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A B S T R A C T
The 2nd-order tensors obtained in diffusion tensor imaging (DTI) lie in a Riemann space. Scalars
derived from DTI are helpful in the diagnosis of diseases related to white matter structures. However,
the underlying limitation of the DTI model restricts the effective use of scalars in heterogeneous
tissue structures. These can be modelled using higher-order tensors (HOTs) in high angular resolution
diffusion imaging (HARDI). We introduce two descriptors that are helpful in classifying the voxels
on the basis of the number of the underlying fibers with distinct orientation, which, in turn, relates to
the anisotropy of water diffusion in biological tissues. These are computed based on the Riemann and
Finsler geometry paradigms. The descriptor based on Finsler geometry is named Finsler fractional
anistropy (FFA). It can be applied to the orientation distribution function (ODF) computed from any
HARDI model. The other descriptor, called FA4, is based on the Riemann framework. We compare
their performance with those of the known Kelvin invariants in both synthetic and in vivo data.

1. Introduction
Diffusion magnetic resonance imaging (dMRI) has fa-

cilitated the study of microstructures in the human brain
non-invasively. Diffusion tensor imaging (DTI), introduced
by Basser et al. [1, 2], is well established in both clinical
imaging and research. The framework for processing the
positive definite 2nd-order tensors originates from the estab-
lished theory of Riemann geometry [3, 4, 5, 6, 7]. Some of
the prevalent anisotropy descriptors from 2nd-order tensors
are mean diffusivity (MD), fractional anisotropy (FA), radial
diffusivity (RD), and Hilbert anisotropy (HA). These can
be considered as descriptors for analyzing the structure of
tissues. Many clinical studies [8, 9, 10, 11, 12, 13] have
indicated that changes in these quantities can detect changes
in the diffusion of water molecules in unhealthy tissue. They
demonstrated the clinical importance of those scalars in the
examination of various diseases such as multiple sclerosis,
Parkinson’s disease, Alzheimer’s dementia, etc.

DTI uses a Gaussian description of diffusion and, there-
fore, cannot describe regions of fiber crossing or merging. To
model these heterogeneous tissue structures, increasing the
number of measured diffusion gradient directions is helpful
[14], and the acquisition protocol is known as high angular
resolution diffusion imaging (HARDI). Any orientation dis-
tribution function (ODF) can be represented by higher-order
tensors (HOTs) [15, 16]. There is a potential for anisotropy
scalar measures from HOTs to be utilized in clinical studies
as biomarkers [17, 18, 19, 20]. Generalized anisotropy (GA)
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[18] is evaluated using the variance of normalized diffusivi-
ties and involves arbitrary values to be chosen according to
the data set for better contrast. Similar to FA, generalized
fractional anisotropy (GFA) [19] evaluates the orientation
distribution function 𝜓 (ODF) peaks in multiple directions.
Multi-directional anisotropy (MDA) [20] is closely related to
GFA, but only takes into account 𝜓𝑚𝑎𝑥 and 𝜓𝑚𝑖𝑛. However,
a study on an atlas of 630 subjects showed that MDA and
GFA vary in a similar manner to FA with respect to diffusion
directions [21], and hence these scalars are also not sufficient
for delineating regions of crossing fibers.

The Kelvin rotation-invariant descriptors from the 4th-
order tensors proposed in [22] showed better performance
than GFA. Their notation is based on the Voigt-Mandel 6×6
matrix form. The six basic invariants (S) and the six principal
invariants (J) can be computed from the eigenvalues of the
matrix form. Two of them are equal (𝑆41 = 𝐽41), keeping
the total number to eleven.

If a medium is both inhomogeneous and anisotropic,
a Finsler metric is appropriate for defining the directional
structure, since it is a function of both position and direction.
Therefore, it is better suited to the description of multiple
fibers than a Riemann metric. The Finsler metric has pre-
viously been used to assist tractography algorithms when
applied to HARDI data in regions of crossing fibers [23, 24,
25]. Local Finsler diffusion tensors are approximations of
higher-order tensors representing the complex geometry of
fibers. This idea is the motivation for the present work.

In this work, we propose a descriptor, called Finsler
fractional anisotropy (FFA) to characterize the underlying
geometry of the fibers in a given voxel. The principal idea
behind this work is the suitability of the Finsler framework
for HARDI. This is due to the emergence of multiple metrics
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per voxel, which allow us to characterize multiple fibers per
voxel. One advantage of this method is that it can be applied
to an ODF from any HARDI dataset.

In addition, we assess the performance of another de-
scriptor, denoted as FA4, obtained from the Voigt-Mandel
notation of the 4th-order diffusion tensor. This formulation
is similar to FA in DTI (3D) but in 6D, 𝑆+(6).

We show that the proposed descriptors can characterize
up to three fibers per voxel. We assess their performance
in both synthetic and in vivo data. We summarize that
along with Kelvin invariants, the proposed scalars also yield
potentially useful information about fiber composition from
diffusion data.

This paper is organized as follows: Section 2 contains a
concise introduction to diffusion modelling and the formu-
lation of the Finsler metric for a higher-order tensor. Section
3 presents the method to obtain a descriptor from the Finsler
metrics and another one from the 6 × 6 matrix Voigt-Mandel
representation of the 4th-order diffusion tensor. It should be
noted that these descriptors are formulated from different
approaches. Section 4 describes experiments and results,
where we compare the performance of the descriptors. The
last section 5 is dedicated to the conclusion and further
comments.

2. Theory
The magnetic resonance (MR) signal attenuation associ-

ated with the diffusion of water molecules in tissue can be
modelled using the generalized Stejskal-Tanner equation,

𝑆(𝐯) = 𝑆0 exp(−𝑏𝐷(𝐯)), (1)
with the diffusion weighting coefficient 𝑏, and

𝐷(𝐯) =
3
∑

𝑖=1

3
∑

𝑗=1
⋯

3
∑

𝑘=1

3
∑

𝑙=1
𝐷𝑖𝑗…𝑘𝑙v𝑖v𝑗 … v𝑘v𝑙, (2)

where 𝐷𝑖𝑗…𝑘𝑙 are the diffusion coefficients (tensor) and v𝑖is the 𝑖-th component of the magnetic gradient vector 𝐯,
|𝐯| = 1. Tuch et al. [14] demonstrate how revealing gradient
directions can provide insight into the detailed shape of
biological tissues in their work.

Due to antipodal symmetry, the tensors are of even order,
and since the diffusion process is a physical phenomenon,
HOTs are ensured to have a positive definite property [26,
27]. By the assumed complete symmetry, the number of
independent coefficients for an nth-order tensor is reduced
from 3𝑛 to 1

2 (𝑛+1)(𝑛+2). For instance, for a 4th-order tensor,
there are 15 independent coefficients out of the total 34 = 81.
2.1. Related work

Riemannian geometry is used for the description of
inhomogeneous and isotropic media. For non-isotropic and
inhomogeneous media, the Finsler geometry is more suit-
able [23]. For diffusion MRI, this framework is used to
model the geometry of brain tissue as Finsler manifolds by

deriving Finsler functions from the diffusion-weighted sig-
nals. There is a correlation between the large-scale structural
orientation of white matter and the local amount of diffusion
found in a specific direction [28].

For 2nd-order tensors, many scalars have been intro-
duced in the literature. A number of authors have addressed
the computational framework and its application in the con-
text of DTI [22, 29, 30]. Extending DTI to HARDI to deal
with multi-fiber configurations, previous works [18, 19, 20,
22] have proposed GA, GFA, MDA, and Kelvin scalars, re-
spectively. Kelvin invariants provide multiple contrast maps
that capture diffusion information.
2.2. Finsler metric

The Finsler metric is computed from the Hessian of the
Finsler norm. The Finsler norm for a 4th-order tensor, as
proposed in [24], satisfies differentiability, homogeneity, and
strong convexity properties. We use the Einstein summation
notation1 to represent a 4th-order symmetric tensor that
can be fitted to the ODF data. A Finsler norm 𝐹 (𝐱, 𝐲)
corresponding to a 4th-order tensor can be defined as

𝐹 (𝐱, 𝐲) = (𝐷4(𝐱, 𝐲))1∕4, (3)
with

𝐷4(𝐱, 𝐲) = 𝐷𝑖𝑗𝑘𝑙(𝐱)𝑦𝑖𝑦𝑗𝑦𝑘𝑦𝑙, (4)
where 𝐱 is the position, 𝐲 is the direction, and 𝐷4 is the
fully symmetric tensor of 4th-order. The Finsler metric 𝑔𝑖𝑗for each choice of 𝐲 is defined as

𝑔𝑖𝑗(𝐱, 𝐲) =
1
2
𝜕2𝐹 2(𝐱, 𝐲)
𝜕𝑦𝑖𝜕𝑦𝑗

. (5)

The convex property ensures that the 2nd-order metric ten-
sors (with size 3×3) are strictly positive definite. These met-
ric tensors are related to the distribution of fiber orientations.

3. Proposed methods
The proposed descriptors require evaluation of a 4th-

order tensor at each voxel. We use the method introduced
in [26] to ensure the positive definiteness of the tensor 𝐷4,
in equation (4), with coefficients 𝐷𝑖𝑗𝑘𝑙, where 𝑖, 𝑗, 𝑘, 𝑙 ∈
{1, 2, 3}.
3.1. Finsler fractional anisotropy (FFA)

We determine the Finsler scalar from HARDI data.
Unit gradient vectors 𝐯𝑠 are fed to the Finsler norm, which
produces a local 2nd-order diffusion tensor 𝑔𝑖𝑗(𝐱, 𝐯𝑠) corre-
sponding to 𝐯𝑠 (by equation (5)).

By definition, a Finsler metric is both position and di-
rection dependent; therefore, a set of these metrics encodes
multiple fiber directions within each voxel. To quantify this
information, we propose the scalar FFA to be equal to the

1Einstein notation: whenever two indices with the same labels appear
on the same side of an equation, one assumes that there is an implicit sum
over those indices.
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regular fractional anisotropy of the mean of these Finsler
metrics (quadratic forms) at position 𝐱, expressed as

FFA(𝐱) = FA
(

1
𝑝

𝑝
∑

𝑠=1
𝑔𝑖𝑗(𝐱, 𝐯𝑠)

)

, (6)

where 𝑝 is the number of gradient directions that lie on the
hemisphere. The sum of positive definite quadratic forms is
also positive definite. Since FFA(𝐱) is defined as a fractional
anisotropy (FA), it lies in [0, 1]. Note that the FFA can be
computed for any set of gradient directions, and so it can
also be used to explore the diffusion profile in any specific
direction.
3.2. Anisotropy measure from 4th-order tensor (FA4)

A 3D 4th-order tensor can be represented in Voigt-
Mandel 6 × 6 matrix form, which has been shown to be
preferable to alternative representations [31, 32]. This 6D
2nd-order tensor lies in a Riemann space S+(6), which does
not distinguish between contravariant and covariant compo-
nents. Nevertheless, its form permits convenient tensor oper-
ations. For example, the inverse components of the original
3D 4th-order tensor can be found simply by inverting the
Voigt-Mandel matrix. Kelvin invariants can be derived from
the eigenvalues 𝜆1,… , 𝜆6 of the Voigt-Mandel 6 × 6 matrix
form. The set of basic invariants are

𝑆41 = 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6,

𝑆42 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3 + 𝜆

2
4 + 𝜆

2
5 + 𝜆

2
6,

𝑆43 = 𝜆31 + 𝜆
3
2 + 𝜆

3
3 + 𝜆

3
4 + 𝜆

3
5 + 𝜆

3
6,

𝑆44 = 𝜆41 + 𝜆
4
2 + 𝜆

4
3 + 𝜆

4
4 + 𝜆

4
5 + 𝜆

4
6,

𝑆45 = 𝜆51 + 𝜆
5
2 + 𝜆

5
3 + 𝜆

5
4 + 𝜆

5
5 + 𝜆

5
6,

𝑆46 = 𝜆61 + 𝜆
6
2 + 𝜆

6
3 + 𝜆

6
4 + 𝜆

6
5 + 𝜆

6
6,

(7)

and the principal invariants are
𝐽41 = 𝑆41,

𝐽42 =
∑

𝑖<𝑗
𝜆𝑖𝜆𝑗 ,

𝐽43 =
∑

𝑖<𝑗<𝑘
𝜆𝑖𝜆𝑗𝜆𝑘,

𝐽44 =
∑

𝑖<𝑗<𝑘<𝑙
𝜆𝑖𝜆𝑗𝜆𝑘𝜆𝑙,

𝐽45 =
∑

𝑖<𝑗<𝑘<𝑙<𝑚
𝜆𝑖𝜆𝑗𝜆𝑘𝜆𝑙𝜆𝑚,

𝐽46 = 𝜆1𝜆2𝜆3𝜆4𝜆5𝜆6,

(8)

where 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 = 1,… , 6.
The eigenvalues obtained from the Voigt-Mandel rep-

resentation for a tensor of 4th-order provide information
about the diffusivity profile along principle axes. There-
fore, inspired by the expression for generalized fractional
anisotropy [19], we propose another scalar FA4 as a function
of these eigenvalues, which is a possible alternative to the

Kelvin invariants. In the 6D hyper-ellipsoid case, FA4 is
defined as

FA4 =

√

6
5

∑

𝑖(𝜆𝑖 − 𝜆𝑎)2
∑

𝑖 𝜆
2
𝑖

, (9)

and lies in (0, 1], where 𝜆𝑎 = 1
6
∑6
𝑖=1 𝜆𝑖 represents the

average diffusion in a voxel.

4. Experiments and results
We used the Matlab fanDTasia ToolBox [26, 27] to

produce synthetic images that closely mimic the diffusion of
water in white matter fibers. We used 𝑏 = 1500𝑠∕𝑚𝑚2 and
81 different gradient directions. We also had access to in vivo
data using 64 gradient directions from a healthy volunteer
with consent.

The in silico experiments were carried out on a desktop
with an Intel(R) Core(TM) i5-7500T CPU @ 2.70GHz and
16GB RAM using MATLAB 2019a.

In the first experiment, we simulated four groups of ten-
sors representing: isotropic diffusion, one fiber, two fibers,
and three fibers. In the latter two cases, the crossing angle
was kept at 90◦. Multiple instances of each group (tensors)
were generated by rotating the individual fiber directions 50
times and maintaining the same crossing angle.

Box-and-whisker plots for FFA and FA4 are shown in
Fig. 1 when calculated on the synthetic data under several
different levels of Rician noise. Both descriptors are able to
separate the interquartile ranges (IQRs) of the four groups
without noise, and at a low noise level (0.01). We observe
that at higher levels of noise (0.09), the descriptors possibly
confound the case of three fibers with the case of isotropic
diffusion.

Table 1 shows the mean and standard deviations of the
two proposed descriptors under rotations. The low standard
deviations reflect their invariance to rotations.

Table 2 shows the results of t-tests on the generated
synthetic data. Low p-values (𝑝 << 0.01) in nearly every t-
test (i.e., Rician noise level ≤ 0.05) indicate strong evidence
of significant differences between the four groups for both
metrics.

Fig. 2 demonstrates the sensitivity of the proposed
scalars with respect to the angle between the underlying
fibers. The graph indicates that FFA can discern a wider
range of angle differences (i.e., going from one fiber to two
orthogonal fibers).

For comparison with the Kelvin invariants, Fig. 3 shows
the results for a selection of S and J scalars (out of 12) that
possess distinct characteristics. Two of these scalars, S41
and J44 (first and last rows, respectively), fail to characterize
the fibers. S43 and J42 perform similarly to FFA and FA4,
but either they provide inverted contrast (J42), which is non-
intuitive, or their range is unbounded, which limits their
practical use.

Fig. 4 (a) shows a simulated tensor field with diverse
crossing configurations obtained by combinations of linear
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Table 1
The mean and standard deviation of FFA and FA4 under 50
different fiber rotations for the four cases of different numbers
of orthogonal fibers.

Number of fibers FFA FA4

Isotropic 0.00 ± 0.000 0.45 ± 0.000
One 0.89 ± 0.003 0.99 ± 0.000
Two 0.59 ± 0.002 0.88 ± 0.002
Three 0.06 ± 0.008 0.77 ± 0.002

Table 2
The p-values obtained for the six possible pairs of features
using the t-test. The low values indicate significant statistical
differences between the means of the two distributions. Here
"}" represents p << 0.01.

p-values from t-test

Rician Noise: ≤ 0.05 0.09

Possible pairs FFA FA4 FFA FA4

Isotropic vs. one
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎫

⎪

⎪

⎬

⎪

⎪

⎭

}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Isotropic vs. two
Isotropic vs. three 0.71
One vs. two

}

One vs. three
Two vs three

and curved fibers, forming four regions. The corresponding
grayscale images of the descriptors FFA and FA4 are shown
in the same row. The remaining rows show the images of
the Kelvin invariants. The proposed descriptors are capable
of discriminating the different regions. In contrast, most of
the Kelvin invariants provide poor contrast between regions,
with the exception of S42 and J42.

Fig. 5 demonstrates that subsets of gradient directions
can be used in calculating FFA to probe specific structural
directionality.

Fig. 6 shows the performance of the proposed descrip-
tors and Kelvin invariants on the in vivo data of the brain
(axial slice). Some Kelvin invariants, such as J44, J45, and
J46, completely fail to retain any structural information,
and others provide limited contrast information. FFA and
FA4, on the other hand, provide clear and detailed contrast
throughout the brain, clearly delineating, for example, the
white and grey matter regions.

Fig. 7 illustrates the FFA maps for the in vivo data
computed using different directions. The different maps
show sensitivity to the directionality of the underlying water
diffusion in the tissue. Note that it is possible to obtain a large
set of these maps considering many gradient directions.

For the classification of different tissue types, appropri-
ate ranges of descriptor values should ideally be chosen by
assessing the results obtained for in vivo data combined with
knowledge of brain anatomy. Here, however, we propose one
possible set of classification ranges in Table 3, as guided by
the results for the synthetic data displayed in Fig. 1.

Table 3
The chosen ranges of scalar values used for classifying the
voxels in an in vivo image in terms of the expected number of
fibers with distinct orientation.

Ranges

Number of fibers FFA FA4

One [0.70, 1.00] (0.92, 1.00]
Two [0.40, 0.70) (0.80, 0.92]
Three [0.2, 0.40) (0.65, 0.80]
Isotropic [0.00, 0.2) [0.40, 0.65]

Fig. 8 illustrates the corresponding classification of vox-
els for the in vivo data. The voxels are coloured as follows:
red for one fiber, green for two fibers, blue for three fibers,
and black for the isotropic regions. The proposed descriptors
show similar performance.

5. Conclusion and further comments
In an earlier work [22], Kelvin invariants were shown

to provide a richer set of contrast maps than other existing
scalars. Here we have introduced the FFA descriptor based
on nonlinear Finsler geometry. This is formulated from the
multiple Finsler metrics obtained at each voxel. Individually,
these metrics hold local diffusion information. Therefore, we
can obtain multiple scalar maps using these metrics. In this
work, we proposed FFA in terms of a simple averaging of the
Finsler metrics. However, other descriptors based on alter-
native functions of these Finsler metrics have the potential
to provide other useful contrast, and this will be explored
in further work. We also proposed another descriptor, FA4,
which, similar to the Kelvin invariants, is expressed as a
function of the eigenvalues of the Voigt-Mandel matrix, yet
with the possible advantage that it is bounded between zero
and unity.

We have compared the performance of FFA and FA4
with the Kelvin invariants, using both synthetic and in vivo
data. Their performance was discussed by considering sta-
tistical significance tests and by assessing the maps acquired
using both synthetic and in vivo data. Our proposed descrip-
tors were shown to provide more relevant contrast in terms
of anisotropy than most of the Kelvin invariants, and do
not require careful windowing of intensities for visualizing
the maps. As an advantage, the FFA descriptor can be
obtained from an ODF corresponding to any HARDI model,
in comparison to FA4 which is only applicable to 4th-order
tensors. Furthermore, FFA uses a broader range of values to
characterize multi-fiber regions. In conclusion, these novel
descriptors have the potential to be used as biomarkers. A
set of experiments are sought as the next step to assess the
efficacy of these descriptors in a clinical setting.
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Figure 1: Box-and-whisker plots of FFA (left) and FA4 (right) for the four groups of synthetic data representing different numbers
of orthogonal fibers (colours). Each row shows results for different levels of Rician noise (top-bottom): without noise, 0.01, 0.05,
and 0.09.
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Figure 2: Line plots of FFA and FA4 with respect to the angle between two crossing fibers (synthetic data without noise).
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Figure 3: Box-and-whisker plots of a selection of Kelvin invariants (top-bottom: S41, S43, J42, J44) for the four groups of
synthetic data representing different numbers of orthogonal fibers (colours). Each column shows results for different levels of
Rician noise: (left) without noise; (right) 0.09.
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(a) 4th-order tensor image (b) FFA (c) FA4

(d) S41 (e) S42 (f) S43 (g) S44

(h) S45 (i) S46 (j) J42 (k) J43

(l) J44 (m) J45 (n) J46

Figure 4: (a) Synthetic tensor field image (created by intersecting two linear fibers and a curved fiber, forming four distinct groups
comprising isotropic diffusion, one fiber, two fibers, and three fibers), and corresponding maps of (b) FFA, and (c) FA4. The
remaining rows show corresponding maps of the Kelvin invariants.

(a) 4th-order tensor image (b) FFA x-axis (c) FFA y-axis

Figure 5: (a) Synthetic tensor field image, (b) and (c) FFA scalar maps considering only the x and y directions, respectively.

Avinash Bansal et al.: Preprint submitted to Elsevier Page 9 of 12



Characterizing white matter structure in HARDI

(a) Brain tensor field (axial view) (b) FFA (c) FA4

(d) S41 (e) S42 (f) S43

(g) S44 (h) S45 (i) S46

(j) J42 (k) J43 (l) J44

(m) J45 (n) J46

Figure 6: (a) 4th-order tensor field image for the in vivo data (brain, axial slice), and corresponding maps of (b) FFA, and (c) FA4.
The remaining rows show corresponding maps of the Kelvin invariants. The Kelvin invariant maps are displayed by windowing
the intensity values such that the minima and maxima equal the 10th and 90th percentiles, respectively.
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(a) FFA x-axis (b) FFA y-axis (c) FFA z-axis

Figure 7: Maps of FFA for the in vivo data (brain, axial slice) considering different orientations separately. These maps show
different contrasts that capture the respective directionality of the diffusion in different regions. Such maps can be obtained for
any chosen gradient direction.

(a) FFA (b) FA4

Figure 8: Maps showing the classification of voxels for the in vivo data (brain, axial slice) based on the descriptors using the
ranges given in Table 3 (red for one fiber, green for two fibers, blue for three fibers, and black for isotropic regions).
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