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Abstract. This short note completes the results of [3] by remov-
ing the locality assumption on the operators. After providing a
quick survey on (infinitesimally) natural operations, we show that
all the bilinear operators classified in [3] can be characterized in a
completely algebraic way, even without any continuity assumption
on the operations.

Bilinear operations transforming two tensor fields into another tensor
field are often met in many applications. Let us write T r,s for the func-
tor assigning the tensor bundle ⊗rTM⊗⊗sT ∗M to each m-dimensional
manifold, with the obvious action on local diffeomorphisms. The Lie
bracket T 1,0 × T 1,0 → T 1,0 and its generalizations to the Schouten
bracket, the Schouten-Nijenhuis bracket and the Fölicher-Nijenhuis
bracket are examples of such bilinear operators.

Such functors are examples of natural bundles and all natural trans-
formations D between the sheaves of germs of smooth sections of natu-
ral bundles are called natural operators if they are local, i.e., the values
Ds(x) on sections s in point x depend only on the germs of s in x, and
they map smooth families of sections into smooth families of values (see
[4] for definitions and theory). By the multilinear version of the Peetre
theorem, all multilinear natural operators are differential operators of
(locally) finite order, see [4].

The aim of this short note is to observe a straightforward extension
of the results in [3], where seven special types of operators

T 1,s × T p,q → T p,q+s
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are completely classified under the assumption they are bilinear natural
operators. These are

(1)

T 1,0 × T 1,0 → T 1,0 T 1,0 × T 0,1 → T 0,1

T 1,0 × T 0,2 → T 0,2 T 1,1 × T 0,1 → T 0,2

T 1,1 × T 1,1 → T 1,2 T 1,1 × T 0,2 → T 0,3

T 1,2 × T 0,1 → T 0,3.

If we restrict our operators to sections with compact support, we
may clearly consider non-local operators obtained by integration on
manifolds. The simplest one is the functional mapping each compactly
supported top degree form ω on an oriented manifold M to the constant∫
M
ω, thus, providing an operator I : T 0,m → T 0,0 (here we understand

the constant value as providing the constant section of the trivial line
bundle T 0,0M). The question how to extend the concept of naturality of
such operations from the local operators mentioned above to arbitrary
operations on sections with compact support was tackled in [1].

First of all we should notice that dealing with global sections instead
of their germs does not allow to induce the action of the locally invert-
ible diffeomorphisms to the sheaves. Fortunately, we may resolve this
problem by looking at the infinitesimal version of the action. Indeed,
the natural bundles F are functors providing smooth families of map-
pings F (ft) : FM → FN for smooth families ft : M → N . Thus,
applying F to the flows FlXt of vector fields X on M provides flows
of vector fields on TM and there is the general concept of the Lie de-
rivative LXs of sections s of FM → M valued in the vertical tangent
bundle V FM ,

LXs =
∂

∂t |t=0

(
F (FlX−t) ◦ s ◦ Flt

)
,

see [4] for details. Obviously, if F is a natural vector bundle, than
V FM = FM ⊕ FM and the second component of the above formula
provides the usual Lie derivative.

In particular, commuting of the Lie derivatives with operations be-
tween sheaves of sections makes sense and, as shown in [2], this is an
essentially equivalent concept for the (local) natural operators between
natural bundles. We just have to restrict our category to oriented man-
ifolds and the orientation preserving local diffeomorphisms (so there
might be even more local operators available, e.g. the vector product
in dimension three).

Restricting our attention to the natural vector bundles and multi-
linear operators D : E1 × . . . × Ek → E, commuting with the Lie
derivatives means:

(2) LX(D(s1, . . . , sk)) =
k∑

n=1

D(s1, . . . ,LXsn, . . . , sk).
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Notice that for the operators of the type of Lie bracket of vector
fields, (2) is just the Jacobi identity on vector fields.

In the rest of this short note, we prove the following theorem:

Theorem 1. All bilinear operators of the seven types listed in (1) de-
fined on compactly supported sections and commuting with Lie deriva-
tives are bilinear natural differential operators classified in [3]. In par-
ticular, no continuity or locality have to be assumed.

The above operator I is an example of a non-local operator com-
muting with the Lie derivative. Indeed, the derivatives of the constant
functions are always zero, while∫

LXω =

∫
d iX(ω) = 0

by the Stokes theorem (remember ω has got compact support).
There are many similar non-local operators commuting with the Lie

derivatives, introduced in [1] under the name almost natural operators.
The simplest ones are functionals built with the help of a (local) natural
(k − 1)-linear operator D0 : E1 × . . .× Ek−1 → E∗k ⊗ Ωm,

(3) D(s1, . . . , sk−1, sk) =

∫
〈D0(s1, . . . , sk−1), sk〉

where Ωm stays for the top degree forms, 〈 , 〉 means the usual dual
pairing, and the constant value is considered as a constant multiple
of the invariant constant function 1, i.e. the invariant section of the
trivial line bundle.

In general, we may combine such functionals on subsets of the ar-
guments and leave some arguments for a local operator valued in E.
We also admit operators with no arguments, which means we consider
invariant sections in the bundles in question. Almost natural operators
are than all linear combinations of such operators.

For example, we can consider the operator Ωp×Ωq → T 1,1, p+q = m,
the dimension of the manifolds, D(ω, η) =

(∫
ω ∧ η

)
· I, where I is the

invariant section of T 1,1 corresponding to the identity on TM .
We are interested in bilinear operators only and the almost natural

bilinear operators D : E1 × E2 → E are given as linear combinations
(over reals) of operators from the following list:

(i) An invariant section in E, multiplied by the value of a bilinear
functional λ of the form

λ(s1, s2) =

∫
〈D(s1), s2〉

with a natural differential operator D : E1 → E∗2 ⊗Ωm, or such
operators with E1 and E2 swapped.
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(ii) There is an invariant section σ of E∗1⊗Ωm and a natural (local)
operator D0 : E2 → E, and the operator is of the form

D(s1, s2) =

(∫
〈σ, s1〉

)
·D(s2),

or similarly with E1 and E2 swapped.
(iii) The operator is a local natural operator, thus a finite order

bilinear differential operator commuting with the orientation
preserving local diffeomorphisms.

The main result in [1] is the following:

Theorem 2. Let E1, . . . , Ek, E be natural vector bundles defined on
the category of connected oriented m-dimensional manifolds, m ≥ 2,
and orientation preserving local diffeomorphisms. Then any separately
continuous k-linear operator D : E1× . . .×Ek → E on compactly sup-
ported sections which commutes with Lie derivatives is an almost nat-
ural operator. In particular any such operator is automatically jointly
continuous and the space of such operators is always finite dimensional.

Moreover, in one of the crucial parts of the proof of this theorem, the
description of linear functionals commuting with Lie derivatives, the
continuity assumption is not necessary. This implies (see [1, Corollary
6.2])

Corollary 3. Let E1, E2, E be natural vector bundles defined on the
category of connected oriented m-dimensional manifolds, m ≥ 2, and
orientation preserving local diffeomorphisms and assume there are no
non-zero invariant sections of E. Then every bilinear operator D :
E1 × E2 → E on compactly supported sections which commutes with
Lie derivatives is an almost natural operator.

This is a truly remarkable theorem. Let us look at the example of a
functional as in (3). First, the theorem says that such a functional has
to be defined by an integral operator with a kernel. Next, the kernel
must be given by a natural differential operator. Finally, the only
option is to have the operator dependent on k − 1 arguments, valued
in E∗` ⊗Ωm and algebraically paired with the remaining argument, i.e.
it cannot be an arbitrary k-linear differential operator valued in top
degree forms (all others would have values integrating to zero). On top
of all that, the theorem says that all (separately continuous) operators
commuting with the Lie derivatives are built of such blocks.

There is a good reason to believe that even the weak separate conti-
nuity assumption in the theorem is not necessary.

So far, this conjecture that all multilinear operators commuting with
Lie derivatives are almost natural operators has not been proved.

Proof of Theorem 1. Let us consider bilinear operators

(4) D : T r,s × T p,q → T k,`.
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Just by observing the action of the center of GL(m,R) we immediately
see that there are no invariant sections in T k,`, except the zero section,
whenever k 6= `. Indeed, the homotheties τ · id act by multiplying with
τ k−` and thus there are no nonzero fixed points in the representation
spaces. Similarly, there cannot be any nontrivial invariant sections in
Ωm ⊗ (T r,s)∗ = Ωm ⊗ T s,r if s 6= r + m. Thus, under the simultaneous
assumptions k 6= `, s 6= m+ r, q 6= m+ p, all operators (4) commuting
with Lie derivatives are of the type (iii) in the list above, without any
further continuity assumptions. Consequently, they must be standard
local natural differential operators.

Obviously, all the three assumptions on the tensor spaces are satis-
fied, if we restrict ourselves to those from the list (1) and the dimension
is m > 2.

The two exceptions of the tensors T 0,2 appearing among the argu-
ments on 2-dimensional manifolds would require linear natural differ-
ential operators T 1,0 → T 0,2 or T 1,1 → T 0,3. It is well known, that all
linear natural differential operators are built exclusively from algebraic
decompositions into irreducible components and the exterior differen-
tial, see [4, Section 32]. Thus there cannot be natural operators of the
requested types.

In particular, we have verified that [3] has fully classified all bilinear
operators listed in (1) on manifolds of dimension at least two com-
muting with Lie derivatives, i.e. satisfying the algebraic property (2),
without any further continuity or locality assumptions. �

As an example of a similar non-local operator commuting with the
Lie derivatives, notice the operator D : T 1,1 × T 0,2 → T 0,1 on 2-
dimensional manifolds given by the formula

D(X ⊗ ϕ, η) =

(∫
Alt η

)
· d(iXϕ).
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