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ABSTRACT

The streamline methods in Diffusion tensor imaging (DTI) use principal eigenvectors for tracking white matter
fibers. In comparison, the geodesics in a multivalued ray-tracing method are closer to the actual underlying white
matter fibers. This method provides multiple solutions in the form of geodesics in a Riemannian space. These
geodesics are robust in tracking high curvature structures in the presence of noise. In the DTI modality, the 2nd
order tensor fails to model the heterogeneous regions, e.g., crossing/merging fibers. Therefore, the ray-tracing
method is limited to guide the geodesics in these regions. This work, as a first step, utilizes 4th order tensor
approximation for the white matter regions. Subsequently, a non-linear optimization is performed to decompose
4th order tensors into multiple 2nd order tensors keeping their symmetric positive definite property. We are
using the initial fiber directions from the diagonal components of the 4th order tensor and use the 4th order
tensor decomposition for fiber tracking. The experimental results on synthetic images show that geodesics can
traverse in heterogeneous and high curvature structures.
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1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive tool in studying microstructures
in the human brain. There exist many acquisition techniques and models based on DW-MRI. In our current
work, we are interested in the high angular resolution (HARDI) technique1 . The higher order tensors (HOTs)
are considered for modelling water diffusion in multi-fiber regions. These HOTs should be symmetric positive
definite since the diffusion profile represent a physical process. These tensors can describe water diffusion in
complex micro-structures better than Gaussian based DTI model. Örzaslan et al2 observed that the coefficients
of a lower order tensor can be computed linearly from those of higher order. It allows a significant reduction in
acquisitions. Another useful feature of HOTs is that their coefficients can be represented in terms of spherical
harmonics.

Most of the tracking methods in DTI modality3 are based on principal eigenvector directions of 2nd order
tensors. These methods are not efficient in high curvatures regions and perform poor in presence of noise. In
case where tensors are slightly anisotropic, they causes deviation from the actual water diffusion path. Another
approach, known as geodesic ray-tracing is based upon finding geodesics with respect to a suitably chosen metric.
The ray-tracing method was introduced in the works by Sepasian et al4,5 . The geodesics are eventually used for
reconstruction of fibers. This method computes multiple geodesics between two points in the anisotropic region,
they are robust to noise and traverse closer to the actual path in curved white matter structures. It relies on
solving Euler-Lagrange (EL) equations which accounts for the local changes in path.

A geodesic is a path locally minimizing length between two points. A metric tensor needs to be chosen
on Riemmanian space to solve the geodesic equation. Faster diffusion of water molecules in a direction locally
represents a shorter path that can be considered a geodesic. In earlier studies6,7 , such metric tensor is defined
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as the inverse of the 2nd order diffusion tensor. This choice of metric has limitations in anisotropic regions with
high curvatures requiring the sharpening of diffusion tensors8 .

In this work, we utilize the observation from our previous work9,10 which suggest that the principal directions
of the diagonal components (DC), obtained by flattening a 4th order tensor, can be used to extract main fiber
directions. As a contribution, we modified the ray-tracing method to perform tracking in crossing regions. The
4th order tensors used for modelling crossing fiber bundles are decomposed into 2nd order tensors using non-
linear optimization technique11 . This method originally relied on fixing the principal eigenvector directions from
the maxima of the orientation distribution function. We suggest to obtain these principal directions from the DC
method. The maximum eigenvector of the components serves as the initial input required in the decomposition
process. The experiments on various simulated images indicate that the resulting tensors can be used to guide
the geodesics in crossing fibers at small angles and those with high curvature.

2. RELATED WORK

2.1 Geodesic equation

By definition, a geodesic is a curve x(t) between two points in a geometric space, which minimizes the length of
path. In the Riemannian manifold defined by a metric tensor g, this path can be evaluated by solving 2nd order
ODE equations.

ẍi + Γiklẋ
kẋl = 0, (1)

where
ẋi = dxi/dt

is velocity and Γkij are the Christoffel symbols. It is defined by

Γkij =
1

2

3∑
σ=1

gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
(2)

where gij denotes the entries of the Riemannian metric, g and gij denotes that of the inverse metric, g−1.

In our experiments, we restrict to 2D fibers which need 12 Christoffel symbols, six for each direction due to
indices symmetry (Γkij = Γkji). The above second order differential equation can be written as a set of first order
equations which are finally solved using Runge-Kutta numerical method. Once initial position and direction are
supplied to the ODE solver, it evaluates the next position and direction locally. For keeping the initial shooting
direction precise, geodesics are restricted to a cone. As the curve progresses it tends to deviate from the actual
path due to cumulative errors. For this reason, we chose to rescale the metric tensor using sigmoid function
under scalar Hilbert anisotropy (HA)9 .

2.2 Diffusion model

The Stejskal-Tanner equation12 , modeling water diffusion in tissue micro structures, is a mono-exponential
model given by

S = S0 exp(−bd(g)) (3)

where, S is attenuated signal when gradient pulse is applied, d(g) the apparent diffusion coefficient (ADC) and
b is an acquisition constant.

The diffusivity function of 4th order tensors can be expressed using the standard notation of quartic forms.
When modeling the diffusion process with HOT, the diffusivity function can be written as:

d(g) =
∑

i+j+k=4

Ti,j,kg
i
1g
j
2g
k
3 (4)

where g = [g1, g2, g3]t is the magnetic field gradient direction and Ti,j,k are the coefficients of the HOT. To
maintain the positive definiteness of higher order tensor, we used the regularization by authors13 . These HOTs
are capable of characterising water diffusion in heterogenous anisotropic regions.
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3. METHOD

3.1 Diagonal component approach

In this paper, we use the fiber directions from the diagonal component (DC) method14 . These components
can be obtained by flattening higher order tensors of any order. The components of the diagonal part are 3× 3
matrices and their principal eigenvectors can quantify number of underlying fibers.

A 4th order tensor T can be represented by 9×9 matrix and it is an algebraic representation that reflects the
structure of the 4th order tensor. The work14 provides the mathematical framework of flattening of 4th order
tensor. Thus, a 4th order tensor T (4) can be expressed as a matrix of (n− 2) order tensors:

T (4) =

T
(2)
xx T

(2)
xy T

(2)
xz

T
(2)
yx T

(2)
yy T

(2)
yz

T
(2)
zx T

(2)
zy T

(2)
zz

 (5)

In terms of apparent diffusion coefficients, the first block can be written as:

T (2)
xx =

Dxxxx Dxxxy Dxxxz

Dxxxy Dxxyy Dxxyz

Dxxxz Dxxyz Dxxzz

 (6)

The principal eigenvectors of the three diagonal blocks : T
(2)
xx , T

(2)
yy and T

(2)
zz are used in next section for initial

directions in optimisation purpose.

3.2 Decomposition of 4th order tensor

The orientation distribution function (ODF) is obtained using adaptive kernel method13 . In a related work11 ,
decomposition of 4th order tensors as sum of squares of 2nd order ones is based on establishing the principal axes
from the maxima of ODF and it is used for registration purposes. In this work, we employ such decomposition for
tractography and further, the initial directions of maxima are computed using the DC method. In experimental
section, we show that the DC approach is better than the Cartesian tensor orientation distribution function
(CTODF)15 approach to obtain maxima. The initial goal is to decompose the 4th order tensor into a sum of
3 quadratic forms. We ensure that these three forms retain SPD property. This number is restricted to three
for a 4th order tensor because a maximum of three diagonal components can be obtained in such a case. For a
6th order tensor, these components can yield nine directions. Their principal directions ideally should align with
maxima after reorientation.

Each SPD matrix D can be written as, D = V ΛV T , where V is the orthogonal matrix containing the
eigenvectors of the tensor (the orthonormal polar basis for D) and Λ is the positive diagonal matrix with the
positive real eigenvalues. For our purposes, we shall work on the principal eigenvector obtained from the DC
projections and we shall assume that the other two (smaller) eigenvalues are equal, λi1 ≥ λi2 = λi3 > 0 . The
principal eigenvector of the diffusion tensor then gives the main fiber direction. As usual, we can rewrite D in
its vectorized form as:

Di = vec(Di) = [Dixx, Diyy, Dizz,
√

2Dixy,
√

2Dixz,
√

2Diyz]

By the well known theorem going back to David Hilbert, we know that each quartic symmetric positively semi-
definite tensor can be written as a sum of squares of three quadratic forms. With our restriction, we consider
the best possible approximation in the form11 :

T =

3∑
i=1

DT
i Di =

3∑
i=1

(vec(ViΣiVi))
T vec(ViΣiV

T
i ). (7)

The tensor T is describing the diffusivity d(g) by (4). The considered distance of two such tensors d(T1,T2)
is given by11

d(T1,T2)2 =
1

4π

∫
S2

(d1(g)− d2(g))2dg (8)
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and the integral of the polynomial expression over the unit sphere is expressed by a simple algebraic formula11

(see section 3 in the reference).

Consequently, in order to get the best possible approximation, we have to solve the following non-linear
optimization problem:

min
λ′
i1,λ

′
i2

dist

(
T, vec

(
3∑
i=1

(XT
i Xi)

))2

(9)

where λ′i1, λ
′
i2 are the six unknown variables, Xi = vec(Vidiag(λ′2i1, λ

′2
i2, λ

′2
i2)VT

i ), and the first columns of Vi are
the known principal unit eigenvectors, while the other two columns are extending it into an othonormal frame.
We obtain the principal unit vectors by the DC method mentioned above.

Thus, the resulting SPD second order tensors have principle eigenvectors aligned with underlying anisotropic
directions which are used to trace the crossing fibers.

The following algorithm summarizes our procedure for treatment of voxels including crossing or merging
fibers. For the sake of simplicity we present the algorithm and the experiments below for 2-dimensional data
and two fibers crossing or merging.

Algorithm: Geodesics ray tracing for fiber crossing

Input: Select a rectangular seed region. Number of seed points, n = 10
number of geodesics per seed, m = 4.
Initial position x and intial direction ẋ := principal eigenvector of decomposed 2nd order tensor.
Select an angle θt (threshold)= 20◦.

Output: The geodesics tracing fiber-crossing region

1: Save the initial position xinput = x and ẋinput = ẋ
2: Feed this position and direction to the ODE solver (Runge-Kutta method)
3: Compute the output position and direction from the solver xoutput and ẋoutput
4: Compute angle difference 4θ between the maximum eigenvectors of 2nd order tensors,

4θ = |v1
max − v2

max|

5: if 4θ < θt then
6: xinput = xoutput and ẋinput = ẋoutput, feed to ODE solver
7: else
8: v = {v1

max,v
2
max},

ẋinput = arg min〈v, ẋoutput〉
xinput = xoutput
feed to ODE solver

9: end if
10: Stop at finite iterations.
11: Repeat all the steps for all n×m geodesics

The algorithm shows the steps for modified ray tracing method for tracing in heterogeneous crossing regions.
The algorithm can be extended for any number of fibers.

4. EXPERIMENTS AND RESULTS

We used the method16 to simulate multi-fiber synthetic images with 64 gradient directions, and setting b=1500
s/mm2. This approach is based on the generalization of the spherical deconvolution method with the adaptive
shape of the kernel. It mimics the water diffusion in compartmental structures of tissues effectively.

The Fig 1 shows the ODFs for 4th order tensors constructed from two fibers crossing at various given
angle differences (ground truths: column 1). The corresponding two second order tensors obtained from the
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Figure 1: Angle differences, 4th order tensor and the corresponding 2nd order tensors

decomposition are also shown in parallel. The angle differences (column 2) are evaluated between the maximum
eigenvectors of these tensors.

At a seed point in a rectangular region, 10 positions are selected and 4 geodesics per position are shot in a
cone. In experiments, the traversing geodesics are stopped by fixing the number of iterations, the other way is to
stop the geodesics at location where fractional anisotropy scalar values are closer to zero (isotropic background).
The coefficients of 2nd order tensor are obtained from those of 4th order by linear relation. For more details the
reader is referred to2 . The Fig 2 a) shows two linear crossing fibers at a small angle and Fig 2 c) the curved
crossing fibers.

In intersection regions, due to lack of orientation information when using only the DTI data, the traversing
geodesics deflect from actual paths Fig 2 b) and d). The 4th order tensor field reconstructions are shown in Fig
3 a) and c) for linear and curved crossing fibers. The ground truths representing the underlying fiber bundles
are shown in red and green.

In this case, the decomposed 2nd order tensors retains the actual path directions and thus allows the geodesics
to follow correct diffusion propagation paths. In the crossing regions, the directions of actual paths are visible
which otherwise is ambiguous in DTI cases.
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(a) (b)

(c) (d)

Figure 2: The 2nd order tensor images (DTI): a) two linear fibers c) curved fibers. The corresponding images b)
and d) showing geodesics tracking the incorrect fiber bundle, results are shown on fractional anisotropy scalar
image

(a) (b)

(c) (d)

Figure 3: The 4nd order tensor images: a) two linear fibers c) curved fibers. The corresponding images b) and
d) shows geodesics tracking the correct underlying fibers, results are shown on fractional anisotropy scalar image
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5. CONCLUSIONS

The diffusion imaging modality is existing for a long time and has found its use in the diagnosis and study
of many diseases, e.g. ischemia, alzeihmers, parkinson etc. The theoretical machinery17,18 is well established
for this data (3x3 SPD matrices). Due to the limitation of DTI in modelling water diffusion in complex tissue
structures, the methods developed for various applications, for instance, geodesic ray-tracing for tractography,
also need to be customised for higher order models. This work addresses this issue by employing a modified
ray-tracing algorithm in the HOTs case to reconstruct fibers in complex structures, exploiting recent results by
the authors9,14 . As a next step, we aim to examine the approach for real images.
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