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This is a survey article based on the lectures given by the first author at the
Summer School Wis la 19, 19-29 August, 2019, captured by the second author.
The exposition aims at quick understanding of basic principles, omitting many
proofs or at least their details. The reader might find a lot of further information
in the cited sources throughout the text. In particular, our approach has been
heavily inspired by [12], while the general background on Cartan geometries
including the tractors can be found in [11].

The six sections of the article roughly correspond to the six lectures (about
100 minutes each). We first introduce some elements of the tractor calculus in
quite general situation. Then we focus rather on the overall structure of the
invariant linear differential operators and we do not present much of the tractor
calculus itself. In this sense, these lecture notes are complementary to [12], where
the reader should look for the genuine calculus.

The audience was assumed to have basic knowledge of differential geometry
as well as some representation theory (Lie groups and algebras, their represen-
tations, principal and associated bundles, connections, tensors, etc.). All this
background can be found e.g. in [17] and [11].

1 Tracy Thomas’ conformal tractors

Let us start with a quick review of the two very well known geometries, the
Riemannian and the conformal Riemannian ones.

1.1 Riemannian sphere

There are many ways how to view the standard sphere

Sn “ tx P Rn | }x} “ 1u
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as a homogeneous space. Perhaps the most common one is to consider the or-
thogonal group G “ Opn ` 1q which keeps Sn invariant and its subgroup H
of the maps fixing a given point o P Sn, isomorphic to Opnq. Clearly Sn “
Opn`1q{Opnq. The Lie algebras g “ LieG and h “ LieH enjoy the nice matrix
p1, nq block structure

g “

ˆ

0 ´vT

v X

˙

, h “

ˆ

0 0
0 X

˙

.

The tangent spaces are TxS
n “ ty P Rn`1| xx, yy “ 0u and the action of G on

Rn`1, x ÞÑ Ax, preserves both Sn and TSn, i.e. y ÞÑ Ay maps TxS
n ÞÑ TAxS

n.
Moreover, they preserve the scalar products on the tangent spaces and thus Sn

enjoys Opn` 1q as isometries of the natural structure of a Riemannian manifold
pSn, gq.

Observation 1. There are no other isometries of Sn apart from Opn` 1q.

The standard way to see the above observation holds true is the following.
Consider a unit vector e1 P Rn`1 and an isometry φ P IsompSn, gq. Then φpe1q P
Sn and φpe1q “ Ape1q for some A P Opn` 1q. Moreover, elements of the form
A´1˝φ are in the isotropy group of e1. As well known the Riemannian isometries
are (on connected components) uniquely determined by their differential in one
point. Thus the latter map coincides with its differential at e1 and we are finished.

Another possibility is based on the Maurer-Cartan form. It is more compli-
cated, but much more conceptual.

Consider the principal H-bundle G
p
ÝÑ G{H over Sn – G{H equipped with

the Maurer-Cartan form ω P Ω1 pG, gq. Since g splits as g “ h‘n (as h-module),
the Maurer-Cartan form also splits as ω “ ωh ‘ ωn, where the first part is the
principal connection ωh on G and the second part is the soldering form ωn. The
soldering form provides for all A P G isomorphisms

ωn : TAG{VAG
–
ÝÑ TppAqS

n – Rn ,

where VAG :“ kerωn is the vertical subspace. This means ωn makes G Ñ Sn

into a reduction of the linear frame bundle P 1Sn to H.
Now any isometry φ lifts to the level of frame bundles and can be restricted

to G and thus we have a lift φ̃ : G ÝÑ G such that φ̃˚ωn “ ωn. Because ωh is

principal connection preserving the metric we also have φ̃˚ωh “ ωh. We see that

φ̃˚ω “ ω, i.e. φ̃ preserves the Maurer-Cartan form.
Notice that in this setting, ωh must be the only torsion free metric connection

on Sn. Thus, we arrived at the canonical Cartan connection on Sn in the sense
of the so called Cartan geometry as defined below.

For any principal fiber bundle G with structure group P , we shall write rg

for the principal right action of elements in P and ζX means the fundamental
vector field, ζXpuq “

d
dt |0r

exp tXpuq.

Definition 1. For a pair H Ă G of a Lie group and its Lie subgroup, a Cartan
geometry is a principal H-bundle p : P Ñ M endowed with a g-valued 1-form
ω P Ω1pP, gq satisfying for all h P H,X P h, u P P the following three properties
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Adph´1q ˝ ω “ prhq˚ω, (1)

ωpζXpuqq “ X, (2)

ωpuq : TuP
–
ÝÑ g. (3)

Now, our observation follows from a general result:

Theorem 1 (Fundamental theorem of calculus). Let ωG be the Maurer-
Cartan form of a Lie group G with the Lie algebra g, M a smooth manifold
endowed with a 1-form ω P Ω1pM, gq. Then for each x PM there is a neighbor-
hood U Q x and f : U Ñ G such that f˚ωG “ ω, if and only if

dω `
1

2
rω, ωs “ 0. (4)

If M is connected and f1, f2 : M Ñ G with f˚1 ωG “ f˚2 ωG on M , then there
exists a unique c P G such that f2 “ cf1 on M .

Under the additional requirement that Tf : TxM Ñ TfpxqG is a linear iso-
morphism for each point x, the theorem shows that the local Lie group structure
is uniquely determined by the Maurer-Cartan form satisfying (4).

The theorem is proved by building the graph of the mapping f , see [11,
section 1.2.4]. Notice, in dimension one the condition is empty and so with the
additive group G “ R we obtain just the existence of primitive functions up to
a constant. If G was the multiplicative group R`, the theorem would show how
the logarithmic derivatives prescribe the functions, up to a constant multiple.

In our case each isomorphism φ : Sn Ñ Sn lifts to the unique map f : GÑ G
satisfying f˚ω “ ω. The Maurer-Cartan forms on all Lie groups satisfy the
condition in (4) and thus, even locally, f can differ from the identity map only
by an element of G.

1.2 Conformal Riemannian sphere

A conformal Riemannian manifold pM, rgsq is a manifold M with a conformal
class of metrics. Two metrics g, g̃ are representatives of the same conformal class
if they differ by some positive function, g̃ “ Ω2g, Ω P C8pMq. Conformal isome-
try is a diffeomorphism, whose differentials at all points belong to the conformal
orthogonal group COpnq for the given structures on the tangent spaces.

The conformal sphere is pSn, rgsq where rgs includes the standard round met-
ric. Let us discuss the following question: What is the group of all conformal
isomorphisms on Sn making it into a homogeneous space G{P?

Option 1. We can go the ‘brutal force’ way. Take Rn with the conformal class
containing the Euclidean metric and write down the PDEs for an arbitrary
locally defined conformal isomorphism φ, i.e., we request the differentials of φ
are in COpnq at all points. There is the famous Liouville theorem saying that
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each such φ is generated by the Euclidean motions and the sphere inversions.
An elementary (but tricky) proof can be found in [20, section 5.4]. In particular,
if we compactify Rn by the one point at infinity, we can extend all such local
diffeomorphisms to globally defined conformal maps on Sn.

Let us try to do it in a smart way. Consider Rn`2 with the pseudo-Euclidean
metric Qpx, xq “ 2x0xn`1 ` x21 ` ¨ ¨ ¨ ` x2n of signature pn ` 1, 1q and define C
to be the null-cone of this metric. Now, we may identify the sphere Sn with
the projectivization PC of this cone and write down the action of all the latter
maps in projective coordinates on PRn`2. We can represent the null-vectors of
the affine Rn Ă Sn as p1 : x : ´ 1

2}x}
2q, while the remaining infinite point in Sn

is p0 : 0 : 1q. Now we may easily identify the above conformal maps as actions
of particular matrices in Opn` 1, 1q on the projectivized cone PC.

¨

˝

1
x

´ 1
2}x}

2

˛

‚ ÞÑ

¨

˝

a´1 0 0
0 A 0
0 0 a

˛

‚

¨

˝

1
x

´ 1
2}x}

2

˛

‚ (5)

¨

˝

1
x

´ 1
2}x}

2

˛

‚ ÞÑ

¨

˝

1 0 0
v E 0

´ 1
2}v}

2 ´vT 1

˛

‚

¨

˝

1
x

´ 1
2}x}

2

˛

‚ (6)

¨

˝

1
x

´ 1
2}x}

2

˛

‚ ÞÑ

¨

˝

0 0 ´2
0 E 0
´ 1

2 0 0

˛

‚

¨

˝

1
x

´ 1
2}x}

2

˛

‚ (7)

Notice in the last line that the sphere inversion σ P Opn`1, 1q is in a different
component than the unit, while the nontrivial maps fixing the origin and having
the identity as differential there are obtained by composing σ ˝ τv ˝ σ, with the
translation τv P Opn` 1, 1q from (6), cf. [20, section 5.10].

Option 2. Similarly to the Riemannian case, we first choose the right homoge-
neous space Sn “ G{P with G “ Opn` 1, 1q, P the isotropy group of one fixed
point in Sn, and show that G is just the group of all conformal isomorphisms.
Again, we can achieve that by building a reasonably normalized Cartan geom-
etry for each conformal Riemannian manifolds. Then the Maurer-Cartan form
ωG of G will be preserved by all conformal morphisms and thus the Theorem 1
applies.

We shall come back to such normalizations of Cartan geometries later in the
fifth lecture.

At the level of Lie algebras, g “ LieG decomposes as g “ g´1‘p, where g´1

are the infinitesimal translations with matrices

g´1 “

"

¨

˝

0 0 0
v 0 0
0 ´vT 0

˛

‚

*
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while

p “ g0 ‘ g1 “

"

¨

˝

´a 0 0
0 A 0
0 0 a

˛

‚

looooomooooon

copnq

‘

¨

˝

0 w 0
0 0 ´wT

0 0 0

˛

‚

loooooomoooooon

Rn

*

.

Clearly, g1 is a p-submodule (actually an ideal), while g0 is identified with the
p-module p{g1 with the trivial action of g1. This is the well known decomposition
of p into the reductive quotient and the nilpotent submodule.

At the level of Lie groups, this corresponds to the splitting of the isotropy
group P into the semi-direct product of COpnq containing the conformal iso-
morphisms fixing the origin and determined by their first derivatives, and the
nilpotent normal subgroup P` Ă P of those conformal isomorphisms fixing the
origin with trivial first differential and determined by the second order deriva-
tives. We shall also write G0 “ P {P` and this reductive group decomposes
further into the semisimple part Opnq and the center R.

1.3 Towards tractors

The conformal Riemannian structure on Sn can be read off the standard metric
Q on Rn`2 as follows. Any choice of a non-zero section of the null-cone C (e.g.
we may choose one of the non-zero components C` of C and consider sections
there), seen as line bundle over its projectivization Sn, provides the identification
of the tangent bundle TpS

n with the quotient of

TpC` “ tz P Rn`2 | Qpz, pq “ 0u “ xpyK

by the line xpy (notice p is null, so this line is in the tangent space). Clearly
xpyK{xpy is linearly isomorphic to TpS

n and since p is null, Q induces a positive
definite metric on TpS

n. If we multiply p by a constant a ‰ 0, then the induced
metric will change by the positive multiple a2. By the very construction, this
conformal structure is invariant with respect to the natural action of Opn` 1, 1q
on the cone C. Thus, we may also view C` as the square root of the line bundle
of the conformal metrics in this class.

Of course, there is no preferred affine connection on Sn in this picture. But
if we consider the flat affine connection ∇ on Rn`2, then we can consider the
parallel (constant) vector fields in the trivial vector bundle C ˆ Rn`2 along
the null-lines in C and view them as fields in the trivial vector bundle T Sn “
Sn ˆ Rn`2.

The slight problem with this point of view is that we should expect that
the fibers of T Sn split into the ‘vertical part’ along the null-lines in C, the
‘tangent part’ to Sn and the complementary 1-dimensional part in Rn`2. While
the vertical part is well defined, such a splitting clearly depends on the choice
of the identification of Sn with a section of C Ñ Sn. Moreover, we should hope
to inherit an invariant connection from the flat connection ∇ on Rn`2. Before
answering these questions, we are going to indicate a much simpler abstract
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description of such objects and we come back to these functorial objects and
constructions in the fourth lecture.

Let H Ă G be a Lie subgroup and G Ñ G{H the corresponding Klein
geometry. Notice that G Ñ G{H is a principal H-bundle. Consider any linear
representation V of G and the associated bundle V “ G ˆH V, i.e., the classes
of the equivalence relations on Gˆ V given by pu, vq „ pu ¨ h, h´1 ¨ vq.1

In particular, we may identify the class rru, vss with the couple pu ¨H,u ¨ vq.
Indeed, taking another representative, we arrive at

ppu ¨ hq ¨H,u ¨ h ¨ ph´1 ¨ vqq “ pu ¨H,u ¨ vq

and thus V is the trivial bundle on M

V “ G{H ˆ V.

Moreover, there is the Maurer-Cartan form ω on G. Extending G Ñ G{H to
the principle G-bundle G̃ “ G ˆH G Ñ G{H, the form ω uniquely extends to
a principal connection form ω̃ on G̃. Finally, we can further identify V as the
associated space V “ G̃ˆG V. Thus we see that there is the induced connection
∇ on all such bundles V.

1.4 Tracy Thomas’ tractors T

Now we come back to the conformal sphere and we apply the above abstract
construction. Thus, G “ Opn ` 1, 1q, and H “ P Ă G is the isotropy group of
the fixed origin p1 : 0 : 0q, i.e., the Poincare subgroup in G with the Lie algebra
p as discussed above. Further, we may take T “ Rn`2 with the standard action
of G.

The final ingredients we need are the weights of line bundles or more general
tensor bundles on conformal manifolds. Consider Rrws as the representation of P
such that P` and Opnq act trivially, while the central element λ “ exppaEq P G0

acts as λ ¨ x “ e´aw x. Here E is the so called grading element in g, i.e.,

λ “ exp

¨

˝

a 0 0
0 0 0
0 0 ´a

˛

‚“

¨

˝

ea 0 0
0 Idn 0
0 0 e´a

˛

‚.

Now, the line bundles of weights w are defined as

Erws “ GˆP Rrws.

At the level of the infinitesimal action, the central element aE P g0 will act as
a ¨ x “ ´wax. Notice the minus sign convention – this is because we want the
line bundle of the conformal metrics to get the weight two.

1 Here u ¨ h is multiplication in G and h´1
¨ v is the left-action of H or G on V given

by the chosen representation.
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Taking tensor products with line bundles, we arrive at the general weighted
bundles Vrws “ V b Erws for any representation V of P or even G.

Now, look at the action (5) on the components of T. We see immediately
that the representation space T “ Rn`2 splits as G0-module into

T “ Rr1s ‘ Rnr´1s ‘ Rr´1s,

where the right ends are P -submodules. In particular, Rr´1s is a P -submodule,
while Rr1s is the projecting component. Thus, the trivial bundle T splits (once
a section of C` and thus one of the metrics in the class are fixed):

T “ Er1s ‘ TSnr´1s ‘

V C`

Er´1s

TC`

.

As mentioned above, the bundle T comes equipped with the canonical metric
induced by Q and TC` “ pV C`q

K. Thus, there is the positive definite metric
g : TSnr´1s ˆ TSnr´1s Ñ E , i.e. g is a section of S2pT˚Snqr2s. This is the
conformal class of metrics on Sn viewed as the section of a weighted metric
bundle and it allows us to raise and lower tensor indices of arbitrary tensors
exactly as in the Riemannian case, but at the expense of adding or subtracting
the weight 2. For example, we may write T “ Er1s ‘ T˚Snr1s ‘ Er´1s.

Finally, any section σ of the projecting part Er1s provides the Riemannian
metric g “ σ´2g.

2 Conformal to Einstein and the tractor connection

Tracy Thomas came across his conformal tractors in [22], when constructing ba-
sic invariants of conformal geometry via a linear connection on a suitable vector
bundle (instead of building an absolute parallelism in the Cartan’s approach).
He succeeded in finding the simplest of such vector bundles, together with an
invariant linear connection. He also worked out the necessary transformation
properties based on the so called Schouten tensor.

All these objects were reinvented in [1] and here the authors also discussed
the following question: Given a conformal class rgs on a manifold, is there a
representative of the class which is an Einstein metric? We shall follow this
development and thus we shall find the Thomas’ tractors when prolonging a
conformally invariant geometric PDE (also following [12]).

In the sequel, we shall use the abstract index formalism. Moreover we shall
mostly not distinguish between the bundles VM and the spaces of their sections
Γ pVMq. Thus, we shall talk about vector fields in Ea or one-forms in Ea. Simi-
larly, ηab is either a two-form in Eab or a Ea-valued one-form. As usual, repeated
indices at different positions (lower versus upper) mean the relevant trace.
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2.1 The Einstein scales

Recall that the curvature Rab
c
d of the unique torsion-free metric connection ∇

decomposes into the trace-free Weyl tensor Wab
c
d and the Ricci tensor Rab. We

shall see later why a trace-adjusted version of Rab, the so called Schouten tensor,

Pab “
1

n´ 2

ˆ

Rab ´
1

2pn´ 1q
Rgab

˙

where R “ gabRab is the scalar curvature, is very useful. (Notice, here we use
the opposite sign convention for the Schouten tensor P than in [11], i.e. it is the
same as in [12].)

Of course, we should believe there is an overdetermined distinguished PDE
system on the scales, i.e. the choices of the metrics in the class, whose solutions
correspond to the Einstein scales. We can write down all such PDEs with the
help of any of the metrics in the class and, as a matter of fact, the equation must
be independent of our choice, i.e. conformally invariant. A straightforward check
reveals (we shall come to such techniques later) that the following equation on
(the square roots of) the scales σ in Er1s is invariant

∇pa∇bq0σ ` Ppabq0σ “ 0 (8)

Now, if σ is a nowhere zero solution, we may write the equation using the metric
connection corresponding to σ and thus, σ is parallel and we arrive at Ppabq0 “ 0.
This is exactly the condition to be Einstein, i.e., the trace-free part of Ricci
vanishes and σ´2gab is Einstein.

We are going to apply the classical method of prolongation of overdetermined
systems of PDEs to show that solutions of (8) are equivalent to parallel tractors
in T .

First, we add trace part ρg to the equation (8), i.e, ρ is a new p´1q-weighted
quantity ρ P Er´1s and the new equation becomes

∇pa∇bqσ ` Ppabqσ ` gabρ “ 0. (9)

Moreover, we know that the Ricci curvature is symmetric for all scales, i.e. the
Levi-Civita connections of the metrics in the class, and thus the Schouten tensor
is symmetric too. Finally, the antisymmetric part of the second order derivative
is given by the action of the curvature Rab

c
d as a 2-form valued in the Lie algebra

sopn,Rq and these values have no central component to act on the densities Erws.
Thus our equation becomes

∇a∇bσ ` Pabσ ` gabρ “ 0. (10)

In the next step, we give the derivative ∇aσ the new name µa “ ∇aσ P Ear1s.2
Thus the latter equation (10) can be rewritten as the system of two first order

2 We know that µa must be of weight 1 because covariant differentiation does not alter
weights and σ is already of weight 1.



Notes on Tractor Calculi 9

equations

∇aσ ´ µa “ 0

∇aµb ` Pabσ ` gabρ “ 0
(11)

This system is not yet closed since there is still the uncoupled variable ρ. Thus
we have to prolong the system and we need some computational preparation first.

Recall the invariant conformal metric g is covariantly constant in all scales
and differentiate (10):

∇a∇b∇cσ ` gbc∇aρ` p∇aPbcqσ ` Pbc∇aσ “ 0 . (12)

Contract (12) by hitting it with gab and gbc, respectively:

∆p∇cσq `∇cρ`∇aPacσ ` P
a
c∇aσ “ 0, (13)

∇ap∆σq ` n∇aρ`∇aPσ ` P∇aσ “ 0, (14)

where P is the trace of Pab. Next, contracting the Bianchi identity and some
straightforward computations lead to

∇aPac “ ∇cP (15)

r∇c, ∆s “ Rcb
b
d∇d . (16)

Subtracting (13) from (14) and using (15) and (16) we arrive at

pn´ 1q∇cρ` P∇cσ ´ P
a
c∇aσ `Rcb

b
d∇dσ “ 0. (17)

Further notice

Rcb
b
d∇dσ “ ´Rca∇aσ “ p2´ nqPc

a∇aσ ´∇cPσ

which together with (17) yields, up to the constant factor n´ 1

∇cρ´ Pc
aµa “ 0 (18)

and our system of equations closes up. Summarizing, the Einstein scales cor-
respond to nowhere zero solutions of our system of three first order equations
coupling σ, µa, and ρ and all this should be understood in terms of conformally
invariant objects and operations.

Indeed, this is the content of the following theorem. For now, we formulate it
only for the solutions to our equations on the sphere Sn, although our discussion
on the equations has concerned general conformal Riemannian manifolds.

Theorem 2. Let T “ Er1s ‘ T˚Snr1s ‘ Er´1s be the bundle of the Thomas’
tractors on the conformal sphere. Define the following operator on T

∇T
a

¨

˝

σ
µa
ρ

˛

‚“

¨

˝

∇aσ ´ µa
∇aµb ` gabρ` Pabσ

∇aρ´ Pabµ
b

˛

‚, (19)
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where ∇a on the right-hand side refers to the Levi-Civita connection of the metric
σ´2g.

The operator ∇T is a linear connection on T which is conformally invariant.
Moreover, solutions to (8) are in bijective correspondence with parallel tractors,
i.e. with sections t P Γ pT q such that ∇T t “ 0.

Notice that on the sphere, T is the trivial bundle Sn ˆ T and we shall see
soon that ∇T is the flat connection there which we mentioned earlier. So we also
postpone the proof of this theorem. (Actually, we see immediately that this is a
connection, but we should check its curvature and, in particular, how it depends
on the choice of the fixed metric.)

Obviously, all the parallel tractors are determined uniquely by their values
in T in the origin. In particular, we managed to compute all Einstein metrics on
the conformal sphere.

2.2 Conformal invariance

What do we really mean when saying that objects or operations are conformally
invariant?

The intuitively obvious answer should be that they are independent of our
choice of the metric in the conformal class. So we should start to look how
the covariant derivative changes if we change the scale. Consider the change of
our metric by taking ĝ “ Ω2g with a positive smooth function Ω, and write
Υa “ Ω´1∇aΩ.

Lemma 1. Let ∇̂ be the Levi-Civita connection for the rescaled metric ĝ. Then
for all v P Ea, α P Ea, ρ P Erws

∇̂av
b “ ∇av

b ` Υav
b ´ Υ bva ` Υ

cvcδ
b
a (20)

∇̂aαb “ ∇aαb ´ Υaαb ´ Υbαa ` Υ
cαcgab (21)

∇̂aρ “ ∇aρ` wΥa. (22)

Proof. Recall the Christoffel symbols of Levi-Civita connection are expressed in
any coordinates via the derivative of the metric coefficients (we write ∇i for the
partial derivatives here)

Γ ijk “
1

2
gi`p∇kg`j `∇jg`k ´∇`gjkq . (23)

Conformal rescaling of the metric g ÞÑ ĝ “ Ω2g affects all other objects derived
from metric, e.g. the new inverse metric is ĝ´1 “ Ω´2g. Thus, the Christoffels
(23) change

Γ̂ ijk “ Γ ijk `
1

Ω

`

δij∇kΩ ` δ
i
k∇jΩ ´ gjk∇iΩ

˘

“ Γ ijk ` δ
i
jΥk ` δ

i
kΥj ´ gjkΥ

i.
(24)
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Now recall, the covariant derivative is in coordinates given as the directional
derivative modified by the action of the Christoffels viewed as opnq-valued one-
form. Thus the latter formula provides exactly the three formulae in the state-
ment.

The formulae from the lemma allow to compute easily the changes of confor-
mal derivatives on all weighted tensor bundles.

For example, considering possible first order operators on weighted forms
Earws, we get

∇̂aαb “ ∇aαb ` pw ´ 1qΥaαb ´ Υbαa ` Υ
cαcgab,

and we immediately see that the antisymmetric part ∇raαbs is invariant for the
weight w “ 0 (this is the exterior differential on one-forms), the trace-free part
of the symmetrization ∇paαbq0 is invariant for w “ 2 (we may view this as the
operator on the vector fields in Ea “ Ear2s and the kernel describes the conformal
Killing vector fields), and finally the trace ∇aαa is invariant for w “ 2´ n (this
is the divergence of vector fields with weight ´n).

Let us look at the geometric objects next. On the conformal sphere Sn, the
category of natural objects was defined in 1.3 – those are the homogeneous bun-
dles GˆPV corresponding to any representation of P . If the representation comes
from a representation of G0 “ COpnq, extended by the trivial representation of
P` “ exp g1, the corresponding bundles extend to all conformal Riemannian
manifolds. Indeed, since general conformal Riemannian manifolds are given as
reduction of the linear frame bundles to the structure group G0, such bundles
are well defined on all of them.

If we deal with more general P -representations, then we arrive at sums of
the latter bundles as soon as we fix a metric g in the conformal class, but the
components are not given invariantly. We shall explain the general procedure
in the next lecture and, in particular, we shall see how this behavior extends
and defines such bundles on all conformal Riemannian manifolds. For now, just
believe that in the case of the Thomas’ tractor bundles we face the following
transformation rule

¨

˝

σ̂
µ̂a
ρ̂

˛

‚“

¨

˝

σ
µa ` σΥa

ρ´ Υ cµc ´
1
2Υ

cΥcσ

˛

‚ (25)

Of course, a straightforward (and really tedious) computation can reveal that
considering the formulae for the transformations of covariant derivatives from
the above Lemma and (25), the linear tractor connection ∇T

a is a well defined
conformally invariant operator on the tractors. Fortunately, we do not have to
check this the pedestrian way and can wait for general reasons.

3 Parabolic geometries

We met the general Cartan geometries with the model G{H in the Definition 1. If
the Lie group G is semisimple and the subgroup H is a parabolic subgroup in G,
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we talk about the parabolic geometries. This class of Cartan geometries includes
many very important examples and provides a unified theory for all of them. In
this lecture we shall introduce some basic features and clarify many phenom-
ena in the conformal case on the way. Detailed exposition of the background,
including the necessary representation theory is available in [11].

In general, the definition of the parabolic subgroups is a little subtle. For
us, the simplest approach is via their Lie algebras. The parabolic ones are those
which contain a Borel subalgebra and the choices of parabolic subalgebras p Ă g
correspond to graded decompositions of the semisimple Lie algebras

g “ g´k ‘ ¨ ¨ ¨ ‘ gk.

This means that Lie brackets respect the grading, rgi, gjs Ă gi`j , and p “
g0 ‘ p` “ g0 ‘ g1 ‘ ¨ ¨ ¨ ‘ gk is the decomposition into the reductive quotient
g0 and nilpotent subalgebra p`. Moreover, there always is the unique grading
element E in the center of g0 with the property rE,Xs “ jX for all X P gj .

The closed Lie subgroups P Ă G are called parabolic if their algebras p “
LieP are parabolic.

If G is a complex semisimple Lie subgroup, then there is a nice geometric
description: P Ă G is parabolic if and only if G{P is a compact manifold (and
then it is a compact Kähler projective variety), see e.g., [24, Section 1.2]. In the
real setting, the so called generalized flag varieties G{P with parabolic P are
always compact.

3.1 |1|-graded parabolic geometries

For the sake of simplicity, we shall restrict ourselves to the so called |1|-graded
cases here, i.e., k “ 1. Thus we shall deal with Lie groups with the algebras

g “ g´1 ‘ g0 ‘ g1
p

(26)

where p refers to the parabolic subalgebra.
Now, we consider Cartan geometries modelled on G Ñ G{P , i.e. principal

P -bundles G Ñ M with Cartan connections ω P Ω1pG, pq. Such a connection ω
splits due to (26) as

ω “ ω´1 ‘ ω0 ‘ ω1.

We shall further consider all reductions of the principal bundles G to the structure
group G0 “ P { exp g1, i.e. we are interested in all equivariant mappings

σ : G0 “ G{ exp g1 Ñ G

with respect to the right principal actions. The diagram below summarizes our
situation (notice we are also fixing the subgroup G0 in the semidirect product
P “ G0 ˙ exp g1, following the splitting of the Lie algebra)

G0 Ă P ñ G G0 M.
σ
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The Cartan connection ω allows us to identify the cotangent bundle T˚M
with GˆP g1, where the action of P` is trivial. Similarly TM » GˆP g{p, where
g{p » g´1, again with trivial action of P`. The duality is provided by the Killing
form on g.

Recall that all sections φ of associated bundles G ˆP V are identified with
equivariant functions f : G Ñ V, i.e. φpxq “ rrupxq, fpupxqqss and so

fpu ¨ pq “ p´1 ¨ fpuq.

Once we restrict the structure group to the reductive part of P , the pullback
of the Cartan connection along σ splits into the so called soldering form valued
in g´1, principal connection form valued in g0, and the one-form valued one-
form P (which we shall see is the general analog of the Schouten tensor Pab from
conformal geometry)

σ˚ω “ θ ‘ σ˚ω0 ‘ P .

We can also take the other way round – since P` is contractible (as the
exponential image of a nilpotent algebra), we may start with G “ G0 ˆ P`, fix
one of the (reasonably normalized) pullbacks σ˚ω0 and use some suitable P to
define the Cartan connection on the entire G. We shall see later, the Schouten
tensor (with the opposite sign, see the comment in the beginning of the second
lecture) is the right choice to get the normalized Cartan connection in the case
of conformal Riemannian geometries, taking one of the Levi-Civita connections
for σ˚ω0. But we shall stay at the level of general Cartan connections now, so P
is just the relevant pullback.

Two such reductions differ by a one form Υ , viewed as equivariant function
Υ : G0 Ñ g1:

σ̂ “ σ ¨ expΥ.

3.2 Natural bundles and Weyl connections

For each representation V of P there is the functorial construction of the bundles
V “ G ˆP V and the morphisms of the Cartan geometries act on them in the
obvious way.

Actually we do not need the Cartan connection for this definition, but notice
that the morphisms of the principal bundles respecting the Cartan connections
are rather rigid in the following sense. If we fix their projection to the base
manifolds, the freedom in covering them is described by the kernel K of the
homogeneous models, i.e. the subgroup of P acting trivially on G{P , see [11,
section 1.5.3]. This means two such morphisms may differ only by right principal
action of elements from K. Usually K is trivial or discrete.

Consider now a representation V of P and its decomposition as a G0-module.
The action of the grading element E P g0 provides the splitting

V “ V0 ‘ ¨ ¨ ¨ ‘ Vk,

where the action of g1 moves elements from Vi to Vi`1. Clearly, any section v of
V decomposes into the components vi : G0 Ñ Vi as soon as we fix our reduction.
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Further, fixing our reduction σ we have the affine connection ωσ “ σ˚pωď0q

(which is a Cartan connection, i.e., an absolute parallelism, on the linear frame
bundle obtained as the sum of the soldering form and connection form). As
well known, the corresponding covariant derivative is obtained via the constant
vector fields:

∇σ
ξ vpuq “ ω´1

σ pXq ¨ vpuq

where X P g´1 corresponds to the vector ξ in a frame u P G0, i.e., we simply
differentiate a function in the direction of a vector (the horizontal lift of ξ to
G0). Notice that this connection ∇σ always respects the decomposition of V
given by the same reduction. We call all these connections the Weyl connections
(and we obtain the genuine Weyl connections in the conformal case with the
Schouten tensor ´P, i.e. all the torsion free connections preserving the conformal
Riemannian structure).

Our next theorem says, how the splitting of V, the covariant derivative, and
also the one-form P change if we change the reduction σ.

In order to formulate the results, let us introduce some further conventions.
Recall, tangent vectors ξ P TxM can be identified with right-equivariant func-
tions X on the frames over x valued in g´1 “ g{p. This identification can be
written down with the help of the Cartan connection, X “ ω´1puqpξ̃q for any
lift ξ̃ of ξ to TuG. By abuse of notation we shall write the same symbol ξ for the
vector in TM and the corresponding element X in g´1. Similarly we shall deal
with the one forms Υ represented by elements in g1, and also the endomorphisms
of TM represented by elements in g0.

For instance, adΥ pξq¨v means we take the Lie algebra valued functions Υ and
ξ, take the Lie bracket of their values and act by the result on the value of the
function v via the representation of g0 in question. Of course, we may use only
such operations which ensure the necessary equivariance (which is guaranteed
when taking the adjoint action within the Lie algebra).

Theorem 3. Consider σ̂ “ σ ¨ expΥ and use the hat to indicate all the trans-
formed quantities. For every section v “ v0‘¨ ¨ ¨‘vk in the representation space
of the representation λ : pÑ glpVq, and vector ξ in the tangent bundle,

v̂` “ pλpexpp´Υ qqpvqq` “
ÿ

i`j“`

p´1qi

i!
λpΥ qipvjq. (27)

If λ is a completely reducible P -representation, then

∇̂ξv “ ∇ξv ´ adΥ pξq ¨ v. (28)

Finally, the one-form P transforms

P̂ “ Ppξq `∇ξΥ `
1

2
padΥ q2pξq. (29)

Proof. The formula (27) is just a direct consequence of our definitions and reflects
the fact that by changing the reduction σ, the equivariant function v : G Ñ V
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is restricted to another subset, shifted by the right action of exppΥ q. Thus, the
values have to get corrected by the action of pexpΥ q´1 “ expp´Υ q. The formula
then follows by collecting the terms with the right homogeneities.

The transformation of the derivative is also not too difficult. Consider a
section v : G0 Ñ V and recall ∇ξv is given with the help of any lift ξ̃ to G0:

∇ξv “ ξ̃ ¨ vpuq ´ ω0pTuσ ¨ ξ̃q ¨ vpuq. (30)

Writing rp “ rp , pq and ru “ rpu, q for the right action,

Tuσ̂ ¨ ξ̃ “ Tσpuqr
expΥ puq ¨ Tuσ ¨ ξ̃ ` TexpΥ puqrσpuq ¨ TuexpΥ ¨ ξ̃. (31)

The second term in (31) is vertical in G Ñ G0 and thus

ω0pTuσ̂ ¨ ξ̃q “ ω0pTσpuqr
expΥ puq ¨ Tuσ ¨ ξ̃q.

By equivariancy of the Cartan connection ω, this equals to the g0 component
of AdppexpΥ puqq´1qpωpTuσ ¨ ξ̃qq. Now, notice ω´1pTuσ ¨ ξ̃q is exactly the coor-
dinate function representing the vector ξ. Thus, the only g0 component of the
latter expression is adp´Υ puqqpξq and this has to act on v in our transformation
formula.

The transformation of the P tensor is also deduced from (31), but it is more
technical and we refer to the detailed proof in [11, section 5.1.8].

Similar formulae are available for general parabolic geometries and their Weyl
connections. Just the non-trivial gradings of TM and T˚M make them much
more complicated. The complete exposition can be read from [11, sections 5.1.5
through 5.1.9].

Notice also that we are allowing all reductions σ. But some of them are
nicer than others – we may reduce the structure group to the semisimple part
Gss0 of G0. These further reductions correspond to sections of the line bundle
L “ G0{G

ss
0 , which can be viewed as the associated bundle G0 ˆG0 exptwEu

carrying the natural structure of a principal bundle with structure group R`.
This is the line bundle of scales and its sections correspond to Weyl connections
inducing flat connections on L. In the conformal case, these are just the choices
of metrics in the conformal class. The induced connection on L has got the
antisymmetric part of P as its curvature and thus, we can recognize such more
special reductions by the fact that for these the Rho-tensor is symmetric.

3.3 Higher order derivatives

Notice, in Theorem 3 we provided the formula for the change of the Weyl con-
nections for completely reducible P -modules only. This is because the formulae
get very nasty for modules with nontrivial g1 actions. But even dealing with
tensorial bundles, iterating the derivatives always leads to such modules.

In order to avoid at least part of these hassles, we should seek for better linear
connections related to our reductions σ and the fixed Cartan connection ω. An
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obvious choice seems to be the following one. Fixing a reduction σ consider the
principal connections G with the connection form γσ P Ω1pG, pq,

γσpσpuq ¨ gqpξq “ ωppσpuqqpTr
g´1

¨ ξq

for all u P G0, ξ P Tσpuq¨g, g P P`. In words, we restrict the p-component of ω to
the image of σ and extend it the unique way to a principal connection form.

Clearly, this connection form defines the associated linear connections on all
natural bundles, we call them the Rho-corrected Weyl connections ∇P. They
were perhaps first introduced in [21] and exploited properly in [6]. In the case
of conformal Riemannian structures, these concepts are closely related to the so
called Wünsch’s conformal calculus, cf. [23].

Theorem 4. Consider natural bundle V “ G ˆP V and a reduction with the
Weyl connection ∇ and its Rho-corrected derivative ∇P. Then

∇P
ξ v “ ∇ξv ` Ppξq ¨ v (32)

∇̂P
ξ v “ ∇P

ξ v `
ÿ

iě1

p´1qi

i!
padΥ qipξq ¨ v. (33)

Proof. In order to see the difference between ∇ and ∇P, we can inspect the
expression (30) with the choice of the horizontal vector field ξ̃ lifting ξ. Thus
∇ξv “ ξ̃¨v. On the other hand, choosing the lift Tσ¨ξ̃ on G, we obtain ω0pTσ¨ξ̃q “

0 and ω1pTσ ¨ ξ̃q represents Ppξq. Equivariancy of v then implies our formula (32)
along the entire image of σ.

Let us now consider the horizontal lift ξ̃ of ξ on G with respect to γσ. Then
∇P
ξ v is represented by ξ̃ ¨ v, while ξ̃ ¨ v ` γσ̂pξ̃q ¨ v represents ∇̂ξv. By the very

definition, ωpσpuqqpξ̃q P g´1. Thus,

γσ̂pσpuqqpξ̃q “ ωppTr
expΥ puq ¨ ξ̃pσpuqqq,

which is just the component of AdppexpΥ puqq´1qpωpσpuqqpξ̃qq. Now, notice that
ωpσpuqqpξ̃q represents ξ by values in g´1 and the requested formula follows.

We should notice that the Weyl connections and the Rho corrected ones
coincide on bundles coming from representations with trivial action of P`. Of
course, the transformation formulae coincide in this case, too.

3.4 A few examples

We shall go through a few homogeneous models and comment on the general
‘curved’ situations. In all cases the actual geometric structures are given by the
reductions of the linear frame bundles and the construction of the right Cartan
geometry is a separate issue. We shall come back to this in the fifth lecture and
work with the general choices of the Cartan connections ω here.

Conformal Riemannian geometry. The relevant Cartan geometry can be
modelled by the choice G “ Opn` 1, 1,Rq (there is some freedom in the choice
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of the group with the given graded Lie algebra g) and the parabolic subgroup P
as we saw in detail in the first lecture.

It is a simple exercise now to recover the formulae from Lemma 1 by com-
puting the brackets in the Lie algebra. In our conventions using the coordinate
functions instead of fields, we can rewrite them as (notice α is valued in g1, while
η, ξ have got values in g´1, and s sits in Rrws)

∇̂ξη “ ∇ξη ´ rΥ, ξs ¨ η (34)

∇̂ξα “ ∇ξα´ rΥ, ξs ¨ α (35)

∇̂ξs “ ∇ξs´ p´Υ pξqqws (36)

where we have picked up just the central component of the bracket in the last
line, viewed as the multiple of the grading element.

Another, but still much more tedious exercise would be to check the conformal
invariance of the tractor connection on T . We shall develop much better tools
for that in the next lecture.

We shall also enjoy much better tools to discuss second or higher order op-
erators. For example, considering second order operators on densities s P Erws,
we may iterate the Rho-corrected derivative to obtain

gab∇P
a∇P

b s “ ∇a∇as´ wgabPabs

and check that this gets an invariant operator for w “ 1´ n
2 , which is the famous

conformally invariant Laplacian, the so called Yamabe operator

Y : Er1´ n

2
s Ñ Er´1´

n

2
s.

Projective geometry. The choice of the homogeneous model is obtained from
the algebra of trace free real matrices g “ slpn` 1,Rq with the grading

ˆ

z Rn˚
Rn glpn,Rq

˙

1
n

Here z “ R is the center, the grading element E corresponds to n
n`1 and

´ 1
n`1 idRn on the diagonal. We may take G “ SLpn ` 1,Rq and P the sub-

group of block upper triangular matrices. The homogeneous model is then the
real projective space G{P “ RPn. On the homogeneous model, the Weyl con-
nections transform as

∇̂ξη “ ∇ξη ` Υ pηqξ ` Υ pξqη

and so they clearly share the geodesics.
For general projective structures on manifolds M , the space of Weyl connec-

tions has to be chosen as a class of all affine connections sharing geodesics with
a given one and they transform then the same way. We shall see, that projective
geometries are rare exceptions of parabolic geometries not given by a first order
structure on the manifold.
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The analog of the Thomas’ tractors is the natural bundle corresponding to
the standard representation of SLpn` 1,Rq on T “ Rn`1. The injecting part of
T is the line bundle T 1 with the action of the grading element by n

n`1 . The usual
convention says this is the line bundle Er´1s. Then the projecting component is
the weighted tangent bundle TM r´1s.

Almost Grassmannian geometry. This is essentially a continuation of
the previous example. We take G “ SLpp, qq and the splitting of the matrices
into blocks of sizes p and q, say 2 ď p ď q. Unlike the projective case, here the
geometry is determined by reducing the structure group of the tangent bundle
to R ˆ SLpp,Rq ˆ SLpq,Rq. This corresponds to identifying the tangent bundle
with the tensor product of the auxiliary bundles V˚ and W of dimensions p and
q, together with the identification of their top degree forms ΛpV » ΛqW˚.

Thus, we may use the abstract indices and write V “ EA, W “ EA1 . Then
the tangent bundle is EA1A and the formula for the brackets in the Lie algebra

says rrΥ, ξs, ηsA
1

A “ ´ξA
1

B Υ
B
B1η

B1

A ´ ξB
1

A ΥBB1η
A1

B . The Weyl connections are tensor
products of connections on V˚ and W (but not all of them). The right formula
for the change of the Weyl connections is

∇̂A
A1η

B1

B “ ∇A
A1η

B1

B ` δB
1

A1Υ
A
C1η

C1

B ` δABΥ
C
A1η

B1

C .

The analog to the Thomas’ tractors comes from the standard representation
of G on T “ Rp`q “ V ‘W. Thus, fixing a Weyl connection, we get the tractors
as couples pvA, wA

1

q with the transformation rules

v̂A “ vA ´ ΥAB1w
B1 , ŵA

1

“ wA
1

.

Notice the special case p “ q “ 2 which provides (the split real form of) the
Penrose’s spinor presentation of tangent bundle and the two-component four-
dimensional twistors T . Indeed, sop6,Cq “ slp4,Cq and sop4,Cq splits into sum of
two slp2,Cq components. Thus, up to the choice of the right real form, the almost
Grassmannian geometries with p “ q “ 2 correspond to the four-dimensional
conformal Riemannian geometries.

The twistor parallel transport (connection) is then given by the formula

p∇T qAA1

ˆ

vB

wB
1

˙

“

ˆ

∇A
A1v

B ` PABA1C1w
C1

∇A
A1w

B1 ` δB
1

A1 v
A

˙

and we shall see that this is the right formula for the standard tractor connection
for the almost Grassmannian geometries in all dimensions.

The reader can find many further explicit examples in the last two chapters
of [11], including those with nontrivial gradings on TM .

4 Elements of tractor calculus

In order to show how simple and general the basic functorial constructions and
objects are, we shall focus for a while on general Cartan geometries with Klein
models GÑ G{H without any further assumptions. But we shall come back to
the parabolic and, in particular, conformal geometries in the end of this lecture.



Notes on Tractor Calculi 19

4.1 Natural bundles and tractors

Let us come back to the functorial constructions on homogeneous spaces G Ñ
G{H mentioned in the first lecture. As always, h Ă g are the Lie algebras of H
and G.

For any Klein geometry G{H, there is the category of the homogeneous
vector bundles, where the objects are the associated bundles V “ G ˆH V. All
morphisms on G{H are the actions of elements of G and these are mapped to
the obvious actions on V. Further morphisms in this category are the linear
mappings intertwining the actions of the elements of G.

Clearly, there is the functor from the category of H-modules mapping the
modules V to the associated bundles V “ GˆH V, while any module homomor-
phism φ : V Ñ W provides the morphisms rru, vss ÞÑ rru, φpvqss between these
bundles.

The latter functorial construction extends obviously to the entire category
CG{H of all Cartan geometries modelled on G{H. The morphisms have to respect
the Cartan connections ω on the principal fiber bundles.

In this setting, a natural bundle is a functor V : CG{H Ñ VB valued in the
category of vector bundles. The functor sends every Cartan geometry pG Ñ

M,ωq to the vector bundle VM ÑM over the same base (so it is a special case
of the so called gauge-natural bundles, see [17]). Moreover, V has the property
that whenever there is a morphism between objects of CG{H , Φ : pG ÑM,ωq Ñ

pG̃ Ñ M̃, ω̃q covering f : M Ñ M̃ , then there is the corresponding vector bundle
morphism VΦ : VM Ñ VM̃ covering f . This is just an explicit description of
the functoriality property with respect to the category of Cartan geometries.
The main point is that each representation of H produces such a functor for all
general Cartan geometries of the given type G{H.

At the same time, the Maurer-Cartan equation dω ` 1
2 rω, ωs “ 0, valid on

the homogeneous model, is no more true in general and we obtain the definition
of the curvature κ of the Cartan geometries pG ÑM,ωq instead:

κ “ dω `
1

2
rω, ωs. (37)

The fundamental Theorem 1 immediately reveals that a general Cartan ge-
ometry is locally isomorphic to its homogeneous model, if and only if its curvature
vanishes identically.

We should also notice that there is the projective component of the curvature
in g{h which we call the torsion. Thus, the Cartan geometry is torsion-free if the
values of its curvature κ are in h. We shall see later that the normalizations of
Cartan geometries consist in prescribing more complicated curvature restrictions,
which always depend on the algebraic features of the Klein models.

As already mentioned, we are interested in specific functors on Cartan geome-
tries pG, ωq of the form G ˆH ´, referring to the associated bundle construction
given for each fixed representation of H. See [11, section 1.5.5] for a detailed
discussion on the topic of natural bundles on Cartan geometries. Specializing to
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representations of H which come as restrictions of representations of the whole
group G leads to the following definition of tractor bundles below.

Recall the sections v of natural bundles V are identified with equivariant
functions v : G Ñ V, i.e. vpu¨gq “ g´1¨vpuq. In particular, consider V “ g{h “ Rn
with the truncated adjoint action of H (i.e. the induced action on the quotient).
The Cartan connection ω allows us to identify every tangent vector ξ P TxM
with the equivariant function v : G Ñ V, u ÞÑ ωpξ̃puqq for an arbitrary lift ξ̃ of ξ.
This is the identification of the tangent bundle TM » VM . (And it completely
justifies our earlier quite sloppy usage of elements in g´1 instead of tangent
vectors etc.)

So in this way, the Cartan connection provides soldering of the tangent bun-
dle, i.e. each element u P G in the fiber over x PM can be viewed as a frame of
TxM . In general, different elements u may represent the same frame, depending
on whether the truncated adjoint action of H on g{h has got a non-trivial kernel.

Definition 2. The tractor bundles are natural vector bundles associated to the
Cartan geometry pG Ñ M,ωq of type G Ñ G{H, via restrictions of a represen-
tations of G to the subgroup H.

The unique principal connection form ω̃ P Ω1pG̃q Ñ g on the extended prin-
cipal G-bundle G̃ “ GˆH G extending the Cartan connection ω on G induces the
so called tractor connections ∇V on all tractor bundles VM .

Notice that G̃ is indeed a G-principal fiber bundle with the action of G
defined by the right multiplication on the standard fiber G. Moreover, u ÞÑ
rru, ess provides the canonical inclusion of the principal fiber bundles G Ă G̃. The
requested invariance of ω̃, together with the reproduction of the fundamental
vector fields, define the values of ω̃ completely from its restriction ω̃ “ ω on TG.

In fact, we can equivalently define the tractor connections on the tractor
bundles directly (by specifying their special properties), instead of referring to
the Cartan connections on G. This was also the approach by Thomas in [22]. The
equivalence of such approaches for |1|-graded parabolic geometries was noticed
and exploited in [14]. In full generality, the construction, normalization and
properties of tractor connections were derived in [8] (see also [11, Sections 1.5
and 3.1.22]).

4.2 Adjoint tractors

A prominent example of tractor bundles arises when considering the Ad repre-
sentation of the Lie group G on its Lie algebra g and restricting it to H. Applying
the corresponding associated bundle construction GˆH ´ on the following short
exact sequence of Lie algebras (with the obvious Ad actions)

0 Ñ hÑ gÑ g{hÑ 0

we obtain

0 Ñ G ˆH hÑ AM π
ÝÑ TM Ñ 0 , (38)
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where we have identified TM – G ˆH g{h. The middle term AM :“ G ˆH g is
called the adjoint tractor bundle.

Let us come back to the curvature (37) of the Cartan geometry now. Clearly
we may evaluate κ on the so called constant vector fields ω´1pXq for all X P g.
Consider X P h and any Y P g. Then ω´1pXq is the fundamental vector field
ζX and dωpζx,´q “ iζX dω “ LζXω “ ´ adpXq ˝ ω, by the equivariancy of ω.
Thus,

κpω´1pXq, ω´1pY qq “ κpω´1pXq, ω´1pY qq “ ´ adpXqpY q ` rX,Y s “ 0.

We have concluded that, actually, the curvature is a horizontal 2-form which can
be represented by the equivariant curvature function

κ : G Ñ Λ2pg{hq˚ b g,

κpX,Y qpuq “ ´ωprω´1pXq, ω´1pY qspuqq ` rX,Y s.
(39)

In particular, we understand that the curvature descends to a genuine 2-form on
the base manifold M valued in the adjoint tractors, i.e. κ P Ω2pM,AMq.

There is much more to say about the adjoint tractors, we shall summarize
several observations in the following two theorems (both were derived in [8], see
also [11]).

Theorem 5. 1. There is the (algebraic) Lie bracket t , u : AMˆAMÑ AM
inherited from the Lie bracket on g.

2. The adjoint tractors are in bijective correspondence with the right-equivariant
vector fields in X pGqH , and the Lie bracket of vector fields on G equips AM
with the differential Lie bracket r , s, which is compatible with the Lie bracket
on the tangent bundle TM , i.e. πrζ, ηs “ rπζ, πηs.3

3. If V is a tractor bundle, then there is the natural map ‚ : AMˆVMÑ VM,
corresponding to the action of g given by the G-representation V. Moreover,
ts1, s2u ‚ t “ s1 ‚ s2 ‚ t´ s2 ‚ s1 ‚ t.

4. The bracket t , u and the actions ‚ are parallel with respect to the tractor
connections ∇A, ∇V , i.e. for s P AM and v P VM we know

∇A
ξ ts1, s2u “ t∇A

ξ s1, s2u ` ts1,∇A
ξ s2u,

∇V
ξ ps ‚ vq “ p∇A

ξ sq ‚ v ` s ‚ p∇V
ξ vq.

5. For every tractor bundle V, the value of the curvature RV of the tractor
connection ∇V is (for all vector fields ξ, η on M and sections v of VM)

RVpξ, ηqpvq “ κpξ, ηq ‚ v,

where κ P Ω2pM,AMq is the curvature of the Cartan connection.

3 Recall that π : AMÑ TM is the projection from sequence (38).



22 Jan Slovák, Radek Suchánek

Proof. The first claim is obvious just by definition. The Lie bracket on the Lie
algebra is Ad-equivariant.

The adjoint tractors are smooth equivariant functions G Ñ g. At the same
time ω makes TG trivial. Now all ξ P G correspond to ω ˝ξ : G Ñ g and the right
invariant fields ξ correspond just to the adjoint tractors. Since the Lie brackets
of related fields is again related (here with respect to the principal actions of the
elements in H), the Lie bracket restricts to X pGqH . Moreover, the right-invariant
fields are projectable onto vector fields on M , and the same argument applies to
brackets of the projections.

The third claim also follows directly from the definitions. Indeed, writing λ
for the representation λ : H Ñ GLpVq, and λ1 for its differential at the unit, we
recall expptAdpgqpXqq “ g expptXqg´1 and thus, differentiating we arrive at

λ1pAdpgqpXqqpλpgqpvqq “ λpgqpλ1pXqpvqq.

Consequently, the bilinear map g ˆ V Ñ V defined by λ1 is G equivariant, it
induces the map ‚ : AM ˆ VM Ñ VM and the bracket formula is just the
defining property of a Lie algebra representation, in this picture.

The next claim is a straightforward consequence of the fact that both t , u
and ‚ are operations induced by G-equivariant maps. Thus we may view them as
living on the associated bundles to the extended G-principal fiber bundle G̃. The
formulae are just simple properties of the induced linear connections associated
to a principal connection.

The same argument holds true for the last claim as well.

Notice also the definition of the operation ‚ extends to all natural bundles
V, if we restrict the tractors only to the natural subbundle kerπ Ă AM of all
vertical right invariant vector fields on G, including the bracket compatibility
property.

4.3 Fundamental derivative

Consider the natural bundle V :“ G ˆH V associated to an H-representation λ
on V. Then, viewing the adjoint tractors as right invariant vector fields on G, we
can define the differential operator D: AMˆ VM Ñ VM by the formula

Ds v “ s ¨ v,

where s P AM is any tractor in X pGqH differentiating the function v : G Ñ V.
A simple check,

spu ¨ hq ¨ v “ pTrh ¨ spuqq ¨ v “ spuq ¨ pv ˝ rhq “ spuq ¨ pλh´1 ¨ vq “ λh´1pspuq ¨ vq,

reveals that the result is again a smooth V-valued H-equivariant mapping on G.
We call this operator D the fundamental derivative.

Notice that extending the tangent bundle to the adjoint tractors, we always
have a canonical way of ‘differentiating’ on all natural bundles for all Cartan
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geometries. As we may expect, there will be a lot of redundancy in such differ-
entiation, since the vertical tractors in the kernel of the projection AM Ñ TM
must act in an algebraic way due to the equivariance of the functions v.

Let us summarize some simple but very useful consequences of our definitions:

Theorem 6. 1. The fundamental derivative on the smooth functions (i.e. we
consider the trivial representation V “ R) is just the derivative in the direc-
tion of the projection:

Dsf “ πpsq ¨ f .

2. If the adjoint tractor s is vertical, i.e. πpsq “ 0, then for every section v of
a natural bundle VM ,

Ds v “ ´s ‚ v.

3. The fundamental derivative D is compatible with all natural operations on
natural bundles (i.e. those coming from H-invariant maps between the cor-
responding representation spaces). For example, having sections v, v˚, and
w of natural bundles V, V˚, W, and a function f

Dspfvq “ pπpsq ¨ fqv ` f Ds v

Dspv b wq “ Ds v b w ` v bDs w

πpsq ¨ v˚pvq “ pDs v
˚qpvq ` v˚pDs vq

4. If V is a G-representation, i.e. V is a tractor bundle, then

∇V
πpsqv “ Ds v ` s ‚ v.

Proof. The equivariant functions G Ñ R are just the compositions of functions f
on the base manifold M with the projection p : G ÑM . Thus the first property
is obvious, s ¨ pf ˝ pq “ pTp ¨ sq ¨ f “ πpsq ¨ f .

If s is vertical, then spuq “ ζZpuq, where ζZ is a fundamental vector field
given by Z P h. Thus,

spuq ¨ v “
d

dt |0
rexp tZpuq ¨ v “ ´λ1pZqpvpuqq “ p´s ‚ vqpuq.

The third property is again obvious – as long as the natural operations come
from (multi)linear H-invariant maps, these will be compatible with the differenti-
ations of functions valued in those spaces, in the directions of the right-invariant
vector fields.

In order to see the last formula, consider a vector ξ P TuG Ă TuG̃, covering
a vector τ P TxM . Then the horizontal lift of τ at the frame u P G Ă G̃ is
ξ ´ ζω̃pξq “ ξ ´ ζωpξq. But the tractor connection is defined as the derivative of

the equivariant function v in any frame of G̃ in the direction of the horizontal lift
and we obtain exactly the requested formula interpreting ξ as the value of the
right-invariant vector field s (i.e. the adjoint tractor viewed as the equivariant
function at u is expressed just via ωpξq).
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If we leave the slot for the adjoint tractor in the fundamental derivative free,
we obtain the operator D : VM Ñ A˚M b VM , and this can be obviously
iterated,

Dk : VM Ñ bkA˚M b VM
Of course, there is a lot of redundancy in these higher order operators com-

pared to standard jet spaces of the sections. In the case of the first order, we can
identify the first jet prolongations J1V of natural bundles as the natural bundles
associated to the representations J1V which are much smaller H-submodules
in the modules V ‘ Hompg,Vq corresponding to the values of the fundamental
derivative. This is a useful observation because it implies that all invariant first
order differential operators on the homogeneous models extend naturally to the
entire category of the Cartan geometries with this model.

Before returning to the parabolic special cases, let us remark two more facts.
The proofs are using similar arguments as above and the reader can find them
in [11, sections 1.5.8, 1.5.9].

Expanding the formula for the exterior differential in the defining equation
of the curvature κ, we can express the differential bracket on AM :

rs1, s2s “ Ds1 s2 ´Ds2 s1 ´ κpπps1q, πps2qq ` ts1, s2u

“ ∇A
πps1q

s2 ´∇A
πps2q

s1 ´ κpπps1q, πps2qq ´ ts1, s2u.
(40)

There is the generalization of the well known Bianchi identities for curvature
in the general Cartan geometry setting:

ÿ

cyclic

`

∇A
ξ1pκpξ2, ξ3qq ´ κprξ1, ξ2s, ξ3q

˘

“ 0 (41)

for all vector fields ξ1, ξ2, ξ3, or its equivalent form for triples of adjoint tractors:
ÿ

cyclic

`

ts1, κps2, s3qu´κpts1, s2u, s3q`κpκps1, s2q, s3q`pDs1 κqps2, s3q
˘

“ 0. (42)

Similarly, the Ricci identity has got the general form for every section v of a
natural bundle V:

pD2 vqps1, s2q ´ pD
2 vqps2, s1q “ ´Dκps1,s2q v `Dts1,s2u v. (43)

Notice, how easy we can read the classical identities for the affine connec-
tions from the latter two. Since the Cartan geometry is modelled on Rn “
Affpn,Rq{GLpn,Rq and the Lie algebra decomposes into direct sum of glpn,Rq-
modules g´1 “ Rn and g0 “ glpn,Rq, all the formulae decompose by homo-
geneities, AM “ TM ‘ P 1M (here P 1M is the linear frame bundle of TM),
the bracket t , u becomes trivial on TM , while the mixed bracket is just the
evaluation. Thus, the Bianchi identity can be evaluated on tangent vectors and
it decomposes into the two classical Bianchi identities for the torsion free con-
nections, while it gets the more complex quadratic form in general. Similarly
for Ricci, evaluated on s1 and s2 in TM . If the torsion is zero, κ has got only
vertical values and thus the first term on the right hand side is the algebraic
action of the curvature (with plus sign), while the other one vanishes.
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4.4 Back to parabolic geometries

Recall the parabolic cases always come with the splitting

g “ g´ ‘ p,

where g´ is a subalgebra (but only a g0 submodule). As before, we shall restrict
ourselves to the |1|-graded case, although the below formulae easily extend to
the general case.

Consider the category of parabolic geometries with the model G{P and a
P -representation V which decomposes with respect to the action of the grading
element E P g0 into V “ V0 ‘ ¨ ¨ ¨ ‘ Vk. The adjoint tractor bundle has got the
composition series

AM “ TM ‘ EndTM ‘ T˚M

where the middle term is a subbundle in T˚MbTM corresponding to the group
G0 “ P {P`. Again, T˚M is the injecting part while TM is the projecting part,
and the algebraic bracket t , u maps T˚M ˆ TM Ñ EndTM .

Once we fix a Weyl connection ∇, the Rho-tensor becomes a one-form valued
in T˚M Ă AM , we get the Rho-corrected derivative ∇P, all P -modules get split
into G0-irreducible components which can be grouped according to the actions
of the grading element in g0 etc.

Theorem 7. The fundamental derivative D on V is given in terms of any choice
of Weyl connection by

pDs vqi “ p∇P
πpsqvqi´ s0 ‚ vi´ s1 ‚ vi´1 “ ∇πpsqvi´ s0 ‚ vi`pPpπpsqq´ s1q ‚ vi´1

where s “ pπpsq, s0, s1q and we indicate the splitting V “ V0 ‘ ¨ ¨ ¨ ‘ Vk with
respect to the action of the grading element by the extra lower indices.

If V is a tractor bundle, then the tractor connection is given by

p∇V
ξ vqi “ p∇P

ξ vqi ` ξ ‚ vi`1 “ ∇ξvi ` Ppξq ‚ vi´1 ` ξ ‚ vi`1.

Proof. Both formulae are direct consequences of the general formulae and the
definitions. The reader may also consult [11, section 5.1.10].

4.5 Towards effective calculus for conformal geometry

Now, with the general concepts and formulae at hand, it is obvious that the
Thomas’ tractors come equipped with the nice tractor connection on all confor-
mal Riemannian manifolds in the sense of Cartan geometries and the connection
will be always given by the formulae in Theorem 2, which are manifestly invari-
ant. Moreover, we know that the curvature of the Thomas’ tractor connection
on the sphere (with the Maurer-Cartan form ω) is zero.

But we still cannot be happy enough, for at least two reasons. First, we
want to define the geometries by a structure on the tangent bundle and we shall
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come to that question in the next lecture. Second, we need some more effective
manifestly natural operators than the fundamental derivative.

We shall only briefly comment on the latter problem and advise the readers
to look at [12] for much more information.

Already Tracy Thomas constructed the differential operator D which is in-
variant for σ P Er1s, with values in T (we follow the usual convention of [12]
and write the projecting part in the top, while the injecting part is in the bot-
tom of the column vector). We may follow our prolongation of the ‘conformal to
Einstein’ equation from the second lecture. Starting with σ in Er1s, we first put
µa “ ∇aσ in Ear1s and then, contracting the equation ∇a∇bσ`Pabσ` gabρ “ 0
we see ´nρ “ ∇a∇aσ ` P

a
aσ. Thus, adjusting the 1{n factor, we arrive at the

operator D : Er1s Ñ T

σ
D
ÝÑ

¨

˝

nσ
n∇aσ

´p∇a∇a ` P
a
aqσ

˛

‚. (44)

This Thomas’ D-operator extends to all densities Erws. For f P Erws we define
Df in T rw ´ 1s as

Df “

¨

˝

pn` 2w ´ 2qwf
pn` 2w ´ 2q∇af
´p∇a∇a ` wP

a
aqf

˛

‚. (45)

In particular, we should notice the following facts. For w “ 0, the first nonzero
slot in the column is pn´ 2q∇af . Thus, this operator must be invariant and we
have recovered the usual differential of functions.

A much more interesting choice is w “ 1 ´ n
2 since this kills the first two

components and the third one gets manifestly invariant. This way we get the
second order operator ∇a∇a`

2´n
2 P aa and we recognize the celebrated Yamabe

operator mentioned already in the third lecture. (Just checking the pedestrian
way the invariance of this operator shows that the general theory was worth the
effort!)

This example indicates where the genuine tractor calculus goes with the aim
to construct manifestly invariant operators in an effective way.

5 The (co)homology and normalization

We shall continue with parabolic P Ă G and the Klein model GÑ G{P , mainly
restricting to |1|-graded g. Thus g “ g´ ‘ g0 ‘ p` “ g´1 ‘ g0 ‘ g1.

Recall that any choice of the reduction σ : G0 “ G{ exp g1 Ñ G of the
structure group of a Cartan geometry pG Ñ M,ωq provides the pullback σ˚pωq
which splits into the soldering form θ P Ω1pG0, g´1q (independent of the choice
of σ), the Weyl connection ∇a, and the Rho-tensor Pab, which is a T˚M valued
one-form on M . Moreover, the adjoint tractor bundle splits as

AM “ TM ‘A0M ‘ T˚M.
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Our aim is now to find some suitable normalization allowing to construct a
natural Cartan connection from the data on G0. Once we succeed, the tractor
calculus related to this Cartan connection will become a natural part of the
geometry defined on G0. We shall see that the crucial tool at our disposal is
related to the cohomological properties of the Lie algebras in question. There are
two equivalent ways: either to normalize the curvature of the Cartan connection,
or to normalize the curvature of a suitable tractor connection. We shall show
the first one, the other one was first achieved in [8], and both are explained in
full generality in [11, chapter 3].

5.1 Deformations of Cartan connections

The obvious idea is to quest for normalizations which will make the curvatures of
the Cartan connections as small as possible. In particular, this will ensure that
the right Cartan connections on homogeneous models will be the Maurer-Cartan
forms.

Consider two Cartan connections on the same principal bundle G Ñ M , ω
and ω̃. Then their difference Φ “ ω̃ ´ ω clearly vanishes on all vertical vectors
and is right-invariant. Thus, we deal with a one-form Φ P Ω1pM,AMq.

In the |1|-graded case, let us understand the ‘geometry’ on M as the choice
of the G0-principal bundle G0 together with the soldering form θ, i.e. we adopt
the most classical concept of a G-structure as a reduction of the first order
linear frame bundle P 1M to the structure group G0. (We already mentioned
in the examples in lecture 3, that the projective geometries are different.) It
is obvious from our definitions that the two Cartan connections will define the
same structure in the latter sense if and only if their difference has got values in
p. Thus, in our |1|-graded cases, Φ should be in Ω1pM,A0M ‘ T˚Mq.

In the general situation with longer gradings, we have to be much more careful
with the definition of the G0-structure which has to be generalized to the filtered
manifolds. In brief, the tangent space inherits the filtration by p-submodules of
g´ and a full analog of the classical G-structure has to be considered on the
associated graded vector bundle GrTM . We shall not go to any details here, the
reader can find a detailed exposition in [11, chapter 3].

As we know, the curvature can be also viewed as the curvature function
κ : G Ñ Λ2pg{pq˚ b g, and pg{pq˚ “ p` via the Killing form on g. Thus, we
should like to know how κ changes if we deform the Cartan connection by Φ in
Ω1pM,A0M ‘ T˚Mq.

Let us write κ` for the component of the curvature function of homogeneity
`, i.e. κ` P Λ

2g˚´1 b g`´2 for the |1|-graded parabolic geometries.

Lemma 2. Assume Φ P Ω1pM,A0M ‘T˚Mq is of homogeneity ` “ 1 or ` “ 2.
Then the components of the curvature of homogeneities lower than ` remain
unchanged, while the corresponding change of the g´1 or g0 component of the
curvature, viewed as function valued in Λ2g˚´1bgi with i “ ´1 or 0, respectively,
is given by the formula

pκ̃´ κqipX,Y q “ rX,φpY qs ´ rY, φpXqs
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where φ is the equivariant function G Ñ g˚´1 b pg0 ‘ g1q representing Φ.

Proof. Considering vector fields ξ, η P TG,

ω̃pξq “ ωpξq ` φpωpξqq.

Thus, hitting the equation with the exterior derivative, we obtain

d ω̃pξ, ηq “ dωpξ, ηq ` dφpξqpωpηqq ´ dφpηqpωpξqq ` φpdωpξ, ηqq,

while

rω̃pξq, ω̃pηqs “ rωpξq, ωpηqs`rφpωpξqq, ωpηqs`rωpξq, φpωpηqqs`rφpωpξqq, φpωpηqqs.

Comparing the curvatures (as g-valued two forms on G),

pκ̃´ κqpξ, ηq “ dφpξqpωpηqq ´ dφpωpηqqpξq ` φpdωpξ, ηqq

´ rφpωpξqq, ωpηqs ` rωpξq, φpωpηqqs ` rφpωpξqq, φpωpηqqs.

Now, inspecting the homogeneities for φ valued in gi (i “ 0 corresponds to
homogeneity 1, while i “ 1 yields homogeneity 2), the first three terms will land
in gi, while the very last term is either zero (if i “ 1) or sits in gi again (if i “ 0).
Thus only the two remaining brackets have got the values in gi´1 and we obtain
just the requested result if we write the vector fields as functions on G with the
help of ω.

5.2 Homology and cohomology

The formula for the lowest homogeneity deformation of the curvature is a special
instance of a general algebraic construction, which works for arbitrary Lie algebra
g and g-module V. We define the k-chains Ckpg,Vq as

Ckpg,Vq :“ Λkgb V.

For each k ą 0 we define the linear operator δk : Ck Ñ Ck´1

δkpX1 ^ ¨ ¨ ¨ ^Xk b vq “
ÿ

i

p´1qiX1 ^ ¨ ¨ ¨ ^Xk
looooooomooooooon

omit i-th

bXi ¨ v

`
ÿ

iăj

p´1qi`jrXi, Xjs ^X1 ^ ¨ ¨ ¨ ^Xk
looooooomooooooon

omit i-th, j-th

bv .

Then δ2 “ 0 and thus δ acts on the chain complex Cpg,Vq as a boundary
operator. A direct check reveals that δ is always a g-module homomorphism.
Therefore we can define the homology groups

Hkpg,Vq “
ker δk

im δk`1
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and they are again g-modules.

Note that C0pg,Vq “ V and C1pg,Vq
δ1
ÝÑ C0pg,Vq is given by δ1pXbvq “ X ¨v

which implies H0pg,Vq “ V{xX ¨ vy “ V{g ¨ V.
In particular, considering the adjoint representation, H0pg, gq “ g{rg, gs.
Similarly to the homology, we can consider the dual construction for cochains

Ckpg,Vq “ Λkg˚ b V and coboundaries Bk : Ckpg,Vq Ñ Ck`1pg,Vq given by

BkϕpX0, . . . , Xk b vq “
ÿ

i

p´1qiXiϕpX0, . . . , Xk
looooomooooon

omit i-th

q bXi ¨ v

`
ÿ

iăj

p´1qi`jϕprXi, Xjs, X1, . . . , Xk
looooomooooon

omit i-th and j-th

q b v .

Then B provides a coboundary operator on the complex of cochains, i.e. B2 “ 0.
The operators B are again g-module homomorphisms and we define the coho-
mology groups

Hkpg,Vq “
ker Bk

im Bk´1
.

Again, the zero cohomology is easy to compute. Clearly B0pvqpX0q “ X0 ¨ v,
while

B1ψpX,Y q “ X ¨ ψpY q ´ Y ¨ ψpXq ´ ψprX,Y sq.

Thus, H0pg,Vq “ Vg Ă V is the kernel of the g-action. If we choose V “ g with
the adjoint action then H1pg, gq “ tall derivativesu{tinner derivativesu.

Now, the crucial observation is that Lemma 2 expresses the lowest homo-
geneity of the deformation of the curvature of our Cartan geometries, caused by
φ P g˚´1 b gi, via the coboundary differential Bφ (the third term is not there in
our case since we deal with |1|-graded geometries).

For general parabolic geometries we also consider the curvature as an equiv-
ariant function κ : G Ñ C2pg´bgq and g is a g´-module with the adjoint action.
Even in full generality, the Lemma 2 holds true, i.e. the lowest homogeneity of
the curvature deformation caused by φ is given by Bφ, see [11, section 3.1.10].

5.3 Normalization of parabolic geometries

We should be interested in the cohomologies Hkpg´, gq, in particular in the sec-
ond degree since the curvature has got the values in the second degree cochains.
Recall Lemma 2 which discussed how all possible deformations of the Cartan
curvature (with positive homogeneities) impact the curvature. In particular, we
learned there that the available deformation of the curvature fill the image of B
in the second degree cochains (in the lowest non-trivial homogeneity).

Now the crucial moment comes. Consider parabolic geometries with the ho-
mogeneous model G{P , g “ g´ ‘ g0 ‘ p` and a g-module V. Recall pg{pq˚ –
g˚´ – p`. Thus, the dual of the space of cochains Ckpg´,Vq is Ckpp`,V˚q and
there is the dual mapping B˚ : Ck`1pp`,V˚q Ñ Ckpp`,V˚q. It was Kostant
who noticed in his celebrated paper [18], that there always is a scalar product
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x , y on the space of cochains Ckpp`,V˚q such that, identifying Ckpp`,V˚q with
Ckpg´,Vq, the latter dual map B˚ becomes the adjoint operator to B. Moreover
its formula then coincides with the boundary operator δ. We shall follow the
(confusing) convention by many authors and call this adjoint B˚ the codifferen-
tial. In particular, B˚ is a P -module homomorphism.

Now, we equivalently consider

Hkpg´,Vq “ Hkpp`,V˚q “
ker B˚

im B˚

and, applying the standard algebraic Hodge theory, we get the decompositions
(of G0-modules)

Ckpg´,Vq “ im B˚ ‘ ker B “ ker B˚ ‘ im B “ im B˚ ‘ ker l‘ im B, (46)

where l ” BB˚ ` B˚B (thus the intersection of the kernels of B and B˚). This
means that the cohomology Hkpp`,V˚q “ Hkpg´,Vq equals to the kernel of the
algebraic Hodge Laplacian operator l.

Further, we see that ker B˚ is always the complementary subspace to im B
and in view of Lemma 2 we adopt the following normalization.

Notice B˚ is a P -module homomorphism and so it induces natural trans-
formations between the corresponding natural bundles. In particular, it makes
sense to apply B˚ to the curvatures of our Cartan connections, i.e. there is the
natural algebraic operator

B˚ : Λ2T˚M bAM Ñ T˚M bAM

which preserves the homogeneities.

Definition 3. Let pG Ñ M,ωq be a parabolic geometry with the homogeneous
model G Ñ G{P , g “ g´k ‘ ¨ ¨ ¨ ‘ gk. We say that ω is a regular parabolic
geometry, if its curvature κ has got only positive homogeneities. The geometry
is called normal, if its curvature is co-closed, i.e. B˚κ “ 0.

Let us stress the following observation. The curvature of any normal parabolic
geometry lies in the kernel of B˚ and thus it projects to the natural bundle
defined by the cohomology H2pg´, gq. This is the so called harmonic curvature
κH P G ˆP H2pg´, gq.

Let us restrict again our attention to |1|-graded geometries. First notice, the
regularity condition is empty in this case. Indeed, the decomposition of κ into
its homogeneity components coincides with the decomposition by its values, i.e.
values in gi are of homogeneity i` 2, i “ ´1, 0, 1.

Further, there is a nice consequence of the Bianchi identity (42). Consider
the component κi of the lowest homogeneity `. Then the four terms in (42) are
of homogeneity at least, ` ´ 1, ` ´ 1, `, `, respectively. But each homogeneity
component in (42) has to vanish independently. Finally, the first two terms
represent exactly the differential Bκ.
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We conclude that the lowest homogeneity non-zero component of the curva-
ture should be closed and thus, for normal geometries it must coincide with its
harmonic projection. Moreover, if all these harmonic components are zero, then
we conclude (by induction using the previous result) that the entire curvature κ
must vanish, too. These results hold true even for general parabolic geometries,
the reader may consult [11, section 3.1.12].

Now we are ready to manage the normalization of the |1|-graded parabolic
geometries with g “ g´1‘g0‘g1. Given any G0-principal bundle G0 ÑM with
the soldering form θ P Ω1pM, g´1q, i.e. a classical G0-structure, we consider the
fiber bundle G “ G0 ˆ exp g1 and equip it with the obvious principal action of
P “ G0 ˙ exp g1.

If we choose any principal connection γ on G0, then θ‘γ is a Cartan connec-
tion on G0 Ă G and choosing any P P Ω1pM,T˚Mq, there is exactly one Cartan
connection ω on G coinciding with θ ‘ γ ‘ P on TG0 Ă TG.

The connection is automatically regular and the lowest component of its cur-
vature can have homogeneity 1. It is a simple exercise to see that this component
will coincide with the torsion T of the connection γ (e.g. viewed as the torsion
part of the curvature of the Cartan connection θ ‘ γ). Moreover, changing the
inclusion of G0 Ñ G, i.e. choosing a Weyl connection for ω, this torsion part does
not change at all.

We know that for the normal Cartan connections, this torsion has to coincide
with its harmonic part. Moreover, Lemma 2 says that we can modify the Cartan
connection ω by a homogeneity one deformation Φ so that this condition will be
satisfied.

In fact, this only recovers the very classical results about the distinguished
connections with special torsions on G-structures.

For example, in conformal Riemannian geometry, there is no cohomology in
homogeneity one and thus we may always find torsion free connections. This
is, of course, no surprise since we may take any Levi-Civita connection of one
of the metrics in the class. But for the almost Grassmannian geometries with
p ě q ě 3, all the cohomology appears in homogeneity one only (with two
irreducible components) and thus connections with torsions are unavoidable in
general, unless we deal with the homogeneous models.

Next, we may assume that we have chosen the above connection γ in such a
way, that its torsion is harmonic. In order to see the link between the curvature of
γ and the curvature κ of ω, consider the Cartan connection ω̃ on G which would
be given by the choice P “ 0. The Cartan connections θ ‘ γ and ω̃ are related
by the inclusion G0 Ñ G and thus the curvature κ̃, restricted to G0 coincides
with the curvature T ` R of θ ‘ γ. Thus, Lemma 2 says (with the deformation
P “ ω ´ ω̃) that the homogeneity two component of the curvature of ω is

κ0 “ R` BP.

Hitting this equality by B˚ gives

B˚κ0 “ B
˚R` B˚BP.
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But by homogeneity argument, B˚P would have values in g2 and thus vanishes
automatically. Thus, the second term in the latter equation equals lP and the
normalization condition will be satisfied if we choose P such that

lP “ ´B˚R. (47)

The final crucial observation is that the Laplacian acts by non-zero constant
multiples on all irreducible components, except the harmonic ones. But we want
to invert l on im B˚, which cannot include any harmonic components. The final
formula for P is

P “ ´l´1B˚R. (48)

Summarizing, in order the construct the normal Cartan connection ω on a
manifold equipped with the relevant G0-structure, we first choose any connection
γ with harmonic torsion. Then we consider its curvature R, apply the codiffer-
ential and compute the right coefficients for each of its irreducible components.
There are effective tools in the representation theory allowing to compute them
easily via the so called Casimir operators. We have no space to go into details
here.

Finally, there is the question about the uniqueness of our construction. The
answer is again hidden in cohomologies. If there are no positive homogeneity
components in H1pg´1, gq, all our choices of the deformations in both steps were
unique. This is the case for nearly all |1|-graded geometries. The only exceptions
are the projective geometries (and their complex versions), where we have to
choose one of the connections in the first step to define the structure. Then the
Cartan connection is already given uniquely via the next step in our construction.

In the categorical language, there is the subcategory of the regular and normal
Cartan geometries, and this subcategory is equivalent to the category of the
infinitesimal G0-structures on manifolds, up to some rare exceptions due to the
existence of positive homogeneities in first cohomologies in some examples (where
a similar equivalence exists, too).

In conformal Riemannian geometry, i.e. g “ sopn` 1, 1q, there is no positive
homogeneity first cohomology, while the entire second cohomology is concen-
trated in homogeneity two (except of dimension n “ 3, where it is homogeneity
three). The operator B˚ is just the trace, so the image on the curvature of a
Levi-Civita connection is the Ricci tensor. The formula for P reflects the right
choices of the constants in the action of l, while the invariant Weyl part of the
curvature (shared by all Weyl connections) is R` BP, the harmonic component
in all dimensions n ą 3. Of course, the geometry is locally isomorphic to the
conformal sphere if and only if this Weyl curvature vanishes.

We do not have space in this lecture to inspect further examples and detailed
computations. The readers may look up many of them in [11], a few hundreds
of pages of examples and details for general parabolic geometries are there in
chapters 3 through 5.
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6 The BGG machinery

As well known, the linearized theories in Physics usually appear as locally exact
complexes of differential operators. A lot of attention was devoted to this phe-
nomenon in Mathematics, too. Already in the early days people around Gelfand
or Kostant knew that on the Klein models, the existence of such complexes is an
algebraic phenomenon related to homomorphisms of Verma modules (which were
understood as topological duals of the infinite jet prolongations of the natural
bundles), cf. [4,19].

The main message of this series of lectures is to show how remarkably the
algebraic features and phenomena from the Klein models extend to the categories
of Cartan geometries. The so called BGG machinery does exactly this – extends
the complexes of the differential operators from the homogeneous models to
sequences on all Cartan geometries of the given type.

In this last lecture we comment on this exciting development and we shall
also come back to the solutions of the ‘conformal to Einstein’ equation (8) in
terms of constant tractors. On the way we shall touch the general construction
of the latter sequences of operators and identify the equation (8) as one of the
so called 1st BGG operators.

6.1 The twisted de-Rham complexes

Denote by Hk
VM the natural bundle associated to the P -module Hkpg´,Vq of

cohomologies with coefficients in a G-module V. Notice, that by the Kostant’s
complete description of the cohomologies, [18], the latter cohomology module is
a G0 module with trivial action of P` and thus, it is completely reducible. In
particular, H0

VM is the bundle coming from the projecting part of V which can
be viewed as the orbit of the lowest weight vector in V under the g0-action. Our
goal is to come to the following diagram of operators

Ω0pM,VMq Ω1pM,VMq . . .

H0
VM H1

VM . . .

dV

π π

dV

D

L L

D

(49)

where all the arrows have to be yet explained. As usual, we write VM for the
tractor bundle over the manifold M corresponding to V, and notice that B˚ is
the adjoint of B which is a P -module homomorphism and thus, it gives rise to
the natural algebraic operator B˚ : ΩkpM,VMq Ñ Ωk´1pM,VMq. Clearly, the
projections π are well defined only on the kernel of B˚. We shall have to be
careful about this.

The ideas presented below go back to [2] and [3], and they were further
developed in [10].

Let us discuss the upper line in (49) now. First, restrict to the parabolic Klein
model GÑ G{P . Together with the G-module V, consider a P -module W. Then
there is the following identification of the sections of the tensor product bundle



34 Jan Slovák, Radek Suchánek

V bW. For any section s of W, i.e. an equivariant mapping s : G Ñ W, and
v P V consider the map

sb v ÞÑ pg ÞÑ spgq b g´1 ¨ v
loooooooooomoooooooooon

equivariant GÑWbV

q,

which provides a natural isomorphism of the G-modules of sections

Γ pWq b V – Γ pW b Vq. (50)

Thus, if F : W1 Ñ W2 is an arbitrary differential operator between the ho-
mogeneous vector bundles, then F b idV “ FV provides the twisted operator
FV : W1 b V ÑW2 b V.

Considering the exterior differential d : ΛkT˚M Ñ Λk`1T˚M , this explains
the whole first line in (49), at least on the homogeneous model. On zero-degree
forms, the exterior differential is just the covariant derivative of the sections.

Let us look more carefully on this example. At the level of first order jets, we
can express the twisted operator by means of the algebraic P -homomorphism

J1pΛkp` b Vq Ñ Λk`1p` b V, pf0, Z b f1q ÞÑ Bf0 ` pk ` 1qZ ^ f1. (51)

In general, if we write JrpWq and J̄rpWq for the standard fibers of the holo-
nomic and semi-holonomic jet prolongations JrpWq, J̄rpWq,4 then the isomor-
phism (50) must hold true at the jet level, e.g. J̄rpWq b V – J̄pWb Vq.

Now the crucial observation comes: Although the jet prolongations JrW are
no more natural bundles associated to G in general, there is still no problem
with the first jets. Thus, J1pWq “ GˆP J1pWq and iterating this procedure, we
conclude that the semi-holonomic jet prolongations are natural bundles again,
i.e., J̄rpWMq “ GˆP J̄rpWq for the relevant P -module J̄rpWq (the standard fiber
over the origin in G{P as the module with the action of the isotropy group P ).
Moreover, we can construct a universal differential operator WM Ñ J̄rpWMq
based on the iterated fundamental derivative, which allows one to extend many
invariant operators from the homogeneous model to all Cartan geometries of this
type.

Therefore, the so called strongly invariant operators, i.e. those coming from
algebraic P -module homomorphisms J̄rpW1q ÑW2, enjoy a canonical extension
to all Cartan geometries by means of the formulae obtained on the homogeneous
model.

A careful exposition of the algebraic structure of the semiholonomic jets and
their links to the strongly invariant operators can be found in [13].

4 We iterate the first jet prolongation. Considering the first jets of sections of a bundle
W, the jets in a fiber of J1

pJ1Wq look in coordinates as 4-tuples pyp, ypi , Y
p
j , Y

p
ijq

were Y p
ij do not need to be symmetric. These are the non-holonomic 2-jets. The semi-

holonomic ones remove part of the redundancy by requesting that the two natural
projections to 1-jets coincide, i.e. ypi “ Y p

i . This construction extends to all orders
and the semi-holonomic jets look in coordinates nearly as the holonomic ones, just
loosing the symmetry of the derivatives. See e.g. [17] for detailed exposition.
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This in particular applies for all first order operators and we are done with
the first line in (49), which is called the twisted de-Rham sequence. Obviously,
there are many other ways for twisting the de-Rham. For example, we could take
the covariant exterior differential dω of the tractor valued k-forms with respect
to the tractor connection on V. A straightforward computation reveals

dω ϕ “ dV ϕ` ικ´ϕ , (52)

where κ´ is the torsion part of the curvature κ “ dω ` 1
2 rω, ωs.

6.2 BGG machinery

Next, let us focus on the vertical arrows in (49). We already know about the
projections π, so we have to deal with L’s.

Ω0pM,Vq Ω1pM,Vq . . .

H0
VM H1

VM

dV

π π

dV

L L

The quite straightforward idea is to seek for differential operators L, such
that dV ˝L are requested to be algebraically co-closed. Then the composition
with the projection π makes sense and we could arrive at operators D

Hk
VM Hk`1

V M.
D“π˝dV ˝L

The most important (and demanding) step in the original construction of the
sequence of those operators in (49) was the following lemma in [10]. Notice, [5]
suggests a different and more efficient construction of these operators.

Lemma 3. On each irreducible component of Hk
VM , there is the unique strongly

invariant operator L with values in ker B˚ and splitting the projection π,

Hk
VM ΩkpM,Vq ,

L

π

such that dV ˝L P ker B˚.

The proof in [10] is very technical and there are many later improvements in
the literature, starting with [5].

The resulting sequence of operators

H0
VM H1

VM H2
VM . . .

D0 D1 D2

is called the BGG sequence associated with the tractor bundle V.
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Theorem 8. For each G-module V, the BGG sequence is well defined on each
Cartan geometry modelled on G{P and it restricts to the celebrated BGG reso-
lution on the homogeneous model.

If the twisted de-Rham sequence on a Cartan geometry is a complex, then also
the BGG sequence is a complex, and they both compute the same cohomology of
the underlying manifold.

A good example is the case when the Cartan geometry is torsion-free and
the curvature values act trivially on V. Then the comparison (52) of the twisted
exterior differential and the covariant exterior differential implies that the twisted
de-Rham sequence will be exact.

Often only a part of the whole BGG sequence is exact and many celebrated
complexes known in differential geometry can be recovered this way.

6.3 The first BGG operators

Finally, we are coming back to the first operators in BGG sequences. They
are always overdetermined operators D : H0

VM Ñ H1
VM . Moreover, by the

very construction, its space of solutions is in bijection with the space of the
parallel tractors on the homogeneous model. Unfortunately, this is not true in
general and the so called normal solutions are those sections in the kernel of D
which correspond to parallel tractors. See [9] for interesting results on the normal
solutions. Because of lack of space in this last lecture, we shall just report briefly
on the available results.

As carefully explained in [16], the normalization condition on the canonical
tractor connections can be written as B˚pRVq “ 0, considered on the space of
2-forms valued in endomorphisms V b V˚. At the same time, the normaliza-
tion necessary for keeping the 1-1 correspondence between the solutions and the
parallel tractors is rather B˚VR

V “ 0, where the codifferential is modified, see
[16].

So, although the values of our operator L on the harmonic curvature are
always algebraically co-closed, this is not enough.

The paper [16] answers positively the question: Can we modify the Cartan
connection so that B˚V ˝ dV ˝Lpκq “ 0 and thus the 1-1 correspondence will hold
true for all Cartan geometries?

The first useful observation is the fact that the BGG machinery construction
survives without any changes if we restrict the deformations to the class of
connections:

C “ t∇̃ “ ∇` Φ | Φ P ker B˚V b idV, Φ has homogeneity ě 1u

The main theorem of [16] says:

Theorem 9. There is precisely one ∇̃ P C providing the 1 ´ 1 correspondence
between ker D0 and ∇̃-parallel tractors.
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At the very end, let us look again at the case of the ‘conformal to Einstein’
equation (8), which is the first BGG operator for the choice of V equal to the
conformal standard tractors T .

Clearly, H0
TM is the projecting part Er1s of the tractors. Further, a straight-

forward check reveals that the operator (44) satisfies the conditions on L :
H0

TM Ñ Ω1pTM, TMq. Indeed, the entire space of zero-forms is in the ker-
nel of B˚, the exterior derivative dω is just the covariant derivative (19) of the
tractor, its projecting slot vanishes, B˚ maps the injecting slot to zero by the
homogeneity, and B˚ is given by the trace in the middle slot, which vanishes,
too. Since the geometry is torsion free, the exterior covariant derivative coin-
cides with the twisted derivative, see (52). Finally, the projection of dT ˝L to
the harmonic component provides just the right operator (8) on Er1s.

In this very special case, there is no need to modify the tractor connection
in the above sense and thus there always is the 1-1 correspondence between
the solutions and the parallel tractors, which is again realized directly by the
operator L.

As already mentioned, many of important overdetermined operators appear
as the first BGG operators. A vast supply of interesting examples of the first
order ones appear in relation with the generalization of the classical problem
of metrizability of a projective geometry into the realm of filtered manifolds
and parabolic geometry. The projective case goes back to 19th century, the
generalization was recently worked out in [7].
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