism

�(u)(X;Y ) = K(!

�1

(X)(u); !

�1

(Y )(u)) = [X;Y ℄� !(u)([!

�1

(X); !

�1

(Y )℄):

In parti
ular, the 
urvature fun
tion is valued in the 
o
hains for the se
ond 
oho-

mology H

2

(g

�

; g). Moreover, there are two ways how to split �. We may 
onsider

the target 
omponents �

i

a

ording to the values in g

i

. The whole g

�

{
omponent

�

�

is 
alled the torsion of the Cartan 
onne
tion !. The other possibility is to


onsider the homogeneity of the two forms �(u).

Sin
e we deal with semisimple algebras only, there is the adjoint 
odi�erential

�

�

to the Lie algebra 
ohomology di�erential �, see e.g. [24℄. Consequently, there
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is the Hodge theory on the 
o
hains whi
h allows to deal very e�e
tively with

the 
urvatures. In parti
ular, we may use several restri
tions on the values of the


urvature whi
h turn out to be quite useful: The paraboli
 geometry (G; !) with

the 
urvature fun
tion � is 
alled 
at if � = 0, torsion{free if �

�

= 0, normal if

�

�

Æ � = 0, and regular if normal and �

(j)

= 0 for all j � 0. In parti
ular, the

normality ensures that the 
urvature is in 
ertain sense minimal and is governed

by the Lie algebra 
ohomology H

2

(g

�

; g) in a ni
e way, see [33, 8℄ for more details.

For ea
h paraboli
 geometry (G; !) over M , the �ltration of g by the p{submo-

dules g

j

is transferred to the right invariant �ltration T

j

G on the tangent spa
e TG

by the parallelism !. The tangent proje
tion Tp : TG ! TM then provides the

�ltration

TM = T

�k

M � T

�k+1

M � � � � � T

�1

M

of the tangent spa
e of the underlying manifold M . Moreover, the stru
ture group

of the asso
iated graded tangent spa
e

GrTM = (T

�k

M=T

�k+1

M)� � � � � (T

�2

M=T

�1

M)� T

�1

M

redu
es automati
ally to G

0

sin
e G

0

= G=P

+


learly plays the role of its frame

bundle. With some further simple 
onditions imposed, we talk about regular in�n-

itesimal 
ag stru
tures of type g=p and then a universal 
onstru
tion re
overs both

the 
anoni
al Cartan bundle and the 
anoni
al normal Cartan 
onne
tion, see [8, 9℄

for details, [27℄ for some new appli
ations.

3. Natural bundles and operators. Ea
h P{module V de�nes for all paraboli


geometries (G ! M;!) of type G=P over a manifold M the asso
iated bundle

VM = G �

P

V over M . In fa
t, this is a fun
torial 
onstru
tion whi
h may be

restri
ted to all sub
ategories of paraboli
 geometries mentioned above and we 
all

su
h bundles natural (ve
tor) bundles. Similarly, we may treat bundles asso
iated

to any representation P ! Di�(S) on a manifold S, the standard �ber for SM =

G �

P

S. The 
lass of all natural (ve
tor) bundles de�ned by G{modules W is 
alled

tra
tor bundles, see [2, 7℄ for histori
al remarks. The remarkable feature of tra
tor

bundles is that the extension of the Cartan 
onne
tion ! to the prin
ipal 
onne
tion

form ~! on the extended Cartan bundle

~

G indu
es on them the 
anoni
al linear


onne
tions, see [22, 7, 9℄ for mu
h more information. The distinguished bundles

E

A

, E

A

0

, their duals E

A

, E

A

0

, and invariant 
omponents of their tensor produ
ts are


alled, by analogy to the 
onformal geometry, the (generalized) spinor bundles.

The natural operators, for paraboli
 geometries of a �xed type G=P , are sys-

tems of di�erential operators D

M

: �(VM) ! �(V

0

M) between se
tions of the

natural bundles, whi
h intertwine the indu
ed a
tions of the morphisms. Of 
ourse,

we obtain exa
tly the (translational) invariant operators D

G=P

between the ho-

mogeneous bundles on the 
at model. At the same time, ea
h invariant operator

D

G=P

extends uniquely to a natural operator on the full sub
ategory of lo
ally 
at

paraboli
 geometries.

As we shall dis
uss below, the natural operators may be expressed by means of a

universal operation, the invariant di�erential de�ned as the derivative of fun
tions

on G with respe
t to the 
onstant ve
tor �elds !

�1

(X) on G. Thus, for ea
h se
tion

s of a natural bundle VM , i.e. s 2 C

1

(G;V)

P

, there is the di�erential r

!

s 2

C

1

(G; g

�

�


V). Thoughr

!

s is not P{equivariant, as a rule, it provides an extremely

useful tool for the study of natural operators.

4. Semi{holonomi
 jet{modules. While the standard jet prolongations of ho-

mogeneous ve
tor bundles are again homogeneous ve
tor bundles 
orresponding to


ertain jet{modules, this 
onstru
tion does not extend out of lo
ally 
at geome-

tries, i.e. those without 
urvature. On the other hand, the invariant di�erential

yields su
h a 
onstru
tion for one{jets and so we 
an go on to all orders with
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the semi{holonomi
 prolongations. This is the 
ore of our approa
h to invariant

operators in [10, 11℄ and a straightforward iterative 
onstru
tion of suitable ho-

momorphisms between semi{holonomi
 jet{modules provides all the distinguished

operators in the BGG{sequen
es.

Let us 
onsider a representation V of P , the 
orresponding homogeneous bundle

V (G=P ) = G�

P

V and its �rst jet prolongation J

1

(V (G=P ))! G=P . This is again

a homogeneous bundle, and the 
orresponding a
tion of P on its standard �ber

J

1

(V) := J

1

(V (G=P ))

o

= V � (g

�

�


 V)

is de�ned by means of the a
tion of fundamental ve
tor �elds on the equivariant

fun
tions s 2 C

1

(G;V)

P

. The formula for the a
tion of Z 2 p

+

on elements of

J

1

(V) viewed as pairs (v; '), where v 2 V and ' is a linear map from g

�

to V, is

given by

Z�(v; ') = (Z�v;X 7! Z�('(X)) � '(ad

�

(Z)(X)) + ad

p

(Z)(X)�v);

i.e. we get the tensorial a
tion plus one additional term mapping the value{part to

the derivative{part.

By iteration, we obtain the semi{holonomi
 jet modules

J

k

V = V � (g

�

�


 V) � � � � � (


k

g

�

�


 V)

with the appropriate a
tion of P . Now, the semi{holonomi
 jet prolongations of

natural bundles with standard �ber V turn out to be natural bundles 
orrespond-

ing to P{modules J

k

V and, moreover, the iterated invariant di�erential provides

the natural operator s 7! (s;r

!

s; : : : ; (r

!

)

k

s) valued in the semi{holonomi
 jet

prolongation. This is just an expli
it version of the embedding of holonomi
 jets

into the semi{holonomi
 ones, whi
h restri
ts to the the usual embedding in the


at 
ase but involves the 
urvatures in general.

A straightforward 
onsequen
e of the naturality of the semi{holonomi
 jet pro-

longation is that ea
h P{module homomorphism

� : J

k

V ! W

gives rise to a natural di�erential operator between the 
orresponding natural bun-

dles. Of 
ourse, the invariant di�erential provides expli
it formulae for su
h opera-

tors.

5. The BGG{resolutions and the standard natural operators. In general,

the latter 
orresponden
e is not bije
tive as in the 
ase of homogeneous bundles

and standard jets, i.e. a non{zero homomorphism may lead to a trivial operator and

there are natural operators whi
h are not a
hieved in this way, 
f. [23, 14℄. However,

if we manage to express an invariant operator between homogeneous ve
tor bundles

by means of a homomorphism � of semi{holonomi
 jet modules (instead of the

holonomi
 ones as in the 
lassi
al representation theoreti
al approa
h), then the

symbol of the resulting operator will remain always the same. In parti
ular, the

whole operator is of the same order as in the 
at 
ase and we talk about the 
urved

analogue of the given invariant operator on the 
at model.

As well known, the invariant di�erential operators between the homogeneous ve
-

tor bundles are des
ribed in terms of the homomorphisms between the (generalized)

Verma modules (just dualization and the so 
alled Frobenius re
ipro
ity prin
iple).

In the 
ase of the Borel subgroup P � G, all these operators are 
ompositions of

some basi
 ones, whi
h form the so 
alled Bernstein{Gelfand{Gelfand resolutions

of 
onstant sheaves 
orresponding to G{modules. A remarkable feature of more

general paraboli
s appears: there are again some basi
 operators establishing the

(generalized) Bernstein-Gelfand{Gelfand resolutions, the standard operators, but

apart from these and their non{zero 
ompositions whi
h all 
ome in 
ertain sense
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from the Borel 
ase, there are also the so{
alled non{standard operators. The latter

operators appear in situations where the prospe
tive 
ompositions of the standard

ones vanish and they have been studied in quite detail in 
onformal Riemannian

geometries.

While all standard invariant operators admit a distinguished 
urved analogue,

�rst 
onstru
ted in full generality in [11℄, the problem of the existen
e of 
urved

analogues of the non{standard ones still remains open, partly even in the 
onformal


ase, 
f. [23, 14℄.

6. Ba
k to quaternioni
 geometries { lo
al twistor 
al
ulus. Let us �x one

of the real forms of G

C

= SL(p + q; C ) mentioned in Se
tion 1, for instan
e the

quaternioni
 one. We shall follow the notation established in [22℄ whi
h extends the

standard 
onventions used in the twistor theory.

The standard representation of G on C

p+q

yields the �ltered P{modules (re
all

the notation used for the basi
 spinor bundles E

A

, E

A

0

in Se
tion 1 and write V

A

and V

A

0

, or V

A

, V

A

0

for the 
orresponding P{modules and their duals)

V

�

= V

A

+ V

A

0

; V

�

= V

A

0

+ V

A

:

This notational 
onvention means that the `right ends' in the formal sums are

submodules while the `left ends' are quotients. These �ltrations determine �ltrations

of the 
orresponding spe
ial 
ase of tra
tor bundles, 
alled twistor bundles

E

�

= E

A

+ E

A

0

; E

�

= E

A

0

+ E

A

:

We also write X

�

A

0

for the 
anoni
al se
tion of E

�

A

0

whi
h gives the inje
ting mor-

phism E

A

0

! E

�

via v

A

0

7! X

�

A

0

v

A

0

, et
. More generally, tensor produ
ts of the

twistor bundles and s
alar densities (the latter ones are no more 
oming from G{

modules) are 
alled the weighted twistor bundles. We denote them by E

�:::�


:::�

[w℄

where w is the weight 
oming from the densities. Let us noti
e that the irredu
ible


omponents at the right hand ends of the �ltrations of weighted twistor bundles

are invariant subbundles while those at the left hand ends are irredu
ible quotients.

In parti
ular, all irredu
ible natural bundles are easily a

ommodated as both sub-

bundles and quotients of the weighted twistor bundles.

The invariant di�erential provides the formulae for the 
anoni
al linear 
onne
-

tions on these bundles. For example on E

�

and E

�

r

P

0

A

�

v

B

v

B

0

�

=

 

r

P

0

A

v

B

+ Æ

B

A

v

P

0

r

P

0

A

v

B

0

� P

P

0

B

0

AB

v

B

!

r

P

0

A

(u

B

u

B

0

) = (r

P

0

A

u

B

+ P

P

0

B

0

AB

u

B

0

r

P

0

A

u

B

0

� Æ

P

0

B

0

u

A

);

where the nablas and P on the right hand side indi
ate the usual spinor 
onne
-

tion and the so 
alled Rho{tensor determined by a 
hoi
e of (generalized) Weyl

stru
ture, i.e. a 
hoi
e of a redu
tion of the stru
ture group P to its redu
tive (or

even semi{simple) part. Thus, we have extended the well known formulae from

the four{dimensional 
onformal Riemannian geometry. Of 
ourse, the formulae are

independent of any of these 
hoi
es.

The de�nition of very important obje
ts in our lo
al twistor 
al
ulus, the D-

operators, is based on the observation that the spinor{twistor obje
t

D

A

0

�

f := (r

A

0

B

f wÆ

A

0

B

0

f)

is invariant for all weighted twistors f 2 �(E)[w℄. We regard this as an inje
ting part

of the invariant twistor obje
t D

�

�

f := X

�

A

0

D

A

0

�

f . More generally, the operator D

�

�

is well de�ned and invariant on se
tions of the weighted twistor bundles E

�����

����


[w℄

(here we exploit the 
anoni
al twistor 
onne
tion r).
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E

-

�

�

�R

E

A

0


 E

A

?

�

�

�	

�

�

�R

( E

A

)[�1℄

�

�

�R

-

E

A

0


 E

A

�

�

�R

�

�

�	

?

(E

A

0


 E

A

)[�1℄

�

�

�	

�

�

�R

?

E

A

0


 E

A

�

�

�	

�

�

�R

?

( E

A

)[�2℄

-

�

�

�R

E

A

0


 E

A

�

�

�	

�

�

�R

?

( E

A

0

)[�1℄

�

�

�	

(E

A

0


 E

A

)[�2℄

�

�

�	

�

�

�R

?

( E

A

0


 E

A

)[�2℄

�

�

�	

( E

A

)[�3℄

�

�

�R

( E

A

0


 E

A

)[�3℄

�

�

�	

(E

A

0


 E

A

)[�4℄

�

�

�	

E [�6℄

Figure 1

The latter 
onstru
tion yields natural operators whi
h admit 
ompositions, but

they are highly redundant. The next step is to make their targets smaller and

symmetrized enough to kill many 
ontra
tions. This is essentially the 
ore of the

de�nition of the operators D

����Æ

�����

as a sort of symmetrized 
on
atenations of D

�

�

in

[22℄.

7. The non{standard operators. The general results in [22℄ tell us that all

natural operators 
an be obtained via the latter operators D

����Æ

�����

but a �rst good

test of the a
tual power of this 
al
ulus is to try to 
onstru
t some of the non{

standard operators. This task seems to be quite hard and a straightforward use of

representation theoreti
al tools for �nding the homomorphisms of semi{holonomi


jet{modules has not brought a reasonable understanding yet.

We shall use the Young symmetrizers in order to des
ribe the individual irre-

du
ible 
omponents of the natural bundles. This notation should be 
lear from
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Figure 1, where the short arrows show the de
omposition of the de Rham reso-

lution of (
omplex) fun
tions into irredu
ible 
omponents, in the spe
ial 
ase of

8{dimensional underlying manifolds M .

Now, the long arrows on the left{hand side des
ribe the non{standard invariant

operators on the 
at model. A quite lengthy veri�
ation in [22℄ reveals that the

operators D

����Æ

�����

give rise to the fourth order operators

�

ABCD

: (

k

6

?

.

.

.

.

.

.

E

E

)[�k℄! (

k + 2

6

?

.

.

.

.

.

.

E

E

)[�k � 2℄;

for all quaternioni
 geometries, whi
h are 
urved analogues of the above mentioned

long arrows.

Let us observe that the operator emanating from E 
annot 
ome from a P{

module homomorphism on the 
orresponding semi{holonomi
 jet modules. Indeed,

this would imply the same property for the se
ond power of the Lapla
ian in the

four{dimensional 
onformal geometry, whi
h is ex
luded in [14℄. We do not know the

answer for the rest of them, although this is a very appealing question. Indeed, those

operators whi
h are given by the P{module homomorphisms on semi{holonomi


jets allow a 
urved version of the translation prin
iple.

There is a good hope to extend the te
hnique from [14℄ to all quaternioni
 ge-

ometries.
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