
BUNDLE FUNCTORS ON FIBRED MANIFOLDS
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�

ak

Abstract. We give a proof of the regularity of bundle functors on certain class of

categories over manifolds and a description of all bundle functors on �bred manifolds

with �xed dimensions of bases and �bers. Further we describe in the terms of Weil

algebras all bundle functors on �bred manifolds with �xed dimension of bases which

preserve �bred products. Finally we discuss certain natural operations with vector

�elds.

In this paper, all manifolds are smooth and paracompact. We denote by N

0

the

set of all non-negative integers.

1. Preliminaries

The classical theory of natural bundles and operators originated by A. Nijenhuis

has been developed and extended by several authors, see e.g. [Epstein,Thurston,

79], [Palais, Terng, 77], [Jany�ska, 85]. The foundations of a general theory are

outlined in the survey paper [Kol�a�r, 89], a collection of the most of basic results

on both the bundles and operators is prepared in [Kol�a�r, Michor, Slov�ak]. In

this paper, we present some speci�c features of the theory of bundle functors on

category FM

m

of �bred manifolds with m-dimensional bases and �bred morphisms

over local di�eomorphisms on the bases and we also describe all bundle functors on

the category FM

m;n

of �bred manifolds with m-dimensional bases, n-dimensional

�bers and local �bred isomorphisms. Some of our results are proved for a wider class

of categories and as a special case we also reprove well known results for categories

Mf orMf

m

of all smooth manifolds and smooth maps or m-dimensional manifolds

and local di�eomorphisms.

A category C endowed with a faithful functor m : C ! Mf is called a category

over manifolds. A C-object Y is said to be over the underlying manifoldmY . Since

there is the inclusion C(Y;

�

Y ) � C

1

(mY;m

�

Y ), we identify the C-morphisms with

their underlying smooth maps. In the sequel, we shall adopt the de�nition of an

admissible category (over manifolds) which re
ects the properties usually needed

for di�erential geometric constructions, see [Kol�a�r, 89]. (We should remark that we

do not need all the requirements from the de�nition in our proofs.)

A category over manifolds m : C ! Mf is said to be local , if every C-object

Y and every open subset U � mY determine a C-subobject L(Y; U ) of Y over U
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such that for every Y 2 ObC and every open subsets V � U � mY , we have

L(Y;mY ) = Y , L(L(Y; U ); V ) = L(Y; V ) and the aggregation of both the objects

and morphisms is assumed.

A locally de�ned morphism of Y into

�

Y in a local category is a C-morphism

f : L(Y; U )! L(

�

Y ; V ) for some open subsets U � mY , V � m

�

Y .

A C-object Y is said to be locally homogeneous if for every x, y 2 mY there

exists a locally de�ned C-isomorphism f of Y into Y such that f(x) = y. Local

category C is called locally homogeneous, if each C-object is locally homogeneous.

A local skeleton of a locally homogeneous category C is a system (C

�

), � 2 I, of

C-objects such that every C-object Y is locally isomorphic to a unique C

�

. In this

case Y is said to be an object of type �. A pointed local skeleton of a locally

homogeneous category C is a local skeleton (C

�

), � 2 I, with a distinguished point

0

�

2 mC

�

for each � 2 I. So a local pointed skeleton of category FM

m

is the

sequence (R

m+n

! R

m

; 0), 0 2 R

m+n

, n = 0; 1; 2 : : : .

The space J

r

(Y;

�

Y ) of all r-jets of a C-object Y into a C-object

�

Y is de�ned as

the subset of the manifold J

r

(mY;m

�

Y ) formed by all r-jets of the locally de�ned

C-morphisms of Y into

�

Y . If we add the following three conditions on J

r

(Y;

�

Y ), Y ,

�

Y 2 ObC, we get the in�nitesimally admissible categories.

(a) J

r

(Y;

�

Y ) is a submanifold of J

r

(mY;m

�

Y ),

(b) the jet projections J

r

(Y;

�

Y ) ! J

k

(Y;

�

Y ), 0 � k < r, are surjective submer-

sions,

(c) if X 2 J

r

(Y;

�

Y ) is an invertible r-jet of mY into m

�

Y , then X is generated

by a locally de�ned C-isomorphism.

Taken a �xed local pointed skeleton (C

�

; 0

�

), � 2 I, of C we write C

r

(�; �) =

J

r

0

�

(C

�

; C

�

)

0

�

. If C is in�nitesimally admissible, the restrictions of the jet com-

positions are smooth maps between smooth manifolds and we heave obtained a

category C

r

over I � I, the r-th order skeleton of C.

The last requirement on an admissible category C over manifolds is the smooth

splitting property. This property reads that for a local pointed skeleton (C

�

; 0

�

),

� 2 I, and for every smooth curve 
 : R! J

r

(C

�

; C

�

) � J

r

(mC

�

;mC

�

), �, � 2 I,

there exists a smooth map �: R� mC

�

! mC

�

such that 
(t) = j

r

c(t)

�(t;�),

where c(t) is the source of r-jet 
(t). (Note that all �(t;�) must be C-morphisms

by de�nition.)

Since there are the canonical polynomial representatives of jets of �bred mor-

phisms, both the categories FM

m

and FM

m;n

are admissible. In the sequel, we

shall denote B : FM!Mf the base functor.

1.1. De�nition. A bundle functor on a local category C over manifolds is a functor

F : C ! FM satisfying B � F = m and the localization condition:

(i) For every inclusion of an open subset i

U

: U ,! mY , F (L(Y; U )) is the re-

striction p

�1

Y

(U ) of p

Y

: FY ! mY over U and Fi

U

is the inclusion p

�1

Y

(U ) ,! FY .

Let us notice that the �ber projections p

Y

: FY ! Y form a natural transfor-

mation p

F

: F ! m. In particular, a bundle functor on Mf

m

is a natural bundle

over m-dimensional manifolds in the sense of A. Nijenhuis, cf. [Epstein, Thurston,

79], [Palais, Terng, 77].

We call a bundle functor F on C regular if F transforms smoothly parameterized

families of C-morphisms into smoothly parameterized families of smooth maps.
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A bundle functor F : C ! FM is said to be of order r if for every point x 2 mY ,

Y 2 ObC, and every locally de�ned C-morphisms f , g, the equality j

r

x

f = j

r

x

g

implies that the restrictions of Ff and Fg to the �ber F

x

Y = p

�1

Y

(x) coincide.

An important role in the general theory is played by the so called jet groups. By

de�nition, given an admissible category C with a local pointed skeleton (C

�

; 0

�

),

� 2 I, the r-th jet group of type � is the Lie subgroup

G

r

�

:= invJ

r

o

�

(C

�

; C

�

)

0

�

� invJ

r

0

�

(mC

�

;mC

�

)

0

�

:

Similarly to the classical natural bundles, every r-th order bundle functor F on

an admissible category C determines the associated maps

F

Y;

�

Y

: J

r

(Y;

�

Y ) �

Y

FY ! F

�

Y ; (j

r

x

f; y) 7! Ff(y):

An application of the well known Boman's theorem, [Boman, 67], yields that the

associated maps to an r-th order bundle functor F are smooth if and only if F is

regular. On the other hand, the restrictions of the associated maps to a regular r-th

order functor to C

r

(�; �) � F

0

�

C

�

, �, � 2 I, de�ne the induced smooth action of

the r-th skeleton C

r

on the system of manifolds S

�

:= F

0

�

C

�

and from these data

one can reconstruct the original functor up to a natural equivalence. See [Kol�a�r,

89] or [Kol�a�r, Michor, Slov�ak] for the details.

The main advantage of a formulation of the concept of geometric objects in the

categorical language is that we also get a simple explicit meaning for \geometric

operations" in the concept of natural operators. In general, an operator can be

viewed as a mapping transforming smooth maps into smooth maps. An operator

will be called regular if smoothly parameterized families of maps are transformed

into smoothly parameterized ones.

1.2. De�nition. Let F

1

, F

2

and G

1

be bundle functors on an admissible category

C, G

2

be an arbitrary functor C ! Mf . Let E

Y

� C(F

1

Y; F

2

Y ), Y 2 ObC, be

subsets of morphisms over identities id

Y

and let us consider the system E = (E

Y

),

Y 2 ObC. A natural operator D : (F

1

; F

2

) * (G

1

; G

2

) with domain E is a system

of regular operators D

Y

: E

Y

! C

1

(G

1

Y;G

2

Y ), Y 2 ObC, such that for every

s

1

2 E

Y

, s

2

2 E

�

Y

and f 2 C(Y;

�

Y ) the right-hand diagram commutes whenever

the left-hand one does.

F

2

Y

s

1

 ���� F

1

Y

?

?

y

F

2

f

?

?

y

F

1

f

F

2

�

Y

s

2

 ���� F

1

�

Y

G

1

Y

D

Y

s

1

����! G

2

Y

?

?

y

G

1

f

?

?

y

G

2

f

G

1

�

Y

D

�

Y

s

2

����! G

2

�

Y

The domain E is called natural if for every embedding i : U ! Y of an open

submanifold the pullbacks of maps in E

Y

lie in E

U

, i.e. i

�

E

Y

� E

U

. (In words, we

can restrict the maps to open submanifolds and pull them back by isomorphisms.)

If F

1

= Id

C

and G

2

= H �G

1

where H is a bundle functor on a suitable category,

domain E is natural and if all values D

Y

s, s 2 E

Y

, are sections of the canonical

projections p

H

Y

: H �G

1

Y ! G

1

Y , then D is called a natural operator between F

2

and HG

1

(with domain E) and we write D : F

2

*HG

1

.
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It follows immediately from the de�nition that every natural operatorD : (Id; F )*

(G

1

; G

2

) with natural domain E is formed by a system of local regular operators

D

Y

: E

Y

� C

1

(FY ) ! C

1

(G

1

Y;G

2

Y ) with respect to the canonical projections

p

G

1

Y

: G

1

Y ! Y , i.e. their values depend on germs of the sections in the under-

lying points only. Further the locality of bundle functors implies that the whole

operator D is determined by the values of D

C

�

on germs of sections in E

C

�

at the

distinguished points 0

�

, where (C

�

; 0

�

) is a local pointed skeleton of C.

If we assume that the r-jets of sections in E

Y

form �bred submanifolds in J

r

FY ,

Y 2 ObC, and if all morphisms in C are locally invertible, we can completely recover

the classical theory of r-th order natural operators between natural bundles to our

case D : F * HG, i.e. we get a bijection between the natural operators and certain

equivariant maps, see [Kol�a�r, 89].

2. Regularity of bundle functors

In this section we will prove the regularity of bundle functors for a class of cat-

egories over manifolds. In the original method developed in [Epstein, Thurston,

79] for the bundle functors on categoryMf

m

, one �rst uses the Whitney extension

theorem, [Tougeron, 72], in a rather involved proof of the continuous regularity.

Then, after manipulation with in�nite dimensional Lie groups leading to certain

rough estimates on possible orders of bundle functors, one gets the smooth regular-

ity. We modify this approach using a nonlinear version of Peetre theorem, [Slov�ak,

88], and so we get the regularity independently on the �niteness of the order in a

more general context.

We shall need a corollary of the nonlinear Peetre theorem in a special case only.

Let us call a subset E � C

1

(M;N )Whitney-extendible if for every f 2 C

1

(M;N ),

every sequence f

k

2 E, f

0

2 E and every convergent sequence x

k

! x in M

satisfying for all k 2 N germf(x

k

) = germf

k

(x

k

) and j

1

x

f

0

= j

1

x

f , there are g 2 E

and k

0

2 N such that germg(x

k

) = germf

k

(x

k

) for all k � k

0

.

2.1. Proposition, [Slov�ak, 88]. Let X, Y , Z, W be manifolds, p : Z ! X be a

�bration and let D : E � C

1

(X;Y )! C

1

(Z;W ) be a local operator with respect

to p. If E is Whitney-extendible, then for every �xed mapping f 2 E and every

compact set K � Z there exists r 2 N such that for all x 2 p(K), g 2 E, the

condition j

r

x

f = j

r

x

g implies Df j(�

�1

(x) \K) = Dgj(�

�1

(x) \K).

Let us remark that the full version of the nonlinear Peetre theorem yields the

�niteness of the order of D on certain neighborhood of the �xed mapping f . It is

easy to �nd examples of Whitney-extendible domains. Beside the whole C

1

(X;Y )

and local di�eomorphisms which are Whitney-extendible directly by the de�nition,

the Whitney-extendibility of the set of all �bred morphisms between two �brations

or of the set of all sections of a �bration is veri�ed by a simple application of

Whitney extension theorem. In particular, both the categories FM

m;n

and FM

m

have Whitney-extendible sets of morphisms.

2.2. De�nition. A category C over manifolds is called locally 
at if C admits a

local pointed skeleton (C

�

; 0

�

) where each C-object C

�

is over some R

m(�)

and if

all translations t

x

on R

m(�)

belong to the C-morphisms.
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2.3. Theorem. Let C be an admissible locally 
at category over manifolds with

Whitney-extendible sets of morphisms, m : C ! Mf be the faithful functor. Let

F : C ! Mf be a functor endowed with a natural transformation p : F ! m such

that the locality condition 1.1.(i) holds. Then there are canonical di�eomorphisms

(1) mC

�

� p

�1

C

�

(0

�

)

�

=

FC

�

; (x; z) 7! Ft

x

(z)

and for every Y 2 ObC of type � the map p

Y

: FY ! Y is a locally trivial �ber

bundle with standard �ber p

�1

C

�

(0

�

), in particular F is a bundle functor on C.

Proof. Let us �x a type � and let us denote �

x

:= Ft

x

the action of the abelian

group R

m

= mC

�

on FC

�

. The �rst (and the most technical) step in the proof of

the Theorem is to prove that this action is continuous. Analyzing the original proof

in [Epstein,Thurston, 79] or its modi�cation [Mikulski, 85] we �nd that this proof

also applies in our more general situation without any essential change. This is done

in detail in [Kol�a�r, Michor, Slov�ak]. But then a general theorem in [Montgomery,

Zippin, 55] implies that this action is smooth (we deal with a continuous action

� of a Lie group such that each �

x

is a di�eomorphism). It follows that for every

z 2 p

�1

C

�

(0

�

) the map s : R

m

! FC

�

, s(x) 7! �

x

(z) is smooth and p

C

�

� s = id

R

m

.

Therefore p

C

�

is a submersion and p

�1

C

�

(0

�

) is a manifold. Since both the maps

(x; z) 7! � (x; z) and y 7! � (�p

C

�

(y); y) are smooth, (1) is a di�eomorphism. The

rest of the Theorem follows now from the locality of functor F . �

In our next step towards the regularity we show that the bundle functors in

question have �nite order at least "locally".

2.4. Lemma. Let F be a bundle functor on an admissible category C and let

C(Y; Y ) � C

1

(mY;mY ) be Whitney-extendible. Consider a point x 2 Y and a

compact set K � p

�1

Y

(x) � FY . We de�ne Q

K

:= [

f2invC(Y;Y )

Ff(K). Then there

is r 2 N such that for all invertible C-morphisms f , g and for every point y 2 Y the

equality j

r

y

f = j

r

y

g implies

Ff j(Q

K

\ p

�1

Y

(y)) = Fgj(Q

K

\ p

�1

Y

(y)):

Proof. Let us �x the map id

Y

2 C(Y; Y ) and let us apply Proposition 2.1 to

F : C(Y; Y ) ! C

1

(FY; FY ), p = p

Y

and K. We denote r the resulting order.

For every z 2 Q

K

there are y 2 K and g 2 invC(Y; Y ) with Fg(y) = z. Consider

f

1

, f

2

2 invC(Y; Y ) such that j

r

f

1

(p(z)) = j

r

f

2

(p(z)). Then j

r

(f

1

� g)(p(y)) =

j

r

(f

2

� g)(p(y)) and therefore j

r

(g

�1

� f

�1

1

� f

2

� g)(p(y)) = j

r

id

Y

(p(y)). Hence

Ff

1

(z) = Ff

1

� Fg(y) = Ff

2

� Fg(y) = Ff

2

(z). �

2.5. Theorem. Let C be an admissible locally 
at category over manifolds with

Whitney-extendible sets of morphisms. If all C-morphisms are locally invertible,

then every bundle functor F on C is regular.

Proof. Since all morphisms are locally invertible and the functors are local, we

may restrict ourselves to objects of one �xed type, say �. We shall write (C; 0)

for (C

�

; 0

�

), mC = R

m

, p = p

C

. Let us consider a smoothly parameterized family
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g

s

2 C(C;C) with parameters in a manifold P . For any z 2 FC, x = p(z),

f 2 C(C;C) we have

(2) Ff(z) = �

f(x)

� F (t

�f(x)

� f � t

x

) � �

�x

and the mapping in the brackets transforms 0 into 0. Since � is a smooth action

according to Theorem 2.3, the regularity will follow from (2) if we show that for

families with g

s

(0) = 0 the restrictions of Fg

s

to the standard �ber S = p

�1

(0) are

smoothly parameterized. Since the case m = 0 is trivial, we may assume m > 0.

By virtue of Lemma 2.4 F is of order 1. We �rst show that the induced action of

the group of in�nite jets G

1

�

= invJ

1

0

(C;C)

0

on S is continuous with respect to

the inverse limit topology.

Consider converging sequences z

n

! z in S and j

1

0

f

n

! j

1

0

f

0

in G

1

�

. We shall

show that any subsequence of Ff

n

(z

n

) contains a further subsequence converging

to the point Ff

0

(z). On replacing f

n

by f

n

� f

�1

0

, we may assume f

0

= id

C

. By

passing to subsequences, we may assume that all absolute values of the derivatives of

(f

n

�id

C

) at 0 up to order 2n are less then e

�n

. Let us choose positive reals "

n

< e

�n

in such a way that on the open balls B(0; "

n

) centered at 0 with diameters "

n

all

the derivatives in question vary at most by e

�n

. Let x

n

:= (2

�n

; 0; : : : ; 0) 2 R

m

.

By Whitney extension theorem there is a local di�eomorphism f : R

m

! R

m

such

that

f jB(x

2n+1

; "

2n+1

) = id

C

and f jB(x

2n

; "

2n

) = t

x

2n

� f

2n

� t

�x

2n

for all large n's. Since the sets of C-morphisms are Whitney extendible, there is a

C-morphism h satisfying the same equalities for large n's. Now

�

�x

n

� Fh � �

x

n

(z

n

) = Ff

n

(z

n

) if n is even

�

�x

n

� Fh � �

x

n

(z

n

) = z

n

if n is odd.

Hence, by virtue of Theorem 2.3, Ff

2n

(z

2n

) converges to z and we have proved the

continuity of the action of G

1

�

on S as required. Now, let us choose a relatively

compact open neighborhood V of z and de�ne Q

V

:= ([

invC(C;C)

f(V ))\S. This is

an open submanifold in S and functor F de�nes an action of the group G

1

�

on Q

V

.

According to Lemma 2.4 this action factorizes to an action of a jet group G

r

�

on

Q

V

which is continuous by the above part of the proof. Hence this action has to be

smooth for the reason discussed in the proof of Theorem 2.3 and since smoothness

is a local property and all C-morphisms are locally invertible this concludes the

proof. �

2.6. Corollary. Every bundle functor on FM

m;n

is regular.

We can also deduce the regularity for bundle functors on FM

m

using Theorems

2.3 and 2.5.

2.7. Corollary. Every bundle functor on FM

m

is regular.

Proof. The system (R

m+n

! R

m

; 0), n 2 N

0

, is a local pointed skeleton of FM

m

.

Every morphism f : R

m+n

! R

m+k

is locally of the form f = h � g where g =
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g

0

� id

R

n

: R

m+n

! R

m+n

and h is a morphism over identity on R

m

(g

0

= f

0

,

h

1

(x; y) = f

1

(f

�1

0

(x); y)). So we can deal separately with this two special types of

morphisms.

The restriction F

n

of functor F to subcategory FM

m;n

is a regular bundle

functor according to 2.9 and the morphisms of the type g

0

� id

R

n

are FM

m;n

-

morphisms.

Hence it remains to discuss the latter type of morphisms. We may restrict

ourselves to families h

p

: R

m+n

! R

m+k

, p 2 R

q

, for some q 2 N. Let us consider

i : R

m+n

! R

m+n

� R

q

, (x; y) 7! (x; y; 0), h : R

m+n+q

! R

m+n

, h(�;�; p) = h

p

.

Since all the maps h

p

are over identity, h is a �bred morphism. We have h

p

=

h � t

(0;0;p)

� i, so that Fh

p

= Fh � Ft

(0;0;p)

� Fi. According to Theorem 2.3 Fh

p

is

smoothly parameterized. �

3. Bundle functors on FM

m;n

and FM

m

Let us denote G

r

m;n

the r-th order jet group (of the only type) in FM

m;n

.

This is the Lie subgroup in G

r

m+n

formed by jets of local �bred isomorphisms

f : R

m+n

! R

m+n

with source and target zero. Analyzing the structure of the Lie

algebra of G

r

m;n

by means of methods similar to those used in [Zajtz, 87] the next

Proposition was derived in [Slov�ak, 89].

3.1. Proposition. Let a jet group G

r

m;n

, m � 1, n � 0, act smoothly on a

manifold S, dimS = s, s > 0, and assume that r is essential, i.e. the action does

not factorize to an action of G

k

m;n

, k < r. Then r � 2s+ 1. Moreover, if m, n > 1,

then

r � maxf

s

m� 1

;

s

m

+ 1;

s

n� 1

;

s

n

+ 1g

and if m > 1, n = 0, then

r � maxf

s

m� 1

;

s

m

+ 1g.

All these estimates are sharp for all m � 1, n � 0, s � 1.

3.2. Theorem. Let F : FM

m;n

!Mf , m � 1, n � 0, be a functor endowed with

a natural transformation p : F ! m and satisfying the localization property 1.1.(i).

Then S := p

�1

R

m+n

(0) is a manifold of dimension s � 0 and for every (Y ! M )

in ObFM

m;n

the mapping p

Y

: FY ! Y is a locally trivial �ber bundle with

standard �ber S, i.e. F : FM

m

! FM. Functor F is a regular bundle functor of

a �nite order r � 2s+ 1. If moreover m > 1, n = 0, then

r � maxf

s

m� 1

;

s

m

+ 1g,

and if m > 1, n > 1, then

r � maxf

s

m � 1

;

s

m

+ 1;

s

n� 1

;

s

n

+ 1g.
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All these estimates are sharp.

Let us notice that the action of G

r

m;n

on S induced by the functor F induces a

bundle functor

~

S and according to the general theory,

~

S is canonically naturally

equivalent to the functor F . Further there is a bijective correspondence between

all natural transformations between two bundle functors on FM

m;n

and the set of

all G

r

m;n

-equivariant maps between their standard �bers.

Proof of 3.2. We have only to prove the assertion concerning the order. The rest

of the Theorem follows from Theorems 2.3 and 2.5. Since FM

m;n

is locally 
at,

we have to prove that the action of the group G of germs of �bred morphisms

f : R

m+n

! R

m+n

, f(0) = 0, factorizes to an action of G

r

m;n

with the above

bounds of r depending on s, m, n. As in the proof of Theorem 2.5, let V � S

be a relatively compact open set and Q

V

� S be the open submanifold invariant

with respect to the action of G. By virtue of Lemma 2.4 the action of G on Q

V

factorizes to an action of G

k

m;n

for some k 2 N. But then Proposition 3.1 yields the

necessary estimates if s > 0. Moreover, if we consider the G

r

m;n

-spaces with the

extremal orders from Proposition 3.1, the above mentioned general construction

gives bundle functors with the extremal orders.

The remaining case s = 0 follows immediately from the fact that given an action

� : G

r

m;n

! Di�(S) on a zero-dimensional manifold S, then its kernel ker � contains

the whole connected component of the unit. Since G

r

m;n

has two components and

these can be distinguished by the �rst order jet projection, we see that the order

can be at most one. Taken S = f1;�1g we de�ne the action of j

1

f(0) to be the

multiplication by the sign of the determinant of the linear map representing j

1

f(0).

The corresponding bundle functor

~

S is the bundle of elements of orientations and

is of order 1. �

In the rest of this paper, we shall deal with functors on FM

m

. Consider a

bundle functor F : FM

m

! FM and let F

n

be its restriction to FM

m;n

. We will

write S

n

:= p

�1

R

m+n

(0) for the standard �bers and s

n

:= dimS

n

. We have proved

that functors F

n

have �nite orders r(n) bounded by the estimates given in Theorem

3.2. Using ideas from [Kol�a�r, Slov�ak, 89] and [Mikulski] we prove that all bundle

functors on FM

m

are of locally �nite order.

3.3. Theorem. Let F : FM

m

! FM be a bundle functor. For all �bred mani-

folds Y with n-dimensional �bers and for all �bred maps f , g : Y !

�

Y , the condition

j

r(n+1)

x

f = j

r(n+1)

x

g implies Ff jF

x

Y = FgjF

x

Y . If dim

�

Y � dimY , then even the

equality of r(n)-jets implies that the values on the corresponding �bers coincide.

Proof. We may restrict ourselves to the case f , g : R

m+n

! R

m+k

, f(0) = g(0) =

0 2 R

m+k

.

(a) First we discuss the case n = k. Let us assume j

r

0

f = j

r

0

g, r = r(n) and

consider families f

t

= f + tid

R

m+n, g

t

= g + tid

R

m+n, t 2 R. The Jacobians at zero

are certain polynomials in t, so that the maps f

t

and g

t

are local di�eomorphisms

at zero except a �nite number of values of t. Since j

r

0

f

t

= j

r

0

g

t

for all t, we have

Ff

t

jS

n

= Fg

t

jS

n

except a �nite number of values of t. Hence the regularity of F

implies Ff jS

n

= FgjS

n

. As we deduced in the proof of Corollary 2.7, every �bred

map f 2 FM

m

(R

m+n

;R

m+k

) locally decomposes (in a canonical way) as f = h� g
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where g : R

m+n

! R

m+n

and h : R

m+n

! R

m+k

is over the identity on R

m

. Hence

in the rest of the proof we will restrict ourselves to morphisms over the identity.

(b) Next we assume n = k + q, q > 0, f , g : R

m+k+q

! R

m+k

, and let j

r

0

f =

j

r

0

g with r = r(n). Consider

�

f = (f; pr

2

), �g = (g; pr

2

) : R

m+n

! R

m+n

, where

pr

2

: R

m+k+q

! R

q

is the projection onto the last factor. Since j

r

0

�

f = j

r

0

�g, f =

pr

1

�

�

f and g = pr

1

��g, the functoriality and (a) imply Ff jS

n

= FgjS

n

.

(c ) If k = n + 1 and j

r

0

f = j

r

0

g with r = r(n + 1), then we consider

�

f ,

�g : R

m+n+1

! R

m+n+1

,

�

f = f � pr

1

, �g = pr

1

. Let us write i : R

m+n

! R

m+n+1

for

the inclusion x 7! (x; 0). For every y 2 R

m+n+1

with pr

1

(y) = 0 we have j

r

y

�

f = j

r

y

�g

and since f =

�

f � i, g = �g � i, we get Ff jS

n

= FgjS

n

.

(d) Let k = n + q, q > 0, and i : R

m+n

! R

m+n+q

, x 7! (x; 0). Analogously to

(a) we may assume that f and g have maximal rank at 0. Hence according to the

canonical local form of maps of maximal rank we may assume g = i.

(e) Let us write f = (id

R

m

; f

1

; : : : ; f

k

) : R

m+n

! R

m+k

, k > n, and assume

j

r

0

f = j

r

0

i with r = r(n+ 1). We de�ne h : R

m+n+1

! R

m+k

h(x; y) = (id

R

m

; f

1

(x); : : : ; f

n

(x); y; f

n+2

(x); : : : ; f

k

(x)).

Then we have

h � (id

R

m

; id

R

n

; f

n+1

) = f

h � i = (id

R

m

; f

1

; : : : ; f

n

; 0; f

n+2

; : : : ; f

k

).

Since j

r

0

(id

R

m

; id

R

n

; f

n+1

) = j

r

0

i, part (c ) of this proof implies

F (id

R

m+n; f

n+1

)jS

n

= FijS

n

and we get for every z 2 S

n

Ff(z) = Fh � Fi(z) = F (id

R

m

; f

1

; : : : ; f

n

; 0; f

n+2

; : : : ; f

k

)(z).

Now, we shall proceed by induction. Let us assume

Ff(z) = F (id

R

m

; f

1

; : : : ; f

n

; 0; : : : ; 0; f

n+s

; : : : ; f

k

)(z); s > 1;

for every z 2 S

n

and j

r(n+1)

0

f = j

r(n+1)

0

i. Let � : R

m+n+k

! R

m+n+k

,

�(x; x

1

; : : : ; x

n

; x

n+1

; : : : ; x

n+s

; : : : ; x

k

)

= (x; x

1

; : : : ; x

n

; x

n+s

; : : : ; x

n+1

; : : : ; x

k

):

We get

F (id

R

m

; f

1

; : : : ; f

n

; 0; : : : ; 0; f

n+s

; : : : ; f

k

)(z) =

= F

�

� � (id

R

m

; f

1

; : : : ; f

n

; f

n+s

; 0; : : : ; 0; f

n+s+1

; : : : ; f

k

)

�

(z) =

= F� � F (id

R

m

; f

1

; : : : ; f

n

; 0; : : : ; 0; f

n+s+1

; : : : ; f

k

)(z) =

= F (id

R

m

; f

1

; : : : ; f

n

; 0; : : : ; 0; f

n+s+1

; : : : ; f

k

)(z).
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So the induction yields Ff(z) = F (id

R

m

; f

1

; : : : ; f

n

; 0; : : : ; 0). Since we always

have r(n+ 1) � r(n), (a) implies

F (id

R

m

; f

1

; : : : ; f

n

)jS

n

= F id

R

m+n
jS

n

.

Finally, we get

Ff jS

n

= F (id

R

m

; f

1

; : : : ; f

n

; 0; : : : ; 0)jS

n

= F (i � (id

R

m

; f

1

; : : : ; f

n

))jS

n

= FijS

n

and the Theorem is proved. �

4. Bundle functors on FM

m

preserving �bred products

Let us notice that every m-dimensional manifoldM can be viewed as the trivial

�bration id

M

: M ! M . Analogously to [Kol�a�r, Slov�ak, 89] we say that a bundle

functor F : FM

m

! FM has the point property , if FM = M for allm-dimensional

manifoldsM .

4.1. Lemma. Let F : FM

m

! FM be a bundle functor with the point property.

For every �bration q

Y

: Y ! M in FM

m

we have the �bration Fq

Y

: FY ! M

which equals to the composition q

Y

� p

Y

and the assignment

C

1

(q

Y

: Y !M ) 3 s 7! Fs 2 C

1

(Fq

Y

: FY !M )

de�nes a natural transformation C

1

( )! C

1

( ) � F over �bred isomorphisms.

Proof. By de�nition, we have the commutative diagram

FY

Fq

Y

����! FM

p

Y

?

?

y










Y

q

Y

����! M

and for every f 2 invFM

m

(Y;

�

Y ), we have F (f�s�(Bf)

�1

) = Ff�Fs�(Bf)

�1

. �

4.2. Remark. The situation is somewhat special in the case m = 0. Indeed, for

connected zero-dimensional base manifolds we have C

1

( ) = Id

Mf

. Then Lemma

4.1 yields canonical natural sections Y ! FY , cf. [Kol�a�r, Slov�ak, 89]. If m > 0,

then such sections do not exist in general, e.g. taken F = J

1

there are no natural

connections.

Let us denote S

n

:= F

0

R

m+n

and k(n) := dimS

n

.

4.3. Lemma. Let F : FM

m

! FM be a bundle functor with the point property.

For every Y 2 ObFM

m;n

the �bers of p

Y

: FY ! Y are di�eomorphic to R

k(n)

.

Proof. We have to prove that S

n

is di�eomorphic to R

k(n)

for all n 2 N. Let us �x

the section i : R

m

! R

m+n

de�ned by s(x) = (x; 0) and let f

t

: R

m+n

! R

m+n

be
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the �ber homotheties f

t

(x; y) = (x; ty). So f

t

(0) = 0 for all t and f

0

coincides with

the composition

R

m+n

pr

1

��! R

m

i

�! R

m+n

:

Hence Lemma 4.1 implies that Ff

0

(S

n

) = Fi(0) 2 S

n

. Further Ff

t

is smoothly

parameterized and Ff

t

(S

n

) � S

n

. In this situation, a lemma from di�erential

topology, see [Kol�a�r, Slov�ak, 89] implies our assertion. �

4.4. Proposition. Let F : FM

m

! FM be a bundle functor with the point prop-

erty. We have k(n + p) � k(n) + k(p) and for every FM

m

-objects q

Y

: Y ! M ,

q

�

Y

:

�

Y !M the canonical map � : F (Y �

M

�

Y )! FY �

M

F

�

Y is a surjective sub-

mersion. The equality holds if and only if F preserves �bred products in dimensions

n and p of the �bers. So F preserves �bred products if and only if k(n) = n:k(1)

for all n 2 N

0

.

Proof. Let us consider the diagram

F (Y �

M

�

Y )

FY �

M

F

�

Y

pr

2

����! F

�

Y

pr

1

?

?

y

?

?

y

Fq

�

Y

FY

Fq

Y

����! M

where p and �p are the projections on Y �

M

�

Y .

According to locality of bundle functors, it su�ces to restrict ourselves to objects

from a local pointed skeleton. In particular, we shall deal with the values of F on

trivial bundles Y = M � S. In the special case m = 0, the Proposition was proved

in [Kol�a�r, Slov�ak, 89] and instead of modifying the original proof we shall deduce

our result from this case.

For every point x 2M we write (FY )

x

:= (Fq

Y

)

�1

(x) and we de�ne a functor

G = G

x

: Mf ! FM as follows. We set G(Y

x

) := (FY )

x

and for every map

f = id

M

� f

1

: Y !

�

Y , f

1

: Y

x

!

�

Y

x

we de�ne Gf

1

:= Ff j(FY )

x

: GY

x

! G

�

Y

x

. If

we restrict all the maps in the diagram to the appropriate preimages, we get the

product (FY )

x

pr

1

 �� (FY )

x

�(F

�

Y )

x

pr

2

��! (F

�

Y )

x

and �

x

: G(Y

x

�

�

Y

x

)! GY

x

�G

�

Y

x

.

Since G has the point property, �

x

is a surjective submersion, see [Kol�a�r, Slov�ak,

89, Proposition 5].

Hence � is a �bred morphism over the identity on M which is �ber-wise a sur-

jective submersion and consequently � is a surjective submersion. Since R

m+n

�

R

m

R

m+p

= R

m+(n+p)

, the inequality k(n+ p) � k(n) + k(p) follows.

Now, similarly to [Kol�a�r, Slov�ak, 89, Proposition 8], if the equality holds, then

� is a covering. Since FR

m+n

is simply connected for all n according to Lemma

4.3, we see that � is a global isomorphism. �

4.5. Example. We shall de�ne a class of bundle functors on FM

m

which preserve

�bred products, the so called vertical Weil bundles. Let A be any Weil algebra (i.e.
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a real, commutative, unital, local algebra) and T

A

:Mf ! FM be the correspond-

ing Weil bundle (i.e. T

A

M = Hom(C

1

(M ); A) and the action on morphisms is de-

�ned by the composition), see [Kainz, Michor, 87] or [Kol�a�r, 88] for de�nitions. We

de�ne V

A

: FM

m

! FM as follows. For every q

Y

: Y ! M , V

A

Y := [

x2M

T

A

Y

x

and for all f 2 FM

m

(Y;

�

Y ), f

x

= f jY

x

, x 2M , we set V

A

f j(V

A

Y )

x

:= T

A

f

x

. Since

V

A

(R

m+n

! R

m

) = R

m

� T

A

R

n

carries a canonical smooth structure, every �bred

atlas on Y !M induces a �bred atlas on V

A

Y ! Y . It is easy to verify that V

A

is

a bundle functor which preserves �bred products. In the special case of the algebra

D of dual numbers we get the vertical tangent bundle V .

4.6. Theorem. Let F : FM

m

! FM be a bundle functor with the point prop-

erty. The following conditions are equivalent.

(i) F preserves �bred products

(ii) For all n 2 N it holds dimS

n

= n(dimS

1

)

(iii) There is a Weil algebra A such that FY = V

A

Y for every trivial bundle

Y = M � S and for every mapping f

1

: S !

�

S we have F (id

M

� f

1

) =

V

A

(id

M

� f

1

) : F (M � S)! F (M �

�

S).

Proof. We proved the equivalence of (i) and (ii) in Proposition 4.4. Obviously

condition (iii) implies (ii). So we complete the proof if we show that (i) implies

(iii).

Consider a trivial bundle Y = M � S and let us repeat the construction of

the product preserving functors G = G

x

, x 2 M , from the proof of Proposition

4.4. Since according to the general result in [Kainz, Michor, 87] G

x

= T

A

for

certain Weil algebra A = A

x

, the conclusion is that F (id

M

� f

1

)j(FY )

x

= G(f

1

) =

V

A

(id

M

�f

1

)j(FY )

x

. At the same time the general theory of bundle functors implies

(we take A = A

0

) FR

m+n

= R

m

�R

n

� S

n

= R

n

� A

n

= V

A

R

m+n

for all n 2 N

(including the actions of jets of maps of the form id

R

m

�f

1

). So all the algebras A

x

coincide and since the bundles in question are trivial, we can always �nd an atlas

(U

�

; '

�

) on Y such that the chart changings are over the identity on M . But a

cocycle de�ning the topological structure of FY is obtained if we apply F to these

chart changings and therefore the resulting cocycle coincides with that obtained

from the functor V

A

. �

4.7. Remark. Two maps f , g : Y ! Q de�ned on a �bred manifold Y are said to

have the same (r; s)-jet j

r;s

y

f = j

r;s

y

g at y 2 Y if j

r

y

f = j

r

y

g and j

s

y

(f jY

x

) = j

s

y

(gjY

x

).

Bundle functor F on FM

m

is said to be of order (r; s) if for every f , g : Y !

�

Y ,

y 2 Y , the condition j

r;s

y

f = j

r;s

y

g implies Ff jF

y

Y = FgjF

y

Y . Analyzing the above

considerations we get immediately the following assertion.

4.8. Proposition. A bundle functor F : FM

m

! FM of order (0; s) preserves

�bred products if and only if F is naturally equivalent to a vertical Weil bundle.

4.9. Remark. If we drop the point property in the formulation of Theorem 4.6,

then the conditions (i) and (iii) are still equivalent, but they are not equivalent

to condition (ii), in general. There can appear some covering fenomena. Take as

an example the functor F (Y ! M ) = GM �

M

Y where G :Mf

m

! FM is the

bundle functor of elements of orientations, Ff = G(Bf) �

M

f .
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5. Natural operators T * TV

A

on projectable vector �elds

We deduce that beside possible invariant vector �elds on the bundles V

A

Y the


ow operator is the only natural one. We shall write brie
y D : T

proj

* TV

A

for

natural operators with the natural domain of all projectable vector �elds.

For every projectable vector �eld on Y its 
ow consists of local �bred isomor-

phisms. If we apply any bundle functor F on FM

m

to the 
ow, we get a 
ow of

a vector �eld on FY , the value of the 
ow operator F . In particular, we get the


ow operators V

A

. Let us further recall a construction of certain invariant vector

�elds, cf. [Kol�a�r, 88]. According to the general theory of Weil bundles, every ele-

ment d in the Lie group Aut(A) of the algebra automorphisms determines a natural

transformation d : T

A

! T

A

. Applying this construction �ber-wise, we get a natu-

ral transformation d : V

A

! V

A

. So every element a 2 Aut(A), the Lie algebra of

Aut(A), tangent to a one-parametric subgroup d(t) in Aut(A) determines vertical

vector �elds X

Y

: V

A

Y ! TV

A

Y tangent to the maps (d(t))

Y

at t = 0. The way of

the construction implies that the constant maps op(a)

Y

: X 7! X

Y

form a natural

operator op(a) : T

proj

* TV

A

.

5.1. Theorem. Let A be a Weil algebra, V

A

: FM

m

! FM, m > 0, be the

corresponding vertical Weil bundle. Then all natural operators D : T

proj

* TV

A

are of the form

D = kV

A

+ op(a) k 2 R, a 2 Aut(A).

Proof. As we discussed in section 1, D is fully determined by the values of D

R

m+n

on the germs of vector �elds at 0 2 R

m+n

. Every germ of a vector �eld on R

m+n

with a non-zero projection to R

m

can be transformed into the germ of

@

@x

1

where

(x

1

; : : : ; x

m

; y

1

: : : ; y

n

) are the canonical global coordinates on R

m+n

! R

m

and

@

@x

1

is invariant under translations t

(x;y)

on R

m+n

. Since our operators are regular,

the naturality implies that for every bundle functor F : FM

m

! FM and for

every functor G : FM

m

! Mf , two natural operators D,

�

D : T

proj

* (F;G) on

projectable vector �elds are equal if and only if

D

R

m+n
(

@

@x

1

)jF

0

R

m+n

=

�

D

R

m+n
(

@

@x

1

)jF

0

R

m+n

:

Further D

R

m+n(

@

@x

1

) must be invariant with respect to the isotropy group G �

invFM

m

(R

m+n

;R

m+n

) of

@

@x

1

.

Let us consider a natural operator D : T

proj

* TV

A

. For every �bred manifold

q

Y

: Y ! BY we denote P

Y

= Tq

Y

� Tp

Y

: TV

A

Y ! TBY , where p

Y

: V

A

! Y is

the canonical bundle functor projection. These maps form a natural transformation

P : TV

A

! TB and so the composition

~

D = P �D is a natural operator

~

D : T

proj

*

(V

A

; TB).

Let us choose a point z in the �ber S

n

= (V

A

)

0

R

m+n

and let us discuss the

possible values

~

D

R

m+n(

@

@x

1

)(z). For every f 2 G of the form f = f

0

� id

R

n

,

f

0

(0) = 0, the naturality yields

~

D

R

m+n(

@

@x

1

)(z) =

~

D

R

m+n(

@

@x

1

) � V

A

f(z)

= Tf

0

(

~

D

R

m+n(

@

@x

1

)(z)):
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�
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This implies that the value is an element in T

0

R

m

which is invariant under the

action of all maps f

0

= (x

1

g

1

; g

2

; : : : ; g

m

) where g

k

's are arbitrary functions in

variables x

2

; : : : ; x

m

. Hence

~

D

R

m+n
(

@

@x

1

)(z) = k(z)(

@

@x

1

)(0)

for some smooth function k : S

n

! R.

Consider now maps f 2 G of the form f = id

R

m

� f

1

, f(0) = 0. Naturality with

respect to these maps reads

k(z)

@

@x

1

(0) = id

TR

m

�

~

D

R

m+n
(

@

@x

1

)(z)

=

~

D

R

m+n(

@

@x

1

)(V

A

f(z))

= k(V

A

f(z))

@

@x

1

(0)

If f

1

is a homothety on R

n

, y 7! ty, t 2 R, then V

A

f(z) = tz and we get k(z) =

k(tz). Consequently k is a constant function.

Now let us assume that

~

D

R

m+n(

@

@x

1

)jS

n

= 0. Then the restrictions X

R

n

:=

D

R

m+n(

@

@x

1

)j(V

A

R

m+n

)

0

, 0 2 R

m

, are sections of the �brations TT

A

R

n

! T

A

R

n

and the naturality with respect to the maps f = id

R

m

� f

1

: R

m+n

! R

m+k

,

f

1

: R

n

! R

k

, f(0) = 0, implies that X

R

n

are invariant vector �elds on T

A

R

n

, i.e.

they form an absolute operator X in the sense of [Kol�a�r, 88]. By virtue of [Kol�a�r,

88, Proposition 1], X is of the form op(a) : T * TT

A

, a 2 Aut(A). In view of our

de�nitions this implies that D coincides with op(a) : T

proj

* TV

A

.

Finally, let V

A

be the 
ow operator on projectable vector �elds and let k be

the constant from the �rst part of the proof. Let us de�ne a natural operator

D

1

= D � kV

A

. Then

~

D

1

(

@

@x

1

)jS

n

= 0 so that D

1

= op(a) for some a 2 Aut(A)

and this concludes the proof. �
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