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Peetre Theorem for Nonlinear Operators

JAN SLOVAK

Some generalizations of the well-known Peetre theorem on the locally finite order of
support non-increasing R-linear operators, [9, 11], has become a useful tool for various
geometrical considerations, see e.g. [1, 5]. A nonlinear version of Peetre theorem came
into question during author's investigations of the order of natural operators between
natural bundles,'see [12].

However, the ideas used there have turned out to be efficient even for the study of
the order of natural bundles and this originated the present paper. Since the obtained
general results might also be of an independent interest, they are formulated in a pure
analytical form. Some possible applications are discussed at the end of the paper. In
particular, we sketch an alternative proof of the well-known result on the finiteness of
the order of natural bundles, [4, 10], see Remark 4. We also give countre-examples
showing that our results are the best possible in such a general setting.

The author is greatful to Prof. I. Kolii for his encouragement and to Prof. P. W.
Michor for several valuable discussions.

1. Preliminaries

Let us first formulate a general concept of local operators transforming continuous
maps between topological spaces. We write C(X, Y) for the set of all continuous maps
f: X- Y.

Definition 1. Let X, Y, Z, W be topological spaces, it e C(Z, X). A mapping A defined
on a subset 9 c C(X, Y) with values in C(Z, W) is called a r-local operator if for any
map f and any point x E X the restriction Af 7r-'(x) depends on the germ off in
the point x only.

In the sequel, we shall deal with manifolds X, Y of class C, 0 < s < oo, and metric
spaces Z, W. A it-local operator A: 9 c C(X, Y) - C(Z, W) is said to be of the order r,
0 r s < oo, if for anyf e 9, z E Z the value Af(z) depends on the r-jet jrf(r(z)) only.
The r-th order operators seem to be a very special case of local operators. Nevertheless,
we deduce some Peetre-like results under certain additional assumptions.

First of all, some requirements on the codomain of the operators are necessary. But
we at most assume that the values are locally H6lder-continuous. Let us recall that a
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map f: Z - W is said to be locally H61der-continuous if for any compact subset K c Z
there are positive real constants CK, AK, such that for all x, y E K the following inequality
holds

Qw(f(x), (Y)) C(ez(x, y)) K ,

where Qz or Q, are the metrics on Z or W, respectively. We write HC(Z, W) for the
subset of all locally H61lder-continuous maps in C(7. W). Clearly, dealing with smooth
manifolds (with fixed Riemannian metrics) every one-differentiable map is locally
H6lder-continuous.

The map r is assumed to be locally non-constant, i.e. for any open set U c Z, (U)
contains at least two points.

The most delicate requirement is the s-extendability of the domain 9 c C(X, Y),
O < s < co, defined below. We could avoid this rather technical assumption dealing
with the whole CS(X, Y) or local s-diffeomorphisms only, but it might be useful for applica-
tions to point out what is really needed (cf. Remarks 3, 4).

Definition 2. A subset 9 c Cs(X, Y), 0 s _ co, is called s-extendable if for any
compact set K c X and any limit point x K the following statement holds. Given
maps f, E 9 for all a E K in such a way that there exists a map g Cs(X, Y) satisfying

jsfa(a) = jg(a) (1)

for all a E K, then there also is a map h e 9 satisfying (1) with g replaced by h for all a
from some neighbourhood of x.

Roughly speaking, 9 is s-extendable if and only if Whitney extension theorem locally
holds for maps from 9. Using this fact, we can easily find some s-extendable domains,
e.g. all smooth sections of a fibred manifold, local diffeomorphisms between two mani-
folds, all fibred morphisms between two fibred manifolds, orientation preserving mor-
phisms between two oriented manifolds.

2. The Main Results

Let us recall we consider metric spaces Z or W with metrics ez or Qw, respectively. Since
only local results can be expected, we deal with X = R", Y = Rm without any loss of
generality. The symbol II I refers to the usual Euclidean norm and we use current notation
for jets and multiindices.

Theorem 1. Let 9 c Cs(R", R') be s-extendable, 0 < s < o, C(Z, R") be locally
non-constant. Let A: 9 - C(Z, W) be a -local operator. Then for any point x R"
andfor any mapf 9 ) the restriction Af n-(x) depends on the s-jet ff(x) only.

Proof. Let us first assume s = oo. Consider f, g 9, jf(x) = jg(x), and a point
y r '(x). We choose a sequence Yk tending to y in Z, C(yk) = Xk, and neighbourhoods
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Uk of x k in such a way that

Ila -xll > 21 b -xlI for all a E Uk, b E Uk+l ' (2)

IlDf(a) - Dg(a)ll /lla - xllm 1I/k
for all a e Uk, IC + m k. (3)

This is possible by induction using Taylor formula and the fact that 7r is locally non-
constant. Condition (2) implies

Ila - xll < 2 Ila - bll for all a E Uk, b E Uj, k j. (4)

Whitney extension theorem, [9, 14] ensures the existence of a map h e C°(R", Rm)
satisfying for all k E N

h U2 k = fl U2 k, h UI2k+ = g U2k+ 1 , j h(x) =j f(x) . (5)

Indeed, a sufficient condition is that

D"+fh(a) (b - a)" = D'h(b) + o(lb - alm) (6)
/Ji <, 13!

holds uniformly for a, b E {x} u U Uk, Ila - bll -* 0, and for every fixed m, ac, where
k

the values of D'h are prescribed by (5) (including boundaries). But using Taylor formula
and (3), (4), the verification of (6) is easy.

According to our requirement on 9, we may assume h E 9 and use (5) for large k's
only. But now, the 7r-locality and the continuity of Ah imply Af(y) = Ag(y).

In the case 0 < s < oo we only have to modify the previous proof. Actually, we consider
f, g E , ff(x) = jg(x), y E 7r-'(x), and we construct a suitable sequence Yk + y, open
neighbourhoods Uk of 7i(Yk) = Xk and a map h E § satisfying (5) for large k's. But in
contrast to the case s = oc, a sufficient condition for the existence of h is

- _I D+ah(a) (b - a)o = Dlh(b) + o(llb - alls-l l )

Itls-I~l /3!

uniformly for a, b e {x} u U Uk, Ila - bIl - 0 and for any fixed multiindex c, 0 < IIl s.
k

Therefore, we replace (3) by the condition

IIDf(a) - Dg(a)ll/ Ia - xlls -l l < I/k

for all a Uk, 0 < lel < s. The proof is completed as before. QED.

According to Theorem 1, every operator A: c C(R", R") -* C(Z, W), 0 < s < oo,
has a finite order less than or equal to s. The main result of this paper is the next theorem
giving more informations about the case s = oo.

Theorem 2. Let 9 c C°(R " , Rm) be oo-extendable, 7r e C(Z, R") be locally non-constant
and A: q - HC(Z, W) be a 7r-local operator. For any fixed mapf E ~ andfor any compact
subset K c Z there exist a natural number r and a smooth function e: 7i(K) -- R that is
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strictly positive with u possible exception of a finite set of points in r(K), such that the
following statement holds. For any point z e K and for any maps g, g2 e q satisfying

JID'(gl -f)((z))Il _< (7r(z)) , i = 1, 2, 0 l r,

the condition fg l(n7(z)) = jg 2 (7(z)) implies Ag1 (z) = Ag 2(z).

Proof. Theorem 2 is implied by Lemma 1 below and by the standard compactness
arguments.

Remark 1. The assertion of Theorem 2 could be interpreted as a local finiteness of the
order (locality with respect to Z and to the Ca-topology), provided a strictly positive
function may ever be chosen. However, the "exceptional zero points" can appear
even at classical operators with smooth values, cf. Example 2, and in order to avoid
them, we need some additional assumptions, see the next section. Example 1 demon-
strates that the H6older continuity cannot be weakened to continuity.

Lemma 1. Let 9 and be as before, A: - HC(Z, W) be a 7-local operator, z e Z
be a point, 7(zo) = xO, and f e 9. We define a function e: Rn R

) exp (-/jx - xO1) for x xo,
=o for x = x0 .

There exist a neighbourhood V of the point zo E Z and a natural number r such that for
any z e V and any maps go, g2 e 9 satisfying

IID'(gi -f) ((z))I e((n(z)), i = 1, 2, 0 <O I i r,

the condition Jfg1 ((z)) = g2(T7(z)) implies Ag 1(z) = Ag 2(z).

Proof. We assume Lemma 1 does not hold and we deduce a contradiction. Under this
assumption, we can construct a sequence Zk -* Z, ni(zk) = xk and maps fk, gk e 9 satisfying
for all k e N

IID(Cfk -f) (xk)ll < (xk), IID(gk -f) (xk)ll <_ (Xk), 0 < < k, (7)

jkfk(xk) = jkgk(Xk) , Afk(zk) $ Agk(Zk) (8)

By passing to subsequences, we may assume

IIxk - xoll > 2xk+l - xoll (9)

and either xk x or xk = x for all k e N. We shall deduce a contradiction in both
the possibilities.

In the first case, we choose further points Yk e Z, yk -i z, R(yk) = Xk, Xk * xj satisfying
for all k N

IIxk - Xkll < k Lxk - Xoll , (10)

IID (fk -fj (xk)ll 2E(Xk), 0 < (1 < k, (11)

Q(Agk(Zk), Afk(Yk)) > k(eZ(Zk, Yk)) ' /k (12)
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Moreover we shall need for all , m

E D f1(xk) (xk - xk) = D gk(x) + (ll Xk - Xkll),

(13)

L --- D+ gk(xk) (k - Xk = D'fk(k) + o(llXk - kllm).

All these requirements can be satisfied. Indeed, all conditions, except (12), are satisfied
for all Xk from suitable neighbourhoods of the points Xk (we use Taylor formula for (13)).
By virtue of (8), there are also neighbourhoods of the points Zk in Z ensuring (12). Hence
we are able to choose appropriate points Yk E Z using the fact that 7t is continuous and
locally non-constant.

The aim of conditions (7), (9), (10), (11), (13) is to guarantee the existence of a map
h E C°'(Rn, Rm) satisfying

jih(Xk) = jgk(Xk), jh(xk) = j°fk(Xk) , j°h(xo) = jf(xo) . (14)

By virtue of our requirements on 9, we may assume h e 9, provided we use equalities
(14) for large k's only. But then applying A to h, inequality (12) and Theorem 1 imply
for large k's

ew(Ah(zk), Ah(yk)) > k(ez(zk, Yk))l /k

and we have obtained a contradiction with Ah E HC(Z, W) and Yk - , Z z0 -
According to Whitney extension theorem, a sufficient condition for the existence of

such a map h. is that

- D4h(a) (b - a) = Dh(b) + o(Ilb - all") (15)

holds uniformly for a, b B = {Xk, Xk, x0 ; k N}, Ila - bll -+ 0; for all fixed m N
and multiindices ct, and the values of D'h on B are prescribed by (14). The verification
of (15) can be easily done separately for a finite number of special types of sequences
(at, bk) B x B using Taylor formula and conditions (7), (9), (10), (11), (13).

Consider the other possibility now. Since x = x for all k, the definition of the function
E, (7) and (8) imply

jfk(Xo) = Pg(x.) = J*f(X) , (16)
Afk(zk) $ Ag,(zk) (17)

Hence we may assume Afk(zk) Af(zk) and we continue the proof analogously to the
first case. We choose further points Yk tending to z in Z, (Yk) = xk in such a way that
for all k N

Qw(Afk(yk), Af(zk)) k(Z(Ykl, zk))' k

I[xk - xoll > 2xk+l - xoll 

ID(fk-f)(-k) 1/llek -xll' < Il/k for all Jl + m k.
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This is possible as before using (16), (17) and Taylor formula. Once more, using Whitney
extension theorem and our assumptions, we verify the existence of a map h E 9 satisfying

j°h(xk) = jifk((k) jh(xo) = j f(xo)

for large k's. Hence

ew(Ah(yk), Ah(zk)) > k(ez(y, zk)) 1Ik

which is a contradiction with Ah E HC(Z, W) and Yk -+ Z, Zk - z0, QED.

Remark 2. The basic idea of the proof of Theorem 2 can also be applied to any operator A:
9 c C°(R n, R m) - C(Z, W). However, in this case an essentially weaker version of
Theorem 2 holds, see [12] and Example 1. The difference is that the resulting order and
function E from Theorem 2 only assure that the distance ew(Ag,(z), Ag2(z)) is less than
a positive constant chosen in advance. We remark that our methods are partially similar
to those used in [2], but we deduce essentially stronger results in a much more general
situation. Let us also remark, that the operator constructed in [3, p. 632] has only con-
tinuous values in general, so that this is not contradictory to Theorem 2.

3. Regularity Condition

Definition 3. An operator A: 2 c C(X, Y) -- C(Z, W), 0 < s < o, is said to be HC-
regular or C-regular if any s-differentiably parametrized system of maps from is
transformed into a H61lder continuously or continuously parametrized system of maps
in C(Z, W), respectively.

It is well known that even operators invariant with respect to a large set of transfor-
mations and having finite order need not to be C-regular, see [3, p. 638]. On the other
hand, dealing with operators some regularity condition is often assumed because of its
geometrical character. But under this additional requirement, there is a stronger version
of Theorem 2. For the sake of simplicity, the following theorem is formulated for operators
defined on C°(X, Y), but it is clear from the proof how to get more general results.

Theorem 3. Let X, Y be smooth manifolds, Z, W be metric spaces. Let 7r E C(Z, X) be
locally non-constant and A: C®(X, Y) -* HC(Z, W) be a i7-local and HC-regular operator.
For any fixed map f e C'(X, Y) and for any compact subset K c Z, there exist a natural
number r and a neighbourhood V c C(X, Y) of the map f in the compact C-topology
such that for any point z K and any smooth maps g,, g2 E V, the condition gl(ir(z))
= Ig 2(7t(z)) implies Ag,(z) = Ag2 (z).

Proof. Let us first deal with X = R", Y = Rm and assume Theorem 3 does not hold
for some A, f, K. We set

Vk = {g E Ck(Rn, Rm); IIDa(g -f) (x)ll < e-
k, 0 < Ial < k, x E 7e(K)}

and we choose a sequence y, in K and smooth maps gk, fk E Vk satisfying for all k E N

Jgk(O(yk)) = Jfk(i7(yk)) and Agk(yk) * Afk(Y) -
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By passing to subsequences, we may assume that the sequence Yk tends to y e K and
IIxk - xll > 2 1x+l - xll, where xk = n7(Yk), x = 7r(y). In order to deduce a contradic-
tion, we construct a smoothly parametrized system of maps s(t, x): R x R"-- Rm
satisfying

j°s(2-k, -) (Xk) = jfk(Xk) , js(O, -) (X) = jf(X) . (18)

As before, this is possible using Whitney extension theorem after defining D's(t, a) = 0
whenever ac = (, ..., +l), + l q 0, and (t, a) = (2

- k , Xk) or (t, a) = (0, x).
Given h e C°(R x R", Rm) and (t, z) R x Z, we set

Ah(t, z) = A(h(t, -)) (z) .

Since A is HC-regular, we have defined an operator A: C'(R x Rn, Rm) - HC(R x Z, W)
in this way. Moreover A is (idR x n7)-local, so that we can apply Lemma 1 to the above
constructed map s and to the point (0, y) eR x Z. Consider maps gk: R x R" -- R,
gk(t, x) = gk(x), r e N. We have js(2k, xk) = Jkfk(2k, xk), so that Lemma 1, Theorem 1
and (18) imply

Afk(Yk) = As(2k, Yk) = Agk(2k, Yk) = Agk(Yk)

for large k's. Hence we have proved Theorem 3 in the case X = Rn, Y = Rm.
The proof can be completed by the standard compactness arguments. Indeed, givenf,

K we take some open covers (Ui, p,) and (Vi, ¢i) of X and Y by local coordinates in such
a way that f(U1 ) c Vi and the images of open unit discs form open covers, too. Let
Di Ui be the images of closed unit discs and consider the compact sets Ki = -(Di) n K.
We choose a finite cover K, ..., K of K, K1 c U1, ... , Ks U. Using the preceding
part of the proof, we find some natural numbers r, ... , rs and neighbourhoods of f
in the compact Ci-topologies. Finally we take the maximum r of these orders and an
intersection of suitable neighbourhoods off in the compact C-topology.

4. Counter-Examples

Example 1. We construct an operator A: C°(R, R) -- C(R, R) which essentially depends
on infinite jets. Givenfe C(R, R) we set

Af(x) = 2-k(arctan o (df/dx) (x))
k=O

for all x R.

Example 2. We present a translational invariant C-regular and idR-local operator
A: C°(R, R) -* C'(R, R) for which Theorem 3 does not hold. Let g: R - R be a function
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with the following three properties:

(i) g is smooth in all points x e R2 \ {(0, 1)},
(ii) lim sup g(x) o,

x- (O. 1)

(iii) g is identically zero on closed unit discs with centres in (-1, 1) and (I. 1).
Let a: R2 -* R be a smooth function satisfying a(t, x) * 0 if and only if xjl > t > 0.

Given fe C°(R, R), x e R, we set

Af(x) = f(x) arctan ( (a(k,-)o (f x ) (x) . d f (x)))

First of all, we have to prove Afe C~(R, R). But the sum is locally finite if g o (f x (df/dx))
is locally bounded. Hence Af is well defined and smooth if g (f x (df/dx)) is smooth.
The only difficulty may happen if we deal with some fe Co(R, R) and x e R satisfying
f(x) = 0, (df/dx) (x) = 1. However, in this case we have

(dj/dx) (y)- 1
lim = (d2f/dx2) (x) ,
V- .f(y)

so that property (iii) of g implies g (f x (df/dx)) = 0 on a neighbourhood of x.
Now we are going to verify the C-regularity. Consider a manifold P and a continuously

parametrized system of smooth maps s: P x R - R. We only have to be careful at
limit points (p, x) e P x R with s(p, x) = 0, (as/ax) (p, x) = 1. But there is an estimate

0 _ A(s(q, -)) (y)l[ - Is(q, )l ,

so that for any sequence (,k' yk) tending to (p, x) the values A(s(p, -)) (k) tend to
A(s(p, -)) (x) = 0.

It remains to show that Theorem 3 does not hold for the operator A. Consider
f e C°(R, R) and x e R,. f(x) = 0, (df/dx) (x) = 1. Given an arbitrary real number e > 0
and order k eN, there are such functions h, h2 E C°(R, R) that fjhl(x) = h2(x),
IID'(hl -f) (x)ll < E, 0 < IJl _ k, and Ah(x) * Ah2(x). This is caused by property (ii)
of the function g.

5. Remarks on Applications

Remark 3. We are going to discuss the relations to the classical Peetre theorem, [9, 11]
(in base extending case see [5]). This follows from Theorem 2 in a simple way, as it is
sufficient to prove Peetre theorem for trivial vector bundles. Hence in our setting we
have to deal with X = Z = R", Y = R', W = Rk, 7t = idn and a r-local R-linear map
A: C®(R" , Rm) -* Cw(R n, Rk) (7r-local is equivalent to support non-increasing in this
case). But Peetre theorem is then obtained by applying Theorem 2 to the identically
zero map in Co(Rn, Rm) (we can even use E - 0, cf. [2]). Using our general theorem and
homotheties, we also obtain a base extending multilinear version of Peetre theorem,
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cf. [1]. Indeed, the domain of a multilinear support non-increasing operator A is formed
by p-tuples of mapsf, E C'(X1 , Y1), ... , fp E C®(Xp, Yp), where X~, Y are vector spaces,
and all these p-tuples clearly form an oo-extendable subset 2 c C'(XI x ... x X,,
Y1 x ... x Y). Hence we can apply Theorem 2 to a n-local operator A: 9 -* C0 (Z, W)

.and to the p-tuple of identically zero maps. Chosen a compact set K c Z we obtain
some order r and function E. If we take arbitrary p-tuples (f, ... , fp), (g, ... , gp) from 2

and a point x E 7r(K), (x) > 0, then all derivatives of fi, gi, i = 1, ... , p, in the point x
up to the order r can be sufficiently "pressed" to zero using a suitable homothety. There-
fore, if fi(x) = jgi(x), i = 1, ... , p, then for any z K, 7r(z) = x and a suitable c > 0,
c R,

A(cf, ... ,cfp) (z) = cPA(fl, ... ,fp) (z) = cPA(gl, . . ., gp) (z)
= A(cg, ... ,cgp) (z) .

But can be chosen in such a way that the set {x E X; e(x) = 0} is discrete, so that the
proof can be completed using the continuity of the values of the operator A in a similar
way to the classical proof of Peetre theorem.

Remark 4. We shall indicate some possible applications to geometrical functors. In
order to illustrate how to prove finite order theorems, we sketch an alternative proof of
the well-known result on natural bundles, due to Palais, Terng, [10] and Epstein, Thurston,
[4]. For the sake of simplicity, we shall investigate the smooth case only. That is to say,
we consider a covariant functor F defined on the category #n(Y of smooth n-dimensional
manifolds and smooth local diffeomorphisms with the values in the category #E, of
smooth manifolds and smooth maps. Moreover, we assume that a natural transformation
rr: F - Id f,, is given and that the following locality axiom holds. If i: U -- M is an

inclusion of an open submanifold, then Fi gives a smooth diffeomorphism between
FU and 7rM1(U). By virtue of this axiom, the functor is completely determined by its
values on the group Diff(R") of all diffeomorphisms f: R -* R". In order to profit
from Theorem 2, we only have to realize that we deal with an -local operator F:
2 C®(R", R") -* C'(FRI, FR"), where the domain 9 is formed by all local diffeo-
morphisms and q = 7Rn. Let us choose an arbitrary relatively compact open submanifold
U FR". According to Theorem 2, there is a natural number ru such that for anyfe 9,
z E U the conditionJf(qi(z)) = idRn(qr(z)) implies Ff(z) = z. Because of the functoriality,
the operator F induces an action of Diff(R") on FR". The orbit Vu - U Ff(U)

f Diff(R
n)

is an open submanifold of FR" which is invariant under the action of Diff(R"). Consider
f, g E Diff(R"), z V, (z) = x, jf(x) = fJg(x). Then there are some h Diff(R")
and z E U such that z = Fh(z). Hencej(f h) () = (g o h) () and sof(h- ' of o g o h) (2)
= z. But this implies Fg(z) = Ff(z). In this way we have proved that the induced action
of Diff(R") on the manifold Vu depends on r-jets only. Using the considerations from
[8, sections 1 and 2], we deduce that this induced action is continuous and the proof
can be completed using results due to A. Zajtz, [15]. Indeed, Zajtz has proved that any
continuous action of the Lie group G(n, k) (the group of invertible k-jets of maps R" R"
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keeping zero fixed) on an m-dimensional manifold factorises to an action of G(n, r),
where

r < max , + I for n 2,
·- (/l-I ·sli -- I!

r < 2m + 1 for n = 1.

Our way of reasoning seems to have some advantages. First of all we avoid any manipula-
tion with infinite dimensional Lie groups and the proof of the "local finiteness" of the
order does not need any continuity. Moreover, we can investigate functors defined on
various categories, because only the o-extendability of the domain of the induced
operator was essentially used.

Remark 5. Our general result can be applied to the study of geometrical operators.
In particular, various types of natural operators between certain natural bundles can
be proved to have finite order, see [12, 13]. This enables a complete classification of some
types of natural operators without any assumption on the order. Results of this kind
can be found in [6, 7].
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