
A Primer on Q-Curvature

by Michael Eastwood and Jan Slovák

Disclaimer: These are rough notes only, aimed at setting the scene and
promoting discussion at the American Institute of Mathematics Research
Conference Center Workshop ‘Conformal Structure in Geometry, Analysis,
and Physics,’ 12th–16th August 2003. For simplicity, we have omitted all
references. Curvature conventions are in an appendix. Conversations with
Tom Branson and Rod Gover have been extremely useful.

Let M be an oriented even-dimensional Riemannian n-manifold. Branson’s
Q-curvature is a canonically defined n-form on M . It is not conformally
invariant but enjoys certain natural properties with respect to conformal
transformations.

When n = 2, the Q-curvature is a multiple of the scalar curvature. With
conventions as in the appendix Q = −1

2
R. Under conformal rescaling of the

metric, gab 7→ ĝab = Ω2gab we have

Q̂ = Q + ∆ log Ω,

where ∆ = ∇a∇a is the Laplacian.

When n = 4, the Q-curvature is given by

Q = 1
6
R2 − 1

2
RabRab − 1

6
∆R. (1)

Under conformal rescaling,

Q̂ = Q + P log Ω,

where P is the Paneitz operator

Pf = ∇a

[
∇a∇b + 2Rab − 2

3
Rgab

]
∇bf. (2)

For general even n, the Q-curvature transforms as follows:–

Q̂ = Q + P log Ω, (3)

where P is a linear differential operator from functions to n-forms whose
symbol is ∆n/2. It follows from this transformation law that P is conformally
invariant. To see this, suppose that

ĝab = Ω2gab and ̂̂gab = e2f ĝab = (efΩ)2gab.
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Then ̂̂
Q = Q̂ + P̂ log ef = Q + P log Ω + P̂ f

but also ̂̂
Q = Q + P log(efΩ) = Q + Pf + P log Ω.

Therefore, P̂ f = Pf . With suitable normalisation, P is the celebrated
Graham-Jenne-Mason-Sparling operator. Thus, Q may be regarded as more
primitive than P and, therefore, is at least as mysterious.

Even when M is conformally flat, the existence of Q is quite subtle. We can
reason as follows. When M is actually flat then Q must vanish. Therefore,
in the conformally flat case, locally if we write gab = Ω2ηab where ηab is flat,
then (3) implies that

Q = ∆n/2 log Ω, (4)

where ∆ is the ordinary Laplacian in Euclidean space with ηab as metric.
An immediate problem is to verify that this purported construction of Q is
well-defined. The problem is that there is some freedom in writing gab as
proportional to a flat metric. If also gab = Ω̂2η̂ab, then we must show that

∆n/2 log Ω = ∆̂n/2 log Ω̂.

This easily reduces to two facts:–

fact 1: ∆n/2 is conformally invariant on flat space.

fact 2: if gab is itself flat, then ∆n/2 log Ω = 0.

The second of these is clearly necessary in order that (4) be well-defined.
For n = 2 it is immediate from (17). For n ≥ 4 it may be verified by direct
calculation as follows. If gab and ηab are both flat then

∇aΥb = ΥaΥb − 1
2
ΥcΥcgab, (5)

where Υa = ∇a log Ω. Therefore,

∇c(Υ
aΥa)

k = 2k(ΥaΥa)
k−1Υa∇cΥa = k(ΥaΥa)

kΥc

and

∇b∇c(Υ
aΥa)

k = k2(ΥaΥa)
kΥbΥc + k(ΥaΥa)

k(ΥbΥc − 1
2
ΥaΥagbc)
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whence
∆(ΥaΥa)

k = k(k + 1− n
2
)(ΥaΥa)

k+1. (6)

Taking the trace of (5) gives

∆ log Ω = ∇aΥa = (1− n
2
)ΥaΥa

and now (6) gives, by induction,

∆k+1 log Ω = k!(1− n
2
)(2− n

2
) · · · (k + 1− n

2
)(ΥaΥa)

k+1.

In particular, ∆n/2 log Ω = 0, as advertised.

That ∆n/2 is conformally invariant on flat space is well-known. It may also
be verified directly by a rather similar calculation. For example, here is the
calculation when n = 4. For general conformally related metrics ĝab = Ω2gab

in dimension 4,

∆̂2f = ∆2f + 2Υa∆∇af − 2Υa∇a∆f

+ 4(∇aΥb)∇a∇bf − 2(∇aΥa)∆f − 4ΥaΥb∇a∇bf

+ 2(∆Υa)∇af − 4(∇aΥb)Υa∇bf − 4(∇aΥa)Υ
b∇bf.

If gab is flat then the third order terms cancel leaving

∆̂2f = ∆2f + 4(∇aΥb)∇a∇bf − 2(∇aΥa)∆f − 4ΥaΥb∇a∇bf

+ 2(∆Υa)∇af − 4(∇aΥb)Υa∇bf − 4(∇aΥa)Υ
b∇bf.

If ĝab is also flat, then (5) implies

∇aΥb = ΥaΥb − 1
2
ΥcΥcg

ab and ∇aΥa = −ΥaΥa

whence the second order terms cancel and the first order ones simplify:–

∆̂2f = ∆2f + 2(∆Υb)∇bf + 2ΥaΥaΥ
b∇bf.

But using (5) again,

∆Υb = ∇a(Υ
aΥb − 1

2
ΥcΥcg

ab)

= (∇aΥa)Υ
b + (∇aΥb)Υa − (∇bΥa)Υa = −ΥaΥaΥ

b

and the first order terms also cancel leaving ∆̂2f = ∆2f , as advertised.
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Conundrum: Deduce fact 2 from fact 1 or vice versa. Both are consequences
of (5). Alternatively, construct a Lie algebraic proof of fact 2. There is a Lie
algebraic proof of fact 1. It corresponds to the existence of a homomorphism
between certain generalised Verma modules for so(n + 1, 1).

What about a formula for Q, even in the conformally flat case? We have a
recipe for Q, namely (4), but it is not a formula. We may proceed as follows.

If ĝab = Ωgab and gab is flat, then (16) implies that

∇aΥb = −P̂ab + ΥaΥb − 1
2
gabΥ

cΥc. (7)

Taking the trace yields

∆ log Ω = ∇aΥa = −P̂− 1
2
(n− 2)ΥaΥa. (8)

This identity is also valid when n = 2: it is (17). Dropping the hat gives
Q = −P = 1

2
R. This is the simplest of the desired formulae.

To proceed further we need two identities. If φ has conformal weight w, then
as described in the appendix,

∇̂aφ = ∇aφ + wΥaφ,

which we rewrite as
∇aφ = ∇̂aφ− wΥaφ. (9)

Similarly, if φa has weight w, then

∇aφa = ∇̂aφa − (n + w − 2)Υaφa (10)

and, if φab is symmetric and has weight w, then

∇aφab = ∇̂aφab − (n + w − 2)Υaφab + Υbφ
a
a. (11)

The quantities in (8) have weight −2. Therefore, applying (9) gives

∇a∆ log Ω = −∇̂aP̂− 2ΥaP̂− (n− 2)Υb∇aΥb

wherein we may use (7) to replace ∇aΥb to obtain

∇a∆ log Ω = −∇̂aP̂− 2ΥaP̂ + (n− 2)ΥbP̂ab − 1
2
(n− 2)ΥaΥ

bΥb.
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We may now apply ∇a, using (9), (10), and (11) to replace ∇a by ∇̂a on the
right hand side and (7) to replace derivatives of Υa. We obtain an expression

involving only complete contractions of P̂ab, its hatted derivatives, and Υa:–

∆2 log Ω = −∆̂P̂− (n− 2)P̂abP̂ab + 2P̂2

+ (n− 6)Υa∇̂aP̂ + (n− 2)Υa∇̂bP̂ab + 2(n− 4)ΥaΥaP̂

− (n− 2)(n− 4)ΥaΥbP̂ab + 1
4
(n− 2)(n− 4)ΥaΥaΥ

bΥb.

Using the Bianchi identity ∇̂bP̂ab = ∇̂aP̂, we may rewrite this as

∆2 log Ω = −∆̂P̂− (n− 2)P̂abP̂ab + 2P̂2

+ 2(n− 4)Υa∇̂aP̂ + 2(n− 4)ΥaΥaP̂

− (n− 2)(n− 4)ΥaΥbP̂ab + 1
4
(n− 2)(n− 4)ΥaΥaΥ

bΥb

(12)

and, in particular, conclude that when n = 4,

Q = 2P2 − 2PabPab −∆P. (13)

Though it is only guaranteed that this formula is valid in the conformally
flat case, in fact it agrees with the general expression (1) in dimension 4.

Of course, we may continue in the vein, further differentiating (12) to obtain

a formula for ∆k log Ω expressed in terms of complete contractions of P̂ab,
its hatted derivatives, and Υa. With increasing k, this gets rapidly out of
hand. Moreover, it is only guaranteed to give Q in the conformally flat case.
Indeed, when n = 6 this näıve derivation of Q fails for a general metric.
Nevertheless, there are already some questions in the conformally flat case.

Conundrum: Find a formula for Q in the conformally flat case. Show that
the procedure outlined above produces a formula for Q.

In fact, there is a tractor formula for the conformally flat Q. This is not the
place to explain the tractor calculus but, for those who know it already:–

�

 n− 2
0
−P

 =

 0
0
Q
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where

� = DA · · ·DB(∆− n− 2

4(n− 1)
R) DB · · ·DA︸ ︷︷ ︸

(n−4)/2

.

Unfortunately, this formula hides a lot of detail and does not seem to be of
much immediate use. It is not valid in the curved case.

Recall that, like Q, the Pfaffian is an n-form canonically associated to a
Riemannian metric on an oriented manifold in even dimensions. It is defined
as a complete contraction of n/2 copies of the Riemann tensor with two
copies of the volume form. For example, in dimension four it is

E = εabpqεcdrsRabcdRpqrs,

where εabcd is the volume form normalised, for example, so that

εabcdεabcd = 4! = 24.

Therefore, in four dimensions,

E = 4Rab
abRcd

cd − 16Rab
acRcd

bd + 4Rab
cdRcd

ab

= 4R2 − 16Rb
cRc

b + 4CabcdC
abcd + 32PabPab + 16P2

= 144P2 − 16(4PabPab + 8P2) + 4CabcdC
abcd + 32PabPab + 16P2

= 32P2 − 32PabPab + 4CabcdC
abcd.

The integral of the Pfaffian on a compact manifold is a multiple of the Euler
characteristic. In dimension 4, for example,∫

M

E = 128π2 χ(M).

Notice the simple relationship between Q and E in dimension 4:–

Q = 1
16

E − 1
4
CabcdCabcd −∆P.

Of course, it follows from (3) that
∫

M
Q is a conformal invariant. Also, in

the conformally flat case, it follows from a theorem of Branson, Gilkey, and
Pohjanpelto that Q must be a multiple of the Pfaffian plus a divergence.
However, the link between Q and the Pfaffian is extremely mysterious.

Conundrum: Find a direct link between Q and the Pfaffian in the conformally
flat case. Prove directly that

∫
M Q is a topological invariant in this case.
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Conundrum: Is it true that, on a general Riemannian manifold, Q may be
written as a multiple of the Pfaffian plus a local conformal invariant plus a
divergence?

Recall the conventions for Weyl structures as in the appendix. In particular,
a metric in the conformal class determines a 1-form αa. In fact, a Weyl
structure may be regarded as a pair (gab, αa) subject to equivalence under
the simultaneous replacements

gab 7→ ĝab = Ω2gab and αa 7→ α̂a = αa + Υa where Υa = ∇aΩ.

A Riemannian structure induces a Weyl structure by taking the equivalence
class with αa = 0 but not all Weyl structures arise in this way. A Weyl
structure gives rise to a conformal structure by discarding αa. We may
ask how Q-curvature is related to Weyl structures. From the transformation
property (3), it follows that Q may be defined for a Weyl structure as follows.
Since Q is a Riemannian invariant, the differential operator P is necessarily
of the form f 7→ Sa∇af for some Riemannian invariant linear differential
operator from 1-forms to n-forms. Now, if [gab, αa] is a Weyl structure, choose
a representative metric gab and consider the n-form

Q− Saαa,

where Q is the Riemannian Q-curvature associated to gab and αa is the 1-form
associated to gab. If ĝab = Ω2gab, then

Q̂− Ŝaα̂a = Q + SaΥa − Ŝaαa − ŜaΥa

= Q + P log Ω− Ŝaαa − P̂ log Ω

= Q− Ŝaαa.

(14)

In dimension 4 we can proceed further as follows. From (2) we see that

Saαa = ∇b

[
∇b∇a + 2Rab − 2

3
Rgab

]
αa = ∇b

[
∇b∇a + 4Pab − 2Pgab

]
αa

and so we may calculate

Ŝaαa = Saαa + 4∇a(Υb∇[aαb]).

In combination with (14) we obtain

Q̂− Ŝaα̂a = Q− Saαa − 4∇a(Υb∇[aαb]).
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However,

∇̂a(α̂b∇̂[aα̂b]) = ∇a(α̂b∇[aαb]) = ∇a(αb∇[aαb]) +∇a(Υb∇[aαb])

and, therefore,
Q = Q− Saαa + 4∇a(αb∇[aαb]) (15)

is an invariant of the Weyl structure that agrees with Q when the Weyl
structure arises from a Riemannian structure.

Conundrum: Can we find such a Q in general even dimensions? Presumably,
this would restrict the choice of Riemannian Q.

Though Q given by (15) is an invariant of the Weyl structure, it is not
manifestly so. Better is to rewrite it as follows. Using conventions from the
appendix, we may write the Schouten tensor (18) of the Weyl structure in
terms of the Schouten tensor of a representative metric gab:–

Pab = Pab +∇aαb + αaαb − 1
2
αcαcgab.

In particular,

P = P +∇aαa − αaαa

PabPab = PabPab + (∇aαb)(∇aαb) + (αaαa)
2 + 2Pab∇aαb

+ 2Pabαaαb − Pαaαa + 2(∇aαb)αaαb − (∇aαa)α
bαb

DaDaP = Da(∇aP + 2αaP) = ∇a(∇aP + 2αaP)
= ∆P + 2(∇aαa)P + 2αa∇aP
= ∆P + ∆∇bαb − 2(∆αb)αb − 2(∇aαb)(∇aαb)

+ 2(∇aαa)P + 2(∇aαa)∇bαb − 2(∇aαa)α
bαb

+ 2αa∇aP + 2αa∇a∇bαb − 4αa(∇aαb)αb

P2 = P2 + (∇aαa)
2 + (αaαa)

2

+ 2P∇aαa − 2Pαaαa − 2(∇aαa)(α
bαb).

Therefore, recalling the formula (13) for Q in dimension 4,

Q = 2P2 − 2PabPab −DaDaP
+ 4Pab∇aαb + 4Pabαaαb + ∆∇bαb − 2(∆αb)αb

+ 2αa∇aP + 2αa∇a∇bαb − 2P∇aαa + 2Pαaαa
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whence, from (15),

Q = 2P2 − 2PabPab −DaDaP
+ 4Pab∇aαb + 4Pabαaαb + ∆∇bαb − 2(∆αb)αb

+ 2αa∇aP + 2αa∇a∇bαb − 2P∇aαa + 2Pαaαa

−∇b

[
∇b∇a + 4Pab − 2Pgab

]
αa + 4∇a(αb∇[aαb])

= 2P2 − 2PabPab −DaDaP
+ 4Pabαaαb + 2αa(∇a∇b −∇b∇a)αb + 2Pαaαa

+ 2(∇aαb)∇aαb − 2(∇aαb)∇bαa

= 2P2 − 2PabPab −DaDaP + 2(∇aαb)∇aαb − 2(∇aαb)∇bαa.

However,

2(∇aαb)∇aαb − 2(∇aαb)∇bαa = 4(∇[aαb])∇[aαb] = 4PabP[ab]

and so
Q = 2P2 − 2PabPba −DaDaP

a manifest invariant of the Weyl structure, as required.

Conundrum: Did we really need to go through this detailed calculation? What
are the implications, if any, for the operator S : 1-forms → 4-forms?

Conundrum: Can we characterise the Riemannian Q by sufficiently many
properties? Do Weyl structures help in this regard?

Tom Branson has suggested that, for two metrics g and ĝ = Ω2g in the same
conformal class on a compact manifold M , one should consider the quantity

H[ĝ, g] =

∫
M

(log Ω)(Q̂ + Q).

That it is a cocycle,

H[̂̂g, ĝ] +H[ĝ, g] = H[̂̂g, g],

is easily seen to be equivalent to the GJMS operators P being self-adjoint.

Conundrum: Are there any deeper properties of Branson’s cocycle H[ĝ, g]?

One possible rôle for Q is in a curvature prescription problem:–
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Conundrum: On a given manifold M , can one find a metric with specified Q?

One can also ask this question within a given conformal class or within the
realm of conformally flat metrics though, of course, if M is compact, then∫

M
Q must be as specified by the conformal class and the topology of M .

There is also the question of uniqueness:–

Conundrum: When does Q determine the metric up to constant rescaling
within a given conformal class?

Since we know how Q changes under conformal rescaling (3), this question
is equivalent to

Conundrum: When does the equation Pf = 0 have only constant solutions?

On a compact manifold in two dimensions this is always true: harmonic
functions are constant. In four dimensions, though there are conditions under
which Pf = 0 has only constant solutions, there are also counterexamples,
even on conformally flat manifolds. The following counterexample is due to
Michael Singer and the first author. Consider the metric in local coördinates

dx2 + dy2

(x2 + y2 + 1)2
+

ds2 + dt2

(s2 + t2 − 1)2
.

It is easily verified that it is conformally flat, scalar flat, and has

Rab = 4
dx2 + dy2

(x2 + y2 + 1)2
− 4

ds2 + dt2

(s2 + t2 − 1)2
.

From (2) we see that if f is a function of (x, y) alone, then Pf = L(L + 8)f ,
where L is the Laplacian for the two-dimensional metric

dx2 + dy2

(x2 + y2 + 1)2
.

More specifically, in these local coördinates

L = (x2 + y2 + 1)2

(
∂2

∂x2
+

∂2

∂y2

)
.
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It is easily verified that L + 8 annihilates the following functions:–

x

x2 + y2 + 1
,

y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1
.

In fact, (x, y) are stereographic coördinates on the sphere and these three
functions extend to the sphere to span the spherical harmonics of minimal
non-zero energy. On then other hand, the metric

ds2 + dt2

(s2 + t2 − 1)2

is the hyperbolic metric on the disc. We conclude that the Paneitz operator
has at least a 4-dimensional kernel on S2×H2. The same conclusion applies
to S2 × Σ where Σ is any Riemann surface of genus ≥ 2 equipped with
constant curvature metric as a quotient of H2. (In fact, the dimension in
this case is exactly 4.)

APPENDIX: Curvature Conventions

Firstly, our conventions for conformal weight. A density f of conformal
weight w may be identified as a function for any metric in the conformal
class. At the risk of confusion, we shall also write this function as f . If
however, our choice of metric gab is replaced by a conformally equivalent
ĝab = Ω2gab, then the function f is replaced by f̂ = Ωwf . Quantities that are
not conformally invariant can still have a conformal weight with respect to
constant rescalings. For example, the scalar curvature has weight −2 in this
respect. Explicit conformal rescalings are generally suppressed.

The Riemann curvature is defined by

(∇a∇b −∇b∇a)ωc = Rabc
dωd.

The Ricci and scalar curvatures are

Rac = Rabc
b and R = Ra

a,

respectively. The Schouten tensor is

Pab =
1

n− 2

(
Rab −

R

2(n− 1)
gab

)
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and transforms under conformal rescaling by

P̂ab = Pab −∇aΥb + ΥaΥb − 1
2
gabΥ

cΥc. (16)

In particular, if η̂ab = Ω2ηab are two flat metrics, then

∇aΥb = ΥaΥb − 1
2
gabΥ

cΥc,

a tensor version of the Riccati equation. When n = 2, the Schouten tensor
itself is not defined but its trace is well-defined:–

P = 1
2
R P̂ = P−∇aΥa = P−∆ log Ω (17)

and so, if η̂ab = Ω2ηab are two flat metrics, then ∆ log Ω = 0.

A Weyl structure is a conformal structure together with a choice of torsion-
free connection Dα preserving the conformal structure. In other words, if we
choose a metric gab in the conformal class, then

Dagbc = 2αagbc,

determining a smooth 1-form αa. Conversely, αa determines Da:

Daφb = ∇aφb + αaφb + αbφa − αcφcgab,

where ∇a is the Levi-Civita connection for the metric gab. Let Wab denote
the Ricci curvature of the connection Da:–

(DaDb −DbDa)V
c = Wab

c
dV

d Wab = Wca
c
b.

We may compute these curvatures in terms of αa and ∇a, for a chosen metric
in the conformal class:–

DaDbV
c = ∇a(∇bV

c − αbV
c + αcVb − αdV

dδb
c)

+ αa(∇bV
c − αbV

c + αcVb − αdV
dδb

c)
+ αb(∇aV

c − αaV
c + αcVa − αdV

dδa
c)

+ αe(∇eV
c − αeV

c + αcVe − αdV
dδe

c)gab

− αa(∇bV
c − αbV

c + αcVb − αdV
dδb

c)
+ αc(∇bVa − αbVa + αaVb − αdV

dgba)
− αe(∇bV

e − αbV
e + αeVb − αdV

dδb
e)δa

c
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so

(DaDb −DbDa)V
c = (∇a∇b −∇b∇a)V

c

− (∇aαb)V
c + (∇aα

c)Vb − (∇aαd)V
dδb

c

+ (∇bαa)V
c − (∇bα

c)Va + (∇bαd)V
dδa

c

+ αcαaVb + αbδa
cαeV

e − αeα
eδa

cVb

− αcαbVa − αaδb
cαeV

e + αeα
eδb

cVa

whence

Wab
c
d = Rab

c
d − 2δc

d∇[aαb] − 2gd[a∇b]α
c + 2δ[a

c∇b]αd

+ 2αcα[agb]d + 2δ[a
cαb]αd − 2αeα

eδ[a
cgb]d

and

Wab = Rab + (n− 1)∇aαb −∇bαa + gab∇cαc + (n− 2)αaαb − (n− 2)αcαcgab

whose trace is

W = R + 2(n− 1)∇cαc − (n− 1)(n− 2)αcαc.

Therefore,

1

n− 2

(
Wab −

W

2(n− 1)
gab

)
= Pab +∇aαb + αaαb − 1

2
αcαcgab + 2

n−2
∇[aαb].

If two Weyl structures have the same underlying conformal structure, then we
may, without loss of generality, represent them as (gab, αa) and (gab, αa−Υa)
for the same metric gab and an arbitrary 1-form Υa. If we write hatted
quantities to denote those computed with respect to (gab, αa −Υa), then for

Pab =
1

n− 2

(
Wab −

2

n
W[ab] −

W

2(n− 1)
gab

)
(18)

we have the convenient transformation law

P̂ab = Pab −DaΥb + ΥaΥb − 1
2
gabΥ

cΥc. (19)
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