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Abstract. New universal invariant operators are introduced in a class of

geometries which include the quaternionic structures and their generalisa-

tions as well as 4-dimensional conformal (spin) geometries. It is shown that,

in a broad sense, all invariants and invariant operators arise from these

universal operators and that they may be used to reduce all invariants

problems to corresponding algebraic problems involving homomorphisms

between modules of certain parabolic subgroups of Lie groups. Explicit

application of the operators is illustrated by the construction of all non-

standard operators between exterior forms on a large class of the geometries

which includes the quaternionic structures.
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1. Introduction

A real almost Grassmannian structure on a manifold M (brie�y a real AG-

structure) is given by a �xed identi�cation of the tangent bundle TM with the

tensor product of two auxiliary vector bundles of dimensions p and q, together

with the identi�cation of their top degree exterior powers. In the realm of

Penrose's abstract index notation, we shall express this by

E

a

= E

A

0


 E

A

= E

A

A

0

; ^

q

E

A

' ^

p

E

A

0

: (1)

Equivalently, this amounts to the reduction of the structure group GL(pq;R)

of the tangent bundle to its subgroup G

0

= S(GL(p;R)�GL(q;R)). Thus the

complexi�ed tangent bundle of a real AG-structure is equipped by the reduc-

tion of its structure group to G

C

0

= S(GL(p; C ) �GL(q; C )). There is another

class of geometries on 4m-dimensional manifolds with similar behaviour. The

geometries are de�ned by reductions of the structure groups of the tangent

bundles to the groups G

0

= S(GL(p=2; H ) � GL(q=2; H )) � GL(pq;R) with

2 � p � q even, and the complexi�cations of their tangent bundles enjoy again

the fundamental identi�cation (1). The most important algebraic feature of

the two types of the structures above is that, for each pair p; q, their respec-

tive structure groups G

0

are the maximal reductive parts of certain maximal
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parabolic subgroups P in two di�erent real forms G of the same complex semi-

simple group G

C

= SL(p + q; C ). A geometry will be called an AG-structure

if it has a structure group G

0

where G

0

is a maximal reductive part of a par-

abolic P � G such that P = G \ P

C

with G

C

= SL(p + q; C ) and where

P

C

is the maximal parabolic in G

C

such that G

C

=P

C

is the Grassmannian of

complex p-planes in C

p+q

(with 2 � p � q). Thus the members of the list of all

AG-structures are named by such pairs (G;P ) and in fact the real group G is

one of the following: G = SL(p+ q;R) with 2 � p � q, G = SL(p=2 + q=2; H )

and p; q are even, or G = SU(p; p), see Appendix A for more details. Hence-

forth G and P will indicate such a pair and G

0

will be the reductive part

of P . The identi�cation (1) of the complexi�ed tangent spaces is given for

all the AG-structures. The complex almost Grassmannian structures on com-

plex manifolds were studied in [1] under the name `paraconformal manifolds'.

Similar objects were introduced earlier in [12], see also [11].

The most well known examples of such structures are 4-dimensional con-

formal spin structures (here G

0

= R � Spin(p; q;R) � Spin(p + 1; q + 1;R),

p + q = 4, and the complexi�cation Spin(6; C ) ' SL(4; C )). We will extend

the term `spinor' from that case and in all cases deem the auxiliary bundles

E

A

0

and E

A

to be spinor bundles.

The almost quaternionic structures on manifolds are classical 1st order G-

structures, such that their structure group G

0

is the subgroup GL(m; H ) �

Z

2

Sp(1) � GL(4m;R), see [21]. We have to notice that the action of G

0

on H

m

(i.e. the indicated embedding into the real general linear group) is de�ned by

the adjoint action of the block-diagonal matrices in GL(1+m; H ) on the block

below the diagonal. The group

~

G

0

= S(GL(1; H )�GL(m; H )) is the universal

cover of G

0

and the choice of the structure group

~

G

0

makes no di�erence

locally. In particular, the almost quaternionic structures belong to our class

of AG-structures. They are called quaternionic if they admit a torsion-free

connection. It was pointed out in [21], and worked out in much detail in [1],

[3], that these structures �t into a larger class of geometries coming from

the so called j1j-graded semi-simple Lie algebras. This is exactly our point

of view and the corresponding entry in our list of pairs (G;P ) is that with

G = SL(1 + q=2; H ), q � 2 even.

Despite the very transparent geometric di�erences between, for example, the

real almost Grassmannian structures and the almost quaternionic structures,

we will treat all these cases simultaneously. In the cases corresponding to

the `split real form' G = SL(p + q;R) we will write TM to mean the usual

tangent bundle while for the other cases TM will mean the complexi�cation of

the tangent bundle. Similarly for P -modules, and the bundles they induce, we

will take these to be real for the geometries of the split real forms but complex

for the geometries corresponding to the other groups. With this understood

we will suppress explicit reference to the scalars concerned and write, for

example, SL(m) for either the real or complex special linear group as required

by context. These conventions will enable us to use the same index formalism
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for all these geometries and also enable us to avoid complexifying except where

necessary.

Treating all such AG-structures simultaneously, the main results we obtain

are as follows:

� We construct a new invariant �rst order di�erential operator that we call

a twistor-D operator � see de�nition 3.1. This operator may be viewed as an

analogue, for these structures, of the Levi-Civita connection of Riemannian

geometry.

� Via the twistor-D operator we construct curved analogues of all the non-

standard operators between exterior di�erential forms on a class of AG-structures

that includes all the quaternionic geometries � see theorem 5.1.

� We use the twistor-D operator to construct a module for an appropriate

parabolic subgroup P such that all invariant di�erential operators (linear and

polynomial and up to any chosen order) and invariants of AG-structures are

equivalent to P -homomorphisms from this module to irreducible P -modules.

See in particular theorem 4.4. The implications of this are discussed below.

We should also point out that considerable detail of a `calculus' to enable

manipulation and application of the twistor-D operator and its accompany-

ing machinery is presented. Most of this is strictly needed to establish the

results mentioned. However we have attempted to present this in an explicit

form that could be directly used by readers as we believe that there are many

potential applications of these tools in mathematical-physics, especially since

they include new tools for the 4-dimensional conformal structures and their

associated twistor theory. For example the twistor-D operator should be par-

ticularly useful for the construction and study of conformally invariant spinor

equations in 4-dimensions. In addition to the main results there are other ob-

servations and results along the way. In particular, in section 6 we observe an

obvious extension to Salamon's complex, we relate the twistor-D operator to

the so called tractor-D operator of conformal geometry and we also generalise

the latter to a class of AG-structures.

Underlying our constructions here is the result that a manifold with an

almost Grassmannian structure comes equipped with a canonical Cartan bun-

dle G ! M and associated canonical Cartan connection. In each case G is a

principal �bre bundle with structure group P where this is a maximal par-

abolic subgroup of a Lie group G as above. The canonical (normal) Cartan

connection ! is a special 1-form on G which takes values in the Lie algebra g

of G and gives a complete parallelisation of G (see Appendix A, [3] and [7],

for more deails). The Cartan bundle may be regarded as a deformation of the

homogeneous situation where one has G as principal bundle with �bre P over

G=P and in this latter picture the Cartan connection reduces to the Maurer

Cartan form. As in the homogeneous case each P -module V gives rise to an

induced or natural bundle V. Moreover, in the special case of a G-module W

the corresponding natural bundle W comes equipped with a canonical linear

connection (also denoted by !). Such bundles will be described here by what
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will be called (local) twistor bundles and their canonical connections will be

viewed as twistor connections. Since, in the current work, we are concerned

with the production of explicit operators on M we avoid a detailed discussion

of the Cartan bundle and work directly on these induced natural bundles and

their connections. Indeed most of the work can be understood without a deep

understanding of the inducing Cartan bundles. However we would like to point

out that many of the `background results' can be recovered most e�ciently

from the principal bundle point of view and Appendix A is dedicated to ex-

tracting from the general theory of Cartan bundles and their connections (as

in for example [6]) the results required for the current work.

Calculus similar to the twistor calculus we develop here has been successfully

applied to other related geometries. For example in [13] a �rst order invariant

tractor-D operator (rediscovered in [2] but originally due to Tracey Thomas),

and some calculus based around this, is used to construct all density valued

invariants of projective geometries. In [14] a similar programme is in place

to produce a complete invariant theory for conformal geometries and there

are already many new results in this. Such calculus has also been used to

proliferate invariant operators on conformal, projective and CR structures.

As with the AG-structures studied here, these geometries are all `parabolic

geometries' which may be viewed as deformations of homogeneous structures

G=P where G is semi-simple and P a parabolic subgroup. It turns out that

at each point of such a structure P acts on the jet information (jets of the

geometric structure itself or jets of a �eld on the structure). Understanding

and dealing with this action is the key problem. This is di�cult and subtle

in general and many papers have discussed similar problems, see e.g. [3], [6],

[23], and the references therein. Roughly speaking the programme here, as

with the tractor calculus, is to use the twistor-D operator to package this jet

information into `parcels' which are P -submodules of irreducible G-modules.

This is a huge step since at least the latter G-modules are understood and

can be dealt with by classical techniques such as Weyl's invariant theory. (A

discussion of the general programme, in the context of tractor calculus, as well

as other results are described in [15].) Then invariants and invariant operators

may be proliferated by identifying the relevant P -submodules of irreducible

G-modules.That all invariants and invariant operators are equivalent to the

corresponding P -homorphisms is the content of theorem 4.4. A more intuitive

interpretation of this result is that all invariants arise from the twistor-D

operator (and its concatenations � the universal invariant D

(k)

operators of

section 3). As far as we know this is the �rst theorem of its sort and thus

far there is no corresponding theorem established for the tractor operators.

This theorem leaves open the question of whether the remaining P -submodule

problems are tractable. Evidence that in many important cases they are is

the success of the analogous tractor calculus, as mentioned above, and more

importantly for this case the application of the twistor-D operator to produce

the new family of invariant di�erential operators in section 5. For future work
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in this direction, as well as to develop some results needed here, appendix C

discusses the composition series of submodules in a rather general setting.

The plan of the paper goes as follows. After setting notation and outlining

some further preliminaries in the next section, we introduce the twistor-D

operators. The fourth section is devoted to the main Theorem 4.4 the proof

of which relies on an explicit description of the normal forms of the AG-

structures, cf. Appendix B. Then we proceed with our main application, the

curved analogues of the non-standard operators on exterior forms. These are

fourth order and include analogies to the square of the Laplacian in four-

dimensional conformal geometries. Further observations, as mentioned above,

in Section 6, are followed by the three Appendices.

Acknowledgements. Discussions with Andreas �ap and Michael Eastwood

were important. Experimenting with Brian Boe's computer program for com-

puting the classi�cation lists of homomorphisms between generalized Verma

modules has been also very useful (cf. [4]). Essential parts of the research were

done during the second author's stays at the University of Adelaide and QUT

in Brisbane, and the �rst author's stay at Masaryk University in Brno. Some

writing was also done during the authors' visit at Erwin Schrödinger Institute

in Vienna.

2. Preliminaries

Here we review some important technicalities and introduce our notational

conventions. We omit explicit veri�cations of most of the claims as they follow

easily from the general theory as reviewed in Appendix A, see also [6]. For

an explicit development (although in the complex setting) with notation and

conventions very similar to those here see [1].

Index formalism. Except where otherwise indicated we use Penrose's ab-

stract index notation [19] which allows for easy explicit calculations without

involving a choice of basis. Thus we may write, v

A

or v

B

for a section of the

unprimed fundamental spinor bundle E

A

. Similarly w

A

0

could denote a section

of the primed fundamental spinor bundle E

A

0

. We write E

A

for the dual bundle

to E

A

and E

A

0

for the dual to E

A

0

. The tensor products of these bundles yield

the general spinor objects such as E

AB

:= E

A


 E

B

, E

ABC

0

A

0

B

0

and so forth. The

tensorial indices are also abstract indices. Recall (see above) that E

a

= E

A

A

0

is

the tangent bundle, so E

a

= E

A

0

A

is the cotangent bundle and we may use the

terms `spinor' or `section of a spinor bundle' to describe tensor �elds.

A spinor object on which some indices have been contracted will be termed

a contraction (of the underlying spinor). For example

v

ABC

0

BC

0

DE

is a contraction of v

ABC

0

DD

0

EF

. In many cases the underlying spinor of interest is

a tensor product of lower valence spinors. For example

v

AB

w

C

0

B

u

ACD
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is a contraction of v

AB

w

C

0

C

u

DEF

. The same conventions are used for the tensor

indices and the twistor indices; the latter are to introduced below. Standard

notation is also used for the symmetrizations and antisymmetrizations over

some indices.

Weights and scales.We de�ne line bundles of densities or weighted functions

as follows. The weight �1 line bundle E [�1] over M is identi�ed with

E

p

z }| {

[A

0

B

0

� � �C

0

]

:

Then, for integral w, the weight w line bundle E [w] is de�ned to be (E [�1])

�w

.

In fact in the case of AG-geometries corresponding to the real-split form SL(p+

q;R) we can (locally) extend this de�nition to weights w 2 R by locally

selecting a ray �bre subbundle of E [�1]. Calling this say E

+

[�1] we can then

de�ne the ray bundles E

+

[w] := (E [�1])

�w

. Finally these may be canonically

extended to line bundles in the obvious way. In any case we write E

A

0

[w] for

E

A

0


 E [w] and so on, whenever de�ned. In view of the de�ning isomorphism

h : ^

q

E

A

'

�!

^

p

E

A

0

(2)

we also have

E [�1]

�

=

E

[AB � � �C]

| {z }

q

; E [1]

�

=

E

q

z }| {

[AB � � �C]

�

=

E

[A

0

� � �C

0

]

| {z }

p

:

We write �

A

0

B

0

���C

0

for the tautological section of E

[A

0

B

0

���C

0

]

[1] giving the map-

ping E [�1]

'

�!

^

p

E

A

0

by

f 7! f�

A

0

B

0

���C

0

; (3)

and �

D���E

for similar object giving E [�1]

'

�!

^

q

E

A

. A scale for the AG-

structure is a nowhere vanishing section � of E [1]. Note that such a choice is

equivalent to a choice of spinor `volume' form

�

A

0

���C

0

�

:= �

�1

�

A

0

���C

0

;

or to a choice of form,

�

�

D���E

:= �

�1

�

D���E

:

Distinguished connections. A connection r

a

on M belongs to the given

AG-structure (this really means r

a

comes from a principal connection on the

bundle G

0

described below) if and only if it satis�es two conditions:

� r

a

is the tensor product of linear connections (both of which we shall

also denote r

a

) on the spinor bundles E

A

and E

A

0

,

� the de�ning isomorphism h in (2) is covariantly constant, i.e. r

a

h = 0.

Our conventions for the torsion T

ab

c

and curvature R

ab

c

d

of a connection r

a

on the tangent bundle TM are determined by the following equation,

2r

[a

r

b]

v

c

= T

ab

d

r

d

v

c

+R

ab

c

d

v

d

:
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Since T

ab

c

is skew on its lower indices, T

ab

c

= T

[ab]

c

, it can be written as a

sum of two terms

T

ab

c

= F

ab

c

+

~

F

ab

c

where

F

ab

c

=: F

A

0

B

0

C

ABC

0

= F

[A

0

B

0

]C

(AB)C

0

and

~

F

ab

c

=:

~

F

A

0

B

0

C

ABC

0

= F

(A

0

B

0

)C

[AB]C

0

:

The Cartan bundle G over the manifoldM has the quotient G

0

, a principal �-

bre bundle with structure groupG

0

. By the general theory, eachG

0

-equivariant

section � : G

0

! G of the quotient projection de�nes the distinguished princi-

pal connection on G

0

, the pullback of the g

0

-part of !. The whole class of these

connections consists precisely of connections on G

0

with the unique torsion tak-

ing values in the kernel of @

�

. A straightforward computation shows that the

latter condition is equivalent to the condition that both

~

F and F be com-

pletely trace-free (cf. Appendix A). Each principal connection on G

0

induces

the induced connection on the bundle E [1]nf0g which is associated to G

0

and,

moreover, the resulting correspondence between the sections � and the latter

connections is bijective. In particular, each section � of the bundle E [1] n f0g

de�nes uniquely a reduction �, such that the corresponding distinguished con-

nection leaves � horizontal. Altogether we have recovered Theorems 2.2, 2.4

of [1]. We rephrase these here for convenience:

Theorem 2.1. Given a scale � on an AG-structure there are unique connec-

tions on E

A

and E

A

0

such that F

A

0

B

0

C

ABC

0

and

~

F

A

0

B

0

C

ABC

0

are totally trace-free, the

induced covariant derivative preserves the isomorphism h of (2), and r

a

� = 0.

The torsion components F

ab

c

and

~

F

ab

c

of the induced connection on TM are

invariants of the AG-structures.

Notice that in the special case of the four-dimensional conformal geometries,

there is always a connection with vanishing torsion on G

0

and so both F and

~

F

are zero. The scales correspond to a choice of metric from the conformal class

while the general distinguished connections (corresponding to the reduction

parameter � being not necessarily exact) are just the Weyl geometries.

We may write r

�

a

to indicate a connection as determined by the theorem,

although mostly we will omit the �. Thus we might write r

^

�

a

or simply

^

r

a

to indicate the connection corresponding to a scale

^

� and similar conventions

will be used for other operators and tensors that depend on �.

In what follows, for the purpose of explicit calculations, we shall often choose

a scale and work with the corresponding connections. Objects are then well

de�ned, or invariant, on the AG-structure if they are independent of the choice

of scale. Note that if we change the scale according to � 7!

^

� = 


�1

�, where 
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is a smooth non-vanishing function, then the connection transforms as follows:

E

A

:

^

r

A

0

A

u

C

= r

A

0

A

u

C

+ �

C

A

�

A

0

B

u

B

E

A

0

:

^

r

A

0

A

u

C

0

= r

A

0

A

u

C

0

+ �

A

0

C

0

�

B

0

A

u

B

0

E

B

:

^

r

A

0

A

v

B

= r

A

0

A

v

B

��

A

0

B

v

A

E

B

0

:

^

r

A

0

A

v

B

0

= r

A

0

A

v

B

0

��

B

0

A

v

A

0

(4)

where �

a

:= 


�1

r

a


. Consequently

c

r

a

f = r

a

f + w�

a

f (5)

if f 2 E [w]. All these formulae follow from the general discussion in Appendix

A, but they are also easily checked directly.

Given a choice of scale �, we will write R

ab

C

D

(or R

(�)

ab

C

D

to emphasise the

choice of scale) for the curvature of r

a

on E

A

and R

ab

C

0

D

0

for the curvature of

r

a

on E

A

0

, that is

(2r

[a

r

b]

� T

ab

e

r

e

)v

C

= R

ab

C

D

v

D

; (2r

[a

r

b]

� T

ab

e

r

e

)w

D

0

= �R

ab

C

0

D

0

w

C

0

:

Then the curvature of the induced linear connection on TM is

R

ab

c

d

= R

ab

C

0

D

0

�

C

D

+R

ab

C

D

�

C

0

D

0

:

Observe that since r

a

preserves the volume forms �

�

A

0

���C

0

and �

�

D���E

it follows

that R

ab

C

D

and R

ab

C

0

D

0

are trace-free on the spinor indices displayed. Thus the

equations

R

ab

C

D

= U

ab

C

D

� �

C

B

P

A

0

B

0

AD

+ �

C

A

P

B

0

A

0

BD

and

R

ab

C

0

D

0

= U

ab

C

0

D

0

+ �

B

0

D

0

P

A

0

C

0

AB

� �

A

0

D

0

P

B

0

C

0

BA

determine the objects U

ab

C

D

, U

ab

C

0

D

0

and the Rho-tensor, P

ab

, if we require that

U

A

0

B

0

C

ACD

= 0 = U

A

0

D

0

C

0

ABD

0

. In this notation we have,

R

ab

c

d

= U

ab

c

d

+ �

D

0

C

0

�

C

A

P

B

0

A

0

BD

� �

D

0

C

0

�

C

B

P

A

0

B

0

AD

� �

C

D

�

A

0

C

0

P

B

0

D

0

BA

+ �

C

D

�

B

0

C

0

P

A

0

D

0

AB

(6)

where

U

ab

c

d

= U

ab

C

D

�

D

0

C

0

+ U

ab

D

0

C

0

�

C

D

: (7)

In the case of p = 2 = q this agrees with the usual decomposition of the

curvature of the Levi-Civita connection into the conformally invariant (and

trace-free) Weyl tensor part and the remaining part given by the Rho-tensor

(see e.g. [2]). All these equations also follow from the general de�nitions of the

U 's and P's in (37). Note that U 's are two-forms valued in g

0

coming from the

curvature of the canonical Cartan connection and so they are in the kernel of

@

�

. This is the source of the condition on the trace, but they are not trace-free

in general:

U

ab

C

C

= �U

ab

C

0

C

0

= 2P

[ab]

: (8)
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On the other hand, it follows from the Bianchi identity,

R

[ab

d

c]

+r

[a

T

bc]

d

+ T

[ab

e

T

c]e

d

= 0;

that

2(p+ q)P

[ab]

= �r

c

T

ab

c

: (9)

The Rho-tensor P

ab

has the transformation equation

^

P

A

0

B

0

AB

= P

A

0

B

0

AB

�r

A

0

A

�

B

0

B

+�

B

0

A

�

A

0

B

: (10)

Again, this can be easily checked directly but we give a general explanation

in (36).

We are most interested in the special case p = 2. Then the whole component

F

ab

c

is irreducible and so it vanishes by our condition on the trace, while

the other component

~

F

ab

c

of the torsion, together with the trace-free part of

U

[A

0

B

0

]D

(ABC)

are the only local invariants of the structures (i.e. the AG-structure

is locally �at if and only if these two vanish). In all other cases 2 < p � q, the

two components of the torsion are the only invariants, cf. the end of Appendix

A.

The totally symmetrized covariant derivatives of the Rho-tensors will play

a special role. We will use the notation

S

a���b

:= r

(a

r

b

� � �r

d

P

ef)

| {z }

s

for s = 2; 3 � � � .

Twistors. Via the Cartan bundle G over M any P -module V gives rise to

a natural bundle (or induced bundle) V. Sections of V are identi�ed with

functions f : G ! V such that f(x:p) = �(p

�1

)f(x), where x 7! x:p gives

the action of p 2 P on x 2 G while � is the action de�ning the P -module

structure.

Recall also that the Cartan bundle is equipped with a canonical connection,

the so called normal Cartan connection !. In view of this it is in our interests

to work, where possible, with natural bundles V induced from V where this is

not merely a P -module but in fact a G-module. Then the Cartan connection

induces an invariant linear connection on V. Let us write V

�

for the module

corresponding to the standard representation of G on R

p+q

and write V

�

for

the dual module. The index � is another Penrose-type abstract index and

we write E

�

and E

�

for the respective bundles induced by these G-modules.

All �nite dimensional G-modules are submodules in tensor products of the

fundamental representations V

�

and V

�

. Thus the bundles E

�

and E

�

play

a special role and we term these (local) twistor bundles (c.f. [1, 20]). In fact

in line with the use of the word �tensor� we will also describe any explicit

subbundle of a tensor product of these bundles as a twistor bundle and sections

of such bundles as local twistors. In particular observe that there is a canonical

completely skew local-twistor (p + q)-form h

�����


on E

�

which is equivalent
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to the isomorphism (2). We write h

�����


for the dual completely skew twistor

satisfying h

�����


h

�����


= (p+ q)!.

All �nite dimensional P -modules enjoy �ltrations which split completely as

G

0

-modules. V

�

and V

�

, give the simplest cases and, as P -modules, admit

�ltrations

V

�

= V

A

+ V

A

0

; V

�

= V

A

0

+ V

A

:

(Our notational convention is that the `right ends' in the formal sums are

submodules while the `left ends' are quotients.) These determine �ltrations of

the twistor bundles

E

�

= E

A

+ E

A

0

; E

�

= E

A

0

+ E

A

:

We write X

�

A

0

for the canonical section of E

�

A

0

which gives the injecting mor-

phism E

A

0

! E

�

via

v

A

0

7! X

�

A

0

v

A

0

: (11)

Similarly Y

A

�

describes the injection of E

A

into dual twistors,

E

A

3 u

A

7! Y

A

�

u

A

2 E

�

: (12)

It follows from standard representation theory that a choice of splitting of

the exact sequence,

0! V

A

0

! V

�

! V

A

! 0

is equivalent to the choice of subgroup of P which is isomorphic to G

0

. It fol-

lows immediately that a choice of splitting of the twistor bundle E

�

is equiva-

lent to a reduction from G to G

0

. Such a splitting is a G

0

-equivariant homomor-

phism � : E

�

! E

A

0

. We can regard � here as a section of E

�


 E

A

0

= E

A

0

�

and

then in our index notation the homomorphism is determined by v

�

7! �

A

0

�

v

�

,

for any section v

�

of E

�

. The composition of � with the monomorphism

E

A

0

! E

�

must be the identity so we have,

�

A

0

�

X

�

B

0

= �

A

0

B

0

:

A splitting �

A

0

�

of E

�

determines a dual splitting �

�

A

of E

�

, �

�

A

: E

�

! E

A

. Given

such splittings we have E

�

= E

A

� E

A

0

and E

�

= E

A

0

� E

A

, so we may write

sections of these bundles as a �matrices� such as

[u

�

]

�

=

 

u

A

u

A

0

!

2 [�E

�

]

�

[v

�

]

�

= (v

A

v

A

0

) 2 [�E

�

]

�

:

We will always work with splittings determined by a choice of scale � 2 E [1],

as discussed earlier. (That we have used the same symbol as used for the

kernel part of the symbol for the splitting is of course no accident. In fact

the direct connection between the scale � and the corresponding section �

A

0

�

is

given explicitly on page 14.) If u

�

and v

�

, as displayed, are expressed by such
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a scale then the change of scale � 7!

^

� = 


�1

� yields a transformation of these

splittings. For example [u

�

] 7! [u

�

]

b

�

where

[u

�

]

b

�

=

 

û

A

û

A

0

!

=

 

u

A

u

A

0

��

A

0

B

u

B

!

:

With this understood we will henceforth drop the notation [�]

�

and simply

write, for example, v

�

7! v̂

�

where

v̂

�

= (v̂

A

v̂

A

0

) = (v

A

+�

B

0

A

v

B

0

v

A

0

);

for the corresponding transformation of v

�

. In particular, the objects �

B

0

�

, �

�

A

are not invariant and

^

�

B

0

�

= �

B

0

�

� Y

A

�

�

B

0

A

^

�

�

A

= �

�

A

+X

�

B

0

�

B

0

A

:

However, note that, in the splittings they determine, �

B

0

�

and �

�

A

are given

�

B

0

�

=

�

0 �

B

0

A

0

�

�

�

A

=

 

�

B

A

0

!

:

In any such splitting the invariant objects X

�

B

0

and Y

A

�

are given by

X

�

B

0

=

 

0

�

A

0

B

0

!

Y

A

�

=

�

�

A

B

0

�

:

The �rst four identities of the following display are immediate, while the �nal

two items are useful de�nitions:

Y

A

�

X

�

A

0

= 0 �

A

0

�

�

�

A

= 0

Y

A

�

�

�

B

= �

A

B

�

A

0

�

X

�

B

0

= �

A

0

B

0

Y

A

�

�




A

=: �




�

�

A

0

�

X




A

0

=: �




�

(13)

We shall mostly deal with weighted twistors, i.e. tensor products of the

form E

�:::�


:::�

[w] = E

�:::�


:::�


 E [w]. All the above algebraic machinery works for

the weighted twistors. In fact we shall often omit the word `weighted' even

though, of course, these bundles do not come from G-modules for w 6= 0.

Finally, we observe that via this machinery any spinorial quantity may be

identi�ed with a (weighted) twistor. For example valence 1 spinors in E

A

0

[w

1

]

or E

A

[w

2

] may be dealt with via (11) or (12) respectively. This determines an

identi�cation for tensor powers by treating each factor in this way. This does

all cases since, via (3),

E

A

�

=

E

[B � � �D]

| {z }

q�1

[1]; E

A

0

�

=

E

p�1

z }| {

[B

0

� � �C

0

]

[�1]:

Now, any irreducible representation of G

0

is given as a tensor product of two

irreducible components in tensor products of the fundamental spinors (viewed

as representations of the special linear groups, adjusted by a weight). Applying

the corresponding Young symmetrizers [19, 10] to the tensor products of E

�

and E

�

, we obtain the explicit realization of each irreducible spinor bundle
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as the subbundle of the (weighted) twistor bundle which is isomorphic to the

injecting part (in the composition series � see appendix C) of the twistor

bundle. Thus a section of a weighted irreducible spinor bundle V may be

identi�ed with a twistor object which is zero in all its composition factors

except the �rst. So, in fact, this non-zero factor is also the projecting part

of the twistor. We write

~

V for this twistor (sub-)bundle satisfying V

�

=

~

V.

Altogether, we have established the following result.

Lemma 2.2. Any irreducible spinor object v can be identi�ed with the twistor

~v which has the spinor as its projecting part. This identi�cation is provided in

a canonical algebraic way.

In this connection we may also talk about the algebraic construction pro-

viding the twistor bundle

~

V . In any concrete case the identi�cations may be

described explicitly and in a rather obvious way using the projectors X; Y; �; �.

3. Twistor calculus

Given a choice of scale �, a twistor connection r

a

on E

�

and E

�

is given by

the following formulae:

r

P

0

A

 

v

B

v

B

0

!

=

 

r

P

0

A

v

B

+ �

B

A

v

P

0

r

P

0

A

v

B

0

� P

P

0

B

0

AB

v

B

!

(14)

and

r

P

0

A

(u

B

u

B

0

) = (r

P

0

A

u

B

+ P

P

0

B

0

AB

u

B

0

r

P

0

A

u

B

0

� �

P

0

B

0

u

A

); (15)

(c.f. [18, 9, 1]). Notice that whereas on the left hand side r indicates the

twistor connection, on the right hand side the symbol r indicates the usual

spinor connection determined by the choice of scale. Although we have �xed

a choice of scale to present explicit formulae for these connections, it is easily

veri�ed directly using the formulae (4) that the twistor connections are in

fact independent of the choice of scale and so are invariant operators on the

AG-structure.

An easy calculation reveals that

([r

a

;r

b

]� T

ab

d

r

d

)

 

v

C

v

C

0

!

=

=

0

@

U

ab

C

D

v

D

� T

ab

C

D

0

v

D

0

�2r

[a

P

b]

C

0

D

v

D

+ T

ab

E

E

0

P

E

0

C

0

ED

v

D

+ U

ab

C

0

D

0

v

D

0

1

A

:

Thus the curvature of the twistor connection is given, in this scale, by

W

ab




�

=

 

U

ab

C

D

�T

ab

C

D

0

�2Q

ab

C

0

D

U

ab

C

0

D

0

!

; (16)

where

Q

abc

:= r

[a

P

b]c

�

1

2

T

ab

e

P

ec

:
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Note that since the twistor connection is invariant it follows that this twistor

curvature W

ab




�

is invariant. In fact, viewed as a g-valued 2-form on the Car-

tan bundle G, this is just the curvature of the normal Cartan connection. In

particular, we know that the structures are torsion-free (in the sense of the

Cartan connection) if and only if the torsion part T

ab

c

vanishes and they are

locally �at if and only if the whole W

ab




�

vanishes.

The D-operators. Observe that if f 2 E [w] then it follows easily from (5)

that the spinor-twistor object

D

A

0

�

f := (r

A

0

B

f w�

A

0

B

0

f)

is invariant. We may regard this as an injecting part of the invariant twistor

object D

�

�

f := X

�

A

0

D

A

0

�

f . By regarding, in this formula for D

�

�

, r to be the

coupled twistor-spinor connection it is easily veri�ed that the operator D

�

�

is

well de�ned and invariant on sections of the weighted twistor bundles E

�����

����


[w].

De�nition 3.1. The invariant operators D

�

�

: E

�����

����


[w]! E

������

�����


[w] are called

the twistor-D operators.

For many calculations, where a choice of scale is made, it is useful to allow

D

�

�

to operate on spinors and their tensor products, although in this case the

result is not independent of the scale. For example, if v

C

2 E

C

[w] then

D

A

0

�

v

C

:= (r

A

0

B

v

C

w�

A

0

B

0

v

C

)::

Since the operator D

�

�

and its concatenations will have an important role

in the following discussions we develop notation for their target spaces. First

let F

�

be de�ned as follows,

F

�

:= ker(Y

A

�

: E

�

! E

A

):

Then we write

F

�����

�����

:= F

�


 � � � 
 F

�


 E

�


 � � � 
 E

�

;

and F

�����

�����

[w] = F

�����

�����


 E [w]. Finally let

S

� � � ��

� � � ��

| {z }

k

[w] := (�

k

F

�

�

)
 E [w]:

Note that sections of F

�

�

(= S

�

�

) are not generally trace-free, but that F

�

�

is

in a complement to the trace-part of E

�

�

.

Now if f 2 E [w] then D

�

�

f 2 F

�

�

[w]. Similarly observe that if v

�

2 F

�

then

D

�

�

v

�

� �

�

�

v

�

is in F

��

�

. Thus

D

��

��

:=

1

2

(D

�

�

D

�

�

+D

�

�

D

�

�

� �

�

�

D

�

�

� �

�

�

D

�

�

)

gives an invariant operator

D

��

��

: E

�����


����

[w]! S

��

��


 E

�����


����

[w]:
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Similarly we de�ne D

���

��


by

D

���

��


:=

1

3

((D

�

�

D

��

�


+D

�

�

D

��

�


+D

�




D

��

��

� �

�

�

D

��

�


� �

�

�

D

��

�


� �

�




D

��

��

)

and so on for D

�����

�����

. Notice that the construction of these is designed in such

a way that the resulting operators are annihilated if composed (contracted)

with Y

B

�

on any index.

The Splitting Machinery. In terms of the algebraic projectors and embed-

dings introduced in the last section, the twistor-D operator is given by

D

�

�

f = X

�

R

0

Y

A

�

r

R

0

A

f + w�

�

�

f; (17)

where f is any weighted twistor-spinor object. Using this and the expressions

(14), (15) for the twistor connection, the following identities are easily estab-

lished:

D

�

�

X

�

C

0

= X

�

C

0

�

�

K

Y

K

�

D

�

�

Y

C

�

= �Y

C

�

X

�

K

0

�

K

0

�

D

�

�

�

S

0

�

= P

�S

0

��

D

�

�

�

�

B

= �P

��

�B

X

�

B

0

D




�

f = wX




B

0

f Y

B




D




�

f = 0

�

B

0




D




�

f = D

B

0

�

f �

�

B

D

B

0

�

f = r

B

0

B

f;

(18)

where, again, f is any weighted twistor-spinor and we write

P

��

��

:= P

R

0

S

0

AB

X

�

R

0

X

�

S

0

Y

A

�

Y

B

�

, P

�S

0

��

:= P

R

0

S

0

AB

X

�

R

0

Y

A

�

Y

B

�

, P

��

�B

:= P

R

0

S

0

AB

X

�

R

0

X

�

S

0

Y

A

�

,

etcetera.

Notice also that the objects �

B

0

�

and �

�

A

describing the splitting of the

twistors can be viewed as the projecting parts of �

�

�

:= �

�1

D

�

�

� and �

�

�

� �

�

�

,

respectively.

D-Curvature. For f 2 E [w] the projecting part of D

�

�

f is

1

p

X

�

P

0

D

P

0

�

f = wf .

Although this is 0th order in f , this part of D

�

�

f behaves like a �rst order

operator because of the weight factor, w. In particular

1

p

X

�

P

0

D

P

0

�

satis�es a

Leibniz rule and so therefore so does D

�

�

. It follows immediately that, acting

on E

�

[w], [D

�

�

; D

�

�

] decomposes into a 0th order curvature part and a 1st order

torsion part. In fact it is an elementary exercise using the identities (8) and

(18) to verify that

[D

�

�

; D

�

�

]v

�

=W

���

��


v




�W

���

��


D




�

v

�

+ �

�

�

D

�

�

v

�

� �

�

�

D

�

�

v

�

; (19)

where,

W

���

��


= X

�

A

0

X

�

B

0

Y

A

�

Y

B

�

W

A

0

B

0

�

AB


: (20)

4. Invariant Theory

Recall that each choice of scale determines the linear connection r

�

on G

0

.

We shall write �

(�)

for the coe�cients of this connection r

�

in some coordinate

frame. The linear connections r

�

are clearly expressed through the normal

Cartan connection ! on G and vice versa (this is one of the important aspects

of the Rho-tensor P

ab

, cf. Appendix A). Thus we use the explicit de�nition of

invariance given below. We use this approach for simplicity, but we should like
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to point out that there are more natural points of view �tting nicely into the

general concepts as developed in [17]. In particular, some of our polynomiality

assumptions follow then automatically.

Invariant operators. Let V and U be �nite dimensional P -modules with

V irreducible. A (coupled) invariant operator on V taking values in U is a

well de�ned di�erential operator V ! U which may depend polynomially on

the �nite jets of the functions �

(�)

as well as polynomially on the �nite jets

of V and which is independent of the choice of local coordinate frame and

scale �. By the very de�nition, such an invariant must be intrinsic to the AG-

structure and so, when evaluated, depends only on the section of V and the

normal Cartan connection ! of the structure. It is clearly su�cient to deal

with the case that the invariant is homogeneous in V and we shall henceforth

assume that coupled invariants are homogeneous in this way.

We say an invariant (and semi-invariants as described below) has order

(`;m) if, in some scale �, it is:

(1) of order ` as an operator on v 2 �(V) and,

(2) in any coordinates, as an operator on the functions �

(�)

, it is of order � m

with equality in some set of coordinates.

We will also describe such an invariant as being of order k where k :=max(`;m).

In the special case that the invariant is homogeneous of degree 0 in the section

v then it is an invariant of the structure. On the other hand if the invariant is

of degree 1 in v then it is a linear invariant operator on v.

If the invariant takes values in U where U is an irreducible P -module we

will describe the invariant as an irreducible invariant. We may also restrict the

de�nition of our operators to some subcategory of the structures in question.

For example we may require they are locally �at, or torsion free, etc.

We will show below that the twistor-D operator is a universal invariant

di�erential operator in the sense that all coupled invariant operators arise in

an appropriate sense from concatenations of this operator and its curvature.

Some Examples. Note that the invariance of the exterior derivative on func-

tions is implicit in the de�nition of the twistor-D operator. If f 2 E then

D

P

0

�

f = (r

P

0

A

f 0) so the projecting part of D

�

�

f is r

P

0

A

f and thus this is

invariant. Similarly on

 

v

A

v

A

0

!

= v

�

2 E

�

;

D

P

0

�

v

�

= (r

P

0

A

v

�

0) and so the projecting part of D

�

�

v

�

is r

P

0

A

v

B

+ �

B

A

v

P

0

. The

equation obtained by setting this to zero is the usual twistor equation [1].

For a second order example consider D

��

��

f for f 2 �E [w] (or f 2 �E

�����

����


[w],

with indices suppressed). It is easily established that

D

P

0

�

A�

f =

 

0 0

(r

P

0

A

r

S

0

B

)f + wS

P

0

S

0

AB

f w�

S

0

B

0

r

P

0

A

f � �

P

0

B

0

r

S

0

A

f

!
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and

D

P

0

�

A

0

�

f =

 

0 0

w�

P

0

A

0

r

S

0

B

f � �

S

0

A

0

r

P

0

B

f w(w�

P

0

A

0

�

S

0

B

0

� �

S

0

A

0

�

P

0

B

0

)f

!

and these two �matrices� display all the non-vanishing parts of D

��

��

f . Here,

and below, (r

a

r

b

) means r

(a

r

b)

and, recall, S

ab

:= P

(ab)

. If w = 0 the

projecting part of this is r

P

0

B

f . On the other hand if w = 1 then the projecting

part of D

(��)

��

f is

(r

P

0

(A

r

S

0

B)

)f + S

P

0

S

0

(AB)

f

and so this is an invariant operator. Similarly if w = �1 then clearly the

projecting part of D

[��]

��

f is the invariant operator

(r

P

0

[A

r

S

0

B]

)f � S

P

0

S

0

[AB]

f:

In the case that p = 2 we may contract this with �

P

0

S

0

to yield the invariant

operator

2

AB

f := �

P

0

S

0

((r

P

0

A

r

S

0

B

)� S

P

0

S

0

AB

)f: (21)

If also q = 2 this is the usual conformally invariant Laplacian or Yamabe

operator (��

1

6

R)f where R is the Ricci scalar curvature.

On the other hand if w 6= �1; 0; 1 then the projecting part of both D

(��)

��

f

and D

[��]

��

f is a non-zero multiple of f . In fact it is an easy consequence of

this observation and the theorem 4.4 that, on weighted functions of weight

w 6= �1; 0; 1, there are no linear invariant operators of order � 2 which are

non-trivial on �at structures.

Note that in, for example, the w = �1 case above the operator (r

P

0

[A

r

S

0

B]

)f�

S

P

0

S

0

[AB]

f may be described explicitly by the formula

�

P

0

�

�

S

0

�

�

�

A

�

�

B

D

[��]

��

f:

It is useful to think of this as a composition of

D

[��]

��

: E [�1]!Q

��

��

with

�

P

0

�

�

S

0

�

�

�

A

�

�

B

: Q

��

��

! E

[P

0

S

0

]

[AB]

[�1]: (22)

Here Q

��

��

is the minimal natural sub-bundle of S

��

��

[�1] which contains the

image of D

[��]

��

on E [�1]. This is induced by a P -submodule, say H, of the

representation inducing S

��

��

[�1] and the invariant map (22) arises from a P -

homomorphism fromH to U , where U is the P -module inducing E

[P

0

S

0

]

[AB]

[�1]. It

is clear that one can use such P -homomorphisms composed with the D

(k)

oper-

ators to proliferate invariants. The content of theorem 4.4 is that all invariants

arise this way.
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An easy proposition. We will observe here that via the twistor-D operator

we obtain a special description of the jet bundle associated to twistor sub-

bundles.

Let V be any subbundle of a weighted twistor bundle and let us write D

(k)

for the linear di�erential operator

D

(k)

: V ! (E � S

�

�

� S

��

��

� � � � � S

� � � ��

� � � � 


| {z }

k

)
 V

given by

f 7! f � D

�

�

f � D

��

��

f � � � � � D

�����

����


f:

Recall that any kth order di�erential operator on a bundle factors through the

associated bundle of k-jets. That is, any kth order linear invariant di�erential

operator, taking values in a bundle U , V ! U , is equivalent to a bundle

morphism J

k

(V)! U . In particular, D

(k)

factors through a linear mapping on

the kth jet prolongation J

k

(V). The image of D

(k)

�lls a vector sub-bundle of

(E � S

�

�

� S

��

��

� � � � � S

�����

����


)
 V, which we denote by J

k

(V).

Proposition 4.1. Let V be any subbundle of a weighted twistor bundle of

weight w. The operator D

(k)

determines a bundle isomorphism,

J

k

(V)

�

=

J

k

(V):

Proof. In view of the de�nition of J

k

(V), the operator D

(k)

clearly determines

a bundle epimorphism J

k

(V) ! J

k

(V). That this is also injective follows by

counting dimensions: Consider f 2 E [w]. Observe that the injecting part of

D

� � � ��

� � � � 


| {z }

k

f

is of the form

r

(a

� � �r

d)

| {z }

k

f + (lower order terms): (23)

All other parts of D

�����

����


f are of order at most k � 1 and so, by repeated use

of (23), can be expressed polynomially in terms of

D

� � � ��

� � � ��

| {z }

`

f

for ` � k � 1. Thus

J

k

(E [w])=J

(k�1)

(E [w])

�

=

(�

k

E

a

)
 E [w]

but (�

k

E

a

)
E [w]

�

=

J

k

(E [w])=J

k�1

(E [w]). In fact it is easily seen that, by an

almost identical argument, we have the more general result,

J

k

(V)=J

(k�1)

(V)

�

=

(�

k

E

a

)
 V

�

=

J

k

(V)=J

k�1

(V)

and so, by induction on k, the �bre dimension of J

k

(V) is the same as the

�bre dimension of J

k

(V). 2
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Although the proposition above is inspiring we need to consider slightly

more general structures to obtain all invariants. These are de�ned above the-

orem 4.4.

In the meantime we need to understand the general invariants of r

�

, viewed

as a�ne connections. In order to distinguish them from the AG-invariants, we

will call these semi-invariants in the sequel.

Semi-invariants and their normal form. As above, let V and U be �nite

dimensional P -modules, with V -irreducible, and let V and U be the corre-

sponding natural bundles. A coupled semi-invariant operator (which we will

often abbreviate to semi-invariant) on V taking values in U is a universal for-

mula which is polynomial in the coordinate derivatives of the functions �

(�)

and coordinate derivatives of the components of V (in some local frame) which

is independent of the choice of local coordinates and frame (but may not be

independent of the choice of scale �). Thus, for each choice of scale �, a semi-

invariant is a di�erential operator V ! U which may depend polynomially on

the �nite jets of the functions �

(�)

as well as polynomially on the �nite jets of

V. Note that a coupled invariant operator is a coupled semi-invariant operator

which, in addition, is independent of the choice of scale �. As for invariants,

semi-invariants will be deemed irreducible if they take values in irreducible

natural bundle.

It is easy to write down some examples of such semi-invariants. The cur-

vature R

ab

c

d

and torsion T

ab

c

of r

�

are polynomial in the �nite jets of the

functions �

(�)

and it is a classical result that these objects are tensorial and so

are semi-invariants. Thus the irreducible parts of these tensors are irreducible

semi-invariants. The objects F

ab

c

and U

ab

C

D

are examples. In fact due to the

invariance of the covariant derivative it is easily veri�ed that any contraction

involving covariant derivatives of v 2 �(V) and covariant derivatives of the

curvature R

ab

c

d

and the torsion T

c

ab

is a semi-invariant. For example

v

a

(r

a

v

c

)(r

c

U

de

H

I

)U

fg

I

H

is a semi-invariant. We will write contr(r

�

; T; R; v) to symbolically indicate

such contractions. We will observe that, in fact, all semi-invariants arise this

way and this leads to a standard way of expressing semi-invariants.

Let us �x a scale �. Note that it follows easily from proposition B.1 and

proposition B.2 that a semi-invariant may be expressed as a polynomial in the

components of the covariant derivatives of the torsion and curvature of r

(�)

and the components of the covariant derivatives of the section v 2 �(V). At

each point of the manifold a semi-invariant is a polynomial in the components

of these tensors (that is the list of tensors which give, at that point, the

various covariant derivatives of T

ab

c

, R

ab

c

d

and v to the required order) which is

covariant under the action of SL(p)�SL(q). Thus it follows from the complete

reducibility of �nite dimensional (SL(p)�SL(q))-modules and Weyl's classical

invariant theory [25] that any such semi-invariant can be expressed as a linear

combination of basic semi-invariants of the form contr(r

�

; T; R; v) as claimed.
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Consider then a semi-invariant expressed as a linear combination of con-

tractions contr(r

�

; T; R; v). First observe that by substituting for R

ab

c

d

using

formulae (6) and (7) we see that our typical semi-invariant may be re-expressed

in terms of covariant derivatives of the objects v (with indices suppressed),

T

ab

c

, U

ab

C

D

, U

ab

C

0

D

0

and P

ab

. We might write contr(r

�

; T; U; U

0

;P; v) for the basic

terms of this new expression. Finally we observe that the semi-invariant can

be written as described in the following lemma which we regard as a normal

form for semi-invariants.

Lemma 4.2. Any semi-invariant of order k may be expressed as a linear

combination of contractions involving the tensors S

a���d

2 �

m

E

a

for 0 � m � k,

and various covariant derivatives of the objects T

ab

c

, U

ab

C

D

, U

ab

C

0

D

0

, Q

abc

and

v 2 �(V).

Proof. Recall that

Q

abc

= r

[a

P

b]c

�

1

2

T

ab

e

P

ec

;

(as in (16)). Note that it is easily veri�ed, by considering possible Young

symmetrizers and using (9), that the (m� 2)nd covariant derivative of P

ab

,

r

a

� � �r

b

| {z }

m�2

P

cd

;

may, up to lower order terms which involve covariant derivatives of the cur-

vature and torsion, be expressed as a linear combination of the tensors (cf.

(9))

S

a � � � d

| {z }

m

; r

a

� � �r

b

| {z }

m�3

r

[c

P

d]e

and r

a

� � �r

b

r

e

| {z }

m�1

T

cd

e

Thus, by replacing r

[c

P

d]e

with Q

cde

+

1

2

T

cd

f

P

fe

it is clear that the tensors

r

a

� � �r

b

P

cd

may, up to lower order terms which involve covariant derivatives

of the curvature and torsion, be expressed as a linear combination of the

tensors

S

a � � � d

| {z }

m

; r

a

� � �r

b

| {z }

m�3

Q

cde

and r

a

� � �r

b

r

e

| {z }

m�1

T

cd

e

:

The lemma follows by �rst expressing the semi-invariant in the manner last

described above and then repeatedly using this observation to replace all oc-

currences of covariant derivatives of P

ab

, starting with the highest order. 2

The Main theorem. Note that the covariant derivatives of tensors and

spinors can be expressed in terms of components of the covariant derivatives of

P

ab

and components of the twistor-D operator acting on appropriate twistors

via the machinery of section 3. For example consider r

a

v

B

where v

B

2 E

B

[w].

Let v

�

:= Y

B

�

v

B

and we have

r

a

v

B

= �

A

0

�

�

�

A

D

�

�

�

�

B

v

�

:
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We now bring the �

�

B

to the left of the twistor-D operator using the appropriate

identities from (18) and (13). We obtain

r

a

v

B

= �

A

0

�

�

�

A

�

�

B

(D

�

�

v

�

):

Thus

r

a

r

b

v

C

= �

A

0

�

�

�

A

D

�

�

�

B

0

�

�

�

B

D

�

�

�




C

v




= �

A

0

�

�

�

A

D

�

�

(�

B

0

�

�

�

B

�




C

(D

�

�

v




))

= �

A

0

�

�

�

A

�

B

0

�

�

�

B

�




C

(D

�

�

D

�

�

v




)� P

A

0

C

0

AB

X

�

C

0

�

B

0

�

�




C

(D

�

�

v




)

� P

A

0

C

0

AC

X




C

0

�

B

0

�

�

�

B

(D

�

�

v




)

Continuing in this fashion it is easily seen that

r

a

� � �r

b

| {z }

`

v

B

may be expressed in terms of components of

D

�

�

� � �D

�

�

| {z }

`

v




and lower order terms which polynomially involve the components of

D

�

�

� � �D

�

�

| {z }

m

v




;

for m � `� 1, and the components of covariant derivatives, to order `� 2, of

P

ab

.

These observations lead us to the next lemma which is the key to the proof

of the theorem in this section. As before let V be an irreducible natural bundle

and recall that we may identify this with a twistor sub-bundle (lemma 2.2).

Since we are suppressing the indices on the section v 2 V we will write ~v 2

~

V

for the corresponding section of the appropriate twistor bundle. The section

v is recovered explicitly by contracting ~v with the projectors �

A

0

�

and �

�

A

. (For

example, in the example just above v = v

B

2 E

B

[w] and ~v = v

�

2 E

�

[w] with

v

B

= �

�

B

v

�

.)

Lemma 4.3. A coupled invariant di�erential operator I of order (`;m) may

be expressed as a universal polynomial expression in the components of D

(`)

~v

and D

(k

0

)

W where k

0

= max(`� 1; m) .

In this lemma, and henceforth, D

(m)

W means D

(m)

applied to W

��


���

. This

is to be distinguished from (D)

(m)

W which we will use to mean simply an

m-fold application of the twistor-D operator to W

��


���

.

Proof. We may suppose that at �rst we have chosen a scale � and the invariant

is expressed in normal form as in lemma 4.2. We will �rst observe that, in

rewriting this expression, covariant derivatives of T

ab

c

, U

ab

C

D

, U

ab

C

0

D

0

, and Q

abc
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may be eliminated in favour of components of D

(m)

W and lower order terms

and similarly covariant derivatives of v 2 �(V) may be

Note that each of the objects T

ab

c

, U

ab

C

D

, U

ab

C

0

D

0

, and Q

abc

may be obtained

linearly from W

��


���

via the projectors X

�

A

0

; Y

A

�

; �

A

0

�

; �

�

A

. For example

U

ab

C

D

= �

A

0

�

�

�

A

�

B

0

�

�

�

B

Y

C




�

�

D

W

��


���

:

We re-express the invariant as follows. We make the substitutions for each

of T

ab

c

, U

ab

C

D

, U

ab

C

0

D

0

; Q

abc

and v in terms of components of W

��


���

and ~v, and

we replace each r

a

with �

A

0

�

�

�

A

D

�

�

. Next we further re-express by moving

each X

�

A

0

; Y

A

�

; �

A

0

�

and �

�

A

to the left of any twistor-D operators. The new ex-

pression for the invariant involves components of concatenations of twistor-D

operators acting on W

��


���

and ~v and covariant derivatives of P

ab

and various

valence S-tensors. These covariant derivatives of P

ab

all turn up via the iden-

tities (18). From this observation it is immediately clear that the order of any

of these covariant derivatives of P

ab

is strictly less than k :=max(`;m). In

fact, by elementary representation theory arguments, one can show that the

order of any of these covariant derivatives of P

ab

is � ` � 2 if ` > m, and is

� m � 2 otherwise. Now we replace, in the last expression for the invariant,

each maximal order r

a

� � �r

c

P

de

with its expression in terms of the tensors

S

a���e

, r

a

� � �r

b

Q

cde

, r

a

� � �r

c

r

f

T

de

f

, their transposes and lower order terms.

Next we replace each occurrence of r

a

� � �r

b

Q

cde

and r

a

� � �r

c

r

f

T

de

f

with

their expressions in terms of components of (D)

k

0

W and lower order covariant

derivatives of P

ab

. Continuing in this fashion it is clear that �nally we are left

with an expression involving only S-tensors and the components of concate-

nations of the twistor-D operator on W

��


���

and ~v. It is easily seen using (19)

that this may be re-expressed in terms of components of D

(`)

~v, D

(m)

W and

the components of the S-tensors.

Now let us write the invariant I as a sum of two parts

I = A+B

where the part A consists of all terms which involve no components of the

S-tensors while B is the remaining part which consists of all terms which

do involve the S-tensors. Let us choose a point q and consider changing the

scale of � by a factor 
 so that �

a

(q) = 0. Under such a transformation it

is clear that, at q, the A part of I is invariant as the transformation of the

components of an invariant twistor depends only on the �rst derivative of 
.

On the other hand I is invariant under any transformation. Thus it follows

that, under transformations such that �

a

(q) = 0, B must also be invariant.

But on the other hand B vanishes in a normal scale �

q

(see (40) in section

B) since in this scale all the S-tensors vanish at q. As observed in remark

B.3, such a scale can be achieved by a transformation with �

a

(q) = 0. Thus

B must vanish at q. Since we may perform this calculation at any point it

follows that B vanishes everywhere so I = A and the lemma is proved. 2
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Before we can discuss the main theorem we will need some special notation.

Recall that J

`

(V) was de�ned to be the subbundle of the natural bundle

V

(`)

:= (E � S

�

�

� S

��

��

� � � � � S

� � � ��

� � � � 


| {z }

`

)


~

V

determined by the image of the invariant operator D

(`)

on

~

V. Note that in

general J

`

(V) will not itself be a natural bundle as the algebraic properties

of its �bres vary over M . Suppose that � and V

(`)

denote, respectively, the

P -representation and representation space inducing the natural bundle V

(`)

displayed. If ~v is a section of

~

V then D

(`)

(~v) is a section of J

`

(V). That is

D

(`)

(~v) is a function

D

(`)

(~v) : G ! V

(`)

which is homogeneous, D

(`)

(v)(x:p) = �(p

�1

)D

(`)

(v)(x), x 2 G and p 2 P .

Note that in general this function is not surjective. Note also that the image

of D

(`)

depends on the underlying structure ofM , that is on the normal Cartan

bundle equipped by the normal Cartan connection.

Our next step is to construct a sort of smallest natural bundle which could

accommodate the values of D

(`)

. Let us �x a point q 2 M and a coordinate

neighbourhoodQ = R

pq

centred at q (in fact we may forget about our manifold

M and we work just over R

pq

for the while). Let us consider all possible normal

Cartan connections on the trivial Cartan bundle G = Q�P and for each such

normal Cartan connection !, let us write

J

`

o

(V; !)

to denote the span of the image of D

(`)

(~v), on the �bre of G over q, as we vary

over all possible argument sections v. Note that J

`

o

(V; !) is a well de�ned

P -submodule of V

(`)

. Now let

J

`

o

(V) := h[

!

J

`

o

(V; !)i;

the span of the union which is taken over all possible normal Cartan connec-

tions on G ! Q. Then J

`

o

(V) is also a well de�ned P -submodule of V

(`)

and

the corresponding natural subbundle in V

(`)

is the smallest one containing all

possible subbundles J

`

(V).

Next we observe that we can consider a similar `generic natural bundle' for

the curvature. Write W

(m)

for the P -module inducing

(E � S

�

�

� S

��

��

� � � � � S

� � � ��

� � � � 


| {z }

m

)
 E

���

��#

:

Then, for each normal Cartan connection, D

(m)

W takes values in W

(m)

and

the span of the image of D

(m)

W on the �bre of G over q 2M is a P -submodule

of W

(m)

that we will denote J

m

o

(W; !). In analogy with the above we let

J

m

o

(W) := h[

!

J

m

o

(W; !)i
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here the union is taken over all possible normal Cartan connections de�ned

locally at the �xed point q 2M . This is clearly a P -submodule of W

(m)

. Now

write

J

m;t

o

(W) := �

t

i=0

�

i

J

m

o

(W):

What we really need is a `generic �bre' for a mixed case. Write

J

`;s;m;t

o

(V;W)

for the P -submodule of (�

s

V

(`)

)
 (�

t

i=0

�

i

W

(m)

) determined by the image of

(�

s

(D

(`)

v))
 (�

t

i=0

�

i

D

(m)

W ), at q 2M , as we vary the normal Cartan con-

nection and for each such connection vary ~v over all possible sections of

~

V. Note

that J

`;s;m;t

o

(V;W) is clearly a P -submodule of (�

s

J

`

o

(V)) 
 J

m;t

o

(W). Note

also that the previous `generic �bres' are special cases of this, J

`;s;m;0

o

(V;W) =

�

s

J

`

o

(V) and J

`;0;m;t

o

(V;W) = J

m;t

o

(W).

The following is the main theorem of this section.

Theorem 4.4. A coupled invariant operator I which is homogeneous of degree

s on an irreducible bundle V, and taking values in the natural bundle U , is

equivalent to a P -homomorphism

I

o

: J

`;s;m;t

o

(V;W)! U:

That is there is a 1�1 correspondence between such invariant operators I and

homomorphisms I

o

as indicated.

Proof. ): Let I(v; !) indicate the invariant I evaluated on a section v of V

and some particular normal Cartan connection. Then I(v; !) : G ! U with

the homogeneity property I(v; !)(x:p) = �(p

�1

)I(v; !)(x) where � denotes

the inducing representation of P on U .

Lemma 4.3, combined with standard polarisation techniques, implies that

there is a linear mapping

~

I, de�ned on the whole P -module �

s

V

(`)


 (�

t

i=0

�

i

W

(m)

) (notice that our operator is homogeneous in the arguments from V)

such that

I(v; !)(x) =

~

I((�

s

(D

(`)

~v))
 (�

t

i=0

�

i

D

(m)

W (!))(x)) (24)

for all x 2 G. The mapping �(v; !) : G ! J

`;s;m;t

o

(V),

x 7! (�

s

(D

(`)

~v))
 (�

t

i=0

�

i

D

(m)

W (!))(x)

is P -equivariant too, and a general element in J

`;s;m;t

o

(V) is a �nite linear

combination

P

j

c

j

�(v

j

; !

j

). Since

~

I is linear, the equivariance of the composi-

tions I(v

j

; !

j

) =

~

I ��(v

j

; !

j

) implies that the restriction I

o

of

~

I to J

`;s;m;t

o

(V)

is P -equivariant, as required. This shows that all invariants I arise from a

P -homomorphism as in the theorem.

(: The composition of I

o

with (v; !) 7! (�

s

(D

(`)

~v))
 (�

t

i=0

�

i

D

(m)

W ), for

each v 2 �(V) and normal Cartan connection !, is clearly a coupled invariant

operator. This shows that all invariants I arise from a P -homomorphism as in

the theorem. We complete the proof by showing that if I

o

6= 0 then I 6= 0. If
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I

o

6= 0 then there exists an element of J

`;s;m;t

o

(V;W) such that I

o

does not kill

this element. As mentioned above a general element of J

`;s;m;t

o

(V;W) may be

expressed by a �nite linear combination

P

j

c

j

�(v

j

; !

j

). Let this �nite linear

combination represent, in particular, the element not killed by I

o

. It follows

that one of the �(v

j

; !

j

) is not killed by I

o

. That is there exists a section v = v

j

and a Cartan connection ! = !

j

such that I

o

(�(v; !)) 6= 0. But this means

the invariant di�erential operator which is I

o

composed with � is non-trivial.

Thus we have shown that any non-trivial P -hom yields a non-trivial invariant

operator as required. 2

5. New Invariant Operators

As we have discussed, the case p = q = 2 corresponds to the usual four-

dimensional conformal structures. Here we restrict attention to torsion-free

AG-structures with p = 2, q > 2. The main result is theorem 5.1 which, for

these geometries, gives curved analogues for all the non-standard operators

between di�erential forms. We will deal with q > 2 odd as well as even, but we

would like to point out that the cases of q even are of particular interest as these

include all the quaternionic geometries. That is, when q is even our formulae

and results below describe invariant operators on the quaternionic geometries.

This is in the spirit of our simultaneous treatment of AG-structures, so of

course the formulae also give invariant operators for the other geometries (i.e.

those corresponding to the `real split form' SL(p+q;R)) and we obtain similar

operators when q is odd.

At this point it is worthwhile to review the examples exposed above and in

particular the operator 2

AB

f as displayed in (21). Although this second order

invariant operator does not operate between forms it is closely related to the

fourth order operators we construct below.

To describe the operators it is useful to have some e�cient and concise

notation for the bundles concerned. For this we will use Young diagrams [10,

19]. We will use these to indicate projections onto irreducible representations

of SL(m). In our case we will in particular use these for representations of

SL(p + q), representations of SL(p) � SL(q), which are trivial with respect

to the SL(p) factor, and the bundles these induce. (Here, as usual, SL(r)

can mean either SL(r;R) or SL(r; C ) depending on which structures we are

considering. The comments here apply equally to both cases.) For example we

could write (


2

E

A

) or E

AB

to mean E

(AB)

. In fact we will shorten this

notation further and simply write E

A

for this, that is E

A

= E

(AB)

. In this

notation the total number of boxes in the given Young diagram indicates the

required tensor power of the bundle. For diagrams of height and width greater

than 1 we adopt the convention that we symmetrized over sets of indices

corresponding to rows of the diagram �rst and then with the result skew over

sets of indices corresponding to the columns of the diagram. For instance

suppose we start with some general valence 3 spinor A

EFG

2 E

EFG

[w]. If we

�rst symmetrized over the last two indices to form B

EFG

:= A

E(FG)

and then
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on this result skew on the �rst two indices to obtain C

EFG

:= B

[EF ]G

, then

C

EFG

2 ( E

F

)[w]:

Although, for the sake of being concrete, we will suppose that this is the con-

vention adopted, nothing we do actually depends on this choice of convention.

We will use this notation immediately in the construction of a special in-

variant operator. Recall that if E

�

[w] is any weighted twistor bundle then we

have the invariant operator D

����

��
�

: E

�

[w] ! F

����

��
�


 E

�

[w]. Equivalently we

may view this as an operator

D

R

0

S

0

U

0

V

0

��
�

: E

�

[w]! E

R

0

S

0

U

0

V

0

��
�


 E

�

[w]:

Thus there is an invariant operator

D

��
�

:= �

R

0

S

0

�

U

0

V

0

D

R

0

S

0

U

0

V

0

��
�

: E

�

[w]! E

��
�


 E

�

[w � 2]:

Note that D

��
�

inherits some symmetry from D

����

��
�

, in particular observe

that D

��
�

= D

[��][
�]

. For any 0 � k � q � 2 and weight w 2 R, let us write

2

��
�

for the non-trivial composition of

D

��
�

: (

k

6

?

.

.

.

.

.

.

E

�

)[w]! (E

��
�


 (

k

6

?

.

.

.

.

.

.

E

�

)[w � 2])

with a Young projection

(E

��
�


 (

k

6

?

.

.

.

.

.

.

E

�

)[w � 2]! (

k + 2

6

?

.

.

.

.

.

.

E

�

)[w � 2]:

This is clearly invariant for all w. Note also that it is an elementary exercise

to verify that there is such a composition which is non-trivial and that it is

unique up to a natural isomorphism of the image bundle. (For example, in the

k = 0 case the main point is to observe that turns up precisely once in the

product 
 .)

Before we state the theorem let us introduce one further item of notation.

Let us write H

�

for the subbundle of E

�

which is naturally isomorphic to E

A

(c.f. F

�

of section 3). Here is the main result of this section.

Theorem 5.1. Let M be a torsion-free AG-structure, p = 2, q > 2. For each

integer k such that 0 � k � q � 2 there is a fourth order invariant operator,

2

ABCD

: (

k

6

?

.

.

.

.

.

.

E

E

)[�k]! (

k + 2

6

?

.

.

.

.

.

.

E

E

)[�k � 2];

which is non-trivial on �at structures.

For each k the operator is given by

2

��
�

: (

k

6

?

.

.

.

.

.

.

H

"

)[�k]! (

k + 2

6

?

.

.

.

.

.

.

H

"

)[�k � 2]:

Before entering the proof of this theorem, we shall discuss the corresponding

operators on the locally �at AG-structures since their existence is a key to our

proof below.
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Remark 5.2. The structure of linear invariant operators on the locally �at

geometries is well understood in the literature. In particular, it follows from

the theory of generalized Verma modules that, for each k as in the theorem,

there is exactly one non-trivial operator, up to scalar multiples, between the

bundles in question, see e.g. [4].

It is straightforward to deduce formulae for these operators: First observe

that there are preferred scales in the �at geometries, namely those with P

ab

=

0. The covariant derivatives commute for such scales �, and we will express

our formuale in such a scale. Now for all 0 � ` � q � 2 the bundle

(

`

6

?

.

.

.

.

.

.

E

A

)[�`]

is an irreducible component of the 2`-forms on M (appearing with mutli-

plicity one) and the operators between the bundles in the theorem are pre-

cisely the non-standard operators in the BGG-resolution of the functions,

cf. the diagram in the end of Appendix A. Thus it is clear that the op-

erators concerned are fourth order. At the same time, since no primed in-

dices appear explicitly in our target modules, the operators must be given by

r

ABCD

:= �

A

0

B

0

�

C

0

D

0

r

A

0

A

r

B

0

B

r

C

0

C

r

D

0

D

, followed by an appropriate G

0

-module

homomorphism onto the target. (In the preferred scales all curvature vanishes

so there is no possibilty of adding lower order terms.) Since the covariant

derivatives commute there is only one non-trivial way to apply the Young

projection to the image of the operator r

ABCD

. Let us write

e

2

ABCD

for

the composition of such a Young projection with the operator r

ABCD

, fol-

lowed by the (again unique up to multiple) projection onto the desired target.

It is clear then, that in such a preferred scale for the �at case, the operators

of the theorem are given explicitly by the operator

e

2

ABCD

.

Proof. Now we are ready to prove theorem 5.1. Since 2

��
�

is invariant we

have only to demonstrate the claim of the second part of the theorem, namely

that for each k as in the theorem and upon restriction to the subbundle

(

k

6

?

.

.

.

.

.

.

H

�

)[�k]

�

=

(

k

6

?

.

.

.

.

.

.

E

S

)[�k]

of

(

k

6

?

.

.

.

.

.

.

E

�

)[�k]

the invariant operator 2

��
�

takes values in the subbundle

(

k + 2

6

?

.

.

.

.

.

.

H

�

)[�k � 2]

�

=

(

k + 2

6

?

.

.

.

.

.

.

E

A

)[�k � 2]

of (

k + 2

6

?

.

.

.

.

.

.

E

�

)[�k�2]. On the way we shall also prove that, upon restriction to

the �at structures, the resulting operator coincides with the known invariant

operator on homogeneous structures and so it is non-trivial and fourth order.

The combination of these results establishes the theorem.
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First we will do the whole task for �at AG-structures. For this case let us

restrict to a scale � such that P

ab

= 0 on M . It follows immediately from the

de�nition of 2

��
�

in terms of D

�

�

and the de�nition of the latter in terms of

r

R

0

A

(see (17)) that the injecting part of

2

��
�

: (

k

6

?

.

.

.

.

.

.

H

�

)[w]! (

k + 2

6

?

.

.

.

.

.

.

E

�

)[w � 2] (25)

is a fourth order operator which, up to a constant non-zero scale, is a compo-

sition of

r

ABCD

: (

k

6

?

.

.

.

.

.

.

E

R

)[w]! (E

ABCD

)
 (

k

6

?

.

.

.

.

.

.

E

R

)[w � 2]

with a Young projection

(E

ABCD

)
 (

k

6

?

.

.

.

.

.

.

E

R

)[w � 2]! (

k + 2

6

?

.

.

.

.

.

.

E

A

)[w � 2]:

Since k + 2 � q the symmetries enjoyed by this are precisely the symmetries

of (25) if one formally identi�es the twistor indices of (25) with the upper case

Roman indices in the obvious way. Now according to the comments in the

remark above (and given our choice of scale �), up to scale, all such Young

projections yield the same non-trivial fourth order operators. In particular,

the injecting part of the image

2

��
�

0

@

(

k

6

?

.

.

.

.

.

.

H

�

)[�k]

1

A

(26)

is a non-zero scalar multiple of the invariant operator 2

ABCD

in �at AG-

structures. That is for

f

�����

2 �(

k

6

?

.

.

.

.

.

.

H

�

)[�k]);

we have that

�

�

A

� � ��




D

�

�

R

� � ��

�

S

2

����


f

�����

is independent of the choice of scale � (which recall determines �

�

A

) from within

the preferred class of scales that have P

ab

= 0. It follows that

f

�����

7!

(2

����


f

�����

� (Y

A

�

� � �Y

D




Y

R

�

� � �Y

S

�

)(�

�

0

A

� � ��




0

D

�

�

0

R

� � ��

�

0

S

)2

�

0

���


0

f

�

0

����

0

gives an invariant operator

(

k

6

?

.

.

.

.

.

.

H

�

)[�k]! (

k + 2

6

?

.

.

.

.

.

.

E

�

)[�k � 2]:

It is immediately clear that this invariant operator is annihilated upon con-

traction with �

�

A

� � ��

�

S

, where these �

�

A

's are determined by any scale �

0

from
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the preferred class. (That is we do not need �

0

= � as the operator is indepen-

dent of the choice of scale.) Thus the operator vanishes when composed with

any such projection onto the �rst composition factor of

(

k + 2

6

?

.

.

.

.

.

.

E

�

)[�k � 2]:

It follows immediately from theorem C.1 of appendix C that the operator itself

must vanish and so the theorem is established for �at structures.

It is clear from this result for the �at case, that on general (or curved)

structures the principal part of the operator 2

��
�

on

(

k

6

?

.

.

.

.

.

.

H

�

)[�k]

is non-vanishing and has image in the required bundle. Now let us �x a point

q 2M and a normal scale �

q

(see Appendix B) and consider, at q, the compo-

sition of this operator with a projection to an irreducible part of the second

composition factor. Notice that our choice excludes all occurrences of sym-

metrized derivatives of the Rho-tensors (that is the S-tensors), since these

vanish under our choices. A typical result is given by

X

�

A

0

�

�

B

� � ��

�

S

2

��
�

f

�����

: (27)

Such a part of the operator must vanish in the �at case and so can only

involve the curvature and its covariant derivatives contracted into covariant

derivatives of the section f

R���S

. The unprimed indices of this carry a Young

symmetry of the type

k + 2

6

?

.

.

.

.

.

.

Now, recall we are considering only torsion-free AG-structures. Thus, as dis-

cussed in Appendix A, the only non-zero irreducible component in the g

0

-

part of the curvature W of the normal Cartan connection is the completely

trace-free spinor W

A

0

B

0

D

ABC

=

~

U

A

0

B

0

D

ABC

=

~

U

[A

0

B

0

]D

(ABC)

as the other parts vanish. This

is equivalent to W

AB���F

:= W

A

0

B

0

D

ABC

�

A

0

B

0

�

DE���F

which we will call the Weyl

spinor. Observe that this has a Young symmetry

q � 1

6

?

.

.

.

:

The g

1

-part of the curvature W may be expressed polynomially and purely in

terms of the �rst derivatives of the latter Weyl spinor (see Appendix A). Now,

from order considerations and classical invariant theory it is clear that the

typical term (27) must be a linear combination of contractions of the terms

(r

A

0

A

W

BC���E

)f

G���H

and W

BC���E

r

A

0

A

f

G���H

: (28)
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Considering only the unprimed indices, these terms take values in representa-

tions of SL(q) described by the tensor product of Young tableaux

q � 1

6

?

.

.

.


 


k

6

?

.

.

.

.

.

.

:

However, we claim that the diagram

k + 2

6

?

.

.

.

.

.

.

(29)

cannot turn up in this tensor product. To see this note that the only way that

one could arrive at the diagram (29) by adding boxes to the diagram

q � 1

6

?

.

.

.

is by �rst producing two full columns, then a further 2k+1 boxes in appropriate

positions. Finally further full columns could be added. But, since q > 2, for

any non-negative integer `, q + 2 + 2k + 1 6= 2q + 2k + 3 + `q so the outcome

is impossible.

Thus the part (27) of the operator must vanish and, by the same argument,

all irreducible parts of second composition factor (i.e. one away from the in-

jecting part) must vanish. Thus, by the result (of appendix C) that in any

composition series (41) V

t

= 0 =) V

t+1

= 0 combined with corollary C.3,

it follows that the the operator (26) must take values in the �rst composition

factor in the bundle

(

k + 2

6

?

.

.

.

.

.

.

E

�

)[�k � 2]

and the theorem is proved. 2

6. Further Observations and Remarks

As mentioned above local twistors for 4-dimensional conformal spin struc-

tures have been described and investigated by Penrose and others [9, 18, 20].

Analogous local twistor bundles for complex AG-structures were de�ned by

Bailey and Eastwood in [1]. The key to our progress here is the twistor-D

operator of de�nition 3.1. This enables a `di�erentiation' which acts between

local twistor bundles. Although this operator is new, it is very closely related

to an operator D

AP

between the so called tractor bundles of conformal ge-

ometry as described in [14] and [15]. Much of the calculus surrounding the

tractor bundles goes back to Tracy Thomas whose ideas were recovered and

extended in [2]. We will not elaborate in detail on these connections in the cur-

rent work. However we brie�y indicate here how the twistor-D operator may

be used to de�ne a tractor-D operator for AG-structures which agrees with

the usual tractor-D operator, as described in [2], on 4-dimensional conformal

spin geometries.
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The Tractor Calculus. Let us recall the natural bundles E

�

� F

�

' E

A

0

.

Thus there is the tautological object X

�����

providing the identi�cation of the

top degree exterior product of F

�

with a line bundle:

F

p

z }| {

[� � � ��]

= X

�����

E [�1]: (30)

(In fact X

�����

= X

�

R

0

� � �X

�

S

0

�

R

0

���S

0

.) We de�ne a tractor-D operator, D

�����

, as

follows,

X

�����

D

�����

f := D

p

z }| {

[� � � ��]

� � � ��

f;

for f (with indices suppressed) in E

�����


����

[w]. Thus, for example, the tractor-D

maps E [w] into completely skew valence p cotwistors of weight w�1, E

[�����]

[w�

1]. Let us call E

[�����]

the cotractor bundle. We will use upper case Greek indices

to indicate the abstract indices of the cotractor bundle and its tensor products

and so forth. Thus, for example, we write

E

�

= E

[� � � ��]

| {z }

p

;

and similarly E

�

for the dual tractor bundle.

The tractors and cotractors come from G-modules, so they are special cases

of what we have called twistors above. In contrast to the fundamental twistors,

their �ltrations are of length p+1. We shall see in a moment, that we recover

the tractors of the conformal Riemmanian geometries in the case p = 2 = q.

The p = 2 case: In this case the tractor bundle is ^

2

E

�

and we have

E

[��]

= E

[AB]

+ E

AB

0

+ E

[A

0

B

0

]

:

Using the canonical volume form �

A

0

B

0

, this may be rewritten as

E

�

= E

[AB]

+ E

A

B

0

[�1] + E [�1]:

In this tractor notation X

��

of (30) is the canonical weight one tractor giving

the injection E [�1]! E

�

by f 7! fX

�

. In any choice of scale, we have

X

�

=

0

B

@

0

0

1

1

C

A

:

In the cases q > 2 no such simpli�cation is available for the analogous canon-

ical object Y

AB

�

which describes the injecting part of the cotractors. Nev-

ertheless it is worthwhile noting that, in each choice of scale, it is given

Y

CD

�

= (�

C

[A

�

D

B]

; 0 ; 0). (Here, as above, we write the injecting part on the

left here for consistency with [2].)

Observe that in the q = 2 case we completely recover the tractors from [2].

In particular, h

��

= h

��
�

is precisely the tractor metric described in [2, 14]

and in this case Y

AB

�

= X

�

�

AB

where X

�

:= h

��

X

�

.

Using the expansions of D

��

��

f as in section 4, or otherwise it is easy to de-

scribe explicitly the form of the tractor-D operator for the p = 2 structures.
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Let

~

D

�

be the di�erential operator which, in a given choice of scale, may be

written

~

D

�

f = (0;r

a

f; wf) for f any weight w twistor (remember that trac-

tor bundles may be thought of as twistor bundles). This is not itself invariant

but in terms of this the invariant operator D

�

is given

D

�

f = (w + 1)

~

D

�

f + Y

AB

�

2

AB

f

where, again, f is any tractor of weight w and 2

AB

is the operator given by

the formula (21) (of course 2

AB

is only invariant when w = �1). It is easily

veri�ed that when q = 2 this agrees with the usual formula for the tractor-D

operator (apart from an overall factor of 2, � compare for example the formulae

in [15]).

Salamon's complex. A subcomplex in the De Rham complex on a quater-

nionic manifoldM was discussed in [21]. It is just a matter of observation that

such a subcomplex appears for all torsion-free AG-structures with 2 = p < q.

This occurs in the BGG resolution of the sheaf of constant functions, see Fig-

ure 1 in Appendix A describing the special case p = 2, q = 4. Observe that

in that case we can obtain a longer complex if we bypass the bundle in the

vertex of the triangle in Figure 1 via the second order operator indicated by

the vertical arrow and then continue on the border of the triangle down to the

top degree forms. All this follows immediately from the fact that the whole di-

agram, viewed row after row is a genuine resolution. In fact it is easily veri�ed

that this result is typical and there is an analogous lengthening of Salamon's

subcomplex for all torsion-free AG-structures with 2 = p < q. Using any scale,

all the �rst order operators are always given by the appropriate projections

of the exterior derivatives expressed in terms of covariant derivatives. The

`bridging' second order operator is given in general by

u

(A

0

���C

0

)

[A���C]

7! r

S

0

S

r

(R

0

R

u

A

0

���C

0

)

A:::C

�

RA���C

�

S

0

R

0

:

A. The Cartan connections of AG-structures

The AG-structures are speci�c examples of the so called Cartan geometries.

In general, we have in mind certain deformations of homogeneous spaces G=P

and the main de�ning objects are the Cartan connections on principal P -

bundles G. See [22] for a complete exposition of the general ideas.

The aim of this Appendix is to apply the general theory to the AG-structures

and to provide some background for the main development in this article.

The Cartan connections are right invariant forms in 


1

(G; g) which repro-

duce the fundamental vector �elds for the principal action of P , and provide

isomorphisms T

u

G ! g for all u 2 G. The homogeneous cases are then just the

left Maurer-Cartan forms ! on G ! G=P . An important class among such

structures is characterised by two requirements: the semi-simplicity of G, and

the existence of the grading of the Lie algebra g = g

�k

� � � �� g

k

, k 2 Z, with

p = g

0

� � � � � g

k

(the so called jkj-graded Lie algebras). The Lie subgroup

P corresponds then to the subalgebra p and it is always a semidirect product
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of its reductive part G

0

(with Lie algebra g

0

) and the nilpotent exponential

image P

+

of g

1

� � � �� g

k

. In all these cases, the corresponding geometries are

de�ned in a way similar to classical G-structures and the canonical bundles

G, together with the canonical Cartan connections, are constructed from such

data. The obstruction against the local equivalence to the homogeneous spaces

is given by the curvature of the Cartan connection, the two-form � 2 


2

(G; g)

de�ned by structure equation

d! = �

1

2

[!; !] + �:

By de�nition, the curvature � is a horizontal two-form and the presence of the

absolute parallelism ! itself enables us to view � as the P -equivariant function

� : G ! g

�

�

^ g

�

�


 g

where g

�

= g

�k

� � � � � g

�1

is identi�ed with g=p. In our case, the algebra is

j1j-graded and so the curvature splits into components �

�1

(the torsion part),

�

0

(the Weyl part) and �

1

.

The canonical Cartan connections are normalised to have co-closed curva-

tures �, i.e. @

�

� � = 0, with respect to the adjoint to the Lie algebra coho-

mology di�erential @. Such Cartan connections are constructed (including the

bundle G) from simple geometric data on the underlying manifold, see e.g. [5]

or [24] for explicit constructions in the most general situations. A very detailed

exposition is also available in [26].

The best known examples are the conformal Riemannian structures and

the projective geometries, and all j1j-graded cases behave very much similar

to them, cf. [3, 6, 7]. The name AG-structures refers in general to all j1j-graded

cases where the complexi�cation of g is sl(p + q; C ). In fact, there are only

four relevant series of geometric structures, cf. [16]:

(1) g = sl(p+ q; C ) and g

0

= sl(p; C ) � sl(q; C ) � C , g

1

= C

q�




C

C

p

(2) g = sl(p+ q;R) and g

0

= sl(p;R)� sl(q;R)� R , g

1

= R

q�




R

R

p

(3) g = sl(p+ q; H ) and g

0

= sl(p; H ) � sl(q; H ) � R , g

1

= H

q�




H

H

p

(4) g = su(p; p) and g

0

= csl(p; C ), g

1

= (su(p))

�

A general calculus for di�erential geometry of all j1j-graded geometries was

developed in [6], see also [23]. We are going to review brie�y some of the

general features of this and present explicit formulae for the AG-structures.

The intuitive explanation of what the geometries look like is as follows: In

each case the tangent space is identi�ed with the negative part g

�1

of the Lie

algebra g, as a G

0

-module. The most natural choice of the Lie group G

0

with

Lie algebra g

0

is the adjoint group of the g

0

-module g

�1

. This choice leads to

a sort of minimal data and in all j1j-graded cases this amounts to a classical

G-structure, i.e. a reduction of the general linear frame bundle to the structure

group G

0

. The Cartan bundle G and the Cartan connection ! are then built

out of these data.
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In the case of g = sl(p + q; C ) the structure group described above is a

quotient

~

G

0

of G

0

= S(GL(p; C )�GL(q; C )), where G

0

!

~

G

0

is a (p+ q)-fold

covering. Thus, it is convenient to work with the whole G

0

instead which, of

course, adds some global structure to our geometries. It does not play any

important role locally though. (In fact, the situation is similar to the spin

structures on conformal Riemannian structures, cf. the case p = q = 2.) In

this paper, we are always assuming that this additional structure is given. Then

the G

0

structure yields an identi�cation of the tangent space of the complex

manifoldM with the tensor product of two auxiliary (complex) vector bundles

TM = E

A


 E

A

0

, together with the �xed isomorphism of their top degree

exterior products, cf. [1].

The real split form g = sl(p + q;R) leads exactly to the same description,

except we replace complex manifolds and vector bundles by the real ones,

and the reductive group G

0

= S(GL(p;R) � GL(q;R)) equals the minimal

structure group

~

G

0

if p + q is odd, while G

0

!

~

G

0

is a two-fold covering if

p+ q is even.

The other two real forms are more interesting and quite di�erent, but we

can still include them into the above framework if we deal with the complex

P -modules and the complexi�ed tangent bundle TM �

R

C . Thus we are using

the same abstract index formalism for all these structures, but we have to

keep in mind that it is, with p and q even, the quaternionic form sl(

p

2

+

q

2

; H )

which corresponds then to the discussion of the cases with g = sl(p + q;R).

This is also compatible with the developments in [1], [21].

Let G be the Cartan bundle equipped with the normal connection !. The

quotient bundle G

0

= G= exp g

1

is a principal �bre bundle with structure group

G

0

. Moreover, there is the family of global G

0

-equivariant sections � : G

0

! G

parameterised by one forms on M and each such section � induces the linear

connection 


�

:= �

�

!

0

on M (viewed as a principal connection on G

0

). The

latter connection, together with the soldering form � := �

�

!

�1

on G

0

, forms

a Cartan connection in 


1

(G

0

; g

�1

� g

0

), and there is the �-related Cartan

connection !

�

2 


1

(G; g). The g

1

-component of the latter connection !

�

has

to vanish on T�(TG

0

), while the g

�1

� g

0

-components of ! and !

�

coincide.

This implies that these Cartan connections are related by

!

�

= ! � P � !

�1

; (31)

where P : G ! g

�

�1


 g

1

enjoys the equivariance properties of a 2-tensor on

M . The latter tensor is called the Rho-tensor de�ned by the choice of �. The

whole torsion part of the curvature � of the Cartan connection ! is constant

on the �bres of G and provides exactly the torsion shared by all connections




�

.

The absolute parallelism ! de�nes the horizontal vector �elds !

�1

(X) for

all X 2 g

�1

. Now, for each P -module V we have the natural vector bundles V

associated to G and their sections may be viewed as P -equivariant functions

s : G ! V . The invariant di�erential r

!

given by the Cartan connection !
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is then the obvious di�erentiation in the directions of the horizontal vector

�elds:

r

!

: C

1

(G; V )! C

1

(G; g

�

�1


 V ); r

!

X

s(u) = !

�1

(X)(u):s

In particular, in terms of these invariant derivatives the Ricci and Bianchi

identities have the form

(r

!

X

� r

!

Y

�r

!

Y

� r

!

X

)s = �(�

p

(X; Y )) � s�r

!

�

�1

(X;Y )

s (32)

X

cycl

�

[�(X; Y ); Z]� �(�

�

(X; Y ); Z)�r

!

Z

�(X; Y )

�

= 0 (33)

where � means the representation of p in gl(V ), X; Y; Z 2 g

�1

.

For irreducible P -modules V (and all those with trivial actions of g

1

) we

can easily compare the invariant di�erentials with the covariant derivatives

with respect to any section �. We obtain

(r

!

X

�r




�

X

)s(u) = �([X; �(u)]) � s(u) (34)

where � : G ! g

1

is de�ned by u = �(p(u)) exp �(u) and it measures the

distance of u from the image �(G

0

) in G. Consequently, the transformation of

the �rst derivatives in terms of the change of the scale is

r


̂

X

s = r




X

s+ �([X;�]) � s (35)

Let us work out this formula in our abstract index formalism. First of all we

need formulae for brackets of elements in g. We shall write typical elements

X 2 g

�1

, Y 2 g

0

, and Z 2 g

1

as

X = v

A

A

0

; Y = (u

A

0

B

0

�

B

A

+ u

B

A

�

A

0

B

0

); Z = w

A

0

A

:

Notice that the convention for g

0

follows the obvious embedding of g

0

into

the endomorphisms g

�

�1


g

�1

. In this notation, the brackets in the matrix Lie

algebra g can be expressed by

[Y;X] = �u

B

0

A

0

v

A

B

0

+ u

A

B

v

B

A

0

[Y; Z] = u

A

0

B

0

w

B

0

A

� u

B

A

w

A

0

B

[X;Z] = �w

A

0

C

v

C

B

0

�

B

A

+ v

B

C

0

w

C

0

A

�

A

0

B

0

Now, the expression g

�1

3 X 7! [X;�] 2 g

0

with X = v

A

A

0

and � = �

A

0

B

2

g

1

, appearing in (34), can be be understood as

v

A

A

0

7! (��

D

0

A

�

A

0

C

0

�

C

D

+�

A

0

C

�

D

A

�

C

0

D

0

)v

A

A

0

:

Thus in order to obtain the formula (34) we have to act by the element

(��

D

0

A

�

A

0

C

0

�

C

D

+ �

A

0

C

�

D

A

�

C

0

D

0

), viewed as a g

0

-valued one-form with free indices

A

0

A

, composed with the representation �. This yields immediately the formulae

in (4).

The Cartan connection ! induces a connection on all natural bundles coming

from G-modules and the corresponding covariant derivative r is compared to
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the invariant derivative (and covariant derivatives with respect to the linear

connections 


�

) by the formula

r

X

s = r

!

X

s+ �(X) � s

= r




�

X

s� �(P:X) � s+ �(X) � s

Again, the explicit formulae (14), (15) follow immediately.

The transformation rule for P under the change given by � is then

^

P:X = P:X �r

X

��

1

2

[�; [�; X]] (36)

In our index formalism this yields exactly (10).

Next, let us discuss the normalising conditions on the curvatures. The gen-

eral formula for the Lie algebra cohomology codi�erential @

�

(applied to two-

forms in g

�

�1

^ g

�

�1


W for a g-module W ) reads

@

�

(Z

1

^ Z

2


 v) = �Z

2


 Z

1

:v + Z

1


 Z

2

:v

and so its evaluation on the torsion T

ab

c

= F

A

0

B

0

C

ABC

0

+

~

F

A

0

B

0

C

ABC

0

where F

A

0

B

0

C

ABC

0

=

F

[A

0

B

0

]C

(AB)C

0

and

~

F

A

0

B

0

C

ABC

0

=

~

F

(A

0

B

0

)C

[AB]C

0

yields

@

�

(T

ab

c

) = 2(�T

D

0

B

0

C

ABD

0

�

A

0

C

0

+ T

A

0

B

0

D

DBC

0

�

C

A

):

The vanishing of this expression is equivalent to the vanishing of all traces of

the objects F

[A

0

B

0

]C

(AB)C

0

,

~

F

(A

0

B

0

)C

[AB]C

0

.

Similarly, the evaluation of the codi�erential on the g

0

-component U

A

0

B

0

C

0

ABD

0

�

D

C

+

~

U

A

0

B

0

D

ABC

�

C

0

D

0

of the curvature � yields

@

�

(�

0

) = 2(�U

D

0

B

0

A

0

ABD

0

+

~

U

A

0

B

0

D

DBA

)

and the condition @

�

�

0

= 0 is equivalent to the vanishing of the two contrac-

tions on the right hand side.

By the construction and the general theory, the curvatures �

�

of the Cartan

connections !

�

are �-related to the sum of torsions and curvatures of the

induced linear connections 


�

on G

0

. At the same time, the relation between

�

�

and � is

(�

�

� �)(u)(X; Y ) = @P(u)(X; Y ) +r

!

X

P(u):Y �

r

!

Y

P(u):X + P(u) � �

�

�1

(u)(X; Y ):

(37)

Our description of the curvature of the twistor connection, see (16), is an

immediate consequence of this formula. Furthermore, the g

0

-component of

this expression yields exactly our formula (6).

The general theory also shows that the whole curvature vanishes if and only

if its harmonic part vanishes and this in turn can be computed explicitly by the

Kostant's version of Bott-Borel-Weil theorem. In our case this means that the

whole curvature is determined by the two components F and

~

F of the torsion

if 2 < p � q. In the case p = 2 < q only one of the torsions survives,

~

F , and

there appears another invariant component of

~

U

A

0

B

0

D

ABC

, namely the completely
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trace-free part of

~

U

[A

0

B

0

]D

(ABC)

. Let us also notice, that if the torsion happens to

vanish, then the latter component of the Weyl curvature is constant along

the �bres of G ! G

0

and there is no other non-zero component in the Weyl

part of the curvature. Moreover, in this case, the g

0

-component of the Bianchi

identity (33) yields for all X; Y; Z 2 g

�1

�@�

1

(X; Y; Z) =

X

cycl

r

Z

�

0

(X; Y ):

An easy computation reveals that the right hand side is in the kernel of @.

Because there is no cohomology in that place, the latter equation has a unique

solution for �

1

in terms of the derivatives of the only non-zero component in

�

0

, i.e. of the Weyl spinor

~

U

[A

0

B

0

]

(ABC)

.

The invariant linear operators between natural bundles over locally �at

AG-structures are in bijective correspondence with the homomorphisms of

generalized Verma modules. Thus they are well known from representation

theory. In particular, all cases with the so called regular in�nitesimal character

are obtained by the translation of the standard De Rham resolution of the

sheaf of constant functions. This is the source of the celebrated Bernstein-

Gelfand-Gelfand resolutions (brie�y BGG resolutions).

The complete BGG resolution of E in the special case p = 2, q = 4 (i.e. the

lowest dimensional interesting quaternionic geometry) is shown on Figure 1.

The long arrows on the left hand side denote the non-standard operators. One

of the aims of our development is to provide tools for extending such operators

to curved geometries. In fact, there are several methods available, but mostly

they fail if applied to non-standard operators. Also the arrows along the side

of the triangle joining E and ( E

A

0

)[�1] are worth mentioning. Namely,

they form the Salamon's subcomplex on quaternionic structures.

B. Normal forms for AG-structures

Given a choice of scale one has a connection r

�

on M and for each point

q 2M one can de�ne normal coordinates x

i

in a neighbourhood of q. Up to a

general linear transformation, such coordinates may be characterized by the

conditions that (1), x

i

(q) = 0, that (2) the vectors @=@x

i

j

q

give a G

0

-frame at

q and that (3) the coe�cients �

(�)

of r

�

, in these coordinates, satisfy

�

i

jk

x

j

x

k

= 0 (38)

in the neighbourhood where the coordinates are de�ned. Note that

�

i

(jk)

(q) = 0;

and so, at q,

�

i

jk

= T

jk

i

:
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E

-

@

@

@R

E

A

0


 E

A

?

�

�

�	

@

@

@R

( E

A

)[�1]

@

@

@R

-

E

A

0


 E

A

@

@

@R

�

�

�	

?

(E

A

0


 E

A

)[�1]

�

�

�	

@

@

@R

?

E

A

0


 E

A

�

�

�	

@

@

@R

?

( E

A

)[�2]

-

@

@

@R

E

A

0


 E

A

�

�

�	

@

@

@R

?

( E

A

0

)[�1]

�

�

�	

(E

A

0


 E

A

)[�2]

�

�

�	

@

@

@R

?

( E

A

0


 E

A

)[�2]

�

�

�	

( E

A

)[�3]

@

@

@R

( E

A

0


 E

A

)[�3]

�

�

�	

(E

A

0


 E

A

)[�4]

�

�

�	

E [�6]

Figure 1

Similarly di�erentiating (38) with respect to the normal coordinates and eval-

uating at q we obtain that @

(i

�

i

jk)

(q) = 0. It follows easily that, at q 2M ,

@

k

�

`

ij

= 2R

k(ij)

`

+

1

6

(3@

k

T

ij

`

+ 2@

(i

T

j)k

`

) +

1

2

T

m[k

`

T

j]i

m

+

1

2

T

m[k

`

T

i]j

m

:

The partial derivatives on the right hand side, of the above, may be replaced

with covariant derivatives at the expense of adding more terms quadratic in the

(undi�erentiated) torsion. By an obvious inductive argument one can easily

continue in this manner and recover the following established result.

Proposition B.1. In terms of the normal coordinates for r

�

, based at q 2

M , the coe�cients of the Taylor series of the �

(�)

are given by polynomial
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expressions involving the components of the r

�

covariant derivatives of the

curvature and torsion of r

�

.

Clearly for any choice of scale � and q 2 M we can �nd a G

0

family of such

normal coordinates.

Fix a choice of scale and normal coordinates in a neighbourhood of q 2

M . Let u

a

be a tangent vector at q and u

i

its components in the normal

coordinates. Suppose this is extended to a section of the tangent bundle in a

neighbourhood of q by parallel transporting u

a

along the geodesics through q.

Then x

i

r

�

i

u

a

= 0 and it is an elementary exercise using this to show that the

coe�cients of Taylor series of u

a

, about q and in the normal coordinates, are

given by polynomials in the components u

i

(q) and the

�

i

ij

;

k � � � `

|{z}

t

(q); (39)

for t = 0; 1; � � � . (Here �

i

ij

;

k���`

:= @

`

� � �@

k

�

i

ij

and the polynomials just de-

scribed are homogeneous of degree 1 in the components u

i

(q).) It follows that

the coe�cients of the Taylor series of the normal G

0

-frame, corresponding to

the normal coordinates, are polynomial in coe�cients �

i

jk

and their normal

coordinate derivatives at q. This frame is obtained by parallel transporting the

frame @=@x

i

j

q

along the geodesics through q. It follows easily that the coe�-

cients of the connection r

�

in this normal G

0

-frame have normal coordinate

Taylor series with coe�cients also polynomial in the variables (39). We have a

corresponding result for normal spin frames. These are constructed as follows.

Choose spin frames for E

A

(q) and E

A

0

(q) consistent with the G

0

-frame @=@x

i

j

q

at q given by the normal coordinates. Now using the spin connections r

�

par-

allel transport these frames along the geodesics through q. This determines

normal G

0

-frames for E

A

(q) and E

A

0

in a neighbourhood of q. Let �

A

Bi

and �

A

0

B

0

i

be the coe�cients of the spin connections with respect to these frames, where

the index i refers to the normal coordinates (and the indices A;B;A

0

; B

0

here

are concrete indices). These coe�cients are linear combinations of the coe�-

cients of the normal G

0

-frame. Thus, with the proposition above we have the

following.

Proposition B.2. Given a scale �, and normal coordinates at x

i

, based at

q 2M , let �

A

Bi

and �

A

0

B

0

i

be the coe�cients of the spin connections with respect

to the normal spin frame. The coe�cients of the Taylor series of these func-

tions are given by polynomial expressions involving the components of the r

�

covariant derivatives of the curvature and torsion of r

�

.

Given the point q 2M we can can also normalise the scale, at least formally.

Using the equation (10), and by considering formal power series, it is easily

veri�ed that one can choose a scale so that

S

(a � � � ef)

| {z }

s

(q) = 0 (40)
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for s = 2; 3; � � � ; r for any given 2 � r 2 N . Let us suppose that we have chosen

and �xed r so that it is su�ciently large for our calculations and denote this

preferred scale �

q

.

Remark B.3. In fact it is clear from the form of (10) that the condition (40)

leaves the 1-jet at q of �

q

completely free. Thus beginning with any scale � and

an arbitrary point q 2 M , one can achieve a normal scale based at q, �

q

by a

transformation �

q

= 
� where �

a

(q) = 0.

Although we will not use it directly here it is worth observing that, in this

scale the Taylor series of proposition B.1 simpli�es somewhat. Recall the de-

composition (6) of the curvature. It is clear that the jets of the curvature R

(�)

ab

c

d

are given linearly by the jets of the tensor U

(�)

ab

c

d

and the jets of the Rho-tensor

P

(�)

ab

. Considering various Young projectors acting on r

a

r

b

� � �r

d

P

(�

p

)

ef

one eas-

ily concludes that, at q 2 M , this tensor is determined by r

a

r

b

� � �r

d

P

(�

p

)

[ef ]

,

r

a

r

b

� � �r

[d

P

(�

p

)

e]f

and lower order terms. But, by (9) P

(�)

[ef ]

is given by a lin-

ear formula in terms of a r

�

derivative of the torsion. Thus we obtain the

following simpli�cation to the above proposition.

Proposition B.4. Let q 2 M and �

p

be a scale such that (40) is satis�ed.

Let x

i

be normal coordinates for r

�

p

based at q. Then, in terms of these co-

ordinates, the coe�cients of the Taylor series of the �

(�

p

)

(to order r + 1) are

given by polynomial expressions in the components of the covariant derivatives

of the torsion T

(�

p

)

ab

c

of r

�

p

and the components of the covariant derivatives of

the tensors U

(�

p

)

ab

c

d

and r

[a

P

(�

p

)

b]c

.

C. Composition series

In the following discussion we will review several notions and terms for

representations of a group H. We have, for the most part, not said anything

about the nature of this group since an explicit description of the group is

not required for most of the results here. Of course for application of these

results to the other parts of this article one may take H to be a parabolic P

in one of real Lie algebras G as discussed in the introduction. We would also

like to point out that in this case the terms introduced (such as �composition

series� and �injecting part� etcetera) can be adapted in an obvious way to

the natural bundles that P induces and indeed to di�erential operators that

take values in such natural bundles. Throughout the article we have used this

observation without other mention.

Suppose V is an H-module for some group H. Let W be an H-submodule

of V then we have an exact sequence

0!W ! V ! U ! 0

where U is the required quotient. Following Buchdahl (see also [2]) it is often

convenient to express this as a composition series in the following schematic



40 A. ROD GOVER AND JAN SLOVÁK

manner,

V = U +W:

Suppose now that V is any non-trivial �nite dimensional module for the

group H. We construct a composition series of V as follows. Let V

1

1

be an

irreducible submodule of V . If there is a non-trivial submodule of V in a

complement to V

1

s

then there is at least one irreducible one which may denote

V

2

1

. Continuing in this manner suppose that fV

1

1

; V

2

1

; � � � ; V

m

1

1

g is a maximal

set of such submodules, meaning that there are no non-trivial submodules of

V in a complement to V

1

:= �

m

1

i=1

V

i

1

. We call V

1

the �rst composition factor

of V , while the irreducible submodules V

i

1

(i 2 f1; � � � ; m

1

g) in this, will be

described as injecting parts of V .

Now let U

2

:= V=V

1

. Then U

2

is an H-module and so we may similarly

choose a set of irreducible submodules of this, V

i

2

, i = 1; � � � ; m

2

, such that

this set is maximal in U

2

. We write V

2

for the �rst composition factor of U

2

,

that is V

2

= �

m

2

i=1

V

i

2

.

Now we may consider U

3

:= U

2

=V

2

and seek a maximal set of irreducible

submodules of this (which we denote V

i

3

; i = 1; � � � ; m

3

) and so on. Note that

at any stage V

t

= 0 if and only if U

t

= 0. Since the U

t+j

, for j � 1, are quotients

of U

t

it follows that V

t

= 0 implies V

t+j

= 0 for all j � 1. In fact since V is

assumed �nite dimensional it clear that there exists some positive integer r

such that V

r+1

= 0 while V

r

6= 0. With that determined the composition series

of V is given,

V = (�

m

r

i=1

V

i

r

) + (�

m

r�1

i=1

V

i

r�1

) + � � �+ (�

m

1

i=1

V

i

1

): (41)

We describe V

k

= �

m

k

i=1

V

i

k

as the k

th

composition factor of V . The V

i

r

(i 2

f1; � � � ; m

r

g) will be called the projecting parts of V . (It is usual to describe

V

r

+ V

r�1

+ � � � + V

1

as the composition series for V . For our purposes it is

convenient to choose a decomposition of the composition factors as indicated.)

We have the following results.

Theorem C.1. Suppose an H-module V has a composition series as in (41).

Then for S an H-submodule of V we have

S \ V

1

= 0, S = 0:

Proof. The implication ( is clear. Suppose now S is an irreducible H-

submodule such that S\V

1

= 0. Then S = 0 since fV

1

1

; � � � ; V

m

1

1

g is a maximal

set of irreducible submodules of V . Now suppose S is any H-submodule such

that S\V

1

= 0. Then an irreducible H-submodule S

0

of S is an irreducible H-

submodule of V such that S

0

\ V

1

= 0. Thus by the established result S

0

= 0.

Thus S has no non-trivial irreducible submodules and so S = 0 as claimed. 2

The following indicates that a composition series is unique up to some possible

choice for the splitting of each part into irreducibles.
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Corollary C.2. Suppose an H-module V has a composition series as in (41)

and also a composition series

V = (�

~m

~r

i=1

~

V

i

~r

+ (�

~m

~r�1

i=1

~

V

i

~r�1

) + � � �+ (�

~m

1

i=1

~

V

i

1

)

then ~r = r, ~m

1

= m

1

; � � � ; ~m

r

= m

r

and V

1

=

~

V

1

:= �

m

1

i=1

~

V

i

1

; � � � ; V

r

=

~

V

r

:= �

m

r

i=1

~

V

i

r

. Furthermore in each composition factor V

k

one can arrange the

numbering of the V

i

k

so that for each i 2 f1; � � � ; m

k

g V

i

k

�

=

~

V

i

k

. If for any i

the module V

i

k

occurs with multiplicity one in V

k

then we get V

i

k

=

~

V

i

k

.

Proof. The �rst part of this is immediate by repeated application of the

theorem while the last part follows from Schur's lemma. 2

From this in turn we get the following corollary.

Corollary C.3. Let V be an H-module with composition series as in (41). If

S is an H-submodule of V then S has a composition series

S = (�

`

r

s

i=1

S

i

r

s

) + (�

`

(r

s

�1)

i=1

S

i

1

) + � � �+ (�

`

1

i=1

S

i

1

)

where for each k 2 f1; � � � ; r

s

g and i 2 f1; � � � ; `

k

g there is some j 2 f1; � � � ; m

k

g

such that

S

i

k

�

=

V

j

k

;

with equality if V

j

k

occurs with multiplicity one in V

k

.

Thus all homomorphisms between �nite dimensional H-modules V and W

are determined by the composition series for V and W , at least up to an

isomorphism ambiguity due to the multiplicity of irreducible components in

each part.

We are in particular interested in the composition series of P modules which

are the restriction to P of irreducible G modules and also their P -submodules.

Recall that P is a maximal parabolic in a group G which is a real form of the

complex semisimple groups SL(p + q; C ). In this case some aspects of the

composition series are rather easily described.

Let V

�

be the dual to the standard representation of G. Then we have an

exact sequence of P -modules

0! V

A

! V

�

! V

A

0

! 0: (42)

Let Y

A

�

be the canonical element of V

A


 V

�

giving the injection V

A

! V

�

and X

�

A

0

be the canonical element of V

A

0


V

�

giving the surjection V

�

! V

A

0

.

(This notation is borrowed from the notation for the corresponding objects

for bundles these modules induce.) Let us also write H

�

for the image of V

A

in V

�

.

Now irreducible G-modules may be described by Young diagrams. Using

notation as in section 5 we may write for example

Y(b)V

�

;
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whereY(b) indicates a Young diagramwith a total of b boxes. (We will suppose

the height of this diagram is no greater than p+q so this module is not trivial.)

Elements of this module consist of vectors which carry b indices,

v

� � � � 


| {z }

b

;

and a symmetry indicated by the Young diagram. Regard this now as a P -

module by restriction and consider the subspace of vectors that have the prop-

erty that they are X-saturated, that is they are annihilated upon contraction

with X

�

A

0

on any index,

0 = X

�

A

0

v

�����


= X

�

A

0

v

�����


= � � � = X




A

0

v

�����


:

The space of such vector clearly forms a P -submodule of Y(b)V

�

. Considering

each index in turn it is clear that it is a submodule of


b

H

�

. Thus it is precisely

the submodule

Y(b)H

�

:

Of course this may be trivial but in any case

Y(b)H

�

�

=

Y(b)V

A

and so it is irreducible. Thus if this is not zero then it gives the unique injecting

part of Y(b)V

�

(which is therefore also the �rst composition factor). If the

height of the diagram Y(b) is no greater than q then we are in this situation,

that is Y(b)V

A

6= 0, and we shall henceforth assume this is the case since it is

su�cient for our purposes. The quotient

(Y(b)V

�

)=V

1

may clearly be identi�ed with the direct sum of the distinct images of Y(b)V

�

under the mapping given by contraction with one X

�

R

0

. Each of these distinct

images carries a Young symmetry on its twistor indices (that is the greek

indices) and, reasoning essentially as for the previous case, one sees that the

irreducible parts of the second composition factor are the subspaces of images

that are annihilated by any (further) contraction with X

�

S

0

. One can clearly

continue in this manner to determine the entire composition series. For the

purposes of this article we only explicitly require an understanding of this to

the level described. Let us just �nally observe that given a choice of splitting

of the sequence (42), or equivalently a choice of �

�

B

such that �

�

B

Y

A

�

= �

A

B

it follows immediately from the observations here that we may describe these

parts of the composition series as follows. The injecting part ofY(b)V

�

may be

identi�ed with the space of vectors �

�

A

�

�

B

� � ��




C

v

�����


for v

�����


2 Y(b)V

�

. The

second composition factor may similarly be identi�ed with the vector space of

objects consisting of vectors in Y(b)V

�

contracted into (b � 1) �

�

R

's and one

X

�

R

0

. The corresponding result for induced bundles is used in section 5.
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