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ABSTRACT

In this paper, we provide a framework to evaluate new scalar
quantities for higher order tensors (HOT) appearing in high
angular resolution diffusion imaging (HARDI). These can po-
tentially serve as biomarkers. It involves flattening of HOTs
and extraction of the diagonal D-components. Experiments
performed in the 4th order case reveal that D-components en-
code geometric information unlike the isometric 6D 2nd order
Voigt form. The existing invariants obtained from the Voigt
form are considered for comparison. We also notice that D-
components can be useful in segmentation of white matter
structures in crossing regions and classification. Results on
phantom and the synthetic dataset support the conclusions.

Index Terms— HARDI, biomarker, 4th order tensor, D-
component

1. INTRODUCTION

Diffusion MRI (dMRI) is a powerful tool in the study of
microstructures in human brain non-invasively. Based upon
dMRI principle, diffusion tensor imaging (DTI) model was
introduced by Basser and others [1], [2] and its importance as
a clinical standard grows. The eigenvalues of the 2nd order
DTI tensors remain invariant under 3D rotations. Some of
the scalars obtained as from function of these eigenvalues
are: mean diffusivity (MD), fractional anisotropy (FA), radial
diffusivity (RD) etc. These scalars serve as the biomark-
ers which are helpful in discerning unhealthy tissues from
healthy ones. This change occurs due to disorganization of
tissue structure due to present anomaly. The DTI modality
looses its efficiency if the diffusion of water molecules is not
Gaussian, which happens e.g. for voxels including cross-
ing or merging fibers. For such situations, we may increase
the number of the measured diffusion gradient directions
[3] and approximate the diffusion by higher order tensors.
This acquisition protocol is known as high angular diffusion
imaging (HARDI). There are some works which considered
rotational invariance property to obtain scalars in higher order
tensors (HOT). These scalars are shown to serve as potential
biomarkers and are considered better than those derived from
2nd order tensors. Ghosh et al proposed such invariants of

4th order tensor [4]. They are obtained from the characteristic
polynomial of the Voigt form, a 6x6 isometric representation
of the 4th order tensors. Their eigenvalues are also known as
Kelvin eigenvalues and they are invariant under 6D rotation
group SO(6) instead of the real 3D rotations of interest. Fur-
ther works deal with the complete set of invariants under 3D
rotations [5].

The biological and clinical significance of these HOT ro-
tation invariant scalars is still largely a matter of research. In
this paper, we present an approach which extracts scalar mea-
sures of positive definite higher order tensors using the diag-
onal component (D) approach. It is observed that the three
3x3 (blocks) diagonal components in case of 3D flattened 4th
order tensor carry useful geometric information. The scalar
obtained by combining these components is shown to be ro-
bust under rotations than those aforementioned. The princi-
pal eigenvalues of the these components reflect the number
of fibers at a voxel level. These scalars can serve as poten-
tial biomarkers. We have shown they are also effective in
segmenting white matter fibers in heterogeneous region and
classification of tissues with respect to underlying number of
fibers. The approach is extendable to HOT of any order. We
discuss experiments on phantom and synthetic dataset.

2. THEORY

2.1. Diffusion Model

The generalized Stejskal-Tanner equation which is a mono
exponential model of the diffusion of water molecules in bi-
ological tissues. The attenuated signal corresponding to a
gradient pulse, with the diffusion weighting coefficient b, is
S(g) = S0 exp(−bD(g)), where

D(g) =

3∑
j1=1

3∑
j2=1

· · ·
3∑

jn=1

Dj1j2...jngj1gj2 . . . gjn (1)

and gk is the kth component of the magnetic gradient vector
with |g| = 1. The number of independent coefficients for `th
order symmetric tensors is N` = 1

2 (` + 1)(` + 2). Thus, for
4th order symmetric tensors, 34 = 81 coefficients of general
tensors reduce to 15.



2.2. Related work

A 3D 4th order tensor can be represented in the so called
Voigt notation by 6x6 matrix M , [6]. The eigenvalues λi,
i = 1, . . . , 6, of this matrix are called the Kelvin eigenval-
ues, and they give rise to the basic invariants S4r, obtained
as the six traces of the powers Mr, r = 1, . . . , 6. Further 6
invariants J4r, called the principal ones, appear as the coeffi-
cients of the characteristic polynomial det(M − λI). In fact
J41 = S41. As it is well known, such scalars are independent
of the choice of basis and thus also rotation invariant. Un-
fortunately the invariance is with respect to the 6-dimensional
rotations.

Since the Voigt form of the tensor is a positively definite
symmetric matrix, we may write the explicit formulas for the
above invariants in terms of the Kelvin eigenvalues, e.g.

S41 = J41 = tr(M) = λ1 + λ2 + λ3 + λ4 + λ5 + λ6,

S42 = tr(M2) = λ21 + λ22 + λ23 + λ24 + λ25 + λ26,

J43 = λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ2λ6

+ λ1λ3λ4 + λ1λ3λ5 + λ1λ3λ6 + λ1λ4λ5 + λ1λ4λ6

+ λ1λ5λ6 + λ2λ3λ4 + λ2λ3λ5 + λ2λ3λ6 + λ2λ4λ5

+ λ2λ4λ6 + λ2λ5λ6 + λ3λ4λ5 + λ3λ4λ6 + λ3λ5λ6

+ λ4λ5λ6,

J46 = det(M) = λ1λ2λ3λ4λ5λ6.

For the complete set of equations reader is referred to [6] and
[4].

2.3. The proposed approach

Tensors are multi-linear maps whose components trans-
form in a co/contra-variant manner. However, in presence
of fixed scalar product at each point of space, i.e., for the
Cartesian tensors these transformations are indistinguishable.
All Cartesian tensors can be represented in isometric vector
forms, but in general geometric information is lost.

We propose another approach. Any 4th order tensor can
be interpreted as a 9x9 matrix

Dxxxx Dxxxy Dxxxz Dxxxy Dxxyy Dxxzy Dxxxz Dxxyz Dxxzz

Dxxxy Dxxyy Dxxyz Dyxxy Dyxyy Dyxzy Dyxxz Dyxyz Dyxzz

Dxxxz Dxxyz Dxxzz Dzxxy Dzxyy Dzxzy Dzxxz Dzxyz Dzxzz

Dxyxx Dxyyx Dxyzx Dxyxy Dxyyy Dxyzy Dxyxz Dxyyz Dxyzz

Dyyxx Dyyyx Dyyzx Dyyxy Dyyyy Dyyzy Dyyxz Dyyyz Dyyzz

Dzyxx Dzyyx Dzyzx Dzyxy Dzyyy Dzyzy Dzyxz Dzyyz Dzyzz

Dxzxx Dxzyx Dxzzx Dxzxy Dxzyy Dxzzy Dxzxz Dxzyz Dxzzz

Dyzxx Dyzyx Dyzzx Dyzxy Dyzyy Dyzzy Dyzxz Dyzyz Dyzzz

Dzzxx Dzzyx Dzzzx Dzzxy Dzzyy Dzzzy Dzzxz Dzzyz Dzzzz


which can be understood as a 3x3 matrix whose elements
are again 3x3 matrices (here D are the coefficients appear-
ing in the Stejskal-Tanner equation (1)). We call them D-
components (DC). The first such diagonal element in the
fourth-order tensor is

T (2)
xx =

Dxx(xx) Dxx(xy) Dxx(xz)

Dxx(xy) Dxx(yy) Dxx(yz)

Dxx(xz) Dxx(yz) Dxx(zz)

 (2)

In general, every nth order tensor T (n) can be expressed as a
3x3 matrix of (n − 2)-nd order tensors. For instance, there
are three such diagonal 3x3 components for 4th order tensors,
while for the 6th order, the three components further contain
nine such diagonal 3x3 components in total.

Due to the physical nature of diffusion process, all ten-
sors T (n) must be positive semi-definite (PSD) which is en-
sured by methods introduced in [7] and [8] while fitting the
signal. As discussed in [9], the semi-definiteness can be in-
herited by all the second order diagonal components. These
form a subset of all possible principal minors. The spec-
tral decomposition of the tensor in equation 2 is given by
T

(2)
xx Vxx = ΛxxVxx. Similarly for other two components as
T

(2)
yy Vyy = ΛyyVyy and T (2)

zz Vzz = ΛzzVzz
Here, Λ’s are diagonal matrices and V matrices hold eigen-
vectors as their columns. The λxx, λyy and λzz are maximum
eigenvalues corresponding to Λxx, Λyy and Λzz respectively.

While the eigenvectors of the D-components can be used
to extract the direction of maxima of orientation distribution
function (ODF), we focus here on the eigenvalues which can
provide new biomarkers in a straightforward way. The nor-
malized vector at each voxel is given by
vn = v/(λxx+λyy+λzz). Here, v = (λxx, λyy, λzz) is com-
puted from the maximal eigenvalues of the D-components.
These elements of vn can be considered as probabilities of
presence of corresponding fibers.

The eigenvalues of D-components can be combined to
give scalars which are robust under rotations. For instance,
we evaluated fractional anisotropy (FA) of sum of the D-
components in experiments. For 4th order case, these compo-
nents provide 3-fold information per voxel each correspond-
ing to the individual D component. This has biologically and
clinically more relevance than the invariants obtained from
the Voigt 6x6 representation. Also, the method can be easily
extended to any even order tensor. It should be noted that
the eigenvalues of D-components are different from those
obtained from spectral decomposition of 9x9 or the 6x6 rep-
resentations.

Eigen decomposition of 3x3 SPD blocks is faster than
for 6x6 or 9x9 matrices and there is available a rich class of
methods to obtain biomarkers due to active research on DTI
modality in the past years. These are all applicable to the D-
components due to the SPD property mentioned above.

3. EXPERIMENTS AND RESULTS

We simulated synthetic images (64 gradient direction with
b=1500 s/mm2) using an adaptive kernel method [10].



Fig. 1. Comparison of the numerical stability with respect to
random rotations of the Kelvin based invariants and the FA of
the D-components (the green bars). The higher bar indicate
higher stability.

For 6 different 4th order tensors T1 through T6, con-
structed with decreasing angle between two fibers, we ran-
domly chose five 3D rotations of each of them, i.e., we
consider the corresponding 5 configurations Tij (i = 1, . . . , 6
and j = 1, . . . , 5). The numerical stability with respect to
random rotations is defined as |S(Ti)|

|S(Ti)−S(Tij)| , where S(T )

stands for the scalar measure for tensor T . We include the FA
for sum of diagonal components, and a set of scalars obtained
from the Voigt form: S41 = J41, S42, J43 and J46.
Figure 1 indicates the higher numerical stability of the scalar
based on the D-components, in comparison to those based on
Kelvin eigenvalues.

Figure 2 depicts two perpendicular crossing fibers and the
various scalar images. The scalar images corresponding to
λxx, λyy, λzz eigenvalues are also shown in third row. The
red, green and blue colors in the vector image are represented
by vn(1), vn(2) and vn(3) respectively. The normalized vec-
tor discussed above is scaled to vn/max(vn). Then, we select
> 0.5 to threshold individual terms. This provides the number

Fig. 2. First row: Synthetic 4th order tensor image of two
crossing fibers and the RGB image of the normalized vec-
tor vn. Second row: two examples of the Kelvin eigenvalues
based invariants and the FA of the sum of D-components (us-
ing the default Matlab color scale) Third row: the separate
D-components are able to depict the two fibers individually
and the intersection regions (in different color code)

Table 1. The mean errors for 1000 random rotations each
S41 S42 S43 S44 S45 S46
0.0023 0.0033 0.0047 0.0062 0.0078 0.0094
J42 J43 J44 J45 J46 FA-DC
0.0052 0.0093 0.0162 0.0401 0.2963 0.002

of fibers in a voxel. This is used for classification of voxels
according to underlying fibers present/absent. For instance,
in figure 2, the vector image contains two single fiber regions
shown in green and red, background has isotropic tensors in-
dicating no fibers whereas the brown color (red + green) rep-
resents the region where two fibers are intersecting. We per-
form 1000 random rotations of a fixed 4th order tensor and
computed the relative errors for each of these scalars. Table 1
shows the scalar due to DC has least error.

Figure 3 provides results for the phantom used in [11].
There, the puree of asparagus in equal amounts is used to sim-
ulate three orthogonal fiber directions. The size of phantom
is 64x64x6. The results are shown for the 4th slice. Aside the
original structural image, the picture shows the normalized
vector vn image as mentioned above. It can be seen that three
directions are very well captured by the D-components indi-
vidually. In second row, the first image shows tensor field for
the two curved intersecting fibers. second image shows clas-
sification of the 3 regions. The red indicates region having 1



Fig. 3. First row: structural image of the phantom, followed
by the normalized vector image. Second row: Two closely
merging fibers, the normalized vector image segregating the
regions according to number of fibers

fiber, black for isotropic background and green represents the
presence of two fibers. It should be noted that the intersect-
ing region is classified accurately even in the part where two
curves are barely touching.

4. CONCLUSION

We showed how to compute D-components from HOTs which
carry geometric information whereas the 6x6 Voigt form fails
in this respect.The method applies for tensors of all even or-
ders. We showed that the scalar quantities based on the D-
components are robust under rotation of tensors with varying
anisotropies. Diverse experiments on phantom and synthetic
images, confirmed that the individual D-components and their
combinations capture the relevant information and this sim-
ple framework provides a promising way to look for HARDI
scalars providing classification of single and multi-fiber re-
gions.
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