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Abstract. In brain research, the second order tensor model of the diffu-
sion tensor imaging (DTI) encodes diffusion of water molecules in micro-
structures of tissues. These tensors are real matrices lying in a non-
linear space enjoying the Riemannian symmetric space structure. Thus,
there are natural intrinsic metrics there, together with their extrinsic ap-
proximations. The effective implementations are based on the extrinsic
ones employing their vector space structure. In processing DTI, the Log-
Euclidean (LogE) metric is most popular, though very far from optimal.
The spectral decomposition approach yields the distance measures which
respect the anisotropy much better. In the present work, we propose to
use the spherical linear interpolation (slerp-SQ) which performs much
better than the LogE one and provides better interpolation of geodesics
than the spectral-quaternion one. We have implemented the localized
active contour segmentation method for these metrics, providing much
better handling of the inhomogeneity of the data than global counterpart.

Keywords: Diffusion Tensor Imaging · Anisotropy · Riemannian sym-
metric spaces.

1 Introduction

The non-invasive DW-MRI method can quantify the degree of diffusion of water
molecules in the brain. The second order diffusion model was introduced in [13].
In this model, the tensors encoding diffusion are 3x3 symmetric positive definite
matrices with six degrees of freedom, lying in the S+(3) space. The anisotropic
tensors in DTI represent white matter micro-structures which allow more dif-
fusion oriented along axons. The segmentation of white matter structures has
relevance in diagnosis and clinical studies of patients with multiple sclerosis,
stroke, and brain-connectivity issues. For segmentation, the deformable models
were long been used for intensity images in earlier works, called snakes, cf. [9].
These contours are guided by an energy function which deals with topological
changes while evolving. For example, [14, 15] used edge based function but had
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disadvantage because of inability to deal with noise and it required initial curve
to be placed near to the boundary of the object of interest. The level sets (ge-
ometrically known as implicit curves in hypersurface) were exploited in [2] to
deal with topological changes of the evolving curve. In their remarkable paper
[3], Chan-Vese incorporated region based energy model based on Mumford-Shah
formulation [1]. The method was based on minimization of global energy which
was formulated as a variational problem. This resolved the problem with edge
based methods, but such global methods fail to segment the objects whose parts
have non-homogenous statistics. To resolve this issue, localized curve model was
introduced by Lankton et al. in[11] and subsequently was used by them in [12]
for fibre bundle segmentation. Further, they advocated that the efficiency of the
method relies upon the choice of distance measure or metric. This is one of the
motivation for current work.

The space of tensors in DTI is well studied and known as a non-Euclidean
Riemannian symmetric space. The work [16] provided a Riemann framework for
computing. Affine invariant metrics on the homogenous space S+ are well known
in differential geometry texts [17], while in statistics, they are known as Fisher
information metrics [18]. The use of the latter technique for DTI was advocated
in [20].

In the current work, we implement the localized segmentation method for
DTI based on the so called slerp-SQ metric and we have chosen the widely used
Log-Euclidean metric, introduced in [21], for comparison. This spherical linear
interpolation of quaternion slerp-SQ distance measure is an extension of the
spectral-quaternion (SQ) measure for curve evolution. We provide arguments
why is this metric better in providing smooth interpolation of geodesics. We
achieved very fast and effective segmentation of white matter structure as com-
pared to the Log Euclidean metric for 2D cross section. It works very well for
structures with quickly varying curvatures (e.g. corpus collasum). At the same
time, it enables the segmentation curve to deal with the heterogeneity of the
tensors in the underlying image, which is due to variation in the orientation and
eigen-values. Results on both synthetic images and on real human brain images
are shown.

2 Localization of global energy formulation

In early works for scalar images, deformable models were called snakes. Kass et.
al.[9] introduced an energy function to evolve the curve which was fast but had
difficulty in handling topological changes. The evolution of curves is guided by
the curvature motion and edge function: g(|∇u0|) = (1 + |∇(Gσ ? u0)|)−1. Here,
u0 is image, Gσ is the Gaussian function and ? is the convolution operation.

In [14, 15] g acts as evolving and a stopping term for the curve as its value
is zero near the boundaries of object. The disadvantage of these edge based
methods is their inability to deal with noise because in the process of smoothing
noise, Gaussian also smoothes the boundaries. Another shortcoming is that the
initial curve needs to be placed near the boundary of object of interest. Osher
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and Sethian in [10] used level-sets to deal the topological changes during curve
evolution, the evolving curve is embedded in high dimensional surface. Further,
based on Mumford Shah model[1], as a special case, Chan-Vese [3] model evolved
the curve without requiring edges as stopping condition, they used energy formu-
lation based on first moments of energy distribution in the interior and exterior
regions of the curve. Minimization of the energy converges the evolving curve to
boundary of the object. It enables to segment the objects with or without discon-
tinuous boundaries, and it is robust to noise. Let φ be the surface embedding the
curve, i.e. ∂φ/∂t = F |∇φ|. Various choices of the function F exist in literature.
Region based techniques works well for the objects with uniform features but
fails where sub-region of the object has non-uniformity i.e the statistics of the
object’s (local) region has variation. Authors in[5] incorporated local statistics
into variational framework to deal heterogeneity. [6][7][8][11] are some works in
this direction.

In the current work, we are using [11] energy functional which they used in
followed up paper [12] for fibre bundle segmentation for 3D DTI. They used
Log-Euclidean metric and advocated the improvement under a better similarity
measures/metric. A bounding ball mask B(x, y) is selected with a fixed radius
r across the length of contour, with value 1 inside and zero outside. The reader
is referred to [11] for details on the variational setup. The iterative optimization
of the energy is implemented with the help of the Euler-Lagrange equation

∂φ
∂t (x) = δφ(x)

∫
Ωy
B(x, y) · ∇φ(y)F (I(y), φ(y)) dy + λδφ(x) div ∇φ(x)|∇φ(x)| .

3 Distance measures for second order tensors

These tensors can be considered to lie either in a Euclidean space (extrinsi-
cally) or the embedded space (intrinsically). With Euclidean space approach,
the advantage is that it is a vector space and all statistics are easily performed
but at the cost of accuracy and closure property. Embedded space has inherent
non-scalar curvature. However, advantage is that it reduces the dimension of
the problem and under proper metric promises accurate results. Computational
speed is an issue in this case when it involves enormous data (e.g DTI). The
symmetric positive definite (SPD) matrices forms a manifold called Riemann
symmetric space. Geometrically, these matrices forms a cone (because of posi-
tive definite constraint) in Rn. Euclidean space approach in [24] gives a unique
mean but smoothing operations may result in negative or null eigenvalues, which
are non-physical for diffusion process. Further, it gives rise to problems like the
swelling effect.

3.1 State of the Art

Notice, the matrix exponential is a diffeomorphism from the embedding space
R6 of the symmetric 3 by 3 matrices to the tensor space S+ (the manifold of the
positive definite ones).
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Log-Euclidean metric: The latter mathematical observation was exploited by
the authors in [21] and gave a Lie group structure to the tensor space. With this
structure computations become easy in three steps: Take log of the tensor space,
process the vector data (symmetric matrices), use exp to map the data back
to the manifold. This is a popular metric for DTI processing. The composition
operation is not the usual matrix multiplication (under which it is not a Lie
group). It is given by:

p1 • p2 = exp(log(p1) + log(p2)) (1)

dist2(p1, p2) = trace((log(p1)− log(p2))2 (2)

and the interpolation curve between two tensors p1 and p2 is

p(t) = exp(1− t) log(p1) + t log(p2). (3)

This extrinsic metric is an approximation of intrinsic affine invariant met-
ric. They are very close to each other near to the identity. It is invariant with
respect to the similarity transformations (rotation or scaling). Log Euclidean
interpolation curve provides a closed-form mean for two or more tensors.

Spectral metric: For the first time, [19] used spectral treatment for regular-
ization of noisy diffusion tensors. The key idea is to treat eigenvalues and eigen-
vectors separately. An interpolation curve between any two tensors u1and u2 is
given by:

p(t) = u(t)Λ(t)uT (t) (4)

u(t) = u1 exp(t log(uT1 u2)) (5)

Λ(t) = exp(1− t) log(Λ1) + t log(Λ2) (6)

where u1,u2 ∈ SO(3) (the rotational group) and Λ1 and Λ2 are diagonal matrices
with eigen values entries. This interpolation curve is a geodesic in the product
of Lie groups SO(3)×D+(3),where D+(3) is the group of diagonal matrices with
positive elements. This Lie group is a four-fold covering of S+(3). The tensor has
four distinct orientations, determined by rotations of principle axes by π, and
one due to identity. Let G be one such four-tuple of u2. Then distance between
the any two rotations u1 and u2:

dist(u1, u2) = arg min
u∈G

dist(u1 , u) =arg min||log(u1u
T
2 )||2 (7)

The calculations here require four matrix exp and log operations. To reduce
the number of computations, rotation is performed in the quaternion space in
[22]. We have extended the spectral quaternion metric which is based on Lerp
(linear interpolation) and we use inner-product based metric for the rotation
space.
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Fig. 1. Comparison of smoothness of the interpolation curves depicted by angular
difference in principle eigenvectors. Blue curve is for slerp-SQ and red for SQ in (a)
with n = 4 tensors, (b) n = 10. Green is for LogE in (c). Mean diffusivity (MD) evolves
monotonically better in slerp-SQ than SQ but not with LogE metric. In (d) the Hilbert
anisotropy evolves similar in both slerpSQ and SQ, in comparison to LogE. In (e), the
determinant evolves similar in all three cases. In (f), the fractional anisotropy evolves
similar in both slerpSQ and SQ, in comparison to LogE.

3.2 Slerp-SQ

We propose to use the spherical version of the linear interpolation spectral
quaternion distance measure. The Hopf-Rinow-De Rham theorem indicates that
among all possible geodesics between any two points on a complete manifold
there exists at least one geodesic with minimum length which can be considered
as distance between two points. We exploit spherical linear interpolation (Slerp)
of quaternions. Slerp produces smoother curves in quaternion space and resulting
geodesic is thus closer to the geodesic distance in the Lie group SO(3)xD+(3).

The slerp interpolation between two quaternions q1 and q2 is

qm(q1,q2, t) =
sin[(1− t)θ]

sinθ
q1 +

sin[tθ]

sinθ
q2 (8)

where θ = arccos(|q1. q2 |). Notice, θ is a metric and we shall denote it dslerpSQ.
This seems to be a better choice than the metric

dSQ = 1− cos(dslerpSQ)

used in [22]. Notice, dSQ metric is an chordal distance approximation in S3

quaternion space. Further, it converges to 0 at a slower rate and not bounded
equivalent to other metrics [23] for rotation space.

Anisotropy carries useful information and requires to be preserved during
processing of DTI tensors. The equation 4 for the interpolation curve between
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tensors is valid for those with distinct eigenvalues. To account for the tensors
with same eigenvalues (2 or more), a smooth transition function f(x) (keeping
β = 0.6) is used in [22],

f(x) =
(βx)4

1 + (βx)4
(9)

This function gets low value in case of isotropic tensors and high value for
anisotropic ones. The true distance between two tensor is given by a weighted
sum of dλ + αdslerpSQ. The coefficient α is given as

α(HA1,HA2) = f(min(HA1,HA2)), (10)

where Hilbert anisotropyHA = log λmax

λmin
with λi being eigenvalues of the tensors.

This similarity measure is not a distance between two tensors but it provides an
approximation according to anisotropy. The latter approach lead to the following
algorithms.

The Figure 1 indicates that the evolution of scalar anisotropies, i.e., mean
diffusitivity and fractional anisotropy, is much closer to linear in SQ and Slerp-
SQ than in LogE cases. Moreover, Slerp-SQ behaves better than SQ. As the
number of tensors increases, Slerp-SQ converges to SQ.

3.3 The algorithms

We present the computation of the means and distance measures now.

Algorithm 1. Weighted mean.
Input: Tensors pi with i = 1 to N with weights wi, such that

∑
wi = 1.

Output: pµ the mean tensor.

1. Spectral decomposition of N tensors.

2. Evaluate weighted mean λµ,k = exp
(∑N

i=1 wi log(λi,k)
)

, k = 1, 2, 3.

3. Select the reference tensor which maximizes wiHAi i.e qref

4. With respect to qref , the realigned quaternion is given by
qai = arg minqi∈Qi

arccos(|qref .qi|)
5. The weighted mean qµ is given by: 8 and qµ = qm

|qm|
6. Compute rotation matrix uµ from qµ
7. Finally, Pµ = uµΛu

T
µ

Algorithm 2. The distance approximation
Input: Tensors p1 and p2.
Output: The distance dist(p1, p2)

1. Spectral decomposition of the tensors and get quaternions from the rotation
matrix.

2. The distance between eigenvalues is given by: dλ =
∑
| log λi(p1)

λi(p2)
|

3. The weighting factor is given by: α(p1,p2) = f(x) by equation 9, where
x = min(HA1, HA2)

4. With q1 as the reference quaternion, realigned quaternion is calculated as
qa2 = arg minq2∈Q arccos(|q1.q2|), and dslerpSQ = arccos(|q1.qa2 ).

5. dist(p1, p2) = α(p1, p2)dq + dλ.
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Fig. 2. In (a), slerp-SQ is faster (both curves shown at 521 iterative step, both are
able to segment the object). In (b), LogE fails to evolve after 50th iteration, whereas
slerp-SQ continued segmenting the whole object. Segmentation inside region of interest
(roi) shown with ellipse, localization radius=20, z-slice=86, data size=191x236x171. In
(c), LogE fails to deal with heterogeneity present in roi, while in (d), slerp-SQ is able
to discern the heterogeneous data present within roi.

4 Results

We used two 2D structures, parabola and circle, having high and constant curva-
ture respectively. Background is kept uniform and various degree of heterogeneity
in structures is obtained by inducing randomness in eigenvalues and eigenvec-
tors. Curve with slerp-SQ distance measure is shown in green and that of LogE in
black color in the figures. A slice of the human brain image is chosen1 and algo-
rithm is run to segment an arbitrary region, where heterogeneity is visible. LogE
fails to discern the non-homogenous region(encircled). Results are overlapped on
image with darker region showing the white matter presence.

1 Brain Image Source: http://brainimaging.waisman.wisc.edu/∼chung/DTI
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5 Conclusion

The choice of distance measure in localized curve evolution is crucial in extracting
white matter structure effectively. Decoupling of eigenvalues and rotations is
important for preserving anisotropy and representation of Rotational space with
Quaternion space not only reduces computations but also maintains anisotropy
preservation. Introducing spherical linear interpolation for quaternions produces
smooth curves in quaternion space and in turn in tensor space. It guarantees the
geodesic distance to be closer approximation of metric with correct segmentation
is achieved. Next part of our work will be to extract white matter structure in
3D and reduce the computations required for localized contour evolution.
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