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Abstract

We present the linearized metrizability problem in the context of parabolic ge-
ometries and subriemannian geometry, generalizing the metrizability problem in pro-
jective geometry studied by R. Liouville in 1889. We give a general method for
linearizability and a classification of all cases with irreducible defining distribution
where this method applies. These tools lead to natural subriemannian metrics on
generic distributions of interest in geometric control theory.
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1 Introduction

Many areas of geometric analysis and control theory deal with distributions on smooth
manifolds, i.e., smooth subbundles of the tangent bundle. Let H 6 TM be such a distri-
bution of rank n on a smooth m-dimensional manifold M . A smooth curve c : [a, b]→M

(a 6 b ∈ R) is called horizontal if it is tangent toH at every point, i.e., for every t ∈ [a, b],
the tangent vector ċ(t) to c at c(t) ∈ M belongs to H. It is well known that, at least lo-
cally, any two points x, y ∈ M can be connected by a horizontal curve c if and only if H
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Republic; e-mail: slovak@math.muni.cz

Mathematical Institute, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic; e-mail:
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is bracket-generating in the sense that any tangent vector can be obtained from iterated
Lie brackets of sections ofH.

This paper is concerned with bracket-generating distributions arising in parabolic ge-
ometries [6], which are Cartan–Tanaka geometries modelled on homogeneous spaces
G/P where G is a semisimple Lie group and P 6 G a parabolic subgroup. On a mani-
fold M equipped with such a parabolic geometry, each tangent space is modelled on the
P -module g/p, and the socle h of this P -module (the sum of its minimal nonzero P -
submodules) induces a bracket-generating distribution H on M . Simple and well-known
examples include projective geometry and (Levi-nondegenerate) hypersurface CR geom-
etry: in the former case, g/p is irreducible and soH = TM , but in the latter caseH is the
corank one contact distribution of the hypersurface CR structure.

A more prototypical example for this paper is whenH 6 TM is generic of rank n and
corank 1

2
n(n− 1), i.e., m = 1

2
n(n+ 1) = n+ 1

2
n(n− 1), and [Γ(H),Γ(H)] = Γ(TM).

In this case the Lie bracket on sections of H induces an isomorphism ∧2H ∼= TM/H
and the distribution is said to be free. Any such manifold is a parabolic geometry where
G = SO(V ) with dimV = 2n + 1 and P is the stabilizer of a maximal (n-dimensional)
isotropic subspace U of V [9]. Then g/p has socle h ∼= U∗ ⊗ (U⊥/U) with quotient
isomorphic to ∧2h, and h 6 g/p induces the distributionH 6 TM on M .

While parabolic geometry is the main tool for the present work, our motivation is
subriemannian geometry, which concerns the following notion [18].

Definition 1.1. Consider an m-dimensional manifold M with a given smooth distribution
H 6 TM of constant rank n. A (pseudo-)Riemannian metric g onH is called a horizontal
or subriemannian metric on M .

Horizontal metrics are important in both geometric analysis and control theory. Among
the horizontal curves joining two points, it may be important to find those which are opti-
mal in some sense, for example those of shortest length with respect to a horizontal metric.
Horizontal metrics also allow for the definition of a hypo-elliptic sublaplacian [16], allow-
ing methods of harmonic analysis to be applied. However, this raises the question: what
is a good choice of horizontal metric?

For the distribution H on a parabolic geometry, there is a natural compatibility con-
dition that can be imposed. Indeed, one of the key features of such a geometry is that it
admits a canonical class of connections, called Weyl connections, which form an affine
space modelled on the space of 1-forms.

Definition 1.2. A horizontal metric on the distributionH 6 TM induced from a parabolic
geometryM is compatible if it is covariantly constant in horizontal directions with respect
to some Weyl connection on M . We say M is (locally) metrizable if there exists (locally)
a compatible horizontal metric.
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The metrizability problem has been studied for several classes of parabolic geometry
with H = TM , in particular, the case of real projective. These examples exhibit several
interesting features, which we seek to generalize to all parabolic geometries—in particular
to those withH 6= TM .

First, whereas the metrizability condition appears to be highly nonlinear, it linearizes
when viewed as a condition on the inverse metric onH∗ multiplied by a suitable power of
the horizontal volume form. Secondly, this linear equation is highly overdetermined, with
a finite dimensional solution space. Hence parabolic geometries admitting such horizontal
metrics are rather special. This has been used to extract detailed information about the
structure of the geometry [1, 3, 8, 10, 12, 17, 21].

If h is the socle of g/p, it is not generally the case that S2h is irreducible—indeed h

itself need not be irreducible. In order to generalize the studied examples, we introduce a
condition on P -submodules B 6 S2h containing nondegenerate elements, which we call
the algebraic linearization condition (ALC). Our first main result (Theorem 3.5) justifies
this terminology by showing that for parabolic geometries and P -submodules B 6 S2h

satisfying the ALC, there is a bijection between compatible horizontal metrics and non-
degenerate solutions of an overdetermined first order linear differential equation. (In fact,
if h is not irreducible we need a technical extra condition, which we call the strong ALC.)

Our second main result (Theorem 4.1) is a complete classification of all parabolic
geometries and all P -submodules B 6 S2h such that h is irreducible and B satisfies
the ALC. The classification exhibits two nicely counterbalancing features. On the one
hand, among parabolic geometries with irreducible socle, those admitting P -submodules
B 6 S2h satisfying the ALC are rare. On the other hand, the list of examples is quite
long: we state the classification using three tables containing 14 infinite families and 6
exceptional cases. Many of these examples invite further study (see e.g. [19]).

The structure of the paper is as follows. In section 2 we briefly outline the main notions
and tools of parabolic geometry, referring to [6] for details, but concentrating on exam-
ples. We also establish the local metrizability of the homogeneous model. In section 3, we
describe the linearization principle and prove Theorem 3.5. We give examples, and in par-
ticular show how explicit formulae can be obtained not only for the homogeneous model,
but also for so-called normal solutions. Section 4 is devoted to the main classification
result. We conclude by giving examples (Theorem 5.1) where the socle is not irreducible.

2 Background and motivating examples

We work throughout with real smooth manifolds M , real Lie groups P and real Lie alge-
bras p (e.g., we view GL(n,C) as a real Lie group and gl(n,C) as a real Lie algebra).

A (real or complex) P -module W is a finite dimensional (real or complex) vector
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space carrying a representation ρW : P → GL(W ); W is then also a p-module, where p

is the Lie algebra of P , i.e., it carries a representation ρ̃W : p→ gl(W ). We write ξ �w for
ρ̃W (ξ)(w). The nilpotent radical of p is the intersection n of the kernels of all simple p-
modules. It is an ideal in p and the quotient p0 := p/n is reductive. We let P0 := P/ exp n

be the corresponding quotient group with Lie algebra p0. Any P -moduleW has a filtration

0 = W (0) < W (1) < · · · < W (k) = W with n �W (j) 6 W (j−1) ∀ j ∈ {1, . . . k},
(2.1)

by P -submodules, where n �W (j) is the span of all ξ �w with ξ ∈ n and w ∈ W (j). We let
gr(W ) :=

⊕
16j6kW

(j)/W (j−1), which is a P0-module.

2.1 Parabolic geometries and Weyl structures

Let P 6 G be a closed Lie subgroup of a Lie group G, whose Lie algebra p 6 g has
nilpotent radical n E p.

Definition 2.1. A Cartan geometry of type G/P on a smooth manifold M is a prin-
cipal P -bundle G → M equipped with a P -equivariant 1-form θ : TG → g such that
θp : TpG → g is an isomorphism for all p ∈ G, and θ(Xξ) = ξ for all ξ ∈ p, where
ξ 7→ Xξ is the infinitesimal p action on G. The homogeneous model is the Cartan geome-
try G→ G/P equipped with the Maurer–Cartan form of G.

Any P -module W induces a bundle W := G ×P W → M . A filtration (2.1) of W
induces a bundle filtration 0 = W(0) < W(1) < · · · < W(k) = W with gr(W) :=⊕

k∈NW(k)/W(k+1) ∼= G0 ×P0 gr(W ) where G0 := G/ exp n is a principal P0-bundle.
In particular, taking W = g/p, the projection of θ onto g/p induces a bundle isomor-

phism TM → G ×P g/p. This P -module has an inductively defined filtration

0 = h(0) < h(1) < · · · < h(k) = g/p, where h(j) := {x ∈ g/p | ∀ ξ ∈ n, ξ �x ∈ h(j−1)}.

In particular h := h(1) induces a distributionH 6 TM on M . We return to this in §2.3.
We specialize to the case that G is a semisimple Lie group and P is a parabolic sub-

group of G, meaning that the nilpotent radical of p is its Killing perp p⊥ in g. Then Cartan
geometries of type G/P are called parabolic geometries and have several distinctive fea-
tures which we briefly explain and illustrate in the examples below (see [6] for further
details).

First, the Killing form of g induces a duality between p⊥ and g/p, and hence on any
parabolic geometry of type G/P , we have a natural isomorphism G ×P p⊥ ∼= T ∗M dual
to the isomorphism TM ∼= G ×P g/p.

Secondly, the principal P0-bundle G0 has a distinguished family of principal connec-
tions called Weyl connections. To see this, it is convenient to fix a parabolic subalgebra
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pop opposite to p in the sense that g = p⊥ ⊕ pop. This identifies P0 with a subgroup of P ,
and induces a decomposition of P0-modules

g = m⊕ p0 ⊕ p⊥, (2.2)

where m ∼= g/p is the nilpotent radical of pop. A Weyl structure is a P0-equivariant split-
ting ι : G0 ↪→ G of the projection G → G0 (i.e., a reduction of structure group of G to
P0); the corresponding Weyl connection is the p0-component of ι∗θ. Weyl structures (or
connections) form an affine space modelled on the space of 1-forms on M .

Summary

A manifold M with a parabolic geometry of type G/P comes equipped with: a filtration
of the tangent bundle TM , a G0 structure on gr(TM), and a distinguished class of G0-
connections (the Weyl connections).

There are general results [5, 6] stating that these data are often sufficient to determine
the parabolic geometry. Rather than explore this in generality, we turn to examples.

2.2 Projective parabolic geometries

We begin with some examples in which p⊥ is abelian, hence the filtration of g/p is trivial
and (2.2) is a Z-grading of g as a Lie algebra, with p0 in degree 0 and m, p⊥ in degree ±1

(also called a |1|-grading). There is thus a P0-structure on TM and an algebraic bracket
[[·, ·]] on TM ⊕ p0(M) ⊕ T ∗M where p0(M) 6 gl(TM) is the bundle induced by p0.
In this case a Weyl connection induces a P0-connection ∇ on TM and any other Weyl
connection is given (on vector fields Y, Z) by

∇̂ZY = ∇ZY + [[[[Z,Υ]], Y ]] = ∇ZY + [[Z,Υ]] �Y (2.3)

for some 1-form Υ, and we write ∇̂ = ∇+ Υ for short.
Projective geometry in dimension mmay be viewed as a parabolic geometry of typeG/P
where G = PGL(m + 1,R) and P is the parabolic subgroup of block lower triangular
matrices with blocks of sizes m and 1. Here m = Rm, p0 = gl(m,R), and p⊥ = Rm∗, and
the homogeneous model G/P is m-dimensional real projective space RPm.

On a parabolic geometry of this type, the G0-structure carries no information as G0
∼=

GL(m,R), but two Weyl connections ∇ and ∇̂ = ∇ + Υ are related (on vector fields
Y, Z) by

∇̂ZY = ∇ZY + [[[[Z,Υ]], Y ]] = ∇ZY + Υ(Z)Y + Υ(Y )Z. (2.4)

Using abstract indices we may write this as

∇̂aY
b = ∇aY

b + ΥaY
b + ΥcY

cδba.
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Thus the connections ∇ and ∇̂ have the same torsion and the same geodesics (as un-
parametrized curves). Setting the torsion to zero, we have that the Weyl connections form
a projective class [∇].
(Almost) c-projective geometry is a complex analogue of projective geometry [3, 14, 15,
23] with G = PGL(m + 1,C) and P 6 G block lower triangular as in the projective
case, so the homogeneous model G/P is complex projective space CPm viewed as a real
homogeneous space. A parabolic geometry of this type on a 2m-manifold M is given by
an almost complex structure J ∈ gl(TM) and a class [∇] of connections preserving J
which differ by

∇̂aY
b = ∇aY

b + ΥaY
b −ΥcJ

c
aJ

b
dY

d + ΥcY
cδba −ΥcJ

c
dY

dJ ba,

This can be obtained from the real projective formula by substituting (1, 0)-forms Υ−iJΥ

and (1, 0) vectors into (2.4).
(Almost) grassmannian geometries are generalizations of real projective geometry with
G = PGL(m + k,R) and P block lower triangular with blocks of size m and k. The
homogeneous model G/P is the grassmannian of k-planes in Rm+k. On a parabolic ge-
ometry of this type, the G0-structure is given by an identification of the tangent space
with the tensor product of two auxiliary vector bundles E∗ and F of ranks k and m (with
∧kE∗ ' ∧mF ). In abstract index notation, we write eA′ for a section of E and fA for a
section of F , hence Y A′

A for a vector field and ηBA′ for a one-form.
The Weyl connections are tensor products of connections on E∗ and F with fixed

torsion, and the freedom in their choice is (cf. [6, p. 514])

∇̂A
A′Y

B′

B = ∇A
A′Y

B′

B + δB
′

A′Υ
A
C′Y

C′

B + δABΥC
A′Y

B′

C . (2.5)

Whenm = 2` and k = 2 there is an interesting related geometry obtained by replacing
PGL(2` + 2,R) by another real form of PGL(2` + 2,C), namely PGL(` + 1,H). The
homogeneous model is then quaternionic projective spaceHP`, and a parabolic geometry
of this type is an (almost) quaternionic manifold [15].

2.3 Parabolic geometries on filtered manifolds

We now turn to the examples of greater interest to us, in which H is a proper subbun-
dle of TM . In fact, in these examples, the geometry is often entirely determined by the
distributionH, as we now discuss.

Given a smooth manifold M of dimension m, equipped with a distribution H =

H(1) 6 TM of rank n, the Lie bracket of sections ofH (as vector fields) defines a bundle
map ∧2H → TM/H called the Levi form ofH. If we assume the image of the Levi form
has constant rank, it defines a subbundle H(2) 6 TM with H(2)/H equal to the image.
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We thus inductively define H(j) 6 H(j+1) 6 TM such that H(j+1)/H(j) is the image of
the Lie bracketH⊗H(j) → TM/H(j). If we further assumeH is bracket-generating i.e.,
H(k) = TM for some k ∈ N, then we obtain a filtration

0 = H(0) < H(1) < · · · < H(k) = TM

such that the Lie bracket of sections ofH(i) andH(j) is a section ofH(i+j). The associated
graded vector bundle gr(TM) is, at each x ∈ M , a graded Lie algebra gx called the
symbol algebra of H at x. We finally assume that the Lie algebras gx are all isomorphic
to the same nilpotent radical m of a fixed parabolic subalgebra pop in a semisimple Lie
algebra g. In many cases p0 = p∩pop, where p and pop are opposite in g, is the full algebra
of automorphisms of m (as a graded Lie algebra), and, as discussed in [5, 6], this suffices
to equip M with a parabolic geometry of type G/P .

The decomposition (2.2) of g is no longer |1|-graded and this complicates the de-
scription of Weyl connections considerably. However, if we work only with horizontal
(or partial) connections, i.e., restrict the Weyl connections to covariant derivatives in H
directions only, then the theory is as simple as in the |1|-graded case: the Lie bracket be-
tween m and p⊥ in g induces a Lie bracket between h 6 m and p⊥/[p⊥, p⊥] ∼= h∗ with
values in p0, and hence an algebraic bracket [[·, ·]] : H ⊗ H∗ → p0(M). Any two Weyl
connections∇ and ∇̂ are related by

∇̂Zv = ∇Zv + [[Z,Υ]] � v

where Υ is a section of H∗, Z is a section of H, and v is a section of G0 ×P0 V for any
G0-module V . We write ∇̂|H = ∇|H + Υ for short.
Free distributions are parabolic geometries with G = SO(n + 1, n) and P block lower
triangular with blocks of sizes n, 1, n, where the inner product is defined on the standard
basis e0, e1 . . . e2n by 〈ei, en+1+i〉 = 〈en, en〉 = 〈en+1+i, ei〉 = 1 for 0 6 i 6 n− 1 and all
other inner products zero, see [9]. The homogeneous model G/P is the grassmannian of
maximal isotropic subspaces of R2n+1. Elements of the Lie algebra g = so(n+ 1, 1) have
the form −AT −ξT B

−γT 0 ξ
C γ A


where BT = −B and CT = −C. Here A ∈ gl(n,R) ∼= p0, ξ ∈ Rn ∼= h, γ ∈ Rn∗ ∼= h∗,
B ∈ ∧2Rn ∼= ∧2h and C ∈ ∧2Rn∗ ∼= ∧2h∗.

A parabolic geometry of this type on a manifold M of dimension 1
2
n(n + 1) may

be determined by a distribution H of rank n whose Levi form ∧2H → TM/H is an
isomorphism, hence the term “free distribution”. The P0-structure is no additional data,
and Weyl connections may be determined as P0-connections∇ such that for any sections
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Y, Z of H, the projection of ∇ZY − ∇YZ onto TM/H ∼= ∧2H is X ∧ Y . If ∇̂|H =

∇|H + Υ we then compute that

∇̂ZY = ∇ZY + Υ(Y )Z. (2.6)

Free CR or quaternionic CR distributions are obtained by replacing so(n + 1, n) with
g = su(n+ 1, n) or sp(n+ 1, n), again with (complex or quaternionic) blocks of sizes n,
1, n, and p being block lower triangular [20]. Elements of g now have the form−A† −ξ† B

−γ† µ ξ
C γ A


where † denotes the (complex or quaternionic) hermitian conjugate, B† = −B, C† = −C
and µ = −µ. We may thus compute, using matrix commutators[

[ξ − ξ†, γ − γ†], η − η†
]

=
(
ξγη + η(γξ − ξ†γ†)

)
−
(
ξγη + η(γξ − ξ†γ†)

)†
.

Note that the order here is important in the quaternionic case.
A parabolic geometry of this type has a complex or quaternionic rank n distributionH

for which the Levi form is complex or quaternionic skew hermitian, inducing an isomor-
phism of TM/H with such forms on H. If ∇̂|H = ∇|H + Υ we then have, on sections
Y, Z ofH,

∇̂ZY = ∇ZY + Z Υ(Y ) + Y (Υ(Z)−Υ(Z)).

2.4 First BGG operators, local metrizability of the homogeneous model,
and normal solutions

Let G → M, θ be a Cartan geometry of type G/P . The extension of G by the left action
of P on G is a principal G-bundle G̃ = G ×P G with G-connection θ̃ : G̃ → g, and (by
construction) a reduction G ⊆ G̃ of structure group to P , and this provides an alternative
description of the Cartan geometry. It follows that for any G-module V , there is a canoni-
cal induced linear connection on V = G×P V ∼= G̃×GV . These bundles are called tractor
bundles and their sections tractors.

In the parabolic case, the BGG machinery of [7, 2] provides a sequence of invariant
linear differential operators between bundles induced by P -modules associated to V . The
first such operator is defined on the bundle G ×P V/(p⊥ �V ) ∼= V/(T ∗M �V) and is
overdetermined.

WhenM = G/P is the homogeneous model, the kernel of this first BGG operator is in
bijection with the space of parallel sections of the tractor bundle V , and the solutions have
an explicit polynomial expression in normal coordinates. In more detail, fix an opposite
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parabolic subalgebra pop to p 6 g, inducing a decomposition (2.2). Then expm 6 G

is a unipotent subgroup of G which determines a reduction G0 ∼= P0 expm 6 G of the
homogeneous model G → G/P to the structure group P0 over the image M of expm in
G/P , hence a Weyl connection over M , the normal flat Weyl connection.

Now if V = G0 ×P0 V is induced by a P0-module V , the Weyl covariant derivative of
sections can be defined as the differentiation of P0-equivariant V -valued functions on G0
in the direction of the constant vector fields with respect to the Weyl connection, and the
subgroup expm is tangent to all such constant vector fields. Thus any constant coordinate
function f : expm→ V , with f(x) = f0 for all x ∈ expm, defines a covariantly constant
section with values in V . In particular, choosing any nondegenerate symmetric 2-form g

in S2m∗, the metric defined by the constant g in the normal flat coordinates is covariantly
constant with respect to the normal flat Weyl connection. Thus the homogeneous model
G/P is locally metrizable. By [4], such explicit formulae also apply on general curved
geometries to the so called normal solutions, which are those induced by parallel sections
of the corresponding tractor bundle. We discuss this further in §3.5.

3 Metrizability and the linearization principle

3.1 First order operators

In [22], the second and third authors developed a theory of invariant first order linear
operators for parabolic geometries, generalizing work of Fegan [11] in the conformal
case (cf. [13, Appendix B]).

We first fix some notation. The Killing form of g induces a nondegenerate invariant
scalar product on p0 = p/p⊥, such that the decomposition into the semisimple part pss0 =

[p0, p0] and the centre z(p0) is orthogonal. Thus any Cartan subalgebra of p0 ⊗ C has an
orthogonal decomposition t = t′ ⊕ t0, where t′ is a Cartan subalgebra of pss0 ⊗ C and
t0 = z(p0)⊗C. Further, t∗ = t′∗ ⊕ t∗0 is the dual decomposition, hence is orthogonal with
respect to the induced scalar product on t∗. We write the corresponding decomposition of
a weight λ ∈ t∗ as λ = λ′ + λ0. Let Σ0 be the set of simple roots α of g whose root space
gα is in h∗⊗C. The remaining simple roots have root spaces in p0⊗C, and hence belong
to t′∗ (i.e., they vanish on t0). Hence α0, for α ∈ Σ0, form a basis for t∗0 (dual to the basis
of t0 formed by the fundamental coweights which belong to t0).

Let Vλ be an irreducible complex p0-module with highest weight λ = λ′ + λ0 ∈ t∗,
let α = α′ + α0 ∈ Σ0, and let µ = µ′ + µ0 be the highest weight of a component Vµ in
the tensor product Vλ ⊗ Vα. The key observation from [22, Theorem 4.4] is that there is a
first order invariant operator between sections of the bundles induced by Vλ and Vµ if and
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only if the scalar expression

cλ,µ,α = 1
2

(
(µ− λ, µ+ λ+ 2ρ′)− (α, α + 2ρ′)

)
vanishes, where ρ′ ∈ t′∗ is half the sum of the positive roots of p0. We split this expression
into contributions from t′∗ and t∗0 using the fact that µ0 = λ0 + α0. Thus

cλ,µ,α = cλ′,µ′,α′ +
1
2

(
(α0, 2λ

0 + α0)− (α0, α0)
)

= cλ′,µ′,α′ + (λ0, α0).
(3.1)

If we fix λ′, α and µ′, this decomposition provides one (real) linear equation on the central
weight λ0. This establishes the existence of many first order operators [22]. Here we
exploit (3.1) in a more specific way.

Proposition 3.1. Let λ′ ∈ t′∗ be the highest weight of a pss0 -module, and for each α ∈ Σ0,
let µ′α ∈ t′∗ be the highest weight of an irreducible component of Vα′ ⊗ Vλ′ . Then there is
a unique central weight λ0 ∈ t∗0 such that for all α ∈ Σ0, there is an invariant linear first
order operator between sections of the bundles induced by Vλ and Vµα , where λ = λ′+λ0

and µα = µ′α + λ0 + α0.

A particular case of this result arises when µ′α = λ′ + α′ so that µα = λ + α and Vµα
is the Cartan product of Vλ and Vα. In this case, the unique λ0 is such that (λ, α) = 0 for
all α ∈ Σ0, so that λ is a dominant weight for g and the first order system is the first BGG
operator on the bundle induced by Vλ.

3.2 The algebraic linearization condition

Let (G → M, θ) be a parabolic geometry of type (G,P ) and let h be the socle of the
p-module g/p, whose central weights form a basis of z(p0)

∗. As we have seen, G ×P
h ⊆ G ×P g/p ∼= TM defines a (bracket generating) “horizontal” distribution H ⊆
TM . Our aim is to construct compatible subriemannian (or pseudo-riemannian) metrics,
i.e., pseudo-riemannian metrics g on H for which there exists a horizontal metric Weyl
connection (a Weyl connection∇ with∇Zg = 0 for all horizontal vector fields Z).

Let c : h∗ ⊗ S2h→ h be the natural contraction. We then posit the following.

Definition 3.2. A nontrivial p0-submodule B 6 S2h satisfies the algebraic lineariza-
tion condition (ALC) if and only if B has nondegenerate elements, and there exist p0-
submodules hi 6 h and Bi 6 S2hi (i ∈ {1, . . . r}) with h =

⊕r
i=1 hi and B =

⊕r
i=1Bi

such that for each i ∈ {1, . . . r}, Bi is irreducible, and for any α ∈ Σ0 and any irreducible
component W of Bi ⊗ C, (Vα ⊗W ) ∩ (ker c⊗ C) is irreducible or zero.
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Remark 3.3. Note that η ∈ B is nondegenerate if and only if the same is true for each
component ηi ∈ Bi. The restrictions bi : h∗ ⊗ Bi → hi of c are then surjective, and so
we may write h∗ ⊗ Bi = ker bi ⊕ ζi(hi) where ζi : hi → h∗ ⊗ Bi is a p0-invariant map
with bi ◦ ζi = idhi . Since Bi is irreducible, it must lie in a single weight space of t0, with
weight −α0 − β0 where α, β ∈ Σ0; hence it is in the image of hα ⊗ hβ → S2h ⊗ C for
the corresponding weight spaces and so hi ⊗ C has at most two irreducible components.

3.3 The linearization principle

Suppose first for simplicity that B 6 S2h is absolutely irreducible and satisfies the ALC
(so h has at most two irreducible components) and let π = idh∗⊗B−ζ ◦b be the projection
onto ker(b : h∗ ⊗ B → h). The linearization method constructs a (pseudo-riemannian)
metric onH, i.e., a nondegenerate section g of S2H∗ from a weighted inverse metric, i.e.,
a section η of S2H⊗L for some line bundle L. For this we suppose η is a section of B⊗L,
where B = G ×P B and L is a line bundle induced by a weight of z(p0). We write b, ζ, π
also for the induced bundle homomorphisms (tensored by the identity on L) and choose
L so that there is an invariant first order linear operator D from Γ(B⊗L) to Γ(ker b) with
D = π ◦ ∇|H for any Weyl structure ∇. If dimB = 1, then ker b = 0, so D is the zero
operator, and we take L to be trivial. Otherwise L,D are determined by Proposition 3.1.
Due to the ALC, ker b is then a sum of Cartan products of summands of h∗ and B, and
the operator D is the first BGG operator.

Solutions η of the linear differential equation Dη = 0 are characterized by the fact that
for some (hence any) Weyl structure∇, there is a section X∇ ofH⊗L such that

∇|Hη = ζ(X∇).

Now suppose ∇̂|H = ∇|H + Υ with Υ in H∗. Then for any Z ∈ ΓH, ∇̂Zη = ∇Zη +

[[Z,Υ]] � η, and [[·,Υ]] � η is in the image of ζ by the invariance of D. Hence by Schur’s
lemma and §3.1 (i.e., [22]):

[[·,Υ]] � η = (ζ ◦ b)([[·,Υ]] � η) = (ζ ◦ b)
(∑

α∈Σ0
`αΥα ⊗ η

)
for nonzero scalars `α, where Υ =

∑
α∈Σ0

Υα with Υα ∈ Vα ⊆ h∗ ⊗ C. If we define
]η(Υ) =

∑
α∈Σ0

`αb(Υα ⊗ η), we deduce that

∇̂|Hη = ∇|Hη + ζ(]η(Υ)).

Now if η is a nondegenerate solution of Dη = 0, with ∇|Hη = ζ(X∇) for some Weyl
connection∇ and X∇ ∈ Γ(H⊗L), we may take Υ = −]−1η (X∇) to obtain

∇̂|Hη = ζ(X∇) + ζ(]η(Υ)) = 0.
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Hence η is (inverse to) a horizontal compatible metric, up to the shift of the weight via the
line bundle L. Finally, the nondegenerate weighted metric η allows us to build a nonvan-
ishing section σ of the line bundle ∧mH⊗Lm/2, where m = dim h, with ∇̂|Hσ = 0. This
line bundle cannot be trivial because the central weight of B ⊗ L is not zero. If h is abso-
lutely irreducible, then ∧mH⊗Lm/2 ∼= Lk for some nonzero k, and then ψ = (σ−1/kη)−1

is a section of B∗ with ∇̂|Hψ = 0. Otherwise, we need to assume the central weights of
∧mH and L are linearly dependent. The most natural way to achieve this is to suppose
that the simple roots α, β with h ⊗ C = hα ⊕ hβ are related by an automorphism of the
Dynkin diagram of g.

Definition 3.4. A p0-submodule B 6 S2h satisfies the strong algebraic linearization
condition (strong ALC) if and only if B satisfies the ALC with respect to p0-submodules
hi 6 h such that whenever hi ⊗ C = hα ⊕ hβ for α, β ∈ Σ0, there is an automorphism of
the Dynkin diagram of g preserving Σ0 and interchanging α and β.

With this definition, the linearization method yields the following result.

Theorem 3.5. Let B 6 S2h satisfy the strong ALC with respect to B =
⊕r

i=1Bi and
h =

⊕r
i=1 hi. Then for all i ∈ {1, . . . r} there are induced line bundles Li and invariant

first order linear operators Di acting on sections of Bi ⊗ Li such that there is a bijection
between nondegenerate solutions ηi : i ∈ {1, . . . r} of the equations Di(ηi) = 0, and
nondegenerate sections ψ of B∗ with ∇|Hψ = 0 for some Weyl connection∇.

Proof. Define bi, ζi as in Remark 3.3 so that h∗⊗Bi = ker bi⊕ ζi(hi), let πi = idh∗⊗Bi −
ζi ◦ bi be the projection onto ker bi, and let Σi

0 = {α ∈ Σ0 : Vα ⊆ h∗i ⊗ C}. We apply
the same ideas as in the absolutely irreducible case to each irreducible component Vλ′ of
Bi⊗C. If dimVλ′ > 2 then the ALC implies that (Vα⊗ Vλ′)∩ (ker bi⊗C) is irreducible
for all α ∈ Σ0, hence Proposition 3.1 provides a unique λ0 so that there is an invariant first
order operator between sections of the bundles induced by Vλ and ker bi ⊗ C. If instead,
dimVλ′ = 1, then Vα ⊗ Vλ′ is irreducible, and is contained in ker bi ⊗ C unless α ∈ Σi

0.
We thus supplement (3.1) by the equations (λ0, α0) = 0 when α ∈ Σi

0.
Since Bi is irreducible, Bi⊗C is either irreducible or has two irreducible components

with conjugate weights. Now the system of equations (3.1) and (λ0, α0) = 0 that we
impose to find λ0 are conjugation invariant. Hence in either case, we obtain a line bundle
Li and an invariant first order linear operator Di := πi ◦ ∇|H on Bi ⊗ Li, so that any
section ηi satisfies Di(ηi) = 0 if and only if

∇|Hηi = ζi(X
∇
i )

for a suitable section X∇i of Hi ⊗ Li. Given such sections ηi, let η =
∑r

i=1 ηi. By con-
struction, the operator bi ◦ ∇|H is not invariant on Bi ⊗ Li. Hence by Schur’s Lemma,
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there are nonzero scalars `α such that

[[·,Υ]] � η = (ζ ◦ b)([[·,Υ]] � η) = (ζ ◦ b)
(∑r

i=1

∑
α∈Σi0

`αΥα ⊗ ηi
)

=
(∑

α∈Σ0
`αΥα ⊗ η

)
,

where Υ =
∑

α∈Σ0
Υα as before. As before, we define ]η(Υ) =

∑
α∈Σ0

`αb(Υα ⊗ η), so
that if ∇̂|H = ∇|H + Υ then

∇̂|Hη = ∇|Hη + ζ(]η(Υ)).

If η is a nondegenerate then ]η is invertible, and so if D(η) = 0, i.e., Di(ηi) = 0 for all i,
then we may set Υ := −]−1η (X∇), where X∇ =

∑r
i=1X

∇
i to obtain ∇̂|Hη = 0.

Finally, taking volume forms of ηi on Hi for each i, we obtain nonvanishing sections
σi of ∧miHi⊗Lmi/2i with ∇̂|Hσi = 0. The weights of the σi are linearly independent, and
the strong ALC ensures that the central weights of the Li are linear combinations of the
central weights of ∧mjHj , so for every i, we can solve the linear system ηi⊗

⊗
j σ

aij
j ∈ Bi,

and hence, inverting each component, obtain the section ψ of B∗ as required. Since the
system is invertible, η can be obtained from ψ and its volume forms on eachHi.

If only the ALC is assumed, then the proof yields, in place of horizontally parallel met-
rics onH, horizontally parallel conformal structures on eachHi and horizontally parallel
sections of some line bundles.

3.4 Example: projective geometry

Let us illustrate the metrizability procedure by showing how the well-known example of
projective geometry [8, 10, 17, 21] fits into the general method. Here g = sl(n+ 1,R) =

h ⊕ gl(h) ⊕ h∗ and S2h is irreducible. Since h∗ ⊗ S2h ∼= h ⊕ (h∗ ⊗0 S
2h), where the

second summand is the trace-free part (the Cartan product), B = S2h satisfies the ALC.
The class of covariant derivatives defining the projective structure depends on an arbitrary
1-form Υa and two of them are related by (2.4). Hence on a section ϕ of B = S2TM , we
have

[[Z,Υ]] �ϕ = 2Υ(Z)ϕ+ Z ⊗ ϕ(Υ, ·) + ϕ(Υ, ·)⊗ Z

for any vector field Z and 1-form Υ. If we twist by the line bundle L induced by the
P0-module L with highest weight−2ω1, then for η ∈ Γ(B⊗L) and ∇̂ = ∇+Υ, we have

∇̂Zη = ∇Zη + b(Υ⊗ η)� Z

where X � Z = X ⊗ Z + Z ⊗X and b(Υ ⊗ η) = η(Υ, ·) is the natural contraction. In
abstract indices this contraction of Υcη

ab is Υaη
ab and hence

∇̂cη
ab = ∇cη

ab + δacΥdη
bd + δbcΥdη

ad.
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We thus have an invariant first order operator acting on η (a first BGG operator) whose
solutions satisfy

∇Zη = 〈Z, ζ(X∇)〉 = 1
n+1

X∇ � Z.

for some section X∇ of TM ⊗ L. (Here ζ(X) = 1
n+1

X � id, or in abstract indices,
ζ(Xa) = 1

n+1

(
Xaδbc+X

bδac
)

so that b(ζ(X)) = X .) Evidently η is parallel for ∇̂ provided
b(Υ⊗η) = − 1

n+1
X∇, which we can solve for Υ if η is nondegenerate. Direct computation

shows that det(η) is a section of L−2. So gab := det(η)ηab is a nondegenerate section of
S2TM and its inverse is parallel with respect to ∇̂. In terms of the general theory herein,
if

[[·,Υ]] � η = ` (ζ ◦ b)(Υ⊗ η),

then

b(Υ⊗ η)� Z = [[Z,Υ]] � η = ` 〈Z, (ζ ◦ b)(Υ⊗ η)〉 =
`

n+ 1
b(Υ⊗ η)� Z,

and so ` = n+ 1. Hence ]η(Υ) = (n+ 1)b(Υ⊗ η) and the solution is Υ = −]−1η (X∇).

3.5 The metric tractor bundle

As we have seen in §2.4, the homogeneous model G/P is always locally metrizable, and
solutions in the kernel of a given first BGG operator are induced by parallel sections of
a corresponding metric tractor bundle. In general, if M has nontrivial curvature, not all
solutions to a linearized metrizability problem will correspond to such parallel sections: as
discussed in §2.4, those that do are called normal solutions and exhibit special features.
In particular, as shown in [4], they are always of a simple polynomial forms in normal
coordinates, exactly as in the homogeneous model. Thus the explicit formulae from the
homogeneous case form an ansatz for solutions in general.

Let us discuss this in the case of free distributions from §2.3. Here g = so(n+ 1, n) =

∧2h ⊕ h ⊕ gl(h) ⊕ h∗ ⊕ ∧2h∗, B = S2h is irreducible and satisfies the ALC, just as in
the case of projective geometry. In this case, however, there is no need to twist by a line
bundle, since by (2.6), we already have

∇̂Zη = ∇Zη + b(Υ⊗ η)� Z

for any sections Z of H and η of S2h, where ∇̂|H = ∇|H + Υ and b is the natural
contraction. The solution of the linearized metrizability problem then proceeds exactly as
in the projective case, so we now consider the form of the normal solutions.

The standard tractor bundle is the bundle associated to the defining representation
V of G = SO(n + 1, n). Explicitly, using the matrix description in §2.3, we may write
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elements of V as column vectors

v =

λaτ
`a


on which the action of the nilpotent radical m of pop is given by

x � v =

0 xa yab

0 0 −xa
0 0 0

λbτ
`b

 =

xaτ + yab`b
−xb`b

0

 .

The metric tractor bundle in this example is associated to the symmetric tracefree square
S2
0V of V . Elements of the symmetric square S2V are given by

Φ =


νab

σb

κ |ψcb
ξb
τbc

 ,

where νab and τbc are symmetric, and such and element is in S2
0V if κ = −ψcc . Our

convention is such that Φ = v � ṽ has components

νab = λaλ̃b + λ̃aλb; σb = λbτ̃ + τ λ̃b; κ = τ τ̃ ; ψcb = `bλ̃
c + λc ˜̀b;

ξb = `bτ̃ + τ ˜̀
b; τbc = `a ˜̀

b + ˜̀
a`b.

The action of the nilpotent radical on the symmetric square is given by

x �Φ :=

0 xa yab

0 0 −xa
0 0 0




νab

σb

κ |ψcb
ξb
τbc

 =


x(aσb) − yc(aψb)c
xcψbc + ybcξc − xbκ
−xbξb |xcξb
−xaτab

0

 ,

where x(aσb) = xa ⊗ σb + σb ⊗ xa. The iterated action is therefore given by

x �x �Φ =


xcx(aψ

b)
c + 2x(ayb)cξc − xaxbκ

2xcxbξc − ybcxaτac
xbxaτab | − xcxaτab

0
0

 ,

x �x �x �Φ =


4xaxbxcξc − 2x(ayb)cxdτdc

−2xbxaxcτac
0 | 0

0
0

 , x �x �x �x �Φ =


−4xaxbxcxdτcd

0
0 | 0

0
0


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with all further iterates zero. The normal solution is the projection onto S2H of exp(x)·Φ,
which is given by

ηab(x, y) = νab + x(aσb) − yc(aψb)c + 1
2
xcx(aψb)c + x(ayb)cξc + 1

2
xaxbψcc

+ 2
3
xaxbxcξc − 1

3
x(ayb)cxdτdc − 1

6
xaxbxcxdτcd.

4 Classification of metric parabolic geometries with irre-
ducible h

We have seen that the linearizability problem of the existence of compatible subrieman-
nian metrics on parabolic geometries reduces to a purely algebraic question related to the
number of components in certain tensor products of the p0-modules h and its dual h∗. In
fact, we are only interested in the actions of the semisimple part of p0 = p/p⊥.

In this section, we classify all cases of the ALC where the defining distribution of the
parabolic geometry corresponding to h is irreducible. This is the case with all |1|-graded
geometries, but many |2|-graded and some more general geometries are involved too. In
order to keep the story short, while still providing a complete and simple picture, we use
the schematic description of the chosen type of parabolic subalgebra p of g by crosses on
the Dynkin diagram for g and we write weights of p-modules as linear combinations of
the fundamental weights for g, depicted as the nonzero coefficients over the nodes of the
diagrams, ignoring those over the crossed nodes (see e.g. [6, §3.2] for these conventions).
This exactly provides the complete information on the representation of the semisimple
part of p0 in the case of complex algebras and we always add further information on spe-
cific real forms of them. Actually for practical reasons (and in accordance with common
practice), we rather write the weights of the dual p0-modules over the Dynkin diagram.
Moreover, the displayed diagrams and weights always correspond to the complexified
versions and thus we have to keep in mind their meaning for particular real forms.

The classification is given in the following theorem. In the proof we also describe the
geometric properties of the metrics in any admissible component B, mostly in terms of
special structure related to the given parabolic geometry. The classification in Table 1 was
also obtained in [19].

Theorem 4.1. Let p be a parabolic subalgebra in a real simple Lie algebra g and let B
be a p-submodule of S2h, with h ∼= (p⊥/[p⊥, p⊥])∗ irreducible. Then B satisfies the ALC
and admits nondegenerate elements if and only if one of the following holds:

• g is complex and the complexification of (p, B) appears in Table 1;

• (g, p, B) appears as a real form in Table 2 or 3;
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• (g, p, B) is (the underlying real Lie algebra of) the complexification of a triple ap-
pearing in Table 2.

Case Diagram ∆` for p, B Real simple g Growth
Ah`

1
• • · · · × × • · · ·

1
• sl(`+ 1,C) ` > 2 2`

Bh
`

1
• • · · · •>× ×< • • · · ·

1
• so(2`+ 1,C) ` > 2 2k, 2k + k(k − 1)

Gh
2 ×<

1
•

1
•>× GC2 4, 6, 10

Table 1: Complex geometries with hermitian B

Case Diagram ∆` for p, B Real simple g Growth
A1,1
` × • · · ·

2
• sl(`+ 1,R) ` > 2 `

A1,2
` • × • · · · •

1
• •

sl(`+ 1,R), sl(p+ 1,H)
` = 2p+ 1, p > 2

4p

B1,k
`

2
• • · · · •

k > 2
× • · · · •> •

so(p, q), k 6 p 6 q
p+ q = 2`+ 1

d = k(2`− 2k + 1),
n = d+ 1

2
k(k − 1)

B1,`
`

2
• • · · · •>× so(`, `+ 1) ` > 2 k, k + 1

2
k(k − 1)

C1,2
4 • × •<

1
•

sp(8,R)
sp(2, 2) sp(1, 3)

8, 11

C1,k
` •

1
• · · · •

k = 2j > 4
× • · · · •< •

sp(2`,R) sp(p, q)
` = p+ q, k 6 p 6 q

d = k(2`− 2k),
n = d+ 1

2
k(k + 1)

D1,k
`

2
• • · · · •

k > 2
× • · · · •�

•
�•

so(p, q) so∗(2`)
2` = p+ q
k 6 p 6 q

k = 2j
k 6 `− 2

d = k(2`− 2k),
n = d+ 1

2
k(k − 1)

E1,1
6 × • •

•
•

1
• E6(6), E6(−26) 16

G1,1
2 ×<

2
• G2(2) 2, 3, 5

Table 2: Real geometries with absolutely irreducible h

Outline of Proof. In the gradings of the complex algebras g corresponding to parabolic
geometries, the number of irreducible components of h∗ is equal to the number of crosses
in the Dynkin diagram describing the chosen parabolic subalgebra. However, in the real
forms of g, there might be complex or quaternionic components giving rise to two compo-
nents in the complexification. These two complex components have to be either conjugate
(in the complex case) or isomorphic (in the quaternionic case).

The latter observation reduces our quest to diagrams with two crosses placed in a
symmetric way. Indeed, more than two crosses cannot result in one component, while
asymmetric positions of the crosses inevitably yield two complex components which are
neither conjugate nor isomorphic. Moreover, having two components in the complexified
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Case Diagram ∆` for p, B Real simple g Growth
A2,1

3 ×
2
• × su(1, 3), su(2, 2) 4, 5

A2,k
`

1
• · · · •

k > 2
× • · · · •

`− k
× • · · ·

1
•

su(p, q), k 6 p 6 q
` = p+ q − 1 > 4

d = 2k(`− 2k + 1),
n = d+ k2

A2,h
`

• × •
1
• · · · • × •

⊕
• × • · · ·

1
• • × •

su(p, q), 2 6 p 6 q
` = p+ q − 1 > 6

4(`− 3), 4(`− 2)

A2,s
2k+1

•
1
• · · · • × • × • · · · • •

⊕
• • · · · • × • × • · · ·

1
• •

su(k, k + 2),
su(k + 1, k + 1)
` = 2k + 1 > 7

4k, 4k + k2

A2,s
2k

2
• • · · · • × × • · · · • •

⊕
• • · · · • × × • · · · •

2
•

su(k, k + 1)
` = 2k > 4

2k, 2k + k2

D2,s
`

2
• • · · · •�

×
�×

so(`− 1, `+ 1)
so∗(2`), ` = 2j + 1

d = 2(`− 1),
d+ 1

2
(`− 1)(`− 2)

D2,h
` •

1
• · · · •�

×
�×

so(`− 1, `+ 1)
so∗(2`), ` = 2j + 1

d = 2(`− 1),
d+ 1

2
(`− 1)(`− 2)

E2,h
6 × • •

• 1
• × E6(2) 16, 24

Table 3: Real geometries with h not absolutely irreducible

h, we may ignore the symmetric products of the individual parts in S2h, because there
cannot be any nondegenerate metrics there.

We first dispense with the case that g is complex but B is not, so that B ⊗ C is irre-
ducible in g⊗C ∼= g⊕ g and the diagram for (p, B) is invariant under the automorphism
exchanging the two components of the Dynkin diagram. Thus B ⊗ C = hα ⊗ hβ where
h ⊗ C = hα ⊕ hβ . Now the ALC is satisfied provided hα ⊗ h∗α (and hence also hβ ⊗ h∗β)
has precisely two irreducible components as a representation of a component of p0 ⊗ C.
Only the (dual) defining representations in type A have this property, and so g must have
type A,B or G, where the nodes crossed in g ⊗ C are end nodes corresponding to short
simple roots. The possibilities are listed in Table 1, covering the following three cases:

Case 1 (Ah` ). The c-projective geometries may be equipped with distinguished hermitian
metrics.

Case 2 (Bh
` ). The almost complex version of a free distribution of rank k, may be equipped

with distinguished hermitian metrics.

Case 3 (Gh
2). The almost complex version of the (2, 3, 5)-distributions may be equipped

with distinguished hermitian metrics.

We analyse the remaining real cases with irreducible h by the Dynkin type of g in the
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following sections.

4.1 Proof of Theorem 4.1 when g has type A`

The case ` = 1 is trivial, so we assume ` > 2, and first consider the case of a single
crossed node. If the crossed node is one of the ends of the Dynkin diagram, the only real g
is the split form, h and S2h are irreducible, and B = S2h satisfies the ALC: when ` = 2,

B ' ×
2
• h∗ ⊗B ' ×

3
• ⊕ × 1

•

and when ` > 3,

B ' × • · · ·
2
• h∗ ⊗B ' ×

1
• · · ·

2
• ⊕ × • · · ·

1
• .

These examples can be summarized in the following statement.

Case 4 (A1,1
` ). Here g = sl(` + 1,R), ` > 2, h ∼= R` and B = S2h. This is the most

classical case of projective structures on `-dimensional manifolds M , and nondegenerate
sections of B are inverse to arbitrary pseudo-Riemannian metrics on M .

Suppose next that the cross is adjacent to one end of the diagram, with ` > 3. We then
have S2h = B ⊕B′, where

h ' 1
• × • · · ·

1
• h∗ ' 1

• ×
1
• · · · •

B ' • × • · · ·
1
• • (` > 4) B′ ' 2

• × • · · ·
2
•

and B is trivial for ` = 3 (when h ∼= h∗). The tensor product h∗ ⊗ B′ decomposes into
four irreducible components, except for the real form su(2, 2) when ` = 3, in which case
there are only three components. In any case, B′ does not satisfy the ALC.

In order for B to have nondegenerate elements, ` must be odd, and for ` = 2p+1 > 5,
h∗ ⊗B ' 1

• ×
1
• • · · ·

1
• • ⊕ 1

• × • · · ·
1
• ; thus the ALC holds for B.

Case 5 (A1,2
` ). For each ` = 2p+1 > 5, there are two real forms. When g ' sl(2p+2,R),

the geometries are the almost grassmannian structures on manifolds M of dimension 4p,
modelled on the grassmannian of 2-planes in R2p. The tangent bundle TM is identified
with a tensor product E ⊗ F , where rank E = 2, rank F = 2p, and the nondegenerate
metrics in B are tensor products of area forms onE and symplectic forms on F . When g '
sl(p,H), the geometries are almost quaternionic geometries, where TM is a quaternionic
vector bundle, and the nondegenerate metrics in B are the (real parts of) quaternionic
hermitian forms.

When the cross is further from the ends of the diagram, we have S2h = B ⊕B′ with

B ' •
1
• · · · • × • · · ·

1
• • B′ ' 2

• · · · • × • · · ·
2
• .
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and there are too many components in both h∗ ⊗B and h∗ ⊗B′ to satisfy the ALC.
We now turn to cases with two crossed nodes, related by the diagram automorphism

of A`. First suppose the crossed nodes are the endpoints. In order to have nontrivial B we
must have ` > 3, in which case S2h = B ⊕B′ ⊕B′′ where

h ' ×
1
• · · · • × ⊕ × • · · ·

1
• × ' h∗

B ' ×
2
• × or × 1

• • · · · •
1
• × B′ ' ×

2
• · · · • × ⊕ × • · · ·

2
• ×

andB′′ is trivial. Clearly h∗⊗B′ has too many irreducible components to satisfy the ALC,
no matter which real form we consider.

It remains to consider B, first in the case ` = 3, where the possible real forms (with h

irreducible) are su(2, 2) and su(1, 3). Then

h∗ ⊗B '
(
×

3
• × ⊕ × 3

• ×
)
⊕
(
×

1
• × ⊕ × 1

• ×
)

and the ALC is satisfied, since these are complexifications of two complex components
for the real form in question. However, for ` > 4, we find that the product h∗ ⊗ B leads
to complexifications with three complex components, so the ALC is not satisfied.

Case 6 (A2,1
3 ). Here g is su(2, 2) or su(1, 3), and M has a CR structure, i.e., a contact dis-

tributionH equipped with a complex structure. The Levi form induces the class of trivial
parallel hermitian metrics (the Weyl connections corresponding to the contact forms leave
parallel both the complex structure and the symplectic form, thus also the associated met-
ric, and the metrizability problem is trivial as in the conformal case). However, we now
see that there may also be interesting compatible subriemannian metrics on H 6 TM

which are hermitian and tracefree with respect to the Levi form.

Now suppose the crosses are not placed at the ends, say the left one at the k-th position,
2 6 k. Thus we consider the real forms su(p, q) with k 6 p 6 q. We have

h ' 1
• · · · • × • · · ·

1
• × • · · · • ⊕ • · · · • ×

1
• · · · • × • · · ·

1
•

h∗ ' • · · ·
1
• ×

1
• · · · • × • · · · • ⊕ • · · · • × • · · ·

1
• ×

1
• · · · •

for ` > 2k and

h ' 1
• · · · • × × • · · · • ⊕ • · · · • × × • · · ·

1
•

h∗ ' • · · ·
1
• × × • · · · • ⊕ • · · · • × ×

1
• · · · •

for ` = 2k. In particular, we have S2h ⊃ B where

B ' 1
• · · · • × • · · · • × • · · ·

1
• ,
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which admits nondegenerate metrics and satisfies the ALC, with

h∗ ⊗B '
( 1
• · · ·

1
• ×

1
• · · · • × • · · ·

1
• ⊕ 1

• · · · • × • · · ·
1
• ×

1
• · · ·

1
•
)

⊕
(
• · · · • ×

1
• · · · • × • · · ·

1
• ⊕ 1

• · · · • × • · · ·
1
• × • · · · •

)
or h∗ ⊗B '

( 1
• · · ·

1
• × × • · · ·

1
• ⊕ 1

• · · · • × ×
1
• · · ·

1
•
)

⊕
(
• · · · • × × • · · ·

1
• ⊕ 1

• · · · • × × • · · · •
)
.

Case 7 (A2,k
` ). Here g ' su(p, q) with nodes k and `+ 1−k crossed, where 2 6 k 6 p 6

q, p + q = ` + 1. In these geometries, H ∼= E ⊗ F , where E is a complex vector bundle
of rank k, and the rank (` − 2k + 1) complex vector bundle F comes with a hermitian
form of signature (p− k, q − k). The corank ofH 6 TM is k2, and the metrics onH are
the products of hermitian metrics on E with the given ones on F . When ` = 2k (i.e., F
has rank 1), g = su(k, k + 1) with the nodes k, k + 1 are crossed. These are the free CR
geometries with complex structure on H studied in [20] (where it is also explained how
complex structure arises onH).

The remaining components of S2h do not satisfy the ALC, except in special cases
k = 2, 2k = ` and 2k + 1 = `. In particular, when k = 2,

B′ ' • × •
1
• · · · • × • ⊕ • × • · · ·

1
• • × •

satisfies the ALC (and is nontrivial for ` > 6).

Case 8 (A2,h
` ). Here g ' su(p, q) with nodes 2 and ` − 1 crossed, where 2 6 p 6 q and

` = p+ q− 1 > 6. In this geometry,H ∼= E ⊗F , where E is a complex vector bundle of
rank 2, and F is a complex vector bundle of rank `− 3. The corank ofH 6 TM is 4. The
eligible metrics are the complex symmetric bilinear forms of the form of tensor product
of two exterior forms.

When 2k = `, we obtain S2h = B ⊕B′ where

B′ =
2
• · · · • × × • · · · • ⊕
• · · · • × × • · · ·

2
•

which admits nondegenerate metrics, and satisfies the ALC, with

h∗ ⊗B′ '
( 2
• · · ·

1
• × × • · · · • ⊕ • · · · • × ×

1
• · · ·

2
•
)
⊕( 2

• · · · • × ×
1
• · · · • ⊕ • · · ·

1
• × × • · · ·

2
•
)
⊕( 1

• · · · • × × • · · · • ⊕ • · · · • × × • · · ·
1
•
)
.

Case 9 (A2,s
2k ). This case is again the free CR geometry, with g = su(k, k + 1), but the

eligible metrics are the complex bilinear metrics onH.
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Similarly, when ` = 2k + 1 with the k-th and (k + 2)-nd nodes crossed,

B′ ' •
1
• · · · • × • × • · · · • ⊕ • · · · • × • × • · · ·

1
• •

satisfies the ALC.

Case 10 (A2,s
2k+1). Here ` = 2k + 1, g is su(k, k + 2), or su(k + 1, k + 1), with nodes k

and k + 2 crossed. In this geometry, H ∼= E ⊗ F , where E is a complex vector bundle
of rank k, and F is a complex vector bundle of rank 2. The codimension of H 6 TM is
k2. The eligible metrics are the complex symmetric bilinear forms of the form of tensor
product of two exterior forms.

We have now exhausted all possibilities, completing the proof in type A.

4.2 Proof of Theorem 4.1 when g has type B`

In the type B case, there are no complex or quaternionic modules to consider, so the irre-
ducible cases have one cross only. The unique grading of length one is odd dimensional
conformal geometry. In dimension three we then have

h∗ ' ×>
2
• ' h S2h ' ×>

4
• ⊕ ×> • .

The trivial representation in S2h corresponds to the trivial case of metrics in the conformal
class, which are excluded from our classification, and choosing B to be the other com-
ponent leads to three components in B ⊗ h∗, so the ALC fails. Similarly, for conformal
geometries of dimensions 2`− 1 > 5 we obtain

h∗ ' ×
1
• · · · •> • ' h S2h ' ×

2
• · · · •> • ⊕ × • · · · •> • .

As before, the trivial summand is excluded, and the other component fails the ALC.
We turn now to Lie contact geometries, with the second node crossed. For B3,

h∗ ' 1
• ×>

2
• ' h S2h = B ⊕B′ ⊕B′′ ' 2

• ×> • ⊕ • ×>
2
• ⊕ 2

• ×>
4
• .

Here, B ⊗ h∗ =
3
• ×>

2
• ⊕ 1

• ×>
2
• and satisfies the ALC. The other choices lead to too

many components. For B` with ` > 4, we have instead

h∗ ' 1
• ×

1
• · · · •> • ' h S2h = B ⊕B′ ⊕B′′

B ' 2
• × • · · · •> • B′ ' 2

• ×
2
• · · · •> • B′′ ' • × •

1
• · · · •> • ,

except that when ` = 4,B′′ = • × •>
2
• . Now we check thatB′⊗h∗ has six components,

B′′⊗h∗ has three components, but the ALC is again satisfied byB. Lie contact geometries
exist for g = so(p, q) with 2 6 p 6 q; h is the tensor product of defining representations
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R2 of sl(2,R) and Rp+q−4 of so(p− 2, q− 2), and B is the tensor product of a symmetric
form on R2 and the defining inner product of signature (p− 2, q − 2) on Rp+q−4. See [6,
§4.2.5] for more details on these geometries.

Next we consider B` with the cross on k-th position, 3 6 k 6 ` − 1; the outcome is
quite similar to the Lie contact case. For k 6= `− 1, S2h = B ⊕B′ ⊕B′′, where

h∗ ' • · · ·
1
• ×

1
• · · · •> • h ' 1

• · · · • ×
1
• · · · •> •

B ' 2
• · · · • × • · · · •> •

B′ ' 2
• · · · • ×

2
• · · · •> • B′′ ' •

1
• · · · • × •

1
• · · · •> •

h∗ ⊗B ' 2
• · · ·

1
• ×

1
• · · · •> • ⊕ 1

• · · · • ×
1
• · · · •> • ,

so B satisfies the ALC, but B′ and B′′ do not. If k = `− 1, S2h = B ⊕B′ ⊕B′′ with

h∗ ' • · · ·
1
• ×>

2
• h ' 1

• · · · • ×>
2
•

B ' 2
• · · · • ×> • B′ ' 2

• · · · • ×>
4
• B′′ ' •

1
• · · · • ×>

2
•

and again, B satisfies the ALC, but B′ and B′′ do not. These |2|-graded geometries are
modelled on the flag variety of isotropic k-planes and exist for the real forms so(p, q)

with k 6 p 6 q. We have h ∼= Rk ⊗Rp+q−k and B corresponds to the tensor product of a
symmetric form on Rk with the defining inner product on Rp+q−k.

Case 11 (B1,k
` ). Here g ' so(p, q) with k 6 p 6 q and p + q = 2` + 1, and the

geometries come equipped with the identification of the horizontal distributionH 6 TM

with the tensor product E ⊗ F , where E has rank k and F carries a metric of signature
(p − k, q − k). The corank of H 6 TM is 1

2
k(k − 1). The metrics in B are the tensor

products of symmetric nondegenerate forms on E and the given metric on F .

Finally, we arrive at the cross at the very end. For B` with ` > 2, we have

h∗ ' • · · ·
1
•>× h ' 1

• · · · •>× B = S2h ' 2
• · · · •>×

h∗ ⊗B ' 3
•>× ⊕ 1

•>×(` = 2) h∗ ⊗B ' 2
• · · ·

1
•>× ⊕ 1

• · · · •>×(` > 3),

and the ALC is satisfied.

Case 12 (B1,`
` ). Here g is the split form so(`, ` + 1). The geometries are the well known

free distributions, cf. [9], with rank ` horizontal distributionH 6 TM of corank 1
2
`(`−1).

The metrics in B are all nondegenerate metrics onH.

4.3 Proof of Theorem 4.1 when g has type C`

As with type B`, we only have to consider cases with a single crossed node. We begin
with the first node crossed, corresponding to the well known contact projective structures,
with

h∗ ' ×
1
• · · · •< • ' h ;
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we have discussed the lowest dimension three already as the B2 case, which coincides
with the free distribution of rank two. For ` > 3, the picture changes since

S2h ' ×
2
• · · · •< • ' B

B ⊗ h∗ ' ×
3
• · · · •< • ⊕ × 2

•
1
• · · · •< • ⊕ × 1

• · · · •< •

and thus the ALC fails.
Moving on to the second node, we obtain another well known family of examples:

the quaternionic contact geometries (for g ∼= sp(p, ` − p), 1 6 p 6 `/2) or their split
analogues (for g ∼= sp(2`,R))—see [6, §4.3.3]. For ` = 3, we have

h∗ ' 1
• ×<

1
• ' h S2h = B′ ⊕B′′ with B′ ' 2

• ×<
2
•

and B′′ trivial, while for ` > 4, we have

h∗ ' 1
• ×

1
• · · · •< • ' h S2h = B ⊕B′ ⊕B′′

B ' • × •<
1
• or 0

• × •
1
• · · · •< • B′ ' 2

• ×
2
• · · · •< •

and B′′ trivial. Since h∗ ⊗B′ decomposes into four components, there are only nontrivial
possibilities for ` > 4. For ` = 4,

h∗ ⊗B ' 1
• ×

1
•<

1
• ⊕ 1

• ×
1
•< •

and so the ALC holds for B, but for ` > 5, h∗ ⊗B has three irreducible components, and
the ALC is not satisfied.

Case 13 (C1,2
4 ). Here the possible real Lie algebras are sp(8,R), sp(2, 2), or sp(1, 3),

with the second node crossed. In the first case, the geometries come equipped with the
identification of the horizontal distribution H 6 TM with the tensor product E ⊗ F ,
where E is rank 2 and the rank 4 vector bundle F comes with a symplectic form. The
eligible metrics in B are the tensor products of a area form on E and the given symplectic
form on F . In the quaternionic cases, H is quaternionic and the eligible metrics in B are
quaternionic hermitian forms.

Let us next suppose that the k-th node is crossed for 3 6 k 6 `− 2. Then

h∗ ' • · · ·
1
• ×

1
• · · · •< • h ' 1

• · · · • ×
1
• · · · •< •

S2h ' B ⊕B′ ⊕B′′ B ' •
1
• · · · • × • · · · •< •

B′ ' 2
• · · · • ×

2
• · · · •< • B′′ ' •

1
• · · · • × •

1
• · · · •< •

h∗ ⊗B ' •
1
• · · ·

1
• ×

1
• · · · •< • ⊕ 1

• · · · • ×
1
• · · · •< •

and so B satisfies the ALC, but the other components do not. The relevant metrics are
again tensor products of an exterior form on the rank k auxiliary bundle E and the given
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symplectic form on F (where the horizontal distribution is identified with E ⊗ F ). These
geometries are available for the split form sp(2`,R) and, if k is even then also for the real
forms sp(p, q), k 6 p < q.

The case with the cross at the last but one node is very similar. Here

h∗ ' • · · · •
1
• ×<

1
• h ' 1

• · · · • • ×<
1
• S2h = B ⊕B′

B ' •
1
• · · · • ×<

0
• B′ ' 2

• · · · • • ×<
2
•

h∗ ⊗B ' •
2
• ×<

1
• ⊕ 1

• • ×<
1
• (` = 4)

h∗ ⊗B ' •
1
• · · ·

1
• ×<

1
• ⊕ 1

• • ×<
1
• (` > 5)

and so B satisfies the ALC (while B does not).

Case 14 (C1,k
` ). With the k-th node crossed for 3 6 k 6 ` − 1, the possible real Lie

algebras are sp(2n,R), and if k is even, then also sp(p, q), k 6 p 6 q. In the split
case, the horizontal distribution is a tensor product H ' E ⊗ F with E of rank k and
F symplectic of rank 2` − 2k, the eligible metrics are tensor products of antisymmetric
forms on E and the given symplectic form on F . In the quaternionic cases,H comes with
a quaternionic structure, and the eligible metrics are quaternionic hermitian forms.

Finally, we consider the cross at the last node of C` with ` ≥ 3 (` = 2 is equivalent to
the B2 case with the first node crossed). In this case

h∗ ' • · · ·
2
•<× h ' 2

• · · · •<×

S2h = B ⊕B′ B ' •
2
• · · · •<× B′ ' 4

• · · · •<×

and both B and B′ have too many components in their tensor products with h∗ to satisfy
the ALC.

4.4 Proof of Theorem 4.1 when g has type D`

We first consider the cases with one cross on D`, ` > 4, starting with the the first node,
i.e., the even dimensional conformal geometries, where S2h = B ⊕B′ with

h∗ ' ×
1
• · · · •�

•
�•
' h B ' ×

2
• · · · •�

•
�•

B′ ' × • · · · •�
•
�•
.

As in the odd dimensional case (type B`), B does not satisfy the ALC, and the trivial
summand B′ yields metrics in the conformal class, which we exclude.

We turn now to the Lie contact case, with the second node crossed. For ` = 4,

h∗ ' 1
• ×�

• 1
�• 1
' h S2h = B ⊕B1 ⊕B2 ⊕B3

B ' 2
• ×�

• 2
�• 2

B1 ' 2
• ×�

•
�•

B2 ' • ×�
• 2
�•

B3 ' • ×�
•
�• 2

B1 ⊗ h∗ ' 3
• ×�

• 1
�• 1
⊕ 1
• ×�

• 1
�• 1

.
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While h∗ ⊗ B has too many components, B1 satisfies the ALC, as do B2 and B3 by
symmetry. The metrics are tensor products of two area forms and a symmetric form on
h ∼= R2 ⊗ R2 ⊗ R2. The geometries exist for the real forms so(4, 4), so(3, 5) and the
quaternionic so∗(8) ' so(2, 6). Similarly, for ` > 5, we have

h∗ ' 1
• ×

1
• · · · •�

•
�•
' h S2h = B ⊕B′ ⊕B′′

B ' 2
• × • · · · •�

•
�•

h∗ ⊗B ' 3
• ×

1
• · · · •�

•
�•
⊕ 1
• ×

1
• · · · •�

•
�•

B′ ' 2
• ×

2
• · · · •�

•
�•

B′′ ' • × •�
• 1
�• 1

or • × •
1
• · · · •�

•
�•

where B satisfies the ALC, but B′ and B′′ do not. In addition to the real forms so(p, q),
2 6 p 6 q, p+ q = 2`, which are analogous to the Lie contact geometries of type B`, the
real form so∗(2`) is also possible.

As with type B`, the cases where the k-th node is crossed, with 3 6 k 6 `− 2 behave
in a similar way. If k 6 `− 3 then

h∗ ' • · · ·
1
• ×

1
• · · · •�

•
�•

h ' 1
• · · · • ×

1
• · · · •�

•
�•

S2h = B ⊕B′ ⊕B′′

B ' 2
• · · · • × • · · · •�

•
�•

B′ ' 2
• · · · • ×

2
• · · · •�

•
�•

B′′ ' •
1
• · · · • × •�

• 1
�• 1

or •
1
• · · · • × •

1
• · · · •�

•
�•

h∗ ⊗B ' 2
• · · ·

1
• ×

1
• · · · •�

•
�•
⊕ 1
• · · · • ×

1
• · · · •�

•
�•

so that B satisfies the ALC, while B′ and B′′ do not. The geometries exist for real forms
so(p, q), k 6 p 6 q, p + q = 2`, and if k is even, then also for so∗(2`). If k = `− 2, the
computation differs slightly, but the outcome is similar:

h∗ ' • · · ·
1
• ×�

• 1
�• 1

h ' 1
• · · · • ×�

• 1
�• 1

S2h = B ⊕B1 ⊕B2 ⊕B3

B ' 2
• · · · • ×�

•
�•

h∗ ⊗B ' 2
• · · ·

1
• ×�

• 1
�• 1
⊕ 1
• · · · • ×�

• 1
�• 1

B1 ' 2
• · · · • ×�

• 2
�• 2

B2 ' •
1
• · · · • ×�

• 2
�• 0

B3 ' 0
•

1
• · · · • ×�

• 0
�• 2

where B satisfies the ALC, but the other cases do not. The geometries exist for the real
forms so(`, `), so(`− 1, `+ 1), and if ` is even then also so∗(2`).

Case 15 (D1,k
` ). Here g ' so(p, q) with 2 6 k 6 p 6 q and p + q = 2n, the geometries

come equipped with the identification of the horizontal distribution H 6 TM with the
tensor productE⊗F , whereE has rank k and F carries a metric of signature (p−k, q−k).
The corank of H 6 TM is 1

2
k(k − 1). The metrics in B are the tensor products of

symmetric nondegenerate forms on E and the given metric on F . When g ' so∗(2n)

and k is even, the geometries come with the identification of the horizontal distribution
H with the tensor product of a quaternionic rank k bundle E and a quaternionic rank
n−2k bundle F equipped with a quaternionic skew-hermitian form. The metrics in B are
quaternionic hermitian forms.
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The remaining case with one cross is the so called spinorial geometry with the cross on
one of the nodes in the fork. The case of D4 coincides with the 6-dimensional conformal
Riemannian geometry. For ` > 5, we have S2h = B ⊕B′ with

h∗ ' • · · ·
1
•�
×
�•

h ' •
1
• · · · •�

×
�•

B ' •
2
• · · · •�

×
�•

B′ ' • • •�
×
�• 1

or • • •
1
• · · · •�

×
�•
.

Now h∗ ⊗B has three summands, as does h∗ ⊗B′, except for ` = 5, when

h∗ ⊗B′ ' • •
1
•�
×
�• 1
⊕ •

1
• •�

×
�• 1

.

Here, in the complex setting, h ∼= ∧2C5, and B ∼= C5∗ ∼= ∧4C5 6 S2∧2C5, where α ∈
B ∼= C5∗ determines a metric gα on h∗ ∼= ∧2C5∗ by gα(ξ, η) = α ∧ ξ ∧ η ∈ ∧5C5∗ ∼= C.
Such a metric is never nondegenerate, so this case is excluded.

We next considerD` cases with two crossed nodes. For h to be irreducible, the semisim-
ple part of the Levi factor p/p⊥ must be simple. Indeed, working in the complex setting,
a direct check reveals that breaking the Dynkin diagram by two crosses into more than
one part always leads to non-isomorphic representations for the two components of h.
Furthermore, the only way to obtain isomorphic components is to take the two spinorial
nodes of the D` diagram. The only real forms compatible with this geometry are the split
form so(`, `), the quasi-split form so(`+ 1, `− 1) and the quaternionic form so∗(2`) with
` = 2p+ 1 odd. In the split case, h is not irreducible, so this does not fit into our classifi-
cation. In the quasi-split case, h ∼= R`−1 ⊗R C is complex, while in the quaternionic case,
h is quaternionic. In S2h = B ⊕B′ ⊕B′′, with

h∗ = • · · ·
1
•�
× −2
�×

⊕ • · · ·
1
•�
×
�× −2

h =
1
• · · · •�

× 1

�× −1
⊕ 1
• · · · •�

× −1
�× 1

B ∼= 2
• · · · •�

×
�×

B′ ∼= •
1
• · · · •�

×
�×

B′′ ∼= 2
• · · · •�

× 2

�× −2
⊕ 2
• · · · •�

× −2
�× 2

where we denote the nonzero weights over the crossed nodes for clarity. Observe that

h∗ ⊗B '
(

2
• · · ·

1
•�
×
�×
⊕ 2
• · · ·

1
•�
×
�×

)
⊕
(

1
• · · · •�

×
�×
⊕ 1
• · · · •�

×
�×

)
h∗ ⊗B′ '

(
•

1
• · · ·

1
•�
×
�×
⊕ •

1
• · · ·

1
•�
×
�×

)
⊕
(

1
• · · · •�

×
�×
⊕ 1
• · · · •�

×
�×

)
so that both B and B′ satisfy the ALC, but B′′ does not (h∗ ⊗B′′ has eight components).

Case 16 (D2,s
` ). When g = so(` − 1, ` + 1), the horizontal distribution H 6 TM is a

complex vector bundle of complex rank `− 1, and the metrics in B are complex bilinear.
When g = so∗(2`), with ` = 2p + 1 odd, the horizontal distribution H 6 TM has a
quaternionic structure of quaternionic rank p and the metrics in B are quaternionic skew-
hermitian.
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Case 17 (D2,h
` ). This case involves the same geometries as in the previous case, with

` = 2p + 1 odd, except that when g = so(` − 1, ` + 1), the metrics in B′ are hermitian,
while for g = so∗(2`), the metrics in B are quaternionic hermitian.

4.5 Proof of Theorem 4.1 when g has exceptional type

The first case we consider is the Lie algebra E6. Let us consider possibilities for parabolic
subalgebras with one crossed node. The first possibility is

h∗ ' ×
1
• •
•
• • h ' × • •

• 1
• •

S2h = B ⊕B′ B ' × • •
•
•

1
• B′ ' × • •

• 2
• •

The product h∗ ⊗ B decomposes (as the product of a spinor and defining representation
of SO(10)) into the sum of two P -modules, hence the ALC is satisfied.

Case 18 (E1,1
6 ). This is the |1|-graded geometry for E6 for which the allowed real forms

are the split form E6(6), or E6(−26), and H = TM carries the structure of basic spinor
representation S+ of so(5, 5), or so(1, 9) respectively. The P -module B corresponding to
the eligible metrics is the defining representation of so(5, 5) or so(1, 9).

Consider next the adjoint variety, with the node on the short leg crossed. We have

h∗ ' h ' • •
1
•
×
• •

S2h = B ⊕B′ B ' • •
2
•
×
• • B′ ' 1

• • •
×
•

1
•

and find that both h∗ ⊗B and h∗ ⊗B′ have four components.
In the remaining two cases with one crossed node, the semisimple part of p/p⊥ is not

simple, and it is easy to see that the ALC cannot be satisfied:

h∗ ' 1
• ×

1
•
•
• • h ' 1

• × •
•

1
• •

S2h ' 2
• × •

•

2
• • ⊕ 2

• × •
• 1
• • ⊕ • ×

1
•
•
•

1
•

h∗ ' •
1
• ×
• 1

1
• • h ' 1

• • ×
• 1
•

1
•

S2h ' 2
• • ×

• 2
•

2
• ⊕ 2

• • ×
•

1
• • ⊕ •

1
• ×
•
•

2
• ⊕ •

1
• ×
• 2

1
• • .

The only case with two crosses for which h could be irreducible is

h∗ ' h ' ×
1
• •
•
• × ⊕ × • •

•

1
• ×,

and indeed, h is irreducible for the quasi-split real form E6(2). For this real form, the
nontrivial irreducible summands in S2h are

B ' × • •
• 1
• × B′ ' ×

1
• •
•

1
• × B′′ ' ×

2
• •
•
• × ⊕ × • •

•

2
• ×.
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The products h∗ ⊗B′ and h∗ ⊗B′′ have too many components but

h∗ ⊗B ' ×
1
• •
•
• × ⊕ × • •

•

1
• × ⊕ × 1

• •
• 1
• × ⊕ × • •

• 1

1
• ×

and so the ALC is satisfied.

Case 19 (E2,h
6 ). This is a |2|-graded geometry for the quasi-split Lie algebra E6(2). The

horizontal distribution H carries the structure of the spinor representation S of so(3, 5),
while the eligible metrics are induced by the defining representation of so(3, 5).

ForE7 and its real forms, irreducibility of h implies that only one node may be crossed,
and a similar analysis to the E6 type shows that the cases with the best chance to satisfy
the ALC are those with cross over the first or last node, where

h∗ ' ×
1
• • •

•
• • h ' × • • •

•
•

1
•

S2h ' ×
1
• • •

•
• • ⊕ × • • •

•
•

2
•

or h∗ ' h ' • • • •
•

1
• ×

S2h ' • • • •
•

2
• × ⊕ •

1
• • •

•
• ×.

It is easy to see that none of these cases satisfy the ALC.
Similarly, for E8, even the most promising candidates

h∗ ' h ' ×
1
• • • •

•
• •

S2h ' ×
2
• • • •

•
• • ⊕ × • • • •

•
•

1
•

and h∗ ' • • • • •
•

1
• × h ' • • • • •

• 1
• ×

S2h ' • • • • •
• 2
• × ⊕ • •

1
• • •

•
• ×

fail the ALC. Again there can be no cases with more than one cross.

For F4, the only non-split possibility is

h∗ ' h ' ×
1
•< • • S2h = B ⊕B′ where B ' ×

2
•< • •

and B′ is trivial. However, B does not satisfy the ALC.
For the split form, all cases can have only one crossed node. When

h∗ ' 1
• ×<

1
• • h ' 1

• ×< •
1
•

S2h = B ⊕B′ B ' • ×<
1
• • B′ ' 2

• ×< •
2
• ,

the elements of B are all degenerate, whereas h∗ ⊗B′ does not satisfy the ALC.
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In the remaining two possibilities for the crossed node,

h∗ ' •
2
•<×

1
• h ' 2

• •<×
1
•

S2h ' 4
• •<×

2
• ⊕ •

2
•<×

2
• ⊕ 2

•
1
•<× •

and h∗ ' h ' • •<
1
• × S2h ' • •<

2
• × ⊕ 2

• •< • ×,

the ALC fails in all cases.

Finally, for G2, only the split case is possible, with one crossed node.

h∗ ' h ' 3
•<× S2h ' 6

•<× ⊕ 2
•<×

and h∗ ' h ' ×<
1
• S2h = B ' ×<

2
•

and only the last of these satisfies the ALC, with

h∗ ⊗B ' ×<
3
• ⊕ ×< 1

• .

Case 20 (G1,1
2 ). The real Lie algebra is the split form of G2 and the geometry is given by

Cartan’s famous (2, 3, 5) distribution. Hence the horizontal distribution has rank 2 and the
P -module B corresponding to the eligible metrics is the second symmetric power of the
defining representations of sl(2,R).

5 Examples of reducible cases

We now discuss a few cases of geometries with reducibleH, where the linearized metriz-
ability procedure works. Actually, we have seen several such examples already, when
dealing with real forms with irreducible, but not absolutely irreducible h in Theorem 4.1.
We list some of those with irreducible B in the following result.

Theorem 5.1. The following real parabolic geometries with the Lie algebra g and choice
of B satisfy the ALC and the linearized metrizability procedure works.

(i) B ' ×
2
• × , g ' sl(4,R). These are Lagrangian contact structures in dimension

5, where a decomposition H = E ⊕ F of the contact subbundle into a direct sum of two
Lagrangian subbundles is given. The metrics in B are the split signature metrics with
both E and F isotropic.

(ii) B ' 1
• · · · • × • · · · • × • · · ·

1
• , g ' sl(n + 1,R), n even, the first cross at the

k-th root (2k < n), crosses at symmetric places. These geometries come withH identified
with the sum of two vector bundles of the form (E ⊗ F ∗) ⊕ (F ⊗ G∗), where E and G
are real vector bundles of rank k, and F is a real vector bundle of rank n − 2k + 1. The
metrics are the split signature ones, in the subbundle E ⊗G∗ 6 E ⊗ F ∗ ⊗ F ⊗G∗.
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(iii) B ' 2
•• • · · · •�

×
�×

, the real Lie algebra is so(p, p), 2p = n. The horizontal distribu-
tion H 6 TM is the sum of two rank p − 1 bundles E and F coming from the defining
representations of sl(p−1,R) with different weights, andB stays for general split metrics
on E ⊕ F .

(iv) B ' × • •
• 1
• × , the real Lie algebra is the split form of type E. The geometry

is |2|-graded, and the horizontal subspace H 6 TM corresponds to the direct sum of
two of the three isomorphic defining representations of so(4, 4). The eligible metrics are
the generic tracefree split ones and the P -module B corresponds to the third defining
representation R8, up to the weight.

Proof. All cases were already treated for different real forms in the previous section,
except for the very last case. The computation presented there showed that the ALC is
satisfied but the subbundle H is not irreducible, but a sum of two subbundles. At the
same time, the strong ALC holds, thus the linearized metrizability procedure works as
required.

Our final result illustrates the possibility of finding examples with reducibleB, includ-
ing one in which a trivial one-dimensional component occurs.

Theorem 5.2. The following real parabolic geometries with the Lie algebra g and choice
of B satisfy the ALC.

(i) B ' 0
•

1
×<

0
•
−1
× ⊕ 0

•
−5
×<

2
•

2
× , the real Lie algebra is the split form of type F (|6|-

graded). The horizontal distribution H 6 TM is built of two rank 2 bundles E and F
coming from the defining sl(2,R) representations of the different components in p0. The
first component H1 is a tensor product E ⊗ F with appropriate weight, while F stays
for the other componentH2 with another weight. The eligible metrics are the sums of the
metrics in Λ2E ⊗ Λ2F 6 S2H1, and the metrics in S2H2.

(ii) B ' • × •
1
• · · · • × • ⊕ • × • · · ·

1
• • × • . In this case g ' sl(`+ 1), 5 6

`, with nodes 2 and ` − 1 crossed, and H ∼= E ⊗ F ∗ ⊕ F ⊗ G, where E is a real vector
bundle of rank 2, and F is a real vector bundle of rank `− 3. The corank of H 6 TM is
4. The eligible metrics are sums of the symmetric bilinear forms on H1 and H2, both of
the form of tensor product of two exterior forms.

(iii) B ' •
1
• · · · • × • × • · · · • ⊕ • · · · • × • × • · · ·

1
• • . Similarly to the pre-

vious case, g ' sl(2k), 4 6 k, with nodes crossed at symmetric positions, and H ∼=
E ⊗ F ∗ ⊕ F ⊗ G, where E and G are real vector bundles of rank k − 1, while F is a
real vector bundle of rank 2. The corank ofH 6 TM is (k− 1)2. The eligible metrics are
sums of the symmetric bilinear forms onH1 andH2, both of the form of tensor product of
two exterior forms.
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(iv) B ' 2
• · · · • × × • · · · • ⊕ • · · · • × × • · · ·

2
• . Here g = sl(2k+1), the horizon-

tal distribution is the sum of two vector bundles of the same rank k, corresponding to the
defining representations of the two semisimple components in p0. The metrics are sums of
metrics on these two parts ofH.

Proof. (i) Since the strong ALC cannot hold in the case of split forms of the algebras, we
work with the complete weights. The form of h is seen from the Cartan matrix of type
F , while the sum and difference of the second and last lines in the inverse Cartan matrix
(which corresponds to the crossed nodes in the Dynkin diagram) provide the coefficients
(4 8 11 6) and (2 4 5 2) expressing two generating weights in the centre of p0. With their
help, we find

h∗ =
1
•
−2
×<

1
•

0
×,⊕ 0

•
0
×<

1
•
−2
×.

h =
1
•
−1
×<

1
•
−1
× ⊕ 0

•
−2
×<

1
•

1
×.

The part of interest in S2h is

B1 ⊕B2 =
0
•

1
×<

0
•
−1
× ⊕ 0

•
−5
×<

2
•

2
×.

Now, B1 is trivial, while

B2 ⊗ h∗ ' 1
• ×<

3
• × ⊕ 1

• ×<
1
• × ⊕ • ×<

3
• × ⊕ • ×<

1
• ×.

Hence the kernel of b does not exceed the allowed number of components and the ALC
holds. Finally,

Λ4h1 =
0
•

2
×<

0
•
−2
× Λ2h2 =

0
•
−2
×<

0
•
−3
×

so that the weight of L can be expressed in terms of them and thus the linearized metriz-
ability procedure can be completed.

(ii)–(iv) All the other cases have been already discussed as the complex versions of
some cases in the previous section. The only remaining bit of the proof is the check that
the top exterior forms on the individual components provide linearly independent weights
and thus may be used to rescale the metrics properly. This can be done exactly as in case
(i).

Remark 5.3. Actually, the arguments in the cases (iii) and (iv) above work also in any of
the situations where the crosses are either apart by one or next to each other, i.e., without
assuming they are placed symmetrically, except if the adjacent crosses appear right at the
ends of the diagram. In the latter case of the so called paths geometries, one of the top
degree forms on hi has trivial weight zero and thus the linearized metrizability procedure
fails at the stage when we change the weight of the solutions in order to get genuine
metrics.
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