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Abstra
t. The general theory of paraboli
 geometries is applied

to the study of the normal Cartan 
onne
tions for all hyperboli


and ellipti
 6-dimensional CR-manifolds of 
odimension two. The

geometri
 meaning of the individual 
omponents of the torsion is

explained and the 
hains of dimensions one and two are dis
ussed.

There have been many attempts to use some ideas going ba
k up to

Cartan, in order to understand the geometry of CR-manifolds. In the


odimension one 
ases, the satisfa
tory solution had been worked out

in the seventies, see [22, 8℄, but the higher 
odimensions have not been

understood yet in a 
omparable extent. In this paper, the re
ent general

theory of the so 
alled paraboli
 geometries is applied. In parti
ular, we

use the approa
h developed in [4, 21℄, see also [23, 26℄ for earlier results.

Relying on re
ent a
hievements by the authors, a 
lean and quite simple


onstru
tion of the normal Cartan 
onne
tion is presented. This Cartan


onne
tion repla
es the absolute parallelisms from [9℄ by more powerful

geometri
 tools and it enables the detailed study of geometri
al and

analyti
al properties of the CR stru
tures. Consequently the resulting

geometri
 pi
ture is mu
h more transparent and surprising new results

are obtained.

The main advantage of our approa
h is the fully 
oordinate-free han-

dling of the normal Cartan 
onne
tion and its 
urvature. Thus we are

able to translate the 
ohomologi
al properties of the stru
ture alge-

bras into full geometri
al understanding of the 
urvature obstru
tion,

without writing down the 
urvature 
omponents expli
itly. The initial

se
tion introdu
es the CR stru
tures and provides a brief exposition of

the se
ond order normal os
ulation of the surfa
es. Then we observe,

that this os
ulation transfers enough data from the quadri
 to apply

the general 
onstru
tion of normal Cartan 
onne
tions, due to [23, 4℄.

This leads easily to the main Theorems 1.2 and 1.3. In fa
t, the Car-

tan 
onne
tions are 
onstru
ted also for 
ertain abstra
t CR-manifolds

and the embedded ones have many distinguished properties. The third
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se
tion is devoted to the exposition of the generalities on paraboli
 ge-

ometries modelled over j2j-graded algebras and provides the proof of

the existen
e of the normal 
onne
tions.

Next we study the lo
al geometry of the hyperboli
 points in detail.

We re
over easily all known fa
ts from [9℄, but we go mu
h further.

In parti
ular, we identify the 
omplete geometri
 obstru
tions against

the integrability of the almost produ
t stru
ture on the tangent bundle

(Theorem 3.5), the integrability of the almost 
omplex stru
ture on

the tangent CR spa
e (Theorem 3.6), and the 
ompatibility of the

almost produ
t and almost 
omplex stru
tures (3.8). It turns out that

the latter two obstru
tions always vanish on the embedded hyperboli


CR-stru
tures whi
h results in automati
 vanishing of several algebrai


bra
kets. In parti
ular, the whole hyperboli
 CR-manifold M � C

4

is

a produ
t of two 3-dimensional CR-manifolds if an only if its almost

produ
t stru
ture is integrable, see Theorem 3.9. Finally we dis
uss the


hains of dimensions one and two.

Following our intuition, the geometri
 properties at hyperboli
 points

have been expe
ted to have their 
ounterparts in the lo
al geometry

at the ellipti
 points, 
f. remarks and open problems in [9℄. This is the

subje
t of Se
tion 4. In parti
ular, we observe that the roles of almost


omplex and almost produ
t stru
tures are swapped. Thus, there is

an almost 
omplex stru
ture on the whole tangent bundle TM and

we distinguish the algebrai
 bra
kets obstru
ting its integrability in

Theorem 4.3. The obstru
tions against the integrability of the almost

produ
t stru
tures on the 
omplex spa
es T

CR

M and their 
ompati-

bility with the almost 
omplex stru
tures vanish automati
ally for the

embedded ellipti
 CR-stru
tures. They are dis
ussed in 4.4, 4.5. The

analogy to the produ
t property of torsion-free hyperboli
 geometries

is the holomorphi
 normal Cartan 
onne
tion in the ellipti
 
ase, see

Theorem 4.6. Finally we prove that for torsion-free ellipti
 geometries,

there are unique one-dimensional 
omplex 
hains in all 
omplex dire
-

tions transversal to the 
omplex subbundle T

CR

M (Theorem 4.7).

The last se
tion 
olle
ts some 
on
lusions and remarks on future ap-

pli
ations. The ne
essary 
ohomologies are 
omputed in Appendix A

while some more details on the normalized os
ulations and the dis
us-

sion of 
hains on the hyperboli
 and ellipti
 quadri
s is postponed to

Appendix B.

The whole paper stresses the di�erential-geometri
 properties and

we have 
on�ned the analyti
al problems and 
onsequen
es to a few

remarks. The fun
tion theoreti
al aspe
ts will be dis
ussed elsewhere.
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1. CR-stru
tures of 
odimension two

LetM be a real submanifold in the 
omplex spa
e C

N

. Then there is

the CR-subspa
e T

CR

M = TM \ J(TM) whi
h 
onsists of all ve
tors

�

x

2 T

x

M su
h that the 
anoni
al 
omplex stru
ture J on C

N

maps �

x

to J(�

x

) 2 T

x

M . We say that the CR-
odimension ofM is k if dimM is

2n+k and dimT

CR

M is 2n. By means of the impli
it fun
tion theorem,

we may use a holomorphi
 proje
tion of C

N

! C

n+k

and express M

lo
ally as

Imw

�

= f

�

(z; �z;Rew); � = 1; : : : ; k

where z = (z

1

; : : : ; z

n

), w = (w

1

= u

1

+ iv

1

; : : : ; w

k

= u

k

+ iv

k

) are


oordinates in C

n+k

and f(0) = 0, df(0) = 0. Geometri
ally this means

that the origin belongs to M and T

0

M is just fv = 0g. By means of

further biholomorphi
 transformation of se
ond order we are able to

eliminate the \harmoni
" part of the se
ond order term in f :

Re

X

�

2

f

�z

i

�z

j

j0

z

i

z

j

+ 2Re

X

�

2

f

�z

i

�u

j

j0

z

i

u

j

+

1

2

X

�

2

f

�u

j

�u

j

j0

u

i

u

j

:

Only the hermitian part in the se
ond order term of f :

h(z; �z) =

1

2

X

�

2

f

�z

i

��z

j

j0

z

i

�z

j

will remain, thus we a
hieve that M is given by

v = h(z; �z) + O(3)(1)

at a neighborhood of the origin. For more details see [19℄. The ve
tor-

valued hermitian form h shall be denoted by hz; zi in the sequel. The

submanifold M is 
alled Levi non-degenerate (at the origin) if the

s
alar 
omponents of hz; zi are linearly independent and do not have

a 
ommon annihilator. The Levi form

1

2i

h is given by means of the

standard Lie bra
ket f ; g

Lie

of ve
tor �elds modulo the 
omplex sub-

spa
e T

CR

M , � 7! f�

x

; J�

x

g

Lie

2 TM=T

CR

M for the CR-ve
tor �elds

�; J� :M ! T

CR

M . The latter bra
ket is algebrai
 sin
e the standard
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Lie bra
ket 
omposed with the proje
tion onto the quotient is 
learly

linear over fun
tions.

The geometri
 meaning of (1) is that M os
ulates the quadri


Q : v = hz; zi

in se
ond order. Both M and Q share the same tangent spa
e, CR-

tangent spa
e and Levi form at the origin.

Now, let us assume thatM � C

4

is of CR-
odimension 2 and assume

further that M is Levi non-degenerate. Thus M is a smooth real 6-

dimensional manifold.

The quadri
 Q 
an be always understood as an open domain in the

homogeneous spa
e G=P where G is the group of the automorphisms

of the hermitian form and P its isotropi
 subgroup of the origin. This

means that the tangent spa
e in the origin 
arries the P -module stru
-

ture of g=p in a 
anoni
al way and some se
ond order data should be


arried over to M from g=p to the individual tangent spa
es of M by

means of the os
ulation.

Thus, in order to try to study the geometry of M in the spirit of

the general theory as brie
y reviewed in Se
tion 2, we have to dis-

tinguish the possible non-degenerate C

2

-valued hermitian forms by a

suitable normalization and to analyze the remaining freedom in the

os
ulation. This has been done in [16, 19℄, see Appendix B for a re-

view. In parti
ular, we 
an a
hieve one of the following three forms for

h(z; �z) = hz; zi 2 C

2

by a linear transformation in z's and v's

h

1

(z; �z) = z

1

�z

1

; h

2

(z; �z) = z

2

�z

2

(2)

h

1

(z; �z) = z

1

�z

1

; h

2

(z; �z) = Re z

1

�z

2

(3)

h

1

(z; �z) = Re z

1

�z

2

; h

2

(z; �z) = Im z

1

�z

2

(4)

and we refer to these 
ases as to hyperboli
, paraboli
, and ellipti
,

respe
tively. The normalization (1) with one of these hermitian forms

h is given uniquely up to the isotropi
 subgroup of the origin in the

group of all biholomorphi
 automorphisms of Q � C

4

.

We say that a point x 2 M is hyperboli
 or paraboli
 or ellipti
 if

the os
ulating quadri
 at x is of that type. Apparently, the set of all

hyperboli
 points is open and the same for the ellipti
 ones. The CR-

stru
ture onM is 
alled hyperboli
, or paraboli
, or ellipti
, if all points

of M are of the same type.

Let M � C

4

be a CR-stru
ture of 
odimension two, su
h that all its

points are either hyperboli
 or ellipti
. As dis
ussed above, the 
hoi
e

of the 
anoni
al form of the os
ulating quadri
 Q = G=P �xes the

freedom in the os
ulation (1) to the isotropi
 subgroup of the origin

in G=P and this allows to transfer the P -invariant data of �rst and
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se
ond order from the origin of Q to the individual tangent spa
es in

all points of M .

We re
all the details on the resulting groups

G =

�

(SU(2; 1)=Z

3

)� (SU(2; 1)=Z

3

)

�

o Z

2

(5)

in the hyperboli
 
ase, and

G = (SL(3; C )=Z

3

)o Z

2

(6)

in the ellipti
 
ase, P , G

0

, and their Lie algebras in Appendix B. At

the moment, let us noti
e that in both 
ases the Lie algebra g 
arries

the j2j-grading g = g

�2

� g

�1

� g

0

� g

1

� g

2

, p = g

0

� g

1

� g

2

, and

the subgroups P and G

0

have all properties dis
ussed in 2.1 below.

In parti
ular P is the subgroup of all elements whose adjoint a
tion

leaves the p-submodules in g invariant, while G

0


onsists of all elements

whi
h leave the 
omponents g

i

invariant. Thus, the tangent spa
e T

x

M

at ea
h point x 2 M is identi�ed with the P -module g=p whi
h is the

tangent spa
e to the os
ulating quadri
 Q at its origin, the normalized

os
ulation transfers the P -submodule g

�1

� g=p to T

CR

M � TM , and

the algebrai
 stru
ture of g=p is 
arried over to the asso
iated graded

tangent spa
e GrTM = (TM=T

CR

M)� T

CR

M .

1.1. Lemma. Let M � C

4

be a hyperboli
 or ellipti
 6-dimensional

CR-manifold. Then all algebrai
 bra
kets T

CR

M � T

CR

M ! T

CR

M

and T

CR

M � T

CR

M ! TM=T

CR

M on the real graded tangent spa
e

GrTM , and the analogous algebrai
 bra
kets on the 
omplexi�ed graded

tangent spa
e GrT

C

M are obtained via the os
ulation from the 
orre-

sponding bra
kets at the origin of the quadri
.

In parti
ular, the algebrai
 Lie bra
ket f ; g

Lie

on GrTM 
oin
ides

with the algebrai
 bra
ket 
arried over by the os
ulation (1).

Proof. The Lie bra
ket on g

�

= g

�2

�g

�1

is G

0

-equivariant, and so the

os
ulation (1) indu
es an algebrai
 bra
ket on the asso
iated graded

ve
tor bundle GrTM . A neighborhood of the origin in Q 
an be iden-

ti�ed with the exponential image of g

�

in G and the Lie bra
ket in g

�

is given by the usual Lie bra
kets of the left invariant ve
tor �elds on

G. By means of the os
ulation, we 
an proje
t these �elds onto M lo-


ally and 
learly the algebrai
 bra
ket T

CR

M �T

CR

M ! TM=T

CR

M

indu
ed by the Lie bra
ket of ve
tor �elds on M 
oin
ides with that

one 
arried over from g

�

by the os
ulation. Obviously, the result will

not be e�e
ted by the a
tion of an element in P

+

on Q (i.e. by the

possible 
hange of the os
ulation).

All other algebrai
 bra
kets on the real graded tangent spa
e 
an

be treated in exa
tly the same way, provided they are P -invariant on
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the quadri
. The a
tion of an element of G

0

always 
ommutes with

the os
ulation while the a
tion of P

+

is not visible in all our 
ases.

Indeed, the a
tion is trivial if all arguments and values are in T

CR

M ,

while the 
ontributions of the a
tion is fa
tored out in the 
ase of the

bra
kets T

CR

M � T

CR

M ! TM=T

CR

M . Similarly, the left invariant

ve
tor �elds in the 
omplexi�ed tangent spa
es on the quadri
 
an be

mapped into 
omplex ve
tor �elds on M and the above arguments

apply as well.

Let us noti
e, however, that the possible algebrai
 bra
kets taking

some arguments in TQ=T

CR

Q are never P -invariant.

The latter lemma turns out to be the most 
ru
ial point for our fur-

ther development. Indeed, there is the general theory of the so 
alled

paraboli
 geometries whi
h we adapt for our purposes in the next

se
tion. In parti
ular, Theorem 2.13 due to [23, 4℄ will provide the


anoni
al prin
ipal bundles together with 
anoni
al Cartan 
onne
-

tions for all hyperboli
 and ellipti
 6-dimensional CR-manifolds with

CR-
odimension two (see the beginning of Se
tion 2 for de�nitions and

more explanation). We should also like to mention already now that

the 
omplete proof of Theorem 2.13 is in fa
t 
onstru
tive, it is based

on well known fa
ts from representation theory, and it is even shorter

and simpler than the ad ho
 
onstru
tion of the absolute parallelisms

in [9℄. The ultimate results read as follows:

1.2. Theorem. On ea
h 6-dimensional hyperboli
 CR-manifold M �

C

4

of CR-
odimension two, there is the unique normal Cartan 
on-

ne
tion ! of type (G=P ) on the prin
ipal �bre bundle G ! M , up to

isomorphisms. The subgroup P is the subgroup of all elements in G

from (5) whi
h respe
t the p-module �ltration on su(2; 1)� su(2; 1).

1.3. Theorem. On ea
h 6-dimensional ellipti
 CR-manifold M � C

4

of CR-
odimension two, there is the unique normal Cartan 
onne
tion

! of type (G=P ) on the prin
ipal �bre bundle G ! M , up to isomor-

phisms. The subgroup P is the subgroup of all elements in G from (6)

whi
h respe
t the p-module �ltration on sl(3; C ).

For the proof of these theorems see 2.14 below. The reason why the

methods of [9℄ 
ould not produ
e a prin
ipal �bre bundle G with stru
-

ture group P and a normal Cartan 
onne
tion on G, was hidden in

the initial 
hoi
e of the normalization whi
h had to produ
e a Cartan


onne
tion without torsion. In our approa
h, the torsions are the im-

portant parts of the obstru
tions whi
h are easily observable on the

CR-manifold itself. The Se
tions 3 and 4 are basi
ally dealing with the
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onsequen
es of the vanishing of the individual 
omponents of the tor-

sion of the 
anoni
al Cartan 
onne
tion for the hyperboli
 and ellipti


lo
al geometries.

2. Paraboli
 geometries modelled over j2j-graded Lie

algebras

The aim of this se
tion is to introdu
e the reader to the so 
alled

paraboli
 geometries, but we shall 
on
entrate on the 
ases similar to

the real forms of the two-graded 
omplex Lie algebra g = sl(3; C ) �

sl(3; C ). Beside well known fa
ts, we shall also have to adapt and extend

some points.

Let us noti
e �rst that the general ideas go ba
k to E. Cartan and his

notion of \espa
e generalis�e". The interest in the paraboli
 stru
ture

groups was pointed out by Fe�erman, [12℄, in 
onne
tion with prob-

lems in 
onformal and CR geometries. Extensive study was undertaken

even earlier by Tanaka (see [23℄ and the referen
es therein), motivated

by a 
lass of equivalen
e problems for di�erential systems. Tanaka's

approa
h was developed further, see e.g. [18, 26℄. Motivation 
oming

from twistor 
al
ulus led to another dire
tion of related resear
h, see

e.g. [2, 1, 14℄. General ba
kground and an introdu
tion to the subje
t

may be also found in [20℄. The exposition in this se
tion extends the

development in [5, 4℄ and follows mainly [21℄.

2.1. Graded Lie algebras. Let g be a j2j-graded Lie algebra, p and

g

�

its subalgebras:

g = g

�2

� g

�1

� g

0

� g

1

� g

2

g

�

= g

�2

� g

�1

; p = g

0

� g

1

� g

2

:

Further, let G be a Lie group with the Lie algebra g. Then there is

the subgroup P � G of elements whose adjoint representations on g

preserve the �ltration by p-submodules g

i

�g

i+1

�� � ��g

2

and there also

is the subgroup G

0

� P of all elements whose adjoint representation

leaves invariant all g

i

. Thus the 
omponents g

i

of the grading 
an be

understood as G

0

-submodules, but also as the fa
tors in the graded

P -module 
omponents asso
iated to the P -module �ltration. Similarly

we de�ne the jkj-graded algebras g = g

�k

� : : : g

k

.

In the sequel, we shall deal with semi-simple j2j-graded Lie algebras

ex
lusively. It is well known that all graded semi-simple Lie algebras are

sums of jkj-graded algebras for suitable k's and the subgroups P � G

are always suitable real forms of paraboli
 subgroups P

C

� G

C

in the
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omplexi�
ation. The exposition below extends easily to general semi-

simple jkj-graded Lie algebras and the 
orresponding paraboli
 stru
-

tures, as dis
ussed in [4℄ for example. Many geometri
 and algebrai


properties of these geometries are dedu
ed in [6℄.

2.2. Cartan 
onne
tions. The homogeneous spa
e p : G ! G=P is

equipped with the left Maurer-Cartan form ! 2 C

1

(G; g). This is the

prototype of a geometry modelled over the homogeneous spa
e G=P .

In general, a Cartan geometry of type G=P is a prin
ipal �bre bundle

p : G ! M over a smooth manifold M , equipped with a g-valued

one-form ! 2 C

1

(G; g) satisfying

� !(�

X

(u)) = X for all X 2 p and fundamental �elds �

X

on G,

� ! is right-invariant, i.e. (r

b

)

�

! = Ad(b

�1

) Æ ! for all b 2 P ,

� the restri
tions !

jT

u

G

: T

u

G ! g are linear isomorphisms, i.e. the

obvious mapping TG ! G � g is a di�eomorphism.

The homomorphisms of Cartan geometries are those prin
ipal �bre

bundle morphisms whi
h respe
t the Cartan 
onne
tions. The 
at Car-

tan geometry is the homogeneous spa
e G ! G=P with the Maurer-

Cartan form !.

Let us also observe that the above absolute parallelisms ! turn out

to be spe
ial 
ases of prin
ipal 
onne
tions ~! on the prin
ipal bundle

~

G = G �

P

G with stru
ture group G. Indeed, the 
onne
tion forms of

all prin
ipal 
onne
tions on

~

G whose horizontal distributions do not

meet the tangent spa
e TG � T

~

G restri
t to forms ! with the required

properties. See e.g. [20℄ for more 
omments.

2.3. Normal 
oordinates. For ea
h X 2 g, the parallelism ! de�nes

the ve
tor �eld !

�1

(X) on G. The horizontal ve
tor �elds !

�1

(X) on G

are those with X 2 g

�

and their values span the horizontal distribution

on G. Due to the third property of !, the 
hoi
e of a frame u 2 G de�nes

an inje
tive smooth mapping of a neighborhood of zero in g

�

g

�

3 X 7! Fl

!

�1

(X)

1

(u)(7)

de�ned by means of the 
ows of the ve
tor �elds !

�1

(X). The tangent

spa
e of its image at u belongs to the horizontal distribution on G and

its 
omposition with the proje
tion p : G ! M de�nes the lo
ally

de�ned mapping

~u : g

�

!M; X 7! p(Fl

!

�1

(X)

1

(u))(8)

whi
h is di�eomorphi
 on a neighborhood of the origin. We 
all ~u the

normal 
oordinates on M given by the frame u. At the same time, ~u
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indu
es the lo
al trivialization �

u

,

�

u

:M ! G; M 3 ~u(Y ) 7! Fl

!

�1

(Y )

1

(u) 2 G:(9)

Clearly, the normal 
oordinates around a �xed point x 2 M are pa-

rameterized by elements in P and they generalize the usual normal


oordinates of aÆne 
onne
tions on manifolds. The general 
on
ept of

the normal 
oordinates has been introdu
ed and studied in [21℄.

2.4. Chains. The notion of normal 
oordinates suggests a straightfor-

ward generalization of the geodeti
al 
urves. For ea
h 
hoi
e of X 2 g

�

and u 2 G we de�ne the 1-
hain �

u;X

: R ! M on a neighborhood of

0 2 R by

�

u;X

(t) = p(Fl

!

�1

(X)

t

(u)):

Clearly the tangent dire
tion to the 1-
hain �

u;X

at its origin is the ve
-

tor Tp:!

�1

(X)(u) sin
e the tangent bundle TM is identi�ed with the

asso
iated bundle G �

P

(g=p) via the adjoint representation, fu;Xg 7!

Tp:!

�1

(X). In parti
ular we see immediately that many di�erent 1-


hains may share the same tangent dire
tion.

The 1-
hains have been studied under various names like Cartan's


ir
les or generalized 
ir
les, see e.g. [20℄, and the 
hains introdu
ed

by Chern and Moser for CR-geometries of 
odimension one are exa
tly

the 1-
hains with X 2 g

�2

. Sin
e dim g

�2

= 1 for these geometries, the

latter 1-
hains 
oin
ide with the 
hains de�ned below.

All 1-
hains 
orresponding to a �xed frame u yield exa
tly the nor-

mal 
oordinates with origin at p(u) and the transformation rules for

these 
oordinates under the 
hange of u may be quite 
ompli
ated, in

general. On the other hand, the 1-
hains 
orresponding to the param-

eters fu;Xg with X 2 g

�2

have very spe
i�
 properties. We de�ne the


hain �

u

: g

�2

!M by the formula

�

u

(X) = p(Fl

!

�1

(X)

1

(u)):

Thus the 
hains are parameterized submanifolds in M of dimension

dim g

�2

.

2.5. Remark. The importan
e of the 
hains grows whenever they are

given uniquely by their tangent dire
tions in the origin. Another impor-

tant question is whether two di�erent 
hains may interse
t nontrivially

in ea
h small neighborhood of their 
ommon origin. The answer to these

questions is usually very easy be
ause of the following equivalent def-

inition of 1-
hains by means of their developments into the asso
iated

bundle FM =

~

G �

G

(G=P ).

The prin
ipal 
onne
tion ~! on

~

G provides the indu
ed (generalized)


onne
tion on the bundle FM and there is the 
anoni
al embedding
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of M into FM , p(u) 7! fu; [e℄g. Thus ea
h 
urve �(t) 2 M 
an be

mapped by the parallel transport of ~! into a 
urve ~� in the �bre over

�(0). This 
urve ~� is 
alled the development of the 
urve �. Clearly,

the germs of 
urves through �(0) are in bije
tive 
orresponden
e with

the germs of their developments.

Now, our de�nition of the 1-
hains 
an be easily rephrased as follows.

The 1-
hains are exa
tly the 
urves � whose developments ~� are given

by one-parametri
 subgroups in G, i.e. ~�

u;X

= fu; [exp tX℄g. See e.g.

[21℄ for more details.

Sin
e our 
hains �

u

are obtained via 1-
hains, all stru
tural questions

mentioned above are obtained by the dis
ussion of the 
hains in the

homogeneous 
ase.

2.6. Curvature and torsion. The stru
ture equation

d! = �

1

2

[!; !℄ +K

de�nes the g-valued horizontal 2-form K 2 


2

(G; g). If we evaluate

the stru
ture equation on two horizontal ve
tor �elds we obtain the

so 
alled frame form of the 
urvature, the equivariant fun
tion � 2

C

1

(G;�

2

g

�

�


 g)

P

�(u)(X; Y ) = K(!

�1

(X); !

�1

(Y ))(u)

= [X; Y ℄� !([!

�1

(X); !

�1

(Y )℄(u)):

The Cartan geometry is lo
ally isomorphi
 to the 
at one if and only

if its 
urvature vanishes.

If g is semi-simple, then P is a paraboli
 subgroup of the semi-simple

group G and we then refer to the above geometries as to paraboli


geometries of type G=P .

The 
urvature � has values in the spa
e of 
o
hains of the Lie algebra


ohomology H

�

(g

�

; g). The grading on g indu
es the grading on the

spa
e of 
o
hains. The homogeneous 
o
hains of degree k are those

whi
h map g

i

^ g

j

into g

i+j+k

and this grading is respe
ted by the Lie

algebra 
ohomology di�erential �. For ea
h 
o
hain � 2 �

k

g

�


A with

values in a g

�

-module A the di�erential is given by

��(X

0

; : : : ; X

k

) =

k

X

i=0

X

i

:�(X

0

; ^: : :; X

k

) +

X

i<j

�([X

i

; X

j

℄; X

0

; ^: : :; X

k

)

(10)

where the dot in the �rst summand means the g

�

-module a
tion while

the hats denote the obvious omitions.
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In parti
ular, the whole 
urvature splits into the homogeneous parts

�

(k)

� =

3`

X

k=�`+2

�

(k)

where ` = 2 is the length of the grading. On the other hand, we may

split � a

ording to its values. In parti
ular, there is the torsion part

�

�

with values in g

�

� =

`

X

i=�`

�

i

�

�

= �

�`

� � � � � �

�1

�

p

= �

0

� � � � � �

`

:

The torsion has a simple geometri
al meaning: Let us de�ne the hori-

zontal bra
ket [�; �℄

h

on the spa
e X

h

(G) of all �elds belonging to the

horizontal distribution on G by the standard Lie bra
ket followed by

horizontal proje
tion. By the very de�nition, the torsion of ! vanishes

if and only if the mapping g

�

3 X 7! !

�1

(X) 2 X

h

(G) is a Lie algebra

homomorphism.

2.7. Regular and normal 
onne
tions. We say that the paraboli


geometry (G; !) is regular if �

(k)

= 0 for all k � 0.

In the sequel, we shall always assume g is semi-simple. Then there is

the adjoint of the Lie algebra 
ohomology di�erential �, the 
odi�er-

ential �

�

: �

k

g

�

�


 g ! �

k�1

g

�

�


 g.

We say that ! is a normal Cartan 
onne
tion if its 
urvature is 
o-


losed, i.e.

�

�

Æ � = 0 2 C

1

(G; g

�

�


 g):

Let us re
all, that the whole spa
e of 
o
hains de
omposes into a sum

of irredu
ible 
omponents as a g

0

-module. Ea
h su
h 
omponent is

either in the image of � or in the image of �

�

or in the kernel of both.

The latter 
omponents are 
alled harmoni
 and they are in bije
tive


orresponden
e with the non-zero 
ohomologies H

�

(g

�

; g).

2.8. Theorem. ([23, 26, 4℄) Let (G; !) be a normal Cartan 
onne
-

tion and assume that all 
omponents �

(j)

, j < k, vanish. Then � Æ �

(k)

vanishes and so all non-trivial irredu
ible 
omponents of �

(k)

are har-

moni
.

In parti
ular, the whole 
urvature of ! vanishes if and only if its

harmoni
 part does.
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The latter theorem is a straightforward 
onsequen
e of the important

Bian
hi identity for Cartan geometries:

��

(k)

(X; Y; Z) =�

X


y
li


k�1

X

i=1

�

(k�i)

(�

(i)

(X; Y ); Z)

�

X


y
li


L

!

�1

(Z)

�

(k+jZj)

(X; Y )

�

(11)

where the sum is the 
y
li
 sum over X; Y; Z 2 g

�

, and jZj = j if

Z 2 g

j

. See e.g. [4℄ for more details.

2.9. The underlying geometry on M . A part of the Cartan ge-

ometry (G; !) is visible dire
tly on the underlying manifold M and,

fortunately, these data are suÆ
ient in order to re
onstru
t the Car-

tan 
onne
tion 
ompletely. This is the 
ore of our approa
h to the CR

stru
tures in this paper. As before we shall restri
t ourselves to the

j2j-graded 
ases below, but the dis
ussion extends easily to the general


ase.

The P -module stru
ture on g (de�ned via the Ad representation)

determines the �ltration by P -submodules

g = V

�2

� V

�1

� V

0

� V

1

� V

2

= g

2

V

k

= g

k

� � � � � g

2

� g; k = �2;�1; 0; 1; 2:

This in turn de�nes the �ltration on TG

TG = T

�2

G � T

�1

G � T

0

G � T

1

G � T

2

G

T

k

u

(G) = !

�1

(u)(V

k

); k = �2;�1; 0; 1; 2; u 2 G:

The right invarian
e of ! yields

!

�1

(u:b)(X) = Tr

b

:!

�1

(u)(Ad(b):X)(12)

and so the latter �ltration on G is P -invariant. The P -invariant pro-

je
tion p : G !M de�nes then the �ltration

TM = T

�2

M � T

�1

M � f0g:

Moreover, ea
h �xed frame u 2 G with p(u) = x 2 M determines the

linear isomorphism of �ltered ve
tor spa
es

û : g

�

! T

x

M X 7! Tp:!

�1

(X)(u)

and on the level of the asso
iated graded spa
es we obtain the linear

isomorphism

û : V

�2

=V

�1

� V

�1

=V

0

' g

�2

� g

�1

! T

�2

x

M=T

�1

x

M � T

�1

x

M:
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The whole stru
ture group P is a semidire
t produ
t of its redu
tive

subgroup G

0

(
orresponding to the Lie algebra g

0

) and the subgroup

P

+

whi
h 
orresponds to p

+

g

1

� g

2

. Obviously, the latter identi�
ation

û does not 
hange if we repla
e the frame u by u:b with b 2 P

+

. Thus we

have identi�ed the graded tangent bundle GrTM with the asso
iated

ve
tor bundle to the prin
ipal bundle G

0

= G=P

+

whose standard �bre

is the G

0

-module g

�

. In parti
ular the Lie bra
ket on g

�

is transfered

to the algebrai
 bra
ket f ; g

0

by

f�

x

; �

x

g

0

= û([û

�1

(�

x

); û

�1

(�

x

)℄); �

x

; �

x

2 GrT

x

M;u 2 G:

Noti
e that this de�nition does not depend on the 
hoi
e of u sin
e û

is independent of the a
tion of P

+

and the Lie bra
ket on g

�

is G

0

-

equivariant. Sin
e our G

0

-stru
ture on GrTM is de�ned by the Cartan


onne
tion, we may 
hoose representing ve
tors

�

�

x

2 T

i

x

M , ��

x

2 T

j

x

M ,

their 
overing ve
tors

^

�

u

,�̂

u

2 TG and we obtain

f�

x

; �

x

g

0

= �(!

�1

([!(

^

�

u

); !(�̂

u

)℄)(u))

where � is the obvious proje
tion T

i+j

G ! T

i+j

M ! T

i+j

M=T

i+j+1

M .

We shall see in a while that the regular Cartan geometries are exa
tly

those for whi
h the latter bra
ket is indu
ed from the Lie bra
ket of

ve
tor �elds in an algebrai
 way. Sin
e we shall need a good 
ontrol

over the relations between the bra
kets of the horizontal ve
tor �elds

and some bra
kets on the underlying manifold in its proof, we shall

�rst formulate a general lemma based on our 
on
ept of the normal


oordinates.

2.10. Lemma. Let u 2 G and let �

u

be the 
orresponding distinguished

lo
al trivialization of G, see (9). Further let X; Y 2 g

�

, and 
onsider

the proje
table ve
tor �elds

~

�, ~� over M , su
h that their restri
tions

to the image of �

u


oin
ide with the horizontal �elds !

�1

(X), !

�1

(Y ),

respe
tively. Then [!

�1

(X); !

�1

(Y )℄(u) = [

~

�; ~�℄(u).

Thus, in parti
ular

Tp:[!

�1

(X); !

�1

(Y )℄(u) = [Tp:

~

�; Tp:~�℄(p(u))
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Proof. Let us write

~

� = !

�1

(X)+�, ~� = !

�1

(Y )+� and 
ompute their

bra
ket. By the very de�nition, we obtain

[

~

�; ~�℄(u) =

d

dt

j

0

T (Fl

~

�

�t

) Æ (!

�1

(Y ) + �) Æ (Fl

~

�

t

)(u)

=

d

dt

j

0

T (Fl

~

�

�t

) Æ (!

�1

(Y ) + �) Æ (Fl

!

�1

(X)

t

)(u)

=

d

dt

j

0

T (Fl

~

�

�t

) Æ (!

�1

(Y )) Æ (Fl

!

�1

(X)

t

)(u)

= [

~

�; !

�1

(Y )℄(u)

where the �rst equality follows from the fa
t that the 
ows of

~

� and

!

�1

(X) through u 
oin
ide, the next one results from the vanishing of �

on the image of �

u

. Now, repeating the same arguments for [!

�1

(Y );

~

�℄,

we a
hieve just the required equality.

2.11. Lemma. Let ! 2 


1

(G; g) be a Cartan 
onne
tion with a j2j-

graded Lie algebra g. Then �

(i)

= 0 for all i < 0 and the Lie bra
ket of

ve
tor �elds de�nes an algebrai
 bra
ket f ; g

Lie

on the graded ve
tor

bundle GrTM . Moreover, �

(0)

vanishes if and only if the latter bra
ket


oin
ides with the algebrai
 bra
ket f ; g

0

on GrTM .

Proof. Re
all that the de�ning equation for the homogeneous 
ompo-

nents �

(k)

(u)(X; Y ), k 6= 0, u 2 G, X 2 g

i

, Y 2 g

j

is

�

(k)

(u)(X; Y ) = �!

i+j+k

([!

�1

(X); !

�1

(Y )℄(u))(13)

while the 
omponent of degree zero is

�

(0)

(u)(X; Y ) = [X; Y ℄� !

i+j

([!

�1

(X); !

�1

(Y )℄(u))(14)

Now, 
onsider ve
tor �elds � in T

i

M , � in T

j

M and let us 
hoose

elements X

r

2 V

i

, Y

s

2 V

j

su
h that � = Tp:

P

r

f

r

!

�1

(X

r

), � =

Tp:

P

s

g

s

!

�1

(Y

s

) with suitable fun
tions f

r

, g

s

on G. Then

[�; �℄ = (Tp:

X

r;s

f

r

g

s

[!

�1

(X

r

); !

�1

(Y

s

)℄) modT

i+j

M:

The negative homogeneous 
omponents �

(k)

, k < 0 have to vanish

be
ause the algebra is j2j-graded and so we have no 
hoi
e of arguments

for 
o
hains with su
h homogeneity. The lowest possible 
ase will be a


o
hain g

�1

� g

�1

! g

�2

of homogeneity zero. The fa
t that the Lie

bra
ket of ve
tor �elds produ
es an algebrai
 bra
ket on the asso
iated

graded tangent bundle is obvious.
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Now, the two bra
kets in question may be expressed for all ve
tors

�

x

= �(!

�1

(X)(u)) and �

x

= �(!

�1

(Y )(u)) as

f�

x

; �

x

g

0

= �(!

�1

([X; Y ℄)(u))

f�

x

; �

x

g

Lie

= [Tp:

~

�; Tp:~�℄(x) mod T

i+j+1

M

= �([!

�1

(X); !

�1

(Y )℄(u) mod T

i+j+1

G)

= �(!

�1

(!

i+j

([!

�1

(X); !

�1

(Y )℄(u))))

where

~

� or ~� are some proje
table �elds from the previous Lemma 2.10.

Thus, a

ording to (14), the two bra
kets equal ea
h other if and only

if �

(0)

vanishes.

Now we have got the motivation for the following de�nition of geo-

metri
 stru
tures on manifolds. Let us also remark that the version of

the latter lemma whi
h is valid for all jkj-graded stru
tures needs one

more 
ondition. Namely, the existen
e of the algebrai
 bra
ket indu
ed

by the Lie bra
kets of ve
tor �elds is equivalent to the vanishing of all

negative 
omponents �

(k)

, k < 0.

2.12. De�nition. Let g, G, P , and G

0

be as in 2.1. A regular (g; P )-

stru
ture on a smooth manifold M is a �ltration of the tangent bundle

TM

TM = T

�2

M � T

�1

M

together with the redu
tion of the stru
ture group of the asso
iated

graded tangent ve
tor bundle GrTM to the subgroup G

0

, su
h that the

algebrai
 bra
ket on GrTM indu
ed by the Lie bra
ket of ve
tor �elds


oin
ides with the algebrai
 Lie bra
ket de�ned by the G

0

-stru
ture.

We may understand the above 
ondition as the requirement that the

subbundle T

�1

M be reasonably non-involutive. Due to our restri
tion

to j2j-graded algebras we do not need to 
onsider the other 
ondition

from proposition 2.11 on the Lie bra
kets of ve
tor �elds, namely that

they must not be \too mu
h non-involutive".

Surprisingly enough there is the theorem 
laiming that, apart of a

few ex
eptions, all regular normal paraboli
 geometries are uniquely

given by the underlying (g; P )-stru
tures on the manifolds M :

2.13. Theorem. Let M be a smooth manifold, g a graded semi-simple

Lie algebra, G a Lie group with Lie algebra g, and assume that all

homogeneous 
omponents of the 
ohomologies H

1

`

(g

�

; g) with positive

degrees ` > 0 are trivial. Then there is a bije
tive equivalen
e between

isomorphism 
lasses of the regular (g; P )-stru
tures on M and the iso-

morphism 
lasses of regular normal Cartan geometries (G; !) over M .
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For the proof see Se
tion 3 of [4℄. The 
omputations in [26, 4℄ show

that, apart of situations with simple 
omponents in g

0

, the only ex
ep-

tions are g = sl(2; C ), spe
i�
 maximal paraboli
 subalgebras in spe
ial

linear algebras in higher dimension (j1j-graded examples) and spe
i�


maximal subalgebras in symple
ti
 algebras (j2j-graded examples). An

equivalent theorem for the 
ases g simple and G 
onne
ted was proved

in [23℄.

2.14. Proof of Theorems 1.2 and 1.3. The relevant 
ohomologies

for the real forms of sl(3; C ) � sl(3; C ) are 
omputed in Appendix A.

In parti
ular, there is no obstru
tion in the 
onstru
tion of the normal

Cartan 
onne
tions out of regular (g; P )-stru
tures a

ording to The-

orem 2.13. The de�nition of the relevant (g; P )-stru
tures by means of

the fundamental se
ond order os
ulation (1) was dis
ussed at the end

of Se
tion 1, see Lemma 1.1.

3. The hyperboli
 stru
tures

In this se
tion, we shall study the 
onsequen
es of the algebrai
 stru
-

ture of su(2; 1) � su(2; 1) for the hyperboli
 points on 6-dimensional

CR-manifolds of CR-
odimension 2 M � C

4

. Thus the Lie groups G,

P , G

0

, as well as the 
orresponding Lie algebras will be �xed through-

out this se
tion.

3.1. Almost produ
t and almost 
omplex stru
tures. As we no-

ti
ed already in the proof of Theorem 1.2, there is the relevant (g; P )-

stru
ture on M . Sin
e the individual left and right 
omponents of g

are P -submodules, this stru
ture introdu
es the natural splitting of

the whole tangent bundle TM , i.e. an almost produ
t stru
ture on M .

The almost produ
t stru
ture also restri
ts to the 
omplex tangent

bundles T

CR

M . We shall write

TM = T

R

M � T

L

M; T

CR

M = T

CR;R

M � T

CR;L

M

GrTM = (T

L

M=T

CR;L

M � T

CR;L

M)� (T

R

M=T

CR;R

M � T

CR;R

M).

In parti
ular, the two 
omponents of TM are orthogonal with respe
t

to the algebrai
 bra
ket f ; g

Lie

.

Next, we observe that the 
anoni
al almost 
omplex stru
ture J de-

�ned on T

CR

M is indu
ed by the (g; P )-stru
ture. Indeed, we de�ne

J 2 (T

CR

M)

�


 T

CR

M; J(Tp:!

�1

(X)(u)) = Tp:(!

�1

(iX)(u))

and this formula does not depend on the 
hoi
e of u and X be
ause

the adjoint a
tion of P on g

�1

� g=p is 
omplex linear.
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At the same time, there is the obvious integrable 
omplex stru
ture


oming from the de�nition T

CR

M = TM \ iTM � T C

4

on the embed-

ded CR-manifolds. The fundamental os
ulation (1) then implies that

these two almost 
omplex stru
tures on T

CR

M 
oin
ide.

3.2. The abstra
t hyperboli
 CR-manifolds of dimension six and CR-


odimension two are de�ned by the spe
i�
ation of a regular (g; P )-

stru
ture onM in the sense of De�nition 2.12. In parti
ular, they 
ome

equipped by the CR-subbundle T

CR

M � TM of real 
odimension two

with an almost 
omplex stru
ture, and the 
ompatible almost produ
t

stru
ture on TM . The general theory then applies as well and so the

normal Cartan 
onne
tions are given uniquely on all su
h manifolds.

We shall see, however, that the embedded ones have very spe
i�
 fea-

tures. The automati
 integrability of the almost 
omplex stru
ture J

on T

CR

M is an example. We 
an meet these more general stru
tures on

some 6-dimensional real submanifolds in 8-dimensional almost 
omplex

manifolds.

Our goal is to understand fully the lo
al geometri
al properties. For

that reason we shall �rst dis
uss all possible algebrai
 bra
kets on TM

whi
h arise from the Lie bra
ket of ve
tor �elds and we shall link them

to 
ertain 
omponents of the 
urvature of the 
anoni
al Cartan 
on-

ne
tion ! on M . In fa
t we shall work on the abstra
t level, forgetting

more or less about the embedding of the manifold M into C

4

. Thus

some of the obstru
tions will vanish automati
ally for the embedded

hyperboli
 CR-manifolds.

For example, the algebrai
 Lie bra
ket of two ve
tor �elds �; � in

T

CR;L

M has no 
ontribution in T

R

M=T

CR;R

M and so the proje
tion

of the Lie bra
ket [�; �℄ to T

R

M = TM=T

L

M has values in T

CR;R

M .

Analogously we 
an deal with left and right 
omponents ex
hanged and

so there are two obvious algebrai
 bra
kets

f ; g

L

: T

CR;L

M � T

CR;L

M ! T

CR;R

M(15)

f ; g

R

: T

CR;R

M � T

CR;R

M ! T

CR;L

M(16)

whi
h have to vanish automati
ally for all embedded hyperboli
 CR-

manifolds in view of Lemma 1.1. We shall see in a moment that these

bra
kets vanish even for the abstra
t stru
tures.

Our general strategy will be to link algebrai
 bra
kets to 
ertain


omponents of the 
urvature � of the Cartan 
onne
tion !. A

ord-

ing to Theorem 2.8, we have to start by the des
ription of the real


ohomologies

H

2

�

(g

L

�

� g

R

�

; su(2; 1)

L

� su(2; 1)

R

):
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homog. 
o
hains 
omment

1 g

R

�2

� g

R

�1

! g

L

�2

real linear in both arguments

1 g

L

�2

� g

L

�1

! g

R

�2

real linear in both arguments

1 g

L

�1

� g

R

�1

! g

L

�1

antilinear in both arguments

1 g

L

�1

� g

R

�1

! g

R

�1

sesquilinear

1 g

R

�1

� g

L

�1

! g

R

�1

antilinear in both arguments

1 g

R

�1

� g

L

�1

! g

L

�1

sesquilinear

4 g

L

�2

� g

L

�1

! g

L

1

real and 
omplex linear

4 g

R

�2

� g

R

�1

! g

R

1

real and 
omplex linear

Table 1. Real 
ohomologies of g

�

with 
oeÆ
ients in g

3.3. Lemma. All irredu
ible 
omponents of these real 
ohomologies

are the one-dimensional g

0

-modules whi
h are generated by the (real)

bilinear 
o
hains listed in Table 1.

Proof. Let us 
onsider the g

0

-modules

A

`

= H

2

`

(g

L

�

� g

R

�

; su(2; 1)

L

� su(2; 1)

R

):

By the general theory we know that the 
omplexi�
ations (A

�

`

)

C

of the

dual g

0

-modules A

�

`

are the 
omplex 
ohomologies H

2

�`

(p

+

; sl(3; C ) �

sl(3; C )) listed in the table of all 
omplex 
ohomologies, see Table 4

in Appendix A. Further, let us noti
e that the two 
omponents in g

�1

have a 
anoni
al 
omplex stru
ture. Now, we have just to keep in mind,

that a 
omplexi�
ation of a real linear mapping � : V ! W , de�ned

on a 
omplex ve
tor spa
e V , splits into two 
omponents a

ording to

the splitting of the 
omplexi�
ation V

C

= V �

�

V . If the target of su
h

a mapping is 
omplex as well, then the mapping � itself splits into

the 
omplex linear and 
omplex antilinear parts. Thus the 
omplex


ohomologies on the list of Table 4, and the other half of them, must


ome exa
tly from the 
omponents listed in Table 1.

Now we are ready to �nd the geometri
 meaning of the individual

torsion 
omponents. First, we shall fo
us on the obstru
tions against

the integrability of the natural almost produ
t stru
ture on M .
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Thus we are interested in bra
kets GrT

L

M � GrT

L

M ! GrT

R

M

and those with the left and right 
omponents ex
hanged. The restri
-

tion of f ; g

Lie

vanishes 
learly. Hen
e, apart from the algebrai
 bra
kets

(15), (16), there is another 
andidate

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

R

M=T

CR;R

M(17)

f ; g

R

: T

R

M=T

CR;R

M � T

CR;R

M ! T

L

M=T

CR;L

M .(18)

Indeed, 
hoosing any representative of the argument from the quotient

spa
e, the ordinary Lie bra
ket proje
ted to the desired 
omponent

yields our algebrai
 bra
ket. In 
ontrast to the Levi form, these two

algebrai
 bra
kets are not 
oming from the quadri
 by the os
ulation.

3.4. Lemma. The bra
kets (15), (16) vanish identi
ally. The bra
kets

(17), (18) are given by the formulae

f�

L

(�); �g

L

= ��

R

(Tp:!

�1

(�

(1)

(u)(X; Y ))(u))(19)

f�

R

(�); �g

R

= ��

L

(Tp:!

�1

(�

(1)

(u)(X; Y ))(u))(20)

where u 2 G, �

L

and �

R

are the obvious quotient proje
tions in the left

and right 
omponents of the graded tangent spa
e, and X 2 g

L

�2

; Y 2

g

L

�1

, or X 2 g

R

�2

; Y 2 g

R

�1

, respe
tively, and

� = Tp:!

�1

(X)(u); � = Tp:!

�1

(Y )(u):

There are no more non-trivial algebrai
 bra
kets GrT

L

M�GrT

L

M !

GrT

R

M and GrT

R

M �GrT

R

M ! GrT

L

M .

Proof. We shall dis
uss only bra
kets GrT

L

M �GrT

L

M ! GrT

R

M .

The other ones are treated analogously.

The �rst part is quite easy. Let us 
onsider �

x

; �

x

2 T

CR;L

x

M . Further,


hoose u 2 G, x = p(u), and X; Y 2 g

L

�1

su
h that �

x

= Tp:!

�1

(X)(u),

�

x

= Tp:!

�1

(Y )(u). A

ording to the Lemma 2.10, there are the pro-

je
table ve
tor �elds

~

�, ~� on G su
h that their proje
tions � = Tp Æ

~

�,

� = Tp:~� satisfy �(x) = �

x

, �(x) = �

x

and

[�; �℄(x) = Tp:[

~

�; ~�℄(u) = Tp:[!

�1

(X); !

�1

(Y )℄(u):(21)

Now let us re
all the general formulae (13) and (14) for the evaluations

of 
urvatures and remember there are no 
urvature 
omponents of non-

positive homogeneities. In parti
ular,

!([!

�1

(X); !

�1

(Y )℄(u)) 2 g

L

�2

� (g

L

�1

� g

R

�1

) mod p:
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Thus applying the proje
tion �

R

onto the image T

CR;R

M of f ; g

L

, we

may rewrite (21) as

f�

x

; �

x

g

L

= �

R

Æ Tp:[

~

�; ~�℄

= �

R

Æ Tp:!

�1

(u)

�

!([!

�1

(X); !

�1

(Y )℄(u))

�

= ��

R

Æ Tp:!

�1

(u)(�

(1)

(u)(X; Y )):

In parti
ular, the bra
ket must vanish be
ause there is no 
ohomology

represented by 
o
hains g

L

�1

� g

L

�1

! g

R

�1

, see Table 1, and so this


omponent of the 
urvature vanishes by Theorem 2.8.

We shall pro
eed analogously in the 
ase of the bra
ket (17). Let us

�x again a frame u 2 G, x = p(u), 
hoose the element in T

L

M=T

CR;L

M

represented by Tp:!

�1

(X)(u) with X 2 g

L

�2

, and 
hoose another ve
tor

�

x

2 T

CR;L

x

M , �

x

= Tp:!

�1

(Y )(u), with Y 2 g

L

�1

. Next, we 
onsider

the proje
table ve
tor �elds

~

� on G su
h that !

�1

(X) =

~

� on the image

of �

u

and similarly for �. Then the value of Tp Æ

~

� = � at x represents

the right argument in T

L

M=T

CR;L

M and we obtain

[�; �℄(x) = Tp:[

~

�; ~�℄(u) = Tp:[!

�1

(X); !

�1

(Y )℄(u)(22)

see again Lemma 2.10. Sin
e X 2 g

L

�2

, Y 2 g

L

�1

, our table of 
ohomolo-

gies implies

�

(1)

(u)(X; Y ) = �!

R

�2

([!

�1

(X); !

�1

(Y )℄(u)) 2 g

R

�2

where !

R

�2

is the 
omponent of ! valued in g

R

�2

. In parti
ular we obtain

the required equality (19).

There are still two more possibilities for algebrai
 bra
kets GrT

L

M�

GrT

L

M ! GrT

R

M . The �rst one,

T

L

M=T

CR;L

M � T

L

M=T

CR;L

M ! GrT

R

M

is obviously zero sin
e the arguments are from an one-dimensional

spa
e. The remaining bra
kets

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

CR;R

M(23)

f ; g

R

: T

L

M=T

CR;R

M � T

CR;R

M ! T

CR;L

M(24)


an be well de�ned and algebrai
 if and only if the bra
kets (17) and

(18) vanish, respe
tively. If so, then their values are again de�ned by


onsidering the representatives of the elements in the quotient spa
es

in the domain. By the vanishing assumption, their proje
tion to the

quotient on the right hand side is zero, thus they lie in the desired

targets.

So let us assume that the bra
ket (17) vanishes. Then tra
ing the

above 
omputation of the latter bra
ket step by step, with the target
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repla
ed by T

CR;R

M , we end up with the formula

f�

L

(�(x)); �(x)g

L

= ��

R

Æ Tp(!

�1

(u)(�

(2)

(u)(X; Y ))):

Thus the vanishing of our bra
ket is equivalent to the vanishing of the


orresponding 
omponent �

(2)

: g

L

�2

� g

L

�1

! g

R

�1

. Consider now the

homogeneous 
omponent of degree two of the Bian
hi identity, see (11)

in Se
tion 2. Its right hand side in
ludes terms of two kinds:

�

(1)

(�

(1)

(X; Y ); Z) L

!

�1

(Z)

�

(2+jZj)

(X; Y ):(25)

The di�erential ��

(2)

on the left hand side is homogeneous of degree two

again and � a
ts inje
tively on the image of �

�

. Sin
e our 
omponent

of �

(2)

is not in the list of the available 
ohomologies and �

(2)

is 
o-


losed, this 
omponent must be in the image of �

�

. Thus its image

under � vanishes if and only if this 
omponent vanishes too. Now, we

are interested only in the 
omponent g

L

�2

�


g

L

�1

�


g

R

�1

and so its image

under � will sit in the subspa
e (
f. (10))

(g

R

�1

�


 g

L

�2

�


 g

L

�1

�


 g

R

�2

)� (g

L

�1

�


 g

L

�1

�


 g

L

�1

�


 g

R

�1

):

Our knowledge of all possibly non-zero 
omponents of �rst degree in �

(remember we assume that the bra
ket (19) vanishes) and a straight-

forward inspe
tion of the few possibilities of the pla
ement of the ar-

guments into the two terms in the Bian
hi identity shows that there is

no way to get anything non-zero.

Thus the vanishing of the last possible algebrai
 bra
ket has been

proved.

3.5. Theorem. Let M be an abstra
t hyperboli
 6-dimensional CR-

manifold of CR-
odimension two. The left distribution T

L

M is invo-

lutive if and only if the bra
ket (17) vanishes, the right distribution is

involutive if and only if the bra
ket (18) vanishes.

The almost produ
t stru
ture on M is integrable if and only if both

these bra
kets vanish.

Proof. All proje
tions of the Lie bra
kets T

L

M � T

L

M ! T

R

M are

linear over fun
tions and thus algebrai
. Therefore, Lemma 3.4 implies

immediately the �rst 
laim. Similarly for the other distribution T

R

M

and the last 
laim follows by the standard foliation theory.

3.6. Theorem. Let M be a 6-dimensional abstra
t hyperboli
 CR-

manifold of CR-
odimension two. The 
anoni
al almost 
omplex stru
-

ture J on T

CR

M is integrable if and only if the part �

(1)

aa

2 C

1

(G; g

�

�1

^

g

�

�1


g

�1

) of �

(1)

whi
h is antilinear in both arguments vanishes. In par-

ti
ular, this part of the torsion vanishes on the embedded 6-dimensional

hyperboli
 CR-manifolds in C

4

.
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Proof. By the de�ning properties of the regular (g; P )-stru
tures, the


omplexi�ed CR-tangent subbundle T

CR

C

M � T

C

M must be involutive.

Thus the obstru
tion against the integrability of J is the Nijenhuis

tensor N 2 �

2

(T

CR

M)

�


 T

CR

M . Consequently, the theorem will be

proved on
e we verify the following 
laim: The Nijenhuis tensor N ,

expressed by its frame form � 2 C

1

(G; g

�

�1

^ g

�

�1


 g

�1

), equals to

4�

(1)

aa

.

In order to prove this, let us 
hoose ve
tor �elds �, � in T

CR

M ,

a frame u 2 G, p(u) = x 2 M , and X; Y 2 g

�1

su
h that �(x) =

Tp:!

�1

(X)(u), �(x) = Tp:!

�1

(Y )(u). We have

N(�(x); �(x)) = [�; �℄� [J�; J�℄ + J([J�; �℄ + [�; J�℄)

and N(Tp:!

�1

(X)(u); T p:!

�1

(Y )(u)) = Tp:!

�1

(�(u)(X; Y )).

As before, there are proje
table ve
tor �elds

~

�, ~� over � and �,

su
h that [!

�1

(X); !

�1

(Y )℄(u) = [

~

�; ~�℄(u) and similarly for J�(x) =

Tp:!

�1

(iX)(u) and J�(x) = Tp:!

�1

(iY )(u). Then we 
an 
ompute

N(�(x); �(x)) = Tp:

�

[!

�1

(X); !

�1

(Y )℄� [!

�1

(iX); !

�1

(iY )℄ +

!

�1

(i!([!

�1

(iX); !

�1

(Y )℄ + [!

�1

(X); !

�1

(iY )℄)(u))

�

(u)

= Tp:

�

!

�1

�

[X; Y ℄� [iX; iY ℄ + i[iX; Y ℄ + i[X; iY ℄ +

�

(1)

(X; Y )� �

(1)

(iX; iY ) + i�

(1)

(iX; Y ) + i�

(1)

(X; iY )

�

(u)

�

(u)

= Tp:!

�1

(4�

(1)

aa

(u)(X; Y ))(u)

3.7. The 
omplexi�ed Cartan 
onne
tion. The proof of the pre-


eding theorem 
ould be also done by the methods of 3.4, with the

help of 
omplexi�
ation. Indeed, the 
omplexi�
ation of the 
anoni-


al form ! is !

C

: T

C

G ! g

C

whi
h is a 
omplex linear automor-

phism on ea
h 
omplex tangent spa
e. The Lie bra
ket of real ve
tor

�elds extends to the 
omplex ones and again ea
h 
hoi
e of u 2 G,

X; Y 2 (g

�

)

C

allows to 
hoose proje
table 
omplex ve
tor �elds

~

�, ~�

su
h that [

~

�; ~�℄(u) = [!

�1

C

(X); !

�1

C

(Y )℄(u). Furthermore, the expansion

of !

C

([!

�1

C

(X); !

�1

C

(Y )℄) into the real and imaginary parts shows that

the latter expression yields exa
tly the 
omplexi�
ation �

C

of the 
ur-

vature. Thus we may pro
eed exa
tly as in 3.5 in order to link the


omponent of �

(1)

C

a
ting on two holomorphi
 ve
tors in the 
omplexi�-


ation of g

�1

and valued in the antiholomorphi
 ones, with the obstru
-

tion against the integrability of the holomorphi
 tangent subbundle in

(T

CR

M)

C

. Of 
ourse, the same applies if we swap the holomorphi
 and

antiholomorphi
 ve
tor �elds.
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3.8. The rest of the torsion. Similarly, the remaining two 
ompo-

nents of the 
urvature obtain a ni
e geometri
 interpretation in form

of an algebrai
 bra
ket whi
h is de�ned as follows. Take a holomor-

phi
 ve
tor �eld � 2 (T

CR;L

M)

C

, an antiholomorphi
 � 2 (T

CR;R

M)

C

and proje
t their Lie bra
ket to holomorphi
 
omponent in (T

CR;R

M)

C

.

Clearly, this is an algebrai
 bra
ket and it vanishes if and only if the 
or-

responding 
urvature 
omponent vanishes. Similarly to the involutivity

of the holomorphi
 and antiholomorphi
 bundles, this obstru
tion has

an tensorial interpretation S

R

2 (T

CR;L

M)

�


 (T

CR;R

M)

�


 T

CR;R

M ,

S

R

(�; �) = �

R

([�; �℄ + [J�; J�℄� J [J�; �℄ + J [�; J�℄):(26)

Swapping the left and right tangent bundle 
omponents, we obtain

S

L

2 (T

CR;R

M)

�


 (T

CR;L

M)

�


 T

CR;L

M:(27)

3.9. Theorem. Let M � C

4

be a Levi non-degenerate 6-dimensional

CR-manifold of CR-
odimension 2 and let x 2 M be a hyperboli


point. Then M is produ
t of two Levi non-degenerate 3-dimensional

CR-stru
tures M

1

;M

2

� C

2

, lo
ally around x, if and only if the alge-

brai
 Lie bra
kets

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

R

M=T

CR;R

M

f ; g

R

: T

R

M=T

CR;R

M � T

CR;R

M ! T

L

M=T

CR;L

M

vanish on a neighborhood of x.

The abstra
t 6-dimensional hyperboli
 CR-manifolds of CR-
odimen-

sion two are lo
ally produ
ts of (abstra
t) 3-dimensional CR-manifolds

of CR-
odimension 1 if and only if the above algebrai
 bra
kets, as well

as the Nijenhuis tensor N

J

2 �

2

(T

CR

M)

�


T

CR

M and tensors S

R

, S

L

from (26), (27) vanish.

Proof. All 
onsiderations are lo
al and so we may suppose that the

whole M is hyperboli
. If M is a produ
t of two 3-dimensional CR-

manifolds, then we 
an also 
onsider the produ
t G !M

1

�M

2

of the


orresponding 
anoni
al Cartan bundles G

1

!M

1

, G

2

!M

2

equipped

with the produ
t ! = !

1

� !

2

of the 
orresponding normal Cartan


onne
tions. These bundles and 
onne
tions were 
onstru
ted already

by Cartan in [7℄ and their 
onstru
tion is also 
overed by Theorem

2.13. By de�nition, the new form ! 2 


1

(G; g) has all properties of

normal Cartan 
onne
tions and its 
urvature � is the sum of the two


urvatures �

1

and �

2

of !

1

and !

2

, respe
tively. In parti
ular, there is

no torsion be
ause the 
onne
tions !

1

and !

2

are torsion free. Thus the

four tensorial obstru
tions on M � C

4

have to vanish as well.

Now, let M be a (abstra
t) hyperboli
 6-dimensional CR-manifold

and assume that all six tensorial obstru
tions from our theorem vanish
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globally. A

ording to previous results, all homogeneous 
omponents

�

(1)

of the torsion of the normal Cartan 
onne
tion vanish globally.

Thus, a

ording to Theorem 2.8 and the table of the relevant 
oho-

mologies, all homogeneous 
omponents �

(i)

, i � 3, vanish too. In par-

ti
ular, there is no torsion part in �. Let us 
onsider next the part �

L

of the whole 
urvature whi
h is represented by 
o
hains of the form

g

L

�

� g

L

�

! g

R

and analogously �

R

with left and right 
omponents

swapped. We shall use the indu
tion on the homogeneity degrees to

show, that all these 
omponents vanish. Thus, assume we have done

this for homogeneity less than j and 
onsider the 
omponents in ho-

mogeneity j. Sin
e there are no 
ohomologies of the types in question,

the 
orresponding parts of �

L

and �

R

are in the image of �

�

and so the

di�erential � a
ts on them inje
tively. Thus we 
an apply the Bian
hi

identity in order to see that there is no 
omponent whi
h 
ould 
on-

tribute, 
f. the end of the proof of Theorem 3.5. Consequently, both �

L

and �

R

vanish.

The splitting g = g

L

� g

R

indu
es two 
omplementary P -invariant

distributions on G, TG = T

L

G � T

R

G. These distributions are involu-

tive if and only if the obvious algebrai
 bra
ket T

L

G � T

L

G ! T

R

G '

TG=T

L

G vanishes and similarly with L andR swapped. Sin
e the bra
k-

ets are algebrai
, we may use the parallel �elds !

�1

(X), !

�1

(Y ) with

properly 
hosen X; Y for their evaluation. The proje
tion may be real-

ized by means of the 
omponent of ! valued in the left or right part of

g. But this is 
ontrolled by the 
urvatures �

L

, �

R

and so the bra
kets

vanish, as pro
laimed.

Now, we know that the Cartan bundle G lo
ally splits as a produ
t

of two manifolds but we need mu
h more. We wish to prove that there

is a neighborhood of x over whi
h the whole Cartan bundle (G; !) is

isomorphi
 to a produ
t of (G

L

; �

L

) and (G

R

; �

R

) for some suitable

Cartan 
onne
tions �

L

, �

R

. In fa
t, if we 
onstru
t these data only

lo
ally around a 
hosen frame u 2 G, then the right invarian
e will

ensure what we need. The normal 
oordinates determined by the 
hoi
e

of u will be again our basi
 tool.

So let '

u

: g

L

�

� g

R

�

! G be the mapping de�ned only lo
ally around

the origin by the horizontal 
ows and let �

u

be the 
orresponding se
-

tion of G ! M . As an abuse of notation, we shall not mention the

de�nition domains of these and other lo
ally de�ned mappings. Let us

write P

L

and P

R

for the paraboli
 subgroups in the individual 
om-

ponents of G and de�ne the trivial prin
ipal bundles G

L

= g

L

�

� P

L

,

G

R

= g

R

�

� P

R

. Further, 
onsider the prin
ipal �bre bundle morphism

	 : G

L

� G

R

! G (noti
e P

L

and P

R


ommute and the whole mapping
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is de�ned on �bres over a neighborhood of origin in g

�

only)

	 : ((X; p); (Y; q)) 7! '

u

(X; Y )pq:

Furthermore, the restri
tions of 	 yield prin
ipal �bre bundle mor-

phisms

	

L

: G

L

! G; (X; p) 7! '

u

(X; 0)p

	

R

: G

R

! G; (Y; q) 7! '

u

(0; Y )q

and 
onsider the one forms �

L

= 	

�

L

!

L

, �

R

= 	

�

R

!

R

. It remains to

prove that (G

L

; �

L

) � (G

R

; �

R

) is a bundle with Cartan 
onne
tion

(de�ned lo
ally over a neighborhood of the origin) and 	

�

! = �

L

��

R

wherever de�ned.

First noti
e that, due to our 
hoi
es and the involutivity of the left

and right parts of TG, the forms �

L

and �

R

are pullba
ks of the whole

! (viewed then as forms with values in g, but without any 
ontribution

to one half of the image). Thus the properties of the Cartan 
onne
tions

are simply transfered by 	

L

and 	

R

. Furthermore, sin
e the 
urvature

of ! does not mix left and right sides either, the stru
ture equations

for �

L

and �

R

are obtained as pullba
ks of the stru
ture equation

of !. In parti
ular, the 
urvatures are again �

�


losed. Thus (G

L

; �

L

)

and (G

R

; �

R

) are 3-dimensional CR-manifolds of CR-
odimension one

(lo
ally around the origin of the base manifolds). Finally, we observe

that 	

�

! will (lo
ally) 
oin
ide with the produ
t of the newly 
on-

stru
ted Cartan 
onne
tions if and only if they will evaluate equally

on ve
tors tangent to a �xed se
tion of G

L

� G

R

. Thus 
onsider the

se
tion (X; Y ) 7! ((X; e); (Y; e)), evaluate (�

L

� �

R

) at the ve
tor

(W; 0) + (0; Z) 2 T

((X;e);(Y;e))

(G

L

� G

R

), and 
ompare this with 	

�

!.

In fa
t, we may even deal with the left and right 
omponents of the

tangent spa
e separately.

Ea
h su
h ve
tor � =

�

�t

j0

((X + tW; e); (Y; e)) is mapped by 	

L

to

T (	

L

)(�) =

�

�t

j0

Fl

X+tW

1

(u) and so we 
an easily 
ompare the values

�

L

(�) and 	

�

!(�):

(�

L

)(�) = !

L

(

�

�t

j0

Fl

!

�1

(X+tW )

1

(u))

	

�

!(�) = !

L

(

�

�t

j0

Fl

!

�1

(X+tW+Y )

1

(u)):
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Next, we observe that !

�1

(Y ) 
ommutes with !

�1

(X+tW ) sin
e there

is no 
ohomology mixing the arguments from the left and right 
om-

ponents of g

�

. Thus we may rewrite the last expression as

	

�

!(�) = !

L

�

T (Fl

!

�1

(Y )

1

)(

�

�t

j0

Fl

!

�1

(X+tW )

1

(u))

�

= (Fl

!

�1

(Y )

1

)

�

!

L

(

�

�t

j0

Fl

!

�1

(X+tW )

1

(u)):

Thus, in order to see that the two values 
oin
ide, it suÆ
es to show

that (Fl

!

�1

(Y )

1

)

�

!

L

= !

L

for all Y 2 g

R

�

.

We know this for the 
ow in the time zero, Fl

!

�1

(Y )

0

= id

G

, and so we

have just to show that

�

�s

(Fl

!

�1

(Y )

s

)

�

!

L

vanishes identi
ally. Ea
h ve
tor

in the left 
omponent of T

v

G is of the form !

�1

(V )(v) with V 2 g

L

and

we 
ompute

(Fl

!

�1

(Y )

s

)

�

!

L

(

�

�t

j0

Fl

!

�1

(V )

t

(v)) = !

L

(

�

�t

j0

Fl

!

�1

(Y )

s

ÆFl

!

�1

(V )

t

(v))

= !

L

(!

�1

(V )(Fl

!

�1

(Y )

s

(v))) = V:

Sin
e the derivative of this 
onstant mapping vanishes, the required

invarian
e of !

L

has been proved.

Similarly we deal with the other 
omponent !

R

.

Finally we observe that ifM is embedded in C

4

, then we may always

�nd embeddings �

i

of the 
omponents M

i

in neighborhoods of x

i

into

C

2

su
h that

� = �

1

� �

2

: M ! C

4

= C

2

� C

2

is an embedding of M at x = (x

1

; x

2

). In fa
t, 
onsider the initial

embedding  : M ! C

4

. Then the restri
tion of  to M

1

� fx

2

g is

an embedding of M

1

into C

4

that respe
ts the CR-stru
ture of M

1

.

There is a holomorphi
 proje
tion �

1

: C

4

! C

2

that is di�eomorphi


from  (M

1

� fx

2

g) onto its image. Denote the resulting mapping by

�

1

and the analogous mapping for the se
ond 
omponent by �

2

. Then

�

1

� �

2

is the desired embedding. By passing to normal forms (see

Appendix B) one 
an even prove that the embeddings � and  are

equivalent, i.e., � = � Æ  with some lo
ally de�ned biholomorphi


map � : C

4

! C

4

.

3.10. Chains. The last topi
 we want to dis
uss are the analogies to

the 
hains on CR-manifolds of CR-
odimension one. We have intro-

du
ed the general 
on
epts of 
hains and 1-
hains in 2.4 for all para-

boli
 geometries. These two notions 
oin
ide for the CR-manifolds of

CR-
odimension one and they also 
oin
ide with the 
hains de�ned in

[8℄.
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Let us re
all that the amount of di�erent 1-
hains up to parametriza-

tions passing in �xed dire
tion through a given point x 2 M , as well

as the set of all 
hains through x is visible from the homogeneous 
ase

(see 2.5).

The detailed dis
ussion on the quadri
 Q is reviewed in Appendix B

with the following result: There is a one-parametri
 family of distin-

guished parametrizations on ea
h (non-parametrized) 1-
hain, and in

ea
h dire
tion whi
h does not belong to the subspa
e T

CR

x

M and does

not belong to T

L

x

M neither to T

R

x

M , there is a 1-parametri
 
lass of

1-
hains up to their parameterizations, 
f. (41). If the dire
tion does

belong to the left or right tangent spa
e then there is a unique 1-
hain

in that dire
tion. The 
hains through a given point x 2M are available

only in 2-dimensional dire
tions of the form fu;X ^ Y g 2 T

x

M ^ T

x

M

with u 2 G in the �bre over x and X, Y 2 g

�2

.

A general 2-dimensional surfa
e is said to have the 
hain property at

its point y if there is a 
hain providing a parametrization of this surfa
e

around y.

The ve
tor �elds !

�1

(X), X 2 g

�2

span a two-dimensional distribu-

tion in TG whi
h we 
all the 
hain distribution of the CR-stru
ture.

In general, the two-dimensional (non-parameterized) 
hains �

u

t

ro-

tate around one �xed 1-
hain �

u

0

;X

(t) if we move the ruling frame

u

t

= Fl

!

�1

(X)

t

(u) along the horizontal 
ow. This is not possible, how-

ever, if the whole torsion of our CR-stru
ture is zero, be
ause then the

whole 
hain distribution is integrable. This is in a

ordan
e with the

previous theorem 
laiming that the whole bundle G is the produ
t of

two 
anoni
al Cartan bundles and the Cartan 
onne
tion is a produ
t,

too. Thus, in the torsion-free 
ase, our 
hains �

u

are obtained as prod-

u
ts of the 
hains in the three-dimensional CR-manifolds. In parti
ular

we have proved the following theorem.

3.11. Theorem. Let M � C

4

be an embedded 6-dimensional hyper-

boli
 CR-manifold and assume that the algebrai
 bra
kets

f ; g

L

: T

L

M=T

CR;L

M � T

CR;L

M ! T

R

M=T

CR;R

M

f ; g

R

: T

R

M=T

CR;R

M � T

CR;R

M ! T

L

M=T

CR;L

M

vanish identi
ally. Then ea
h 
hain �

u

: U � g

�2

! M has the 
hain

property at ea
h of its points.

The same 
on
lusion holds for abstra
t 6-dimensional hyperboli
 CR-

manifolds of CR-
odimension 2 without torsion.
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4. The ellipti
 stru
tures

4.1. Almost 
omplex and almost produ
t stru
tures. Let us

re
all that on embedded ellipti
 6-dimensional CR-manifolds of CR-


odimension two, the fundamental os
ulation (1) provides the (g; P )

stru
ture on M with g = sl(3; C ), and its standard 
omplex Borel sub-

algebra p (viewed both as real Lie algebras). The proper 
hoi
es for the

groups G, G

0

, P are dis
ussed in Appendix B.

There are striking general similarities between the hyperboli
 and

ellipti
 geometries. Indeed, the de
omposition of the subspa
e g

�1

� g

�

g

�1

= g

L

�1

� g

R

�1

indu
es an almost produ
t stru
ture on the 
omplex tangent bundle

T

CR

M . We shall write again T

CR;L

M and T

CR;R

M for the individ-

ual 
omponents. Furthermore, the 
omplex stru
ture of the whole real

Lie algebra sl(3; C ) indu
es the almost 
omplex stru
ture J on TM ,

given by the formula J(Tp:!

�1

(X)(u)) = Tp:!

�1

(iX)(u). Clearly this

formula is independent of the 
hoi
e of X and u whi
h give the same

ve
tor !

�1

(X)(u) 2 T

x

M be
ause the adjoint a
tion of P on g is 
om-

plex linear.

As we have seen in the hyperboli
 
ase, the knowledge of the real

se
ond 
ohomologies of the algebras in question is most essential. Also

now, we shall mostly deal with the abstra
t (g; P )-stru
tures de�ned

on 6-dimensional manifolds but we shall point out the spe
i�
 proper-

ties of the embedded ones. In parti
ular, all obstru
tions 
oming from


ohomologies with 
o
hains of the form g

�1

�g

�1

! g

�1

will disappear

automati
ally a

ording to Lemma 1.1.

Roughly speaking, the role of the integrability of the almost 
om-

plex stru
tures on the 
omplex subbundles on hyperboli
 manifolds is

played by the integrability of the almost produ
t stru
ture on T

CR

M in

the ellipti
 
ase. In parti
ular the almost produ
t stru
ture will always

be integrable on the embedded ellipti
 CR-manifolds. Further, the in-

tegrability of the almost produ
t stru
ture of the hyperboli
 manifolds


orresponds to the integrability of the almost 
omplex stru
ture J on

the ellipti
 ones. In parti
ular, the almost 
omplex stru
ture J is in-

trinsi
 to the manifold M and it 
annot be indu
ed by the ambient


omplex stru
ture in C

4

.

4.2. Lemma. All irredu
ible 
omponents in H

2

�

(g

�

; sl(3; C )) are the

one dimensional G

0

-modules whi
h are generated by the 
o
hains listed

in Table 2.
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homog. 
o
hains 
omment

1 g

�2

� g

L

�1

! g

�2

antilinear in both arguments

1 g

�2

� g

R

�1

! g

�2

antilinear in both arguments

1 g

L

�1

� g

L

�1

! g

R

�1

sesquilinear

1 g

R

�1

� g

R

�1

! g

L

�1

sesquilinear

1 g

R

�1

� g

L

�1

! g

L

�1

sesquilinear

1 g

L

�1

� g

R

�1

! g

R

�1

sesquilinear

4 g

�2

� g

L

�1

! g

L

1


omplex linear in both arguments

4 g

�2

� g

R

�1

! g

R

1


omplex linear in both arguments

Table 2. Real se
ond 
ohomologies of g

�

with 
oeÆ-


ients in g = sl(3; C )

Proof. Exa
tly as in the hyperboli
 
ase, the 
omplexi�
ation of the


ohomologies we want to des
ribe is fully des
ribed by the Table 4 in

Appendix A. Be
ause of the 
omplex stru
ture on g

�

, ea
h of the real


omponents will produ
e two 
opies in the 
omplexi�
ation. In order

to re
ognize them, we have to noti
e that 
omplexi�
ations of 
omplex

linear maps will not swap the two 
opies in the 
omplexi�ed Lie algebra,

while the antilinear ones will swap them. This simple observation leads

immediately to our Table 2.

4.3. Theorem. The almost 
omplex stru
ture J on an abstra
t ellipti


CR-manifold of CR-
odimension two is integrable if and only if the

antilinear part �

(1)

aa

of the 
urvature � of the 
anoni
al normal Cartan


onne
tion vanishes. This in turn happens if and only if the algebrai


Lie bra
kets

T

(1;0)

M=T

CR

C

M � (T

CR;L

M)

(1;0)

! T

(0;1)

M=T

CR

C

M(28)

T

(1;0)

M=T

CR

C

M � (T

CR;R

M)

(1;0)

! T

(0;1)

M=T

CR

C

M(29)

on the 
omplexi�ed graded tangent bundles vanish identi
ally.

Proof. Essentially, all te
hnique we need has been developed already. In

parti
ular, we may repeat the 
omputation of the Nijenhuis tensor from

the proof of Theorem 3.6. Sin
e the whole g

�

is 
omplex, we 
an do

that with any X; Y 2 g

�

. The result tells us that the whole Nijenhuis
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tensor N , evaluated on Tp:!

�1

(X)(u), Tp:!

�1

(Y )(u), is equal

Tp:!

�1

�

(4�

(1)

aa

+ 4�

(2)

aa

+ 4�

(3)

aa

)(X; Y )(u)

�

(u):

Now, under the additional 
ondition that the higher homogeneities 
an-

not 
ontribute whenever �

(1)

aa

(X; Y ) vanishes, the Nijenhuis tensor van-

ishes if and only if �

(1)

aa

vanishes. A

ording to the table of 
ohomologies,

the latter expression must be given by the algebrai
 bra
kets (28), (29).

Thus we have to show, that if �

(1)

aa

vanished, then no other antilinear


omponent valued in g

�


ould o

ur in �

(2)

, and if so, than even not

in �

(3)

. Let us assume the two bra
kets (28), (29) vanish. Then there

is the algebrai
 bra
ket

T

(1;0)

M=T

CR

C

M � (T

CR;L

M)

(1;0)

! (T

CR

M)

(0;1)

whi
h 
an be evaluated by means of the 
omplexi�ed 
urvature 
om-

ponent of homogeneity two. Clearly this must 
ome from an antilinear


omponent and the vanishing of this algebrai
 bra
ket is equivalent to

the vanishing of the antilinear parts �

(2)

aa

: g

�2

� g

L

�1

! g

�1

. Using the

Bian
hi identity exa
tly as in the end of the proof of Lemma 3.4 we

verify that there is no 
urvature like this.

Similarly we 
ould pro
eed with the remaining algebrai
 bra
kets

on the holomorphi
 tangent bundle with values in the antiholomorhi


tangent bundle. However, the only 
omponent of homogeneity three is

�

(3)

aa

: g

�2

� g

�2

! g

�1

and this vanishes automati
ally be
ause it is


omplex antiliear and g

�2

is of (
omplex) dimension one.

4.4. Theorem. LetM be an abstra
t 6-dimensional ellipti
 CR-mani-

fold with CR-
odimension two. The distributions T

CR;L

M , T

CR;R

M in

the 
omplex subspa
e T

CR

M are integrable if and only if the algebrai


Lie bra
kets

(T

CR;L

M)

(1;0)

� (T

CR;L

M)

(0;1)

! (T

CR;R

M)

(1;0)

(30)

(T

CR;R

M)

(1;0)

� (T

CR;R

M)

(0;1)

! (T

CR;L

M)

(1;0)

(31)

on the 
omplexi�ed 
omplex spa
es T

CR

C

M vanish identi
ally.

In parti
ular, these almost produ
t stru
tures are always integrable

on the embedded ellipti
 CR-manifolds.

Proof. The distributions are integrable if and only if the algebrai
 Lie

bra
kets of two �elds from the same 
omponent proje
ted to the other

one vanish. This is equivalent to the 
orresponding 
ondition on the


omplexi�ed bundles T

CR

C

. Now we may use the te
hnique introdu
ed

in 3.7. Thus all the algebrai
 bra
kets in question will be linked to

spe
i�
 
omponents of the 
urvature. Sin
e they are all living on the
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CR tangent spa
es, they must vanish automati
ally on the embedded

ellipti
 manifolds.

On abstra
t manifolds, this means the bra
kets of holomorphi
 �elds

proje
ted to the other 
omponent vanish automati
ally and the distri-

bution T

CR;L

M is integrable if and only if the algebrai
 bra
ket (30)

vanishes (
f. Table 2). The other distribution is treated similarly.

4.5. Remaining torsion 
omponents. Let us noti
e that also the

remaining two 
omponents of the torsion part of the 
urvature � of the


anoni
al normal Cartan 
onne
tion allow an expression by algebrai


bra
kets. This time we obtain

(T

CR;R

M)

(1;0)

� (T

CR;L

M)

(0;1)

! (T

CR;L

M)

(1;0)

(32)

(T

CR;L

M)

(1;0)

� (T

CR;R

M)

(0;1)

! (T

CR;R

M)

(1;0)

(33)

and they vanish again on all embedded ellipti
 6-dimensional CR-

manifolds in C

4

.

4.6. Theorem. Let M � C

4

be an embedded 6-dimensional ellipti


CR-manifold of CR-
odimension 2 and assume that the algebrai
 bra
k-

ets (28), (29) both vanish. Then the 
omplex stru
ture J on the entire

Cartan bundle G is integrable, the normal Cartan 
onne
tion is holo-

morphi
, and there are two integrable foliations ofM by 
omplex 
urves

in C

4

whi
h span the 
omplex subbundle T

CR

M .

The same 
on
lusion is true on the abstra
t 6-dimensional ellipti


CR-manifolds if and only if all algebrai
 bra
kets (28), (29), (30), (31),

(32), and (33) vanish identi
ally.

Proof. In fa
t, we have nearly proved all ne
essary fa
ts. Again, the

same 
omputation with the Nijenhuis tensor reveals, that the antilin-

ear part �

aa

of the entire 
urvature obstru
ts its integrability. On
e we

assume that all the torsion vanishes, there are no 
omponents of the


urvature up to homogeneity four. This is not antilinear, however. A

simple 
he
k with the Bian
hi identity shows that the 
omplex linear


urvature 
omponents 
an never produ
e anything antilinear. Thus the

integrability of the 
omplex stru
ture follows. Sin
e the 
omplex stru
-

ture J on G has been de�ned by the absolute parallelism !, 
learly

! 2 


1

(G; g) is holomorphi
.

On the abstra
t manifolds, the same argument applies if we assume

that the whole torsion vanishes. On the other, ea
h of the 
omponents of

the torsion eventually produ
es some antilinear 
ontribution in higher

homogeneities via the Bian
hi identity.

Now, assume J is integrable and the torsion vanishes. Then also all

horizontal ve
tor �elds !

�1

(X), !

�1

(Y ) with X, Y 2 g

L

�1

, or both in
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the other 
omponent, 
ommute. Thus we obtain the integrable (real)

2-dimensional distributions in TG spanned by their values. The integral

surfa
es 
an be lo
ally parametrized by the holomorphi
 (with respe
t

to J) mappings




R

u

: g

R

�1

! TG; X 7! Fl

!

�1

(X)

1

(u)




L

u

: g

L

�1

! TG; X 7! Fl

!

�1

(X)

1

(u)

and also their proje
tions to M will be holomorphi
 
urves. Obviously,

we have obtained integral manifolds for the distributions T

CR;R

and

T

CR;L

.

4.7. Chains. LetM be a 6-dimensional ellipti
 CR-manifold with CR-


odimension two, x 2M , � 2 T

x

M . As dis
ussed in 2.4, the proje
tions

of the 
ows of horizontal ve
tor �elds determined by elements in g

�2

are 1-
hains with spe
i�
 properties, while

g

�2

3 X 7! Fl

!

�1

(X)

1

(u) 7! p(Fl

!

�1

(X)

1

(u))

is the 
hain at x determined by a �xed frame u 2 G over x. A 
omplex


hain is a (lo
ally de�ned) 
urve � : C !M whi
h is holomorphi
 with

respe
t to the almost 
omplex stru
ture J and has the 
hain property

in all its points.

4.8. Theorem. If the bra
kets (28) and (29) vanish on a neighbor-

hood of an ellipti
 point x of an embedded 6-dimensional CR-manifold

M � C

4

of CR-
odimension two, then there are unique 
omplex 
hains

through x in all 
omplex dire
tions whi
h do not belong to T

CR

M .

The same 
on
lusion is true for the abstra
t ellipti
 CR-manifolds if

the other four obstru
tions against the vanishing of the torsion equal to

zero too.

Proof. Analogously to the hyperboli
 stru
tures, there is the 
hain dis-

tribution in TG spanned by the horizontal �elds !

�1

(X) with X 2 g

�2

.

Again, the straightforward inspe
tion of the possible 
urvature 
ompo-

nents reveals that there is no 
urvature with both arguments in g

�2

if

the torsion vanishes. Thus the 
hain distribution is integrable. Conse-

quently the 
ows of the horizontal �elds yield holomorphi
 parameter-

izations and the theorem is proved.

5. Final remarks and 
on
lusions

5.1. Relation to other results. Mizner [17℄ 
onstru
ted CR-invari-

ant 
onne
tions for weakly uniform CR-stru
tures of 
odimension 2.

In the 
ases 
onsidered there, the automorphisms of the quadri
s are

always linear (thus, p

+

is absent). Similar results were obtained by
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Garrity and Mizner for CR-stru
tures of 
odimension bigger than 2

with rigid os
ulating quadri
s. The CR-manifolds that are 
onsidered

in this paper are not 
overed there.

In [9℄ Ezhov, Isaev and S
hmalz 
onstru
ted parallelisms for hyper-

boli
 and ellipti
 manifolds. These parallelisms turn out to be Cartan


onne
tions only in very spe
ial 
ases. The geometri
 reason for that is

the presen
e of torsion in our Cartan 
onne
tion. We were able to 
har-

a
terize the torsion-free (\semi-
at") 
ases as manifolds with integrable

almost produ
t stru
ture in the hyperboli
 
ase and with integrable al-

most 
omplex stru
ture in the ellipti
 
ase. Thus we give an answer to

the question about the geometri
 meaning of \semi-
atness" for ellipti


manifolds that has been posed in [9℄.

Let us also remark that the almost CR-manifolds of CR-
odimension

one (e.g. 
ertain real hypersurfa
es in almost 
omplex manifolds) have

been studied from the point of view of the general theory of paraboli


geometries in [3℄. In parti
ular, a ni
e geometri
 spe
i�
ation of the


onstru
tion from 2.13 is presented there.

5.2. The paraboli
 CR-geometry. Unfortunately, the automorph-

ism group of the paraboli
 quadri
 (3) does not �t into our s
heme

of general paraboli
 geometries at all (noti
e the abuse of the non-


ompatible use of the word \paraboli
" whi
h is used in the sense of

Se
tion 2 now). This is obvious already from its dimension whi
h is 17.

The stru
ture of its in�nitesimal automorphisms is des
ribed in detail

in [19℄ and it turns out that the dis
rete 
enter Z

2

of the hyperboli


or ellipti
 group blows up into the additional dimension and one 
opy

of su(2; 1) sits still inside. So it plays ni
ely its role of an intermediate

state between the hyperboli
 and ellipti
 points.

In parti
ular the methods of Se
tion 2 whi
h are based on the ex-

isten
e of the Hodge theory on the 
o
hains in the Lie algebra 
oho-

mology 
annot work. One should believe that some spe
i�
ation of the

very general approa
h in [18℄ 
ould be appli
able. We 
onsider this as

a very interesting open problem.

5.3. Webster{Tanaka 
onne
tions. There is a very ri
h underly-

ing geometry on ea
h manifold equipped with a Cartan 
onne
tion

modelled over graded Lie algebras. In parti
ular, we always have the

prin
ipal bundles G

0

= G=P

+

! M with stru
ture group G

0

and the

prin
ipal bundle G ! G

0

with the stru
ture group P

+

. The latter bun-

dle always admits global smooth G

0

-equivariant se
tions and the set

of all of them is parameterized by one-forms on M . The pullba
k of

the (g

�

� g

0

){
omponent of the Cartan 
onne
tion ! by means of any



34 GERD SCHMALZ AND JAN SLOV

�

AK

of these se
tions provides an aÆne 
onne
tion on TM , i.e. a solder-

ing form on G

0

together with a prin
ipal 
onne
tion on G

0

. This 
on-

stru
tion has been des
ribed in full generality in [21℄ and it produ
es

exa
tly the Webster-Tanaka 
onne
tions on the CR-manifolds with CR-


odimension one. Thus we have a similar 
lass of linear 
onne
tions on

M underlying our ellipti
 and hyperboli
 stru
tures.

5.4. Natural bundles and invariant operators. Another very in-

teresting 
onsequen
e of our 
onstru
tion of the 
anoni
al Cartan 
on-

ne
tions is the theory of the semi-holonomi
 jet modules for general

paraboli
 geometries, whi
h allows to transfer the problem of �nding

invariant operators whi
h a
t on some natural bundles 
oming from

representations of P into problems in �nite dimensional representation

theory. The �rst appli
ation of this theory is worked out in [5, 6℄.

In parti
ular, there are the Bernstein-Gelfand-Gelfand sequen
es for

all irredu
ible G-modules V whi
h spe
ialize to the BGG resolution

of the 
onstant sheaf with 
oeÆ
ients in V on the homogeneous spa
e,

see [6℄. The analogies to 
lassi
al 
omplexes on CR-manifolds with CR-


odimension one should be lo
alized inside of these sequen
es.

A. Cohomologies

The aim of this se
tion is to provide the list of all non-zero 
oho-

mologies in H

2

(g

�

; g) for the 
omplex algebras

g = sl(3; C ) � sl(3; C ) p = fall upper triangular matri
es in gg

We shall refer to the two 
opies of sl(3; C ) as the left and right ones.

The two parts of g

0


oin
ide with the parts of the Cartan subalgebra

of the diagonal matri
es and all the one-dimensional root spa
es are

(
omplex) one-dimensional. We shall denote them as indi
ated in the

following matri
es

g =

0

�

� g

L

1;0

g

L

2

g

L

�1;0

� g

L

0;1

g

L

�2

g

L

0;�1

�

1

A

�

0

�

� g

R

1;0

g

R

2

g

R

�1;0

� g

R

0;1

g

R

�2

g

R

0;�1

�

1

A

(34)

Here the stars �ll up the subalgebra g

0

, p

+


onsists of the stri
tly upper

triangular matri
es, g

1

= g

1;0

� g

0;1

as g

0

-module, et
.

The 
ohomologies for modules over simple algebras are 
ompletely

des
ribed in terms of the orbits of the Weyl groups on the weights.

We shall use the notation and te
hnique as developed in [2℄. First, we

have to re
all a few basi
 fa
ts on the representations of the paraboli


subalgebra p � g.

The Dynkin diagram of sl(3; C ) is � � . The paraboli
 subalgebras

are denoted by 
rossing the nodes whi
h 
orrespond to the negative
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simple 
oroots whi
h do not belong to p. In our 
ase this means one

� � for both left and right sl(3; C ). The weights of irredu
ible rep-

resentations of p are then denoted by the 
oeÆ
ients in their expres-

sions as linear 
ombinations of fundamental weights, pla
ed over the


orresponding nodes. The g-dominant weights have non-negative inte-

gral 
oeÆ
ients, the p-dominant weights must be non-negative over the

un
rossed nodes only. For example, the trivial representation and the

�rst and se
ond fundamental representations of sl(3; C ) have the high-

est weights �

0

�

0

, �

1

�

0

, �

0

�

1

. Ea
h p-module enjoys the �ltration of

the p-submodules su
h that the asso
iated graded p module de
om-

poses into the dire
t sum of irredu
ible p-modules. For example, the

�ltration and de
omposition of the p-module sl(3; C ) is as follows

g

�1;0

g

1;0

g

�2

+ � + g

0

+ � + g

2

g

0;�1

g

0;1

(35)

and in the terms of the highest weights for the one-dimensional irre-

du
ible p-modules

�

1

�

�2

�

0

�

0

�

�1

�

2

�

�1

�

�1

+ � + � + � + �

1

�

1

�

�2

�

1

�

0

�

0

�

2

�

�1

(36)

The whole Weyl group W of sl(3; C ) is generated by the two simple

re
e
tions s

1

, s

2

with respe
t to the two simple roots, a
ting on the

weights g

�

0

.

s

1

: �

a

�

b

7! �

�a

�

a+ b

s

2

: �

a

�

b

7! �

a + b

�

�b

(37)

Sin
e our paraboli
 subalgebra p � g is the Borel subalgebra, the 
or-

responding paraboli
 subgroup W

p


oin
ides with the whole W .

The di�erential � respe
ts the homogeneities of the 
o
hains and so

the 
ohomologies split into homogeneous 
omponents H

�

`

(g

�

; g) too.

Moreover, we have the identi�
ation H

p

`

(g

�

; g) ' H

p

�`

(p

+

; g) (of real

ve
tor spa
es). Thus the Kostant's version of the Bott-Borel-Weil the-

orem is relevant for our aims as well:

A.1. Theorem. Let p � g be a paraboli
 subalgebra in a 
omplex sim-

ple algebra g. If A is a �nite dimensional irredu
ible g-module of highest

weight �, then the whole 
ohomology H

�

(p

+

; A) is 
ompletely redu
ible

as a p-module and the irredu
ible 
omponents with highest weight �

o

ur if and only if there is an element w 2 W

p

� W su
h that

� = w:� = w(� + �) � � and in that 
ase it o

urs in degree jwj

with multipli
ity one.
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H

0

(p

+

; C ) �

0

�

0

H

0

(p

+

; sl(3; C )) �

1

�

1

H

1

(p

+

; C )

�

�2

�

1

�

1

�

�2

H

1

(p

+

; sl(3; C ))

�

�3

�

3

�

3

�

�3

H

2

(p

+

; C )

�

0

�

�3

�

�3

�

0

H

2

(p

+

; sl(3; C ))

�

1

�

�5

�

�5

�

1

Table 3

The degree of an element w 2 W is de�ned as the smallest possible

number of simple re
e
tions whose 
omposition is w. See e.g. [15, 24℄

for the proof the Theorem.

Now, we have a simple pro
edure to 
ompute the 
ohomologies: First,

we write down the labelled Dynkin diagram depi
ting the g-dominant

highest weight �. For example, the highest weight of the adjoint rep-

resentation is �

1

�

1

. Then we add one to ea
h 
oeÆ
ient and a
t by


ombinations of simple re
e
tions a

ording to (37). Finally we sub-

tra
t one from ea
h 
oeÆ
ient. The p-dominant results are just the

highest weights of the 
ohomologies.

Unfortunately, we deal with a sum g = g

L

� g

R

of two simple al-

gebras. In order to make use of the latter theorem, we shall view the

representation spa
es of g and p as the (exterior) tensor produ
ts A�

�

B

of g

L

-modules A and g

R

-modules B. In parti
ular, we understand the

adjoint representation on g = g

L

� g

R

as

g = (g

L

�

�

C ) � (C �

�

g

R

)

with the obvious tensorial a
tions of p

+

= p

L

+

� p

R

+

.

The 
ohomology with values in a dire
t sum of modules is just the

dire
t sum of the 
ohomologies with values in the submodules. Now,

the K�unneth theorem implies for ea
h tensor produ
t of our modules

A�

�

B

H

p

(p

L

+

� p

R

+

; A�

�

B) =

X

i+j=p

�

H

i

(p

L

+

; A)�

�

H

j

(p

R

+

; B)

�

:(38)

Thus, in order to 
ompute the se
ond 
ohomologies

H

2

`

(p

L

+

� p

R

+

; sl(3; C ) � sl(3; C ))

we have to know all 
ohomologies H

i

�

(p

+

; sl(3; C )), i = 0; 1; 2, and

H

i

�

(p

+

; C ). The results 
omputed by the pro
edure as des
ribed above

are listed in Table 3.
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homogeneities 
omponents in H

2

(p

L

+

� p

R

+

; g

L


 C )

total

a
tions of

E

L

; E

R

; F

L

; F

R


omponents 
o
hains

�1 2;�3; 0; 1 �

1

�

1

�

�

�

0

�

�3

g

R

2

� g

R

1;0

! g

L

2

�1 2;�3; 0;�1 �

1

�

1

�

�

�

�3

�

0

g

R

2

� g

R

0;1

! g

L

2

�1 0;�1;�2;�1 �

�3

�

3

�

�

�

�2

�

1

g

L

0;1

� g

R

0;1

! g

L

1;0

�1 0;�1;�2; 1 �

�3

�

3

�

�

�

1

�

�2

g

L

0;1

� g

R

1;0

! g

L

1;0

�1 0;�1; 2;�1 �

3

�

�3

�

�

�

�2

�

1

g

L

1;0

� g

R

0;1

! g

L

0;1

�1 0;�1; 2; 1 �

3

�

�3

�

�

�

1

�

�2

g

L

1;0

� g

R

1;0

! g

L

0;1

�4 �4; 2; 0; 0 �

1

�

�5

�

�

�

0

�

0

g

L

2

� g

L

1;0

! g

L

�1;0

�4 �4;�2; 0; 0 �

�5

�

1

�

�

�

0

�

0

g

L

2

� g

L

0;1

! g

L

0;�1

Table 4

The homogeneity of the 
omponents is given by the sum of the 
oeÆ-


ients, whi
h is the a
tion by the so 
alled grading element E 2 sl(3; C ),

E = diag(1; 0;�1). There is another independent element F 2 sl(3; C ),

F = diag(1;�2=3; 1), whi
h a
ts trivially on g

2

, by 1 on g

�1;0

, and by

�1 on g

0;�1

. Thus the a
tion of F on a weight module is given by one

third of the di�eren
e of the 
oeÆ
ients over the nodes in the Dynkin

diagram.

Now, the rest of our 
omputation is quite easy sin
e all irredu
ible


omponents in the 
ohomologies are one-dimensional. Thus in order

to lo
alize the representatives of 
ohomologies as bilinear mappings,

we have just to evaluate the a
tions of the left and right g

0

-elements

E

L

, E

R

, F

L

, F

R

on the weight modules in the se
ond 
ohomologies

and this always des
ribes the possible domain and target of a bilinear

representative in the spa
e of 
o
hains uniquely. A half of the result is

listed in Table 4. The other half is obtained by mutually repla
ing all

the left and right 
omponents.

In fa
t, we are interested in the real 
ohomologies H

2

`

(g

�

; su(2; 1)�

su(2; 1)) and H

2

`

(g

�

; sl(3; C )) where g

�

is the negative 
omplement to

the real Borel subalgebras p. As we have mentioned already, the lat-

ter 
ohomologies are dual to the real 
ohomologies H

2

�`

(p

+

; su(2; 1)�
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su(2; 1)) and H

2

�`

(g

�

; sl(3; C )). Thus the 
omplexi�
ations of the re-

quested 
ohomologies will be dual (as real modules) to those listed in

Table 4.

B. Normal forms

For embedded real-analyti
 hyperboli
 or ellipti
 CR-manifolds one

has 
onstru
tions of normal 
oordinates in the ambient spa
e in a neigh-

borhood of a given point. These 
oordinates are uniquely determined

up to some Lie-group a
tion of the isotropy group of the quadri
 (2)

resp. (4). The equation of the manifold takes then a spe
ial form 
alled

normal form that re�nes the os
ulation (1) by the quadri
. These 
on-

stru
tions generalize Chern{Moser's normal form for real-analyti
 hy-

persurfa
es in C

n

. They were obtained by Loboda [16℄ in the hyperboli


and by Ezhov and S
hmalz [11℄ in the ellipti
 
ase.

Let us re
all the isotropy groups of the quadri
s. It is 
onvenient to


hoose 
oordinates that re
e
t the geometri
 stru
ture of the quadri
s.

The hyperboli
 quadri
 is the dire
t produ
t of two hyperspheres in

C

2

:

v

1

= jz

1

j

2

; v

2

= jz

2

j

2

:

The geometri
 stru
ture of the ellipti
 quadri
 will be revealed by pass-

ing to 
oordinates

w

℄

1

= w

1

+ iw

2

; w

℄

2

= w

1

� iw

2

:

Then v

1

+ iv

2

=

w

℄

1

� �w

℄

2

2i

and the equation of the quadri
 takes the form

V =

w

℄

1

� �w

℄

2

2i

= z

1

�z

2

:

Thus this quadri
 
arries a 
omplex stru
ture; it is a 
omplex hyper-

surfa
e in C

4

with 
oordinates z

1

; �z

2

; w

℄

1

; �w

℄

2

. Below we will use these


oordinates and omit the sharps.

The automorphism group of any quadri
 
ontains a transitive sub-

group 
alled Heisenberg group. For any point (p; q) at the quadri
 the

Heisenberg translation that takes the origin into (p; q) has the form

z

�

= z + p

w

�

= w + q + 2ihz; pi:

Thus, any automorphism de
omposes into a Heisenberg translation

and an isotropi
 automorphism. The subgroup of isotropi
 automor-

phisms will play the role of the paraboli
 subgroup P with Lie algebra

p.
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For both our quadri
s the isotropi
 automorphisms 
an be written

by the well-known Poin
ar�e formula for sphere automorphisms

Z

�

= C(Z + AW )(1� 2i

�

AZ � (R + iA

�

A)W )

�1

W

�

= C

�

CW (1� 2i

�

AZ � (R + iA

�

A)W )

�1

;

where Z and W are diagonal 2 � 2-matri
es with entries z

1

; z

2

and

w

1

; w

2

, respe
tively, C and A are 
omplex, and R is a real diagonal

matrix. There o

urs an additional dis
rete automorphism that inter-


hanges z

1

$ z

2

and w

1

$ w

2

. The group P de
omposes into G

0

and P

+

where G

0


onsists of the linear isotropi
 automorphisms (with

A = R = 0, in
luding the dis
rete automorphism) and P

+


onsists of

the \non-linear" automorphisms with C = E. The Lie algebras of the

latter subgroups are g

0

and p

+

, respe
tively.

The only di�eren
e between the hyperboli
 and ellipti
 
ase is a

di�erent de�nition of the 
omplex 
onjugation. In the hyperboli
 
ase

the 
onjugation is the usual one and R is real means that it has real

entries. Thus, the automorphisms also split into a dire
t produ
t. Sin
e

the automorphism group of the sphere is SU(2; 1)=Z

3

this shows that

the automorphism group of the hyperboli
 quadri
 is

�

(SU(2; 1)=Z

3

)� (SU(2; 1)=Z

3

)

�

o Z

2

:

In the ellipti
 
ase the 
omplex 
onjugation is the usual one 
ombined

with inter
hanging z

1

$ z

2

and w

1

$ w

2

. R is real means now that the

entries are mutually 
omplex 
onjugated numbers. The identi�
ation

of the automorphism group G as

�

SL(3; C )=Z

3

�

o Z

2

is less evident than in the hyperboli
 
ase. As shown in [19℄ the Lie alge-

bra of in�nitesimal automorphisms of the ellipti
 quadri
 is isomorphi


to sl(3; C ). Sin
e G a
ts e�e
tively at sl(3; C ) via Ad one 
an 
onsider

G as a subgroup of Aut sl(3; C ). Both groups have the same dimen-

sion and 
onsist of two 
onne
ted 
omponents. Therefore they must


oin
ide. It is not hard to 
he
k that Aut sl(3; C )

�

=

SL(3; C )=Z

3

o Z

2

.

It follows from the expli
it des
ription of the a
tion of G on the in-

�nitesimal automorphisms that P is exa
tly the subgroup that respe
ts

the �ltration of g by the p-submodules (
f. 2.1).

Let us remark that the hyperboli
 and ellipti
 quadri
s have 
ompa
t


ompletions in C P

2

� C P

2

resp. C P

2


 C . All automorphisms extend to

automorphisms of the 
ompletion and are then linear with respe
t to

the 
orresponding homogeneous 
oordinates (see [10℄). Moreover, these


ompletions 
an be 
onsidered as G=P .
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Now we formulate the 
on
rete normal form 
onditions: In the hy-

perboli
 
ase the normalized equation of the manifolds takes the form

v

j

= jz

j

j

2

+

X

N

j

kl

(z; �z; u);(39)

where N

j

kl

= N

j

lk

are polynomials of degree k in z and of degree l in �z

with 
oeÆ
ients that are analyti
 fun
tions of u = Rew. The summa-

tion runs over all integral k; l with maxfk; lg > 1 and minfk; lg > 0

The polynomials satisfy the 
onditions

�N

1

k1

��z

1

= 0

�N

2

k1

��z

2

= 0; for k � 2

�

2

N

1

21

�z

1

�z

2

= 0

�

2

N

2

21

�z

1

�z

2

= 0

�

4

N

1

22

�z

1

�z

2

��z

1

��z

2

= 0

�

4

N

2

22

�z

1

�z

2

��z

1

��z

2

= 0

�

4

N

1

22

(�z

1

)

2

(��z

1

)

2

ju

2

=0

= 0

�

4

N

2

22

(�z

2

)

2

(��z

2

)

2

ju

1

=0

= 0

�

5

N

1

32

(�z

1

)

3

(��z

1

)

2

ju

2

=0

= 0

�

5

N

2

32

(�z

2

)

3

(��z

2

)

2

ju

1

=0

= 0

�

6

N

1

33

(�z

1

)

3

(��z

1

)

3

ju

2

=0

= 0

�

6

N

2

33

(�z

2

)

3

(��z

2

)

3

ju

1

=0

= 0:

In the ellipti
 
ase the normalized equation takes the form

V = z

1

�z

2

+

X

N

kl

(z; �z;U);(40)

where U =

w

1

+ �w

2

2

and theN

kl

are polynomials as above (though without

additional reality 
ondition). The summation is also as above and the
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polynomials satisfy the 
onditions

�N

k1

��z

2

= 0

�N

1k

�z

1

= 0; for k � 2

�

3

N

21

�z

1

��z

1

�z

2

= 0

�

3

N

12

��z

2

��z

1

�z

2

= 0

�

4

N

22

�z

1

�z

2

��z

1

��z

2

= 0

�

4

N

22

(�z

1

)

2

(��z

2

)

2

j��=0

= 0

�

5

N

32

(�z

1

)

3

(��z

2

)

2

j��=0

= 0

�

5

N

23

(�z

1

)

2

��z

1

(��z

2

)

2

j��=0

= 0

�

6

N

33

(�z

1

)

3

(��z

2

)

3

j��=0

= 0:

From the normal form one 
an see that the real 2-dimensional surfa
e

fz = 0; v = 0g resp. fz = 0; V = 0g is always 
ontained in the

manifold. It is 
alled standard 2-
hain �

0

(with respe
t to the given

normalization). One 
an de�ne analyti
 2-
hains as all possible images

of the standard 2-
hain under renormalizations. The family of 
hains

passing through a given point does not depend on the 
hoi
e of normal


oordinates but it does depend on the initial point. In di�eren
e to the

situation for hypersurfa
es a 2-
hain � for the initial point p need not

be a 2-
hain for other points p

0

2 �.

It is easy to obtain the analyti
 2-
hains for the quadri
s through

the origin as the images of the standard 
hain under isotropi
 auto-

morphisms. Thus these 2-
hains 
oin
ide with the geometri
ally de-

�ned 
hains from 2.4. One obtains that unparametrized 2-
hains are

the interse
tions of the quadri
 with so-
alled matrix lines Z = AW ,

where Z;W;A have the same meaning as above. Automorphisms with

C = E; A = 0 preserve the standard 
hain and 
hange only the pa-

rameter. Sin
e the renormalizations of a manifold 
oin
ide up to higher

order terms with automorphisms of the os
ulating quadri
 this shows

that there exists exa
tly one 2-
hain through the origin tangent to

fZ = AUg.

The 1-
hains 
onsidered in 2.4 
an be easily des
ribed for quadri
s

(see [19℄). The proje
tions of the 1-parametri
 families from g

�2

are

straight lines in �

0

through the origin. All other 1-
hains are obtained

by the a
tion of isotropi
 automorphisms. Sin
e the latter preserve

2-
hains it follows that 1-
hains always remain in some 2-
hain. The

isotropi
 automorphisms de
ompose into one automorphism that pre-

serves �

0

and one that maps �

0

to another 
hain. Therefore it suÆ
es to
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study the 1-
hains that are 
ontained in �

0

. For the hyperboli
 quadri


we have the following situation:

� There are two singular dire
tions at �

0

su
h that the only 1-
hains

in these dire
tions are straight lines: fu

1

= 0g and fu

2

= 0g.

� In all non-singular dire
tions one has a 1-parametri
 family of

1-
hains 
onsisting of one straight line and hyperbolas

u

1

=

�u

2

1� �u

2

;(41)

where � indi
ates the dire
tion and � is the additional parameter.

� 2-
hains may interse
t at single points or singular 1-
hains only.

In the ellipti
 
ase we have

� In any dire
tion of �

0

there is a 1-parametri
 family of 1-
hains


onsisting of a straight line and 
ir
les

�(u

2

1

+ u

2

2

) + sin�u

1

� 
os�u

2

= 0;(42)

where � indi
ates the dire
tion and � is the additional parameter.

� 2-
hains interse
t at single points.

Referen
es

[1℄ T.N. Bailey, M.G. Eastwood, C.R. Graham, Invariant theory for 
onformal

and CR geometry, Annals of Mathemati
s, 139 (1994), 491{552

[2℄ R.J. Baston; M.G. Eastwood, The Penrose Transform, Its Intera
tion with

Representation Theory, Clarenden press, Oxford, 1989

[3℄ A.

�

Cap, Partially integrable almost CR-manifolds, Preprint, to appear

[4℄ A.

�

Cap, H. S
hi
hl, Paraboli
 geometries and 
anoni
al Cartan 
onne
tions,

Preprint ESI 450, ele
troni
ally available at www.esi.a
.at

[5℄ A.

�

Cap, J. Slov�ak, V. Sou�
ek, Invariant Operators on Manifolds with Almost

Hermitian Stru
tures. I. Invariant Di�erentiation, A
ta Math. Univ. Comme-

nianae 66, No. 1 (1997), 33{69; II. Normal Cartan Conne
tions, A
ta Math.

Univ. Commenianae 66, No. 2 (1997), 203{220, both ele
troni
ally available at

www.emis.de; III. Standard operators, Preprint ESI 613, ele
troni
ally avail-

able at www.esi.a
.at

[6℄ A.

�

Cap, J. Slov�ak, V. Sou�
ek, Bernstein-Gelfand-Gelfand sequen
es, to appear

[7℄ E. Cartan, Sur la g�eom�etrie pseudo{
onforme des hypersurfa
es de deux vari-

ables 
omplexes I., Ann. Math. Pures Apl., 11 (1932), 17-90; II. Ann. S
uola

Norm. Sup. Pisa, 1 (1932), 333{354

[8℄ S.S. Chern; J.J. Moser, J., Real hypersurfa
es in 
omplex manifolds, A
ta Math.

133, (1974), 219{271

[9℄ V.V. Ezhov, A.V. Isaev, G. S
hmalz, Invariants of ellipti
 and hyperboli
 CR-

stru
tures of 
odimension 2, Int. J. Math, to appear

[10℄ V.V. Ezhov, G. S
hmalz, Holomorphi
 automorphisms of quadri
s, Math. Z.

216, (1994), 453{470.

[11℄ V.V. Ezhov, G. S
hmalz, Normal form and 2-dimensional 
hains of an ellipti


CR surfa
e in C

4

, Journ. Geom. Analysis 6 No. 4 (1996), 495{529



HYPERBOLIC AND ELLIPTIC CR-MANIFOLDS OF CODIMENSION TWO 43

[12℄ C. Fe�erman, Paraboli
 invariant theory in 
omplex analysis, Adv. in Math.

31 (1979), 131{262

[13℄ Garrity, T. Mizner, R. The equivalen
e problem for higher 
o-dimensional CR

stru
tures Pa
i�
 J. Math. 177 (1997), 211{235.

[14℄ A.R. Gover, Aspe
ts of paraboli
 invariant theory, Pro
eedings Winter S
hool

Geometry and Physi
s, Srn��, 1998, Supp. Rend. Cir
. Matem. Palermo, to

appear.

[15℄ B. Kostant, Lie algebra 
ohomology and the generalized Borel-Weil theorem,

Ann. Math. 74, No. 2, (1961), 329{387

[16℄ Loboda, A.V. Generi
 real analyti
 manifolds of 
odimension 2 in C

4

and their

biholomorphi
 mappings, Math. USSR Izvestiya 33 No. 2, (1989),295{315

[17℄ Mizner, R. CR-stru
tures of 
odimension 2, J. Di�. Geom. 30, No. 1, (1989),

167{191

[18℄ T. Morimoto, Geometri
 stru
tures on �ltered manifolds, Hokkaido Math. J.

22, (1993), 263{347

[19℄ G. S
hmalz, Remarks on CR-manifolds of 
odimension 2 in C

4

, Pro
eedings

Winter S
hool Geometry and Physi
s, Srn��, 1998, Supp. Rend. Cir
. Matem.

Palermo, to appear.

[20℄ R.W. Sharpe, Di�erential Geometry (Cartan's Generalizations of Klein's Er-

langen Program), Springer, GTM, New York, Berlin, 1997

[21℄ J. Slov�ak, Paraboli
 Geometries, Part of the DrS
 Dissertation, Preprint IGA

11/97, ele
troni
ally available at www.maths.adelaide.edu.au

[22℄ N. Tanaka, On non-degenerate real hypersurfa
es, graded Lie algebras and Car-

tan 
onne
tions, Japan J. of Math. 2 (1976), 131-190

[23℄ N. Tanaka, On the equivalen
e problem asso
iated with simple graded Lie alge-

bras, Hokkaido Math. J., 8 (1979), 23{84

[24℄ D.A. Vogan, Representation of real redu
tive Lie groups, Progress in Mathe-

mati
s, No. 15, Birkh�auser, Boston, 1981

[25℄ S.M. Webster, Pseudo-hermitian stru
tures on a real hypersurfa
e, J. Di�.

Geom. 13 (1978), 25{41

[26℄ K. Yamagu
hi, Di�erential systems asso
iated with simple graded Lie algebras,

Advan
ed Studies in Pure Mathemati
s 22 (1993), 413-494

Matematis
hes Institut der Universit�at Bonn, Beringstra�e 1, D-53115

Bonn, Germany

Department of Algebra and Geometry, Masaryk University, Jan�a�
kovo

n. 2a, 662 95 Brno, Cze
h Republi



