
ON INVARIANT OPERATIONS ON A

MANIFOLD WITH CONNECTION OR METRIC

Jan Slov

�

ak

Abstract. The study of the invariant local operations on exterior forms is a clas-

sical and well understood subject. However, we reconsider the problem assuming

only the locality of the operations and we still derive a complete explicit classi�ca-

tion. In particular, both the �niteness of the order and polynomiality follow. Hence

the present paper generalizes considerably the classical results and suggests a nice

axiomatic de�nition of well known operations.

First we present our main technical tools. Next we classify all (possibly non-linear)

operators on exterior forms on a manifold with connection, they are generated by

the Chern forms, the exterior di�erential and the wedge product. Finally, we discuss

operations on Riemannianmanifolds. The results involve a generalization of the well

known Gilkey theorem on the uniqueness of the Pontrjagin forms.

1. The main tools

1.1. Bundle functors. Our aim is to classify all geometrically de�ned operators

transforming exterior forms on a manifold endowed with connection or metric. A

suitable explicit formulation of the problem is provided by the general theory of

bundle functors and natural operators which was worked out after the Nijenhuis's

paper [Nijenhuis, 72], see e.g. [Terng, 78], [Palais, Terng, 77], [Epstein, Thurston,

79]. Recently, this general and precise setting for geometric objects and operations

has been developed systematically and extended to more general categories of man-

ifolds in the monograph [Kol�a�r, Michor, Slov�ak]. Let us recall that a bundle functor

on the category Mf

m

of m-dimensional manifolds and local di�eomorphisms (i.e.

globally de�ned but locally invertible smooth mappings) with values in the category

FM of �bered manifolds is a functor F : Mf

m

! FM which satis�es

(i) B � F = id

Mf

m

where B : FM!Mf is the base functor

(ii) for every inclusion i

U

: U ,! M of an open submanifold, FU is the restric-

tion p

�1

M

(U ) of the value FM = (p

M

: FM ! M ) to U and Fi

U

is the

inclusion p

�1

M

(U ) ,! FM .

If for every point x 2 M and every local di�eomorphism f : M ! M

0

the

restriction of Ff to the �ber F

x

M over x depends only on the r-jet j

r

x

f , then the

bundle functor F is said to be of order r.

In the sequel we shall deal with the following bundle functors: �

p

T

�

{ the bundle

functor of exterior forms; T

(q;p)

{ p-times covariant and q-times contravariant tensor
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�elds; S

2

+

T

�

{ the subbundle of positive de�nite symmetric 2-forms in S

2

T

�

, i.e. the

Riemannian metrics; P

1

{ the �rst order frame bundle, i.e. P

1

M = invJ

1

0

(R

m

;M );

QP

1

{ the connection bundle on P

1

, i.e. (QP

1

)M = J

1

P

1

M=GL(m;R) is the

bundle of linear connections on M ; Q

�

P

1

{ the subbundle in QP

1

of symmetric

linear connections. The last two bundle functors are of order two. All the other

ones are �rst order bundle functors and moreover vector bundle functors, except

S

2

+

T

�

which is an open sub bundle functor in S

2

T

�

.

The expression F � G means the product of two bundle functors F and G.

Since all natural transformations between bundle functors on Mf

m

are formed by

morphisms over identities, the value (F �G)M is the �bered product FM �

M

GM

and similarly for morphisms.

1.2. Natural operators. If Y ! M is a �bered manifold, we write C

1

(Y ) for

the space of all smooth sections of Y . Given two �bered manifolds Y , Y

0

over the

base M , a mapping D : C

1

(Y ) ! C

1

(Y

0

) is called a local smooth operator if for

each point x 2M and every section s 2 C

1

(Y ), the value Ds(x) depends only on

the germ of s at x and if all smoothly parameterized families s

t

, t 2 R

k

, of sections

are transformed into smoothly parameterized families.

A bundle functor F de�nes for every m-dimensional manifoldM an action of the

di�eomorphism group Di�(M ) on the value FM . This induces the action on the

spaces of sections f

�

s = Ff � s � f

�1

. A natural operator D : F ! E between two

bundle functors is a system of local smooth operators D

M

: C

1

(FM )! C

1

(EM ),

M 2 ObMf

m

, such that

(i) f

�

(D

M

s) = D

N

(f

�

s) for all sections s 2 C

1

(FM ) and all di�eomorphisms

f : M ! N

(ii) (D

M

s)j

U

= D

U

(sj

U

) for each open submanifold U ,!M .

A natural operator D is said to be of order k � 1 if the operators D

M

depend on

k-jets of the sections only.

In view of (ii), the natural operators can be equivalently considered as systems

of mappings de�ned on local sections or even on the germs of local sections. We can

also view the natural operators as natural transformations D : C

1

� F ! C

1

� G

satisfying the properties corresponding to (i) and (ii).

Since we want to classify geometrically de�ned operators on exterior forms, we

should extend the de�nition of bundle functors to involve functors with in�nite di-

mensional values and we should deal with the functor E associating to each mani-

foldM the in�nite dimensional space of all operators C

1

(�

p

T

�

M )! C

1

(�T

�

M )

and natural transformations D : Id ! E (i.e. the corresponding operators D

M

have no arguments). Further, we should replace the category Mf

m

by the cate-

gory of Riemannian manifolds or manifolds with connection and the corresponding

morphisms. However, the connections and metrics themselves are sections of val-

ues of bundle functors which are preserved by the morphisms in question, and

one veri�es easily that our problem is equivalent to �nding all natural operators

D : QP

1

� �

p

T

�

! �T

�

or D : S

2

+

T

�

� �

p

T

�

! �T

�

(working in the category

Mf

m

). We shall always restrict ourselves to symmetric linear connections, the

general case can be treated by adding the torsion tensor to the arguments of the

operator.

Since the objects in Mf

m

are locally di�eomorphic to R

m

and since the action
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of the di�eomorphisms on R

m

is transitive, every natural operator D : F ! E

is determined by the values of D

R

m

on the germs of sections at the origin 0 2

R

m

. Moreover, if D is of order k � 1 and if the order of the bundle functors

F and E is r, then the whole operator is determined by the induced mapping

D : J

k

0

(FR

m

) ! E

0

R

m

= J

0

0

(ER

m

) (the so called associated map) and the nat-

urality implies that this mapping commutes with the induced actions of the so

called jet group G

r+k

m

= invJ

r+k

0

(R

m

;R

m

)

0

on the �bers J

k

0

(FR

m

) and E

0

R

m

. On

the other hand, each G

r+k

m

-equivariant mapping J

k

0

(FR

m

) ! E

0

R

m

determines a

unique natural operator D : F ! E. So we have recalled the well known bijection

between the natural operators and suitable equivariant mappings, see e.g. [Terng,

78],

Proposition. There is a bijective correspondence between the set of k-th order

natural operators D : F ! E and the set of all G

k+r

m

-equivariant smooth mappings

J

k

0

(FR

m

)! E

0

R

m

.

If we deal with vector bundle functors (or a�ne bundle functors or subbundles

of these bundle functors), the standard �bers J

k

0

FR

m

are vector spaces (or a�ne

spaces or invariant submanifolds in these spaces) and we call a natural operator

D polynomial if the associated map D is polynomial. In this case, the coordinate

expressions of the operators D

M

in arbitrary local coordinate systems on M are

given by a universal polynomial expression induced from D.

1.3. Nonlinear Peetre theorem. A nonlinear generalization of Peetre's theorem

on the �niteness of the order of local linear operators was proved by the author in

[Slov�ak, 88]. The general result is rather technical and so we formulate a special

case which we shall need.

Proposition. Let Y !M and Y

0

!M be �bered manifolds and letD : C

1

(Y )!

C

1

(Y

0

) be a smooth local operator. Then for every �xed section s 2 C

1

(Y ) and

for every compact set K � M , there is an order r 2 N and a neighborhood V of s

in the compact open C

1

-topology such that for every x 2 K and s

1

, s

2

2 V the

condition j

r

x

s

1

= j

r

x

s

2

implies Ds

1

(x) = Ds

2

(x).

As a direct consequence of this result, we see that each natural operator D : F !

E is of order k =1 and so D is determined by the associated G

1

m

-equivariant map

D : J

1

0

(FR

m

)! E

0

R

m

.

Let us remark that a stronger version of the above proposition (without the

smoothness assumption) is also proved in [Kol�a�r, Michor, Slov�ak] and it is applied

there in an alternative proof of the regularity and the �niteness of the order of

bundle functors which avoids the original manipulation with in�nite dimensional

Lie groups G

1

m

, cf. [Epstein, Thurston, 79].

1.4. Lemma. Let F : Mf

m

! FM be an arbitrary bundle functor and p > q be

non-negative integers. Then every natural operator D : Q

�

� T

(q;p)

! F has �nite

order.

Proof. Let us write E = Q

�

� T

(q;p)

. By 1.3, D is determined by the associated

map D : J

1

0

(ER

m

) ! F

0

R

m

induced by D

R

m

. Furthermore, for every jet j

1

0

s 2

J

1

0

(ER

m

) there is an order r < 1, a neighborhood U

r

of j

r

0

s in J

r

0

(ER

m

) and

a smooth mapping D

r

: U

r

� J

r

0

(ER

m

) ! F

0

R

m

such that for all j

1

0

q 2 V

r

:=
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(�

1

r

)

�1

U

r

we have D(j

1

0

q) = D

r

(j

r

0

q). The naturality of D implies that if the

open neighborhood U

r

is the maximal one with this property, then V

r

is G

1

m

-

invariant. The induced action of G

1

m

turns J

k

0

(ER

m

) into a sum of G

1

m

-invariant

linear subspaces in the tensor spaces (R

m





`+2

R

m�

)� (


s

R

m





r+`

R

m�

), ` � k.

Since r > s, the action of the homotheties (i.e. the center) in G

1

m

shows, that the

orbit of any neighborhood of the jet j

k

0

0 of the zero section under the action of G

1

m

coincides with the whole space J

k

0

(ER

m

). �

1.5. A classical observation due probably to Schouten claims that the geometric

operations of order k on tensor �elds depending on a connection factorize through

the covariant derivatives of the arguments up to the order k and through the cur-

vature and its covariant derivatives up to the order k � 1. Several authors derived

more precise formulations involving some further assumptions, see e.g. [Lubczonok,

72], [Atiyah, Bott, Patodi, 73], [Epstein, 75], [Krupka, Jany�ska, 90]. A (rather tech-

nical) veri�cation of such reduction without any additional assumption is presented

in the framework of natural operators by Kol�a�r in [Kol�a�r, Michor, Slov�ak]. The

proof is based on the study of G

k+2

m

-equivariant mappings between the standard

�bers and a suitable description of the orbits under the action of the jet group. On

the set-theoretical level, this is a more or less classical technical computation, but

the subtle point is the smoothness.

Let F be a �rst order bundle functor onMf

m

, E be an open natural sub bundle

of a natural vector bundle

�

E onMf

m

. The curvature and its covariant derivatives

are natural operators �

k

: Q

�

P

1

! R

k

, with values in tensor bundles R

k

, R

k

R

m

=

R

m

�W

k

, W

0

= R

m


R

m�


�

2

R

m�

, W

k+1

=W

k


R

m�

. Similarly, the covariant

di�erentiation of sections of E forms natural operators d

k

: Q

�

P

1

�E ! E

k

, where

E

0

=

�

E, E

0

R

m

= R

m

�V

0

, d

0

is the inclusion, E

k

R

m

= R

m

�V

k

, V

k+1

= V

k


R

m�

.

Let us write D

k

= (�

0

; : : : ; �

k�2

; d

0

; : : : ; d

k

) : Q

�

P

1

� E ! R

k�2

� E

k

, where

R

l

= R

0

� : : :� R

l

, E

l

= E

0

� : : :� E

l

. All D

k

are natural operators.

Lemma. There are sub bundle functors Z

k

� R

k�2

� E

k

such that D

k

: Q

�

P

1

�

E ! Z

k

and the associated maps D

k

: J

k�1

0

(Q

�

P

1

R

m

) � J

k

0

(ER

m

) ! Z

k

0

R

m

are

surjective submersions for all k. Furthermore, for each point z 2 Z

k

0

R

m

the preim-

age (D

k

)

�1

(z) forms one orbit under the action of the kernel B

k+1

1

of the projection

�

k+1

1

: G

k+1

m

! G

1

m

.

1.6. Reduction theorem. Let us write S

i

for the tensor space R

m


 S

i+2

R

m�

,

Q = S

0

for the standard �ber of the bundle of symmetric connections and

S : J

k�1

0

(R

m

; Q) = J

k�1

0

(Q

�

P

1

R

m

)! S

0

� : : :� S

k�1

be the "symmetrization of the derivatives of the Christo�el symbols" (i.e. we express

the jet space J

k�1

0

(Q

�

P

1

R

m

) as the sum of the tensor spaces corresponding to the

individual degrees of derivatives and apply the symmetrization to the individual

summands). A more or less classical construction leads to a polynomial mapping

 : W

0

� : : :�W

k�2

�V

0

� : : :�V

k

� (S

0

� : : :�S

k�1

)! J

k�1

0

(R

m

; Q)�J

k

0

(R

m

; V )

such that  �(D

k

�S) is the identity on J

k�1

0

(R

m

; Q)�J

k

0

(R

m

; V ). Using this poly-

nomial mapping and the above lemma, one concludes (cf. [Kol�a�r, Michor, Slov�ak])
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Proposition. For every natural operator D : Q

�

P

1

� E ! F which depends on

k-jets of sections of the bundles EM and on (k � 1)-jets of the connections, there

is a unique natural transformation (i.e. a zero order natural operator)

~

D : Z

k

! F

such thatD =

~

D�D

k

. Furthermore,D is polynomial if and only if

~

D is polynomial.

Since the standard �ber V

0

of the bundle E

0

R

m

is embedded identically into

Z

k

0

R

m

by D

k

, we can also add:

D is polynomial in all variables except those from V

0

with smooth real functions

on V

0

as coe�cients if and only if

~

D is polynomial with smoth real functions on V

0

as coe�cients.

1.7. Even if we have no estimate on the order, we can get an analogous result.

Proceeding as in the proof of 1.4, we obtain an open �ltration of the whole �ber

J

1

0

((Q

�

P

1

� E)R

m

) consisting of maximal G

1

m

-invariant open subsets V

k

where

the associated mappingD factorizes through D

k

: �

1

k

(V

k

) � J

k

0

((Q

�

P

1

�E)R

m

)!

F

0

R

m

. Now, we can apply the same procedure as in 1.6 to this invariant open

submanifolds �

1

k

(V

k

).

Let us de�ne the functor Z

1

as the inverse limit of Z

k

, k 2 N, with respect

to the obvious natural transformations (projections) �

k

`

: Z

k

! Z

`

, k > `, and

similarly D

1

: Q

�

P

1

� E ! Z

1

.

Theorem. For every natural operator D : Q

�

P

1

�E ! F there is a unique natural

transformation

~

D : Z

1

! F such that D =

~

D �D

1

. Furthermore, for every m-

dimensional compact manifold M and every section s 2 C

1

(Q

�

P

1

M �

M

EM ),

there is a �nite order k and a neighborhood V of s in the C

k

-topology such that

~

D

M

j(D

1

)

M

(V ) = (�

1

k

)

�

(

~

D

k

)

M

; for some (

~

D

k

)

M

: (D

k

)

M

(V )! C

1

(Z

k

M )

D

M

jV = (

~

D

k

)

M

� (D

k

)

M

jV:

In words, a natural operator D : Q

�

� E ! F is determined in all coordinate

charts of an arbitrary m-dimensional manifoldM by a universal smooth mapping

de�ned on the curvatures and all their covariant derivatives and on the sections

of EM and all their covariant derivatives, which depends "locally" only on �nite

number of these arguments.

1.8. The Riemannian case. On Riemannian manifolds, there is the natural

operator �: S

2

+

T

�

! Q

�

P

1

de�ned by the Levi-Civit�a connection. Every operator

S

2

+

T

�

�E ! F can be viewed as an operator Q

�

P

1

�S

2

+

T

�

�E ! F , independent

of the �rst argument. Since S

2

+

T

�

� S

2

T

�

is an open sub bundle functor, we can

consider the compositions D

k

� (�; id) : S

2

+

T

�

�E ! Q

�

P

1

� S

2

+

T

�

�E ! R

k�2

�

(S

2

+

T

�

� E)

k

and apply the above Proposition. Since all covariant derivatives of

the metric with respect to the metric connection are zero, the covariant derivatives

of the metric will not appear in the codomain of the operators D

k

. Hence we get

(cf. [Kol�a�r, Michor Slov�ak])

Proposition. There are sub bundle functors Z

k

� R

k�2

� E

k

such that D

k

�

(�; id) : S

2

+

T

�

�E ! S

2

+

T

�

�Z

k

for all k, and for every k-th order natural operator
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D : S

2

+

T

�

� E ! F , there is a natural transformation

~

D : S

2

+

T

�

� Z

k

! F such

that D =

~

D �D

k

� (�� id).

Let us notice that the bundles Z

k

M involve the curvature of the Riemannian

connection on M , its covariant derivatives, and the covariant derivatives of the

sections of EM . Similarly as above, we de�ne the inverse limits Z

1

and D

1

and

we get

Corollary. For every natural operator D : S

2

+

T

�

� E ! F there is a natural

transformation

~

D : S

2

+

T

�

� Z

1

! F such that D =

~

D � D

1

� (�; id). Fur-

thermore, for every m-dimensional compact manifold M and every section s 2

C

1

(S

2

+

T

�

M �

M

EM ), there is a �nite order k and a neighborhood V of s in the

C

k

-topology such that

~

D

M

j(D

1

� (�; id))

M

(V ) = (�

1

k

)

�

(

~

D

k

)

M

;

where (

~

D

k

)

M

: (D

k

� (�; id))

M

(V )! C

1

(Z

k

M )

D

M

jV = (

~

D

k

)

M

� (D

k

)

M

� (�; id)

M

jV:

1.9. The polynomial operations on Riemannian manifolds. We call a nat-

ural operator D : S

2

+

T

�

�E ! F a polynomial operator on Riemannian manifolds

if the associated map D : J

1

0

(S

2

+

R

m

)� J

1

0

(ER

m

)! F

0

R

m

depends polynomially

on k-jets of sections of ER

m

for some k.

By the nonlinear Peetre theorem, this means that for each Riemannian manifold

(M; g) the operator D

M

is given by a universal polynomial expression depending on

the derivatives of the sections of EM but the coe�cients are functions depending

on (locally �nitely many) derivatives of the metric.

Let us consider now a k-th order operator D and the natural transformation

~

D corresponding to D, see 1.8. In the center of normal coordinates, each metric

has the canonical euclidean form and so the whole transformation

~

D is determined

by the restriction of the associated map

~

D to fidg � Z

k

0

R

m

. This restriction is

polynomial if and only if

~

D depends polynomially on elements from Z

k

0

R

m

, the

metric g

ij

and the square root of the inverse of its determinant det(g

ij

). Indeed,

in order to �nd the transformation of coordinates which maps the euclidean metric

to g

ij

we need to decompose g

ij

= AA

T

with A 2 GL(m;R). The same applies

to D: if this G

1

m

-equivariant map depends polynomially on the derivatives of the

metric and the jets of sections of ER

m

, then the values of the metric appear in

D polynomially through g

ij

and the square root of the inverse of its determinant

det(g

ij

).

Now, let us �x g

ij

. Since � depends polynomially on the 1-jet of the metric

and the values of the inverse metric, it follows that

~

D depends polynomially on the

elements from Z

k

0

R

m

if and only if D depends polynomially on the derivatives of the

metric g

ij

and on the jets of the sections of E (with functions of g

ij

as coe�cients),

and this happens if and only if D depends polynomially on the jets of the metrics,

the jets of the sections of E and on the square root of the inverse of the determinant

of (g

ij

).
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Let us remark that such operations were introduced in [Atiyah, Bott, Patodi, 73]

under the name regular operators, a reason why they should be distinguished among

the polynomial operations on Riemannian manifolds is also shown in [Stredder, 75].

1.10. Invariant tensors. The above reduction procedure restricts our consider-

ations to G

1

m

= GL(m;R)-equivariant mappings between the standard �bers. If

we are able to prove that the operation in question is polynomial, we can apply

the standard polarization technique which reduces the problem to classi�cation of

all invariant tensors. It is well known that all GL(m;R)-equivariant operations on

tensors are linearly generated by permutation of indices, contractions and tensor

multiplication by invariant tensors, i.e. tensor products of identities on R

m

. In

the Riemannian case, we meet polynomial dependence on all variables except the

metric, with coe�cients depending smoothly on the metric entry. Hence we have

to restrict the equivariance to the orthogonal group O(m;R) and to use a descrip-

tion of all O(m)-equivariant operations. The H. Weyl's theorem implies that these

operations are linearly generated by tensorizing by the metric tensor g : R

m

! R

m�

or by its inverse ~g : R

m�

! R

m

, contractions and permutations of indices.

2. Manifolds with connection

2.1. Let us �rst discuss the natural operatorsD : Q

�

P

1

�T

(s;r)

! T

(q;p)

with r > s.

Given a connection on M and a tensor �eld, we can take covariant derivatives of

the �eld, the covariant derivatives of the curvature, we can tensorize, we can apply

any GL(m;R)-equivariant operation, we can take linear combinations and we can

iterate these steps.

Lemma. All natural operators Q

�

P

1

� T

(s;r)

! T

(q;p)

are obtained by this pro-

cedure. In particular, all of them are polynomial.

Proof. By 1.4, every such operator has some �nite order k and so it is determined

by a smooth G

k+2

m

-equivariant map f = (f

i

1

:::i

q

j

1

:::j

p

) : J

k

0

(R

m

; Q) � J

k

0

(R

m

; V ) ! S,

where Q is the standard �ber of the connection bundle and S = 


q

R

m


 


p

R

m�

.

Let us assume, we have chosen k in such a way that f depends on (k � 1)-jets

of the connections only. If we apply the equivariance of f with respect to the

transformation x 7! c

�1

x, c 2 R positive, from the center of G

1

m

, we get

c

p�q

f

i

1

:::i

q

j

1

:::j

p

(�

`

ij

; : : : ;�

`

ij;`

1

:::`

k�1

; v

i

1

:::i

s

j

1

:::j

r

; : : : ; v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(c�

`

ij

; : : : ; c

k

�

`

ij;`

1

:::`

k�1

; c

r�s

v

i

1

:::i

s

j

1

:::j

r

; : : : ; c

r�s+k

v

i

1

:::i

s

j

1

:::j

r

`

1

:::`

k

)

where the subscripts `

j

denote the usual derivatives. By a general theorem on

homogeneous functions (cf. [Kol�a�r, Michor, Slov�ak]), f

i

1

:::i

q

j

1

:::j

p

must be sums of ho-

mogeneous polynomials.

Now, 1.6 and 1.2 imply that there is a unique smooth G

1

m

-equivariant map g on

Z

k

0

R

m

which is a restriction of a polynomial map �g = (g

i

1

:::i

q

j

1

:::j

p

) : W

0

� : : :�W

k�2

�

V

0

� : : :� V

k

! S and satis�es f = g � D

k

. Therefore the coordinate expression of

our operator is given by polynomial mappings

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

i

1

:::i

r

; : : : ; v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

k

)
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where the subscripts m

j

denote the covariant derivatives. If we apply once more

the equivariance with respect to the homotheties c

�1

�

i

j

2 G

1

m

, we get

c

p�q

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

i

1

:::i

r

; : : : ; v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

k

) =

= g

i

1

:::i

q

j

1

:::j

p

(c

2

R

i

jkl

; : : : ; c

k

R

i

jklm

1

:::m

k�2

; c

r�s

v

i

1

:::i

s

i

1

:::i

r

; : : : ; c

k+r�s

v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

k

):

This homogeneity implies that the g's must be sums of homogeneous polynomials

of degrees a

`

and b

`

in the variables R

i

jklm

1

:::m

`

and v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

`

, satisfying

(1) 2a

0

+ � � �+ ka

k�2

+ (r � s)b

0

+ � � �+ (k + r � s)b

k

= p� q:

Now we consider the total polarization of each multi homogeneous component to

obtain linear mappings

S

a

0

W 
 � � � 
 S

a

k�2

W

k�2


 S

b

0

V 
 � � � 
 S

b

k

V

k

! S:

The description of all invariant tensors implies that the polynomials in question are

linearly generated by monomials obtained by multiplying an appropriate number

of variables R

i

jklm

1

:::m

`

, v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

`

and applying GL(m)-equivariant operations.

This yields the coordinate description of the statement of the Lemma. �

If q = p, then the polynomials must be of degree zero, and so only the GL(m)-

invariant tensors can appear. If q�p < 0, there are no non negative integers solving

(1) and so all natural operators in question are the zero operators only.

2.2. Now we can pass to our aim, the operators with values in exterior forms.

In order to determine all natural operators D : Q

�

P

1

� T

(0;r)

! �T

�

we have to

consider the case s = 0 in the above construction, to contract all superscripts and

to apply the alternation on all remaining subscripts at the very end.

Every GL(m;R)-invariant polynomial P de�ned on R

m


 R

m�

determines via

the Chern-Weil construction a natural form, i.e. a natural operator of our type

independent on the second argument. In particular, the homogeneous components

of the invariant polynomial det(I

m

+A) give rise to the Chern forms c

q

. The wedge

product of exterior forms de�nes the algebra structure on the space of all operators

in question.

Theorem. The algebra of all natural operators D : Q

�

P

1

� T

(0;r)

! �T

�

is gen-

erated by the alternation, the exterior derivative d and the Chern forms c

q

. The

operators which do not depend on the second argument are generated by the Chern

forms only.

In particular, we see that all natural forms have even degrees. Since the exterior

di�erential is natural, they must be closed.

2.3. In the proof of this result, we shall need several lemmas. The most of the

covariant derivatives of the curvature and of the forms which are involved in the

general construction from 2.1 are disabled by some of their symmetries during the

�nal alternation. Let us �rst recall the antisymmetry of the curvature form, the

�rst and the second Bianchi identity. In coordinates we have

R

i

jkl

= �R

i

jlk

(2)

R

i

jkl

+R

i

klj

+ R

i

ljk

= 0(3)

R

i

jklm

+ R

i

jlmk

+ R

i

jmkl

= 0:(4)
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Lemma. The alternation of R

i

jklm

1

:::m

s

on any 3 indices among the �rst three or

four subscripts is zero.

Proof. Since the covariant derivative commutes with the tensor operations like the

permutation of indices, it su�ces to discuss the variables R

i

jkl

and R

i

jklm

. By (3),

the alternation on the subscripts in R

i

jkl

is zero and (4) yields the same for the

alternation on k, l, m in R

i

jklm

. In view of (2), it remains to discuss the alternation

of R

i

jklm

on j, l, m. (2) implies R

i

jkml

= �R

i

jmkl

and so we can rewrite this

alternation as follows

R

i

jklm

+ R

i

jmkl

+ R

i

jlmk

�R

i

jlmk

+R

i

mkjl

+ R

i

mlkj

+ R

i

mjlk

�R

i

mjlk

+R

i

lkmj

+ R

i

ljkm

+ R

i

lmjk

�R

i

lmjk

:

The �rst three entries on each row form a cyclic permutation and hence give zero.

The same applies to the last column. �

2.4. Lemma. For every tensor �eld t = (t

i

1

:::i

q

), the alternation of its second

covariant derivative r

2

t = (t

i

1

:::i

q

i

q+1

i

q+2

) on all indices is zero.

Proof. Every linear connection �

i

jk

determines a connection � with curvature R on

each vector bundle associated to the linear frame bundle. The components of R are

easily evaluated from R

i

jkl

using the action of gl(m) on the tensor space in question.

In our case, (a

i

j

) 2 GL(m) acts on a tensor !

i

1

:::i

q

by (a

i

j

)!

i

1

:::i

q

= ~a

j

1

i

1

: : :~a

j

q

i

q

!

i

1

:::i

q

where ~ denotes the components of the inverse matrix, and so given a tensor �eld t

we get the expression of the contraction hR; ti = �

P

q

s=1

R

m

i

s

i

q+1

i

q+2

t

i

1

:::m:::i

q

. If the

connection is symmetric, then the Ricci identity yields Alt(r

2

t) = hR; ti, where the

alternation concerns only the last two indices. Hence we can apply our alternation

to this expression. Up to a constant multiple, we get

X

�2�

sgn�t

i

�(1)

:::i

�(q+2)

= �

X

s

X

m

X

�

sgn�R

m

i

�(s)

i

�(q+1)

i

�(q+2)

t

i

�(1)

:::m:::i

�(q)

:

Let us decompose this sum into summands with �xed m, s and all �(j) with j 6= s,

j 6= q + 1, j 6= q + 2. These are of the form

�

�

X

��2�

3

sgn��R

m

i

��(s)

i

��(q+1)

i

��

q+2

�

t

i

�(1)

:::m:::i

�(q)

:

Now the �rst Bianchi identity implies that all these summands vanish. �

2.5. Lemma. For every tensor t = (t

i

1

:::i

q

), the alternation of the �rst covariant

derivative rt coincides with the exterior di�erential d(Alt(t)).

Proof. Whenever the coordinate expressions of two natural operators coincide in

one coordinate chart, the operators are equal. The �rst covariant derivative is

of order zero in the connection argument, and at a �xed point the Christo�el

symbols are zero in a suitable coordinate system. But then the formula for the

alternation of the covariant derivative of the tensor t coincides with that for the

exterior di�erential of the alternated tensor at this point. �
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2.6. Proof of Theorem 2.2. Let us continue in the discussion from 2.2 and

consider �rst a monomial in R's and v's containing at least one quantity R

i

jklm

1

:::m

s

with s > 0. Then there exists one term among the R's in the product with three free

subscripts among the �rst four ones, or one termR

i

jkl

with all free subscripts, so that

the monomial vanishes after alternation. Further, (2) and (3) imply R

i

jkl

�R

i

lkj

=

�R

i

klj

. Hence we can restrict ourselves to contractions on the �rst two subscripts

in the R's. Obviously, no subscript in the v's can be contracted since otherwise

the alternation would kill one of the R's. So in view of Lemma 2.4, only the �rst

order covariant derivatives can appear, and they yield the exterior derivatives of the

alternated tensor v by Lemma 2.5. Hence all the possible operators are generated

by the expressions R

k

q

k

1

ab

R

k

1

k

2

cd

: : :R

k

q�1

k

q

ef

where the indices a; : : : ; f remain free for

the alternation, v

i

1

:::i

r

and Alt(v

i

1

:::i

r

i

r+1

). This is a coordinate expression of the

Theorem. �

2.7. Operations on functions. Up to now, we have assumed r > s � 0, so

that the case r = 0 was excluded. In this case we cannot use 1.4 and so we

must apply Theorem 1.7 instead of 1.6, but the codomain of the operations in

question will still ensure the polynomiality of the operations. By 1.7, each jet

(j

1

0

�; j

1

0

v) lies in some G

1

m

-invariant open subset (in the inverse limit topology)

V

k

� J

1

0

(Q

�

P

1

R

m

� R) (in the inverse limit topology) such that the associated

mapping D of the operator is determined by a (locally de�ned) G

k+2

m

-equivariant

mapping f : J

k

0

(R

m

; Q)�J

k

0

(R

m

R)! S. Taken k large enough we can assume that

the jet of the zero section lies in V

k

. Now, proceeding as in 1.4 and 2.1 we get for

every positive c 2 R the homogeneity condition

c

p�q

f

i

1

:::i

q

j

1

:::j

p

(�

`

ij

; : : : ;�

`

ij;`

1

:::`

k�1

; v; : : : ; v

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(c�

`

ij

; : : : ; c

k

�

`

ij;`

1

:::`

k�1

; v; : : : ; c

k

v

`

1

:::`

k

):

Thus, f is a polynomial mapping in all variables except v with functions of v as

coe�cients.

Using 1.6 and 1.7, we pass to G

1

m

equivariant mappings

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v; : : : ; v

m

1

:::m

k

)

with the homogeneity

c

p�q

g

i

1

:::i

q

j

1

:::j

p

(R

i

jkl

; : : : ; R

i

jklm

2

:::m

k�2

; v; : : : ; v

m

1

:::m

k

) =

= g

i

1

:::i

p

j

1

:::j

q

(c

2

R

i

jkl

; : : : ; c

k

R

i

jklm

1

:::m

k�2

; v; : : : ; c

k

v

m

1

:::m

k

):

Hence g is polynomial with smooth functions in one real variable v as coe�cients

and the degrees of its monomials satisfy (1) with r = s = 0. Now we can repeat

the arguments from the end of 2.1 and we get

Lemma. All natural operators D : Q

�

P

1

� T

(0;0)

! T

(q;p)

are obtained by iter-

ating the following steps. Given a function, we can compose the function with

arbitrary smooth function of one real variable, we can take covariant derivatives of

the function and the covariant derivatives of the curvature, we can tensorize, we can

apply any GL(m;R)-equivariant operation, and we can take linear combinations.

The arguments from the proof of 2.2 are also valid now and so we can extend

this theorem to the case of functions.
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Theorem. The algebra of all natural operators D : Q

�

P

1

�T

(0;0)

! �T

�

is gener-

ated by the compositions with arbitrary smooth functions of one real variable, the

exterior derivative d and the Chern forms c

q

.

3. The Riemannian case

3.1. There are many natural operators on Riemannian manifolds. In particular,

using the inverse metric we can contract on any couple of indices and the complete

contractions of suitable covariant derivatives of the curvature of the Levi-Civit�a

connection give rise to natural functions of all even orders greater then one. Com-

posing k natural functions with any �xed smooth function R

k

! R, we get a new

natural function. Since every natural form can be multiplied by any natural func-

tion, we see that there is no hope to describe at least all natural forms in a way

similar to the above characterization of the Chern forms. However, in Riemannian

geometry we meet operations with a sort of homogeneity with respect to the change

of the scale of the metric and these can be described in more details.

De�nition. Let E and F be natural bundles over m-dimensional manifolds. We

say that a natural operator D : S

2

+

T

�

�E ! F is conformal , if D(c

2

g; s) = D(g; s)

for all metrics g, sections s, and all positive c 2 R. If F is a natural vector bundle

and D satis�es D(c

2

g; s) = c

�

D(g; s), then D is said to be homogeneous with weight

�.

Let us recall that the weight of the metric g

ij

is 2 (we consider the inclusion

g : S

2

+

T

�

! S

2

T

�

), that of its inverse g

ij

is �2, while the curvature and all its

covariant derivatives are conformal. The regular operators on Riemannian mani-

folds (cf. 1.9) homogeneous in the weight were studied extensively, see e.g. [Atiyah,

Bott, Patodi, 73], [Epstein, 75], [Stredder, 75]. Using the above approach, we shall

recover and generalize some of their results.

Surprisingly enough we shall prove that among the homogeneous natural oper-

ators D : S

2

+

T

�

� T

(0;r)

! �T

�

with non-negative weights, there are no other ones

then those obtained by evaluation of the operators from Theorem 2.2 using the

Levi-Civit�a connection. Since the Riemannian connections have one more symme-

try, namely

(5) R

i

jkl

= �R

j

ikl

;

the evaluation of the Chern forms using the Levi-Civit�a connection yields zero in

degrees not divisible by four and the Pontrjagin forms in degrees 4`.

3.2. Theorem. There are no non-zero homogeneous natural operators D : S

2

+

T

�

�

T

(0;r)

! �T

�

with a positive weight. The algebra of all conformal natural operators

D : S

2

+

T

�

� T

(0;r)

! �T

�

is generated by the Pontrjagin forms p

q

, the alternation

and the exterior di�erential. The operators which do not depend on the second

argument are generated by the Pontrjagin forms.

This generalizes the famous Gilkey theorem on the uniqueness of the Pontrjagin

forms, see [Gilkey, 73], [Atiyah, Bott, Patodi, 73]. The Gilkey theorem describes

the regular conformal natural forms, while we use no assumptions on the order or

polynomiality or regularity, only the smoothness.
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3.3. We shall start the proof by the discussion on the natural operators D : S

2

+

T

�

�

T

(s;r)

! T

(q;p)

with s < r. Similarly to 2.7, we use 1.7 to �nd G

1

m

-invariant open

subsets V

k

in J

1

0

((S

2

+

T

�

� T

(s;r)

)R

m

) forming a �ltration of the whole jet space.

On these subsets D factorizes through smooth G

k+1

m

-equivariant mappings

f

i

1

:::i

q

j

1

:::j

p

= f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; g

ij`

1

:::`

k

; v

i

1

:::i

s

i

1

:::i

r

; : : : ; v

i

1

:::i

s

i

1

:::i

r

`

1

:::`

k

):

de�ned on �

1

k

V

k

. Using the action of the homotheties c

�1

�

i

j

for large k's, we get

(6) c

p�q

f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; g

ij`

1

:::`

k

; v

i

1

:::i

s

i

1

:::i

r

; : : : ; v

i

1

:::i

s

i

1

:::i

r

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(c

2

g

ij

; : : : ; c

2+k

g

ij`

1

:::`

k

; c

r�s

v

i

1

:::i

s

i

1

:::i

r

; : : : ; c

r�s+k

v

i

1

:::i

s

i

1

:::i

r

`

1

:::`

k

):

Now, let us add the assumption that D is homogeneous with weight �, choose

the change g 7! c

�1

g of the scale of the metric and insert this new metric into (6).

We get

c

p�q��

f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; g

ij`

1

:::`

k

; v

i

1

:::i

s

i

1

:::i

r

; : : : ; v

i

1

:::i

s

i

1

:::i

r

`

1

:::`

k

) =

= f

i

1

:::i

q

j

1

:::j

p

(g

ij

; : : : ; c

k

g

ij`

1

:::`

k

; c

r�s

v

i

1

:::i

s

i

1

:::i

r

; : : : ; c

r�s+k

v

i

1

:::i

s

i

1

:::i

r

`

1

:::`

k

):

This formula shows that the mappings f

i

1

:::i

q

j

1

:::j

p

are polynomials in all variables except

g

ij

with functions in g

ij

as coe�cients.

According to 1.8 and 1.9, the map D is on V

k

determined by a polynomial

mapping

! = (!

i

1

:::i

q

j

1

:::j

p

(g

ij

;W

i

jkl

; : : : ;W

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

i

1

:::i

r

; : : : ; v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

k

)):

which is G

1

m

-equivariant on the values of the covariant derivatives of the curvatures

and the sections. If we apply once more the equivariance with respect to the

homothety x 7! c

�1

x and at the same time the change of the scale of the metric

g 7! c

�1

g, we get

c

p�q��

!

i

1

:::i

q

j

1

:::j

p

(g

ij

; R

i

jkl

; : : : ; R

i

jklm

1

:::m

k�2

; v

i

1

:::i

s

i

1

:::i

r

; : : : ; v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

k

) =

!

i

1

:::i

q

j

1

:::j

p

(g

ij

; c

2

R

i

jkl

; : : : ; c

k

R

i

jklm

1

:::m

k�2

; c

r�s

v

i

1

:::i

s

i

1

:::i

r

; : : : ; c

r�s+k

v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

k

):

This homogeneity shows that the polynomial functions !

i

1

:::i

q

j

1

:::j

p

must be sums of

homogeneous polynomials with degrees a

`

and b

`

in the variables R

i

jklm

1

:::m

`

and

v

i

1

:::i

s

j

1

:::j

r

m

1

:::m

`

satisfying

(7) 2a

0

+ � � �+ ka

k�2

+ (r � s)b

0

+ � � �+ (k + r � s)b

k

= p� q � �

and their coe�cients are functions depending on g

ij

's (in fact polynomials depend-

ing on g

ij

and on the square root of the inverse of the determinant of g

ij

, cf. 1.9).

Now, we shall �x g

ij

= �

ij

and use the O(m)-equivariance of the homogeneous

components of the polynomial mapping !. For this reason, we shall switch to
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the variables R

ijklm

1

:::m

s

= g

ia

R

a

jklm

1

:::m

s

(the v's remain). Using the standard

polarization technique and the H. Weyl's theorem as mentioned in 1.10, we get

that each multi homogeneous component in question results from multiplication of

variablesR

ijklm

1

;::: ;m

s

, v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

s

, s = 0; 1; : : :; r, and application of someO(m)-

equivariant tensor operations on the target space. Hence our operators result from

a �nite number of the following steps.

(a) take tensor product of arbitrary covariant derivatives of the curvature tensor

or the covariant derivatives of the tensor �elds form the domain

(b) tensorize by the metric or by its inverse

(c) apply arbitrary GL(m)-equivariant operation

(d) take linear combinations

3.4. If the codomain of the operator is �T

�

, then all indices which were not con-

tracted must be alternated at the end of the above procedure. Since the metric is

a symmetric tensor, we get zero whenever using the above step (b) and alternat-

ing on both indices. But contracting over any of them has no proper e�ect, for

�

ij

t

jj

2

;::: ;j

s

= t

ij

2

;::: ;j

s

. So we can omit the step (b) at all.

Since the Riemannian connections satisfy R

ijkl

= R

klij

, Lemma 2.3 and (5) yield

Lemma. The alternation of R

ijklm

1

:::m

s

on arbitrary 3 indices among the �rst four

or �ve ones is zero.

Consider a monomial P with degrees a

s

in R

ijklm

1

:::m

s

and b

s

in v

i

1

:::i

s

i

1

:::i

r

m

1

:::m

s

.

In view of the above lemma, if P remains non zero after all alternations, then we

must contract on at least two indices in each R

ijklm

1

:::m

s

with s > 0 and so we can

alternate on at most 2a

0

+ � � �+ ka

k�2

+ pb

0

+ : : : (p + k)b

k

indices. This means

p � 2a

0

+ � � �+ ka

k�2

+ pb

0

+ : : : (p + k)b

k

= p � �. Consequently � � 0 if there

is a non-zero natural form with weight �. This proves the �rst assertion of the

Theorem.

Let � = 0. Since the weight of g

ij

is �2, any contraction on two indices in the

monomial decreases the weight of the operator by 2. Every covariant derivative

R

ijklm

1

:::m

s

of the curvature has weight 2. So we must contract on exactly two

indices in each R

ijklm

1

:::m

s

which implies, there are s+2 of them under alternation.

But then there must appear three alternated indices among the �rst �ve if s 6= 0.

This proves a

1

= � � � = a

k

= 0. Moreover, there is no further contraction for

our disposal, and so any covariant derivative of the tensors of order greater then

one kills the whole monomial after alternation. Hence all the natural operators

are generated by the forms p

q

, the alternation and the exterior di�erential. This

completes the proof of the Theorem.

3.5. Remark. The discussion from the proof of the Theorem 3.2 can be continued

for any �xed negative weight. In particular, the situation is interesting for � = �2.

Beside the well known codi�erential � : �

p

! �

p�1

, the compositions d� � and � �d

(the Laplace-Beltrami operator is � = � � d+ d � �), and the multiplication by the

scalar curvature, there appear some other simple operators. The linear operators

D : �

p

T

�

! �

p

T

�

were described in [Stredder, 75].

3.6. Exactly in the same way as in 2.7, we can modify the proof of Theorem 3.2 for

the case r = 0. In the implicit description of all operators D : S

2

+

T

�

�T

(0;0)

! T

(q;p)

in 3.3, we have to add the compositions with smooth real functions and we get
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�

AK

Theorem. There are no non-zero homogeneous natural operators D : S

2

+

T

�

�

T

(0;0)

! �T

�

with a positive weight. The algebra of all conformal natural op-

erators D : S

2

+

T

�

� T

(0;0)

! �T

�

is generated by the Pontrjagin forms p

q

, the

compositions with arbitrary smooth functions of one real variable and the exterior

di�erential.
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