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Abstract—Since its inception, DTI modality has be-
come an essential tool in the clinical scenario. In princi-
ple, it is rooted in the emergence of symmetric positive
definite (SPD) second-order tensors modelling the di-
fusion. The inability of DTI to model regions of white
matter with fibers crossing/merging leads to the emer-
gence of higher order tensors. In this work, we compare
various approaches how to use 4th order tensors to model
such regions. There are three different projections of
these 3D 4th order tensors to the 2nd order tensors of
dimensions either three or six. Two of these projections
are consistent in terms of preserving mean diffusivity and
isometry. The images of all three projections are SPD, so
they belong to a Riemannian symmetric space. Following
previous work of the authors, we use the standard k-
means segmentation method after dimension reduction
with affinity matrix based on reasonable similarity mea-
sures, with the goal to compare the various projections
to 2nd order tensors. We are using the natural affine
and log-Euclidean (LogE) metrics. The segmentation of
curved structures and fiber crossing regions is performed
under the presence of several levels of Rician noise.
The experiments provide evidence that 3D 2nd order
reduction works much better than the 6D one, while
diagonal components (DC) projections are able to reveal
the maximum diffusion direction.

I. Introduction
Based upon NMR principles Lauterbur, [1], developed

MRI technique to render 3D images. Diffusion-weighted
images have come a long way since then. Diffusion Tensor
Imaging (DTI) was introduced to model diffusion in biolog-
ical tissues in [2] and [3]. It proved phenomenal in clinical
studies to probe into cerebral white matter structures.
It enabled us to infer the microstructures of tissues in-
vivo and noninvasively. The introduction of more diffusion
gradient directions revealed more detailed structures (in
DTI the number of independent parameters for each voxel
is six). This acquisition protocol is known as high angular
diffusion imaging (HARDI). Since then various modali-
ties based upon HARDI have been proposed [4][5]. The
monoexponential Stejskal-Tanner equation is assumed to
model the D-MRI (Diffusion-Magnetic Resonance Imaging)
principle. The DTI model is restricted to produce second-
order tensors. These tensors are effective in modeling the
regions where fibers are not crossing, merging or touching.
These SPD tensors are known to live the Riemannian
symmetric space of the positive definite quadrics. Various
works have utilized this space for processing these tensors
[6][7][8][9][10][11]. Another common approach is to use q-
space like DSI and Q-Ball. Diffusion is a physical process,
methods in [12][13] ensure the full symmetry and positive

definiteness of higher order tensors. Every symmetric tensor
can be represented as a homogeneous polynomial [13]. This
helps in finding the maxima of the Apparant Diffusion
Coefficient (ADC) profiles. One reason to use higher order
tensors is that they encode diffusion geometry without the
need of evaluating spherical harmonics from the diffusion
profiles. Another advantage comes from the observation that
the computation of coefficients of lower-order tensors can be
obtained from coefficients of higher-order tensor using linear
relations [14][15] without refitting of DMR signal. The works
in [16][17] suggest that in intersection regions these tensors
fail to orient properly with the underlying direction of actual
fibers. The issue of reorientation is resolved in work [17]
and the approach is referred to as Cartesian Tensor-fiber
orientation distribution (CT-FOD).
In [18][19], the authors approached the segmentation

problem by considering the individual fiber bundles to lie
in 1D/2D/3D subspaces, depending upon the numbers of
the intersecting fibers. In [20], 5D non-linear geometry is
employed to segregate fiber tracts. This approach proved
advantageous over the 3D Euclidean space assumption. The
surface evolution [21] in Riemannian space can segment such
curved structures. Works [22][11] used the Hilbert sphere in
infinite dimension and mapped the data to lower dimension
for segmentation.
In this work, we discuss the order reduction of the 3D

4th order tensors. This reduction yields 2nd order tensors
in 3D and 6D. Further, these reductions are SPDs and
therefore lie in Riemannian symmetric space. These SPD
data belong to a log-normal distribution. We computed
the variance of the data using this property. Subsequently,
a non-linear dimensionality reduction method known as
Laplacian-Eigenmap clustering is utilized for the extraction
of anisotropic regions in both synthetic and real images.
The results infer that systematic order reduction of tensors
is useful and it is robust under noise. We segmented with
single and two crossing fibers with various complex configu-
rations. Another observation is that the diagonal component
projection obtained from flattened 3D 4th order tensor can
reveal the direction of maximum diffusion. Our experiments
are discussed in detail in section V.

II. Background

A. Diffusion Modelling

The Stejskal-Tanner equation represents a mono-
exponential model of water molecules diffusing in tissues



given by:

S(b, v) = S0exp(−bD(v)),

D(v) =
3∑

j1=1

3∑
j2=1

3∑
j3=1

...

3∑
jn=1

Dj1j2j3...jnvj1vj2vj3 ...vjn ,
(1)

where v` is `th magnetic gradient component and ‖v‖ = 1.
S(v) is the attenuated signal when gradient pulse is applied
and b is diffusion weighting coefficient. Due to antipodal
symmetry and physicality of diffusion process, the higher
order tensors from the above equation are positive definite
and of even order. For the same reasons, these tensors are
fully symmetric. Due to the full symmetry, the number of
independent coefficients for kth order tensor is reduced from
3k to 1

2 (k + 1)(k + 2). The seminal work of Tuch et. al.
[23] is based upon the conjuncture that increasing number
of gradient directions should be able to reveal geometry of
the biological tissues. For 4th order tensors, 81 coefficients
reduce to 15.

B. Linear Algebra
Let V be n-dimensional vector space defined over real

numbers R. 4th order tensors form a vector space of dimen-
sion n4, where n = 3 in our case. We are interested in the so
called Cartesian tensors, i.e., the coordinate description of
the tensor in a fixed orthonormal basis of the vector space V.
Thus, a second order tensor can be viewed as 2-dimensional
array of scalars. Under orthogonal basis, tensors can be also
represented as k-linear forms

T (X1, ..., Xk) =
n∑
j=1

Tj1...jk
xj1

1 ...x
jk

k (2)

where the tensor T is evaluated at vectors Xi. Using an
orthonormal basis ei, i = 1, 2..., n, a 4th order tensor T is
written as

T (4) =
n∑

1≤i,j,k,l

T
(4)
ijklei ⊗ ej ⊗ ek ⊗ el, (3)

where the individual terms ei⊗ej⊗ek⊗el form the induced
orthonormal basis of the space of fourth order tensors. Thus,
there is the induced scalar product of two tensor S = Si1...ik ,
R = Ri1...ik ., cf. [24], the so called dot product

S •R =
n∑

i,...,ik

Si1...ikR
ii...ik . (4)

For k = 2, the scalar product of two tensors becomes

S •R =
n∑

i,j=1
SijR

j
i = trace(RTS). (5)

The corresponding Euclidean distance measure on the space
of tensors becomes

dE(S,R) =‖ S −R ‖ . (6)

Exploiting the inner product, the 4th order tensors can
be identified as mappings between second order tensors.

This means, we can represent T (4) using 2nd order tensor
components. For 1 ≤ i, j, k, l ≤ n we arrive at

T (4) =
∑
ijkl

T
(4)
ijklei ⊗ ej ⊗ ek ⊗ el =

∑
IJ

T
(2)
IJ eI ⊗ eJ (7)

where eI(i,j) = ei ⊗ ej , eJ(k,l) = ek ⊗ el. In view of this
identification, they exhibit three types of symmetries:
1) Major Symmetry: Tijkl = Tklij , 1 ≤ i, j, k, l ≤ n,

which corresponds to symmetric mappings between
the second order tensors.

2) Minor Symmetry: Tijkl = Tjikl = Tijlk, which corre-
sponds to the restriction to symmetric second order
tensors, with symmetric values.

3) Total Symmetry: Tijkl = Tσ(i)σ(j)σ(k)σ(l), for every
permutation σ, which means both of the previous
symmetries together.

In diffusion process, the even order tensors obey total
symmetry. These 3D 4th order tensors can be represented
as homogeneous polynomials (say in coordinates x, y, z) of
degree 4, built of monomials pijkxiyjzk with i+ j + k = 4.
The relation between the coefficient of the polynomial and
that of tensor is represented by the equation: i!j!k!

4! pijk =
Dj1j2j3j4 , where j` are one of the terms x, y, z. Vector rep-
resentations of 4th order and 2nd order tensors are unable
to reveal their geometric properties, like the distribution of
eigenvalues and eigenvectors of the tensorial form [25]. By
loosing the tensorial form, it is not possible to see the effect
of rotation of the coordinate system on the distribution
of tensor [26], etc. For these reasons, we are interested
in the reductions which are obtained systematically while
preserving important information.

III. Mappings
A. 6D 2nd order representation
The appearance of 4th order tensor is known in various

fields [27][28]. In material science, they are known to clas-
sify materials based upon their elasticity [29][30][31]. They
model the material symmetries, which is reflected in the
invariance of components of the tensor with permutation of
indices. A 3D 4th order tensor with minor symmetry can
be written as Voigt contracted notation:

D =


Dxxxx Dxxyy Dxxzz

√
2Dxxyz

√
2Dxxxz

√
2Dxxxy

Dyyxx Dyyyy Dyyzz
√

2Dyyyz
√

2Dyyxz
√

2Dyyxy
Dzzxx Dzzyy Dzzzz

√
2Dzzyz

√
2Dzzxz

√
2Dzzxy√

2Dyzxx
√

2Dyzyy
√

2Dyzzz Dyzyz Dyzxz Dyzxy√
2Dxzxx

√
2Dxzyy

√
2Dxzzz Dxzyz Dxzxz Dxzxy√

2Dxyxx
√

2Dxyyy
√

2Dxyzz Dxxyz Dxyxz Dxyxy


(8)

With the following extra equalities the tensor exhibits the
total symmetry.

Dxxyy = Dxyxy, Dxxzz = Dxzxz, Dyyzz = Dyzyz

Dxxyz = Dxyxz, Dyyxz = Dxyyz, Dzzxy = Dxzyz

In this isometric notation, it is a 6D second order tensor.
This tensor is an SPD and so, lies in Riemannian symmetric
space. Their positive definiteness is a favourable property to
justify diffusion as a physical phenomenon. The conversion
between 3D 4th order tensor coefficient and 6D 2nd order is
obtained through equation (8). The factor 2 and

√
2 ensures

isomorphism between the two spaces [32][33].



B. 3D 2nd order reduction
There are many ways to represent the 4th order tensor.

An option preserving the metric is obtained via spherical
harmonics and the corresponding linear mapping is given
by the formulae [15]:
Dxx = 3

35 (9Dxxxx + 8Dxxyy + 8Dxxzz − Dyyyy − Dzzzz − 2Dyyzz)
Dyy = 3

35 (9Dyyyy + 8Dxxyy + 8Dyyzz − Dxxxx − Dzzzz − 2Dxxzz)
Dxx = 3

35 (9Dzzzz + 8Dxxzz + 8Dyyzz − Dxxxx − Dyyyy − 2Dxxyy)
Dxy = 6

7 (Dxxxy + Dyyyx + Dzzxy)
Dxz = 6

7 (Dxxxz + Dzzzx + Dyyxz)
Dyz = 6

7 (Dyyyz + Dzzzy + Dxxyz)

(9)

The formulation of this reduction given by equation (9) is
consistent as mean diffusivity is proportional as follows:

trace(T (2)) = 3
5 trace(T (4)) (10)

The reader is referred to [15] for details.

C. Flattening of 4th order tensor
Another approach to describe 4th order tensors is by

unfolding the tensor, arranging the tensor as a matrix. Thus,
a general rth order tensor T (r) can be expressed as a matrix
of (r − 2)nd order tensors:

T (r) =

T
r−2)
xx T

(r−2)
xy T

(r−2)
xz

T
(r−2)
yx T

(r−2)
yy T

(r−2)
yz

T
(r−2)
zx T

(r−2)
zy T

(r−2)
zz

 (11)

We deal with r = 4, but our discussion is extendable to
higher orders. The diagonal components of this represen-
tation are SPD [34]. Thus, we obtain 3 2nd order SPD
out of one 4th order tensor. Choosing the coordinates to
diagonalize one of them leaves 15 free parameters, exactly as
for the 4th order tensors. This method is called the diagonal
component (DC) projection.

IV. Riemannian manifold clustering
For processing the fields of 3D and 6D 2nd order tensors,

we use the so called affine and Log-Euclidean (LogE) metrics
[24]. Exponential map is a function that maps each symmet-
ric matrix to an SPD. The inverse of the exponential map is
the logarithmic map. We may use these inverse mapping at
each fixed SPD matrix p. Several authors discussed various
metrics suitable for statistics explored in imaging, see [24]
for a survey, including the spectral similarity measures.
The affine invariant metric is the natural metric of the
Riemannian symmetric space, but it is computationally slow
with involvements of inverse, square root and logarithmic
operations. Moreover, this metric has limitation like swelling
effect. The geodesic distance between two SPD tensors p, x
is computed as

dA(p, x) = ‖Logp(x)‖. (12)

In the ambient Euclidean space, the SPD matrices lie in
the interior of a convex cone and the affine metric turns
it into a complete Riemannian manifold. See [37] for more
information.
The LogE metric is due to [35]. This metric is based

upon the observation that matrix exponential of symmetric

matrices is diffeomorphic to the space of SPDs. For two SPD
matrices p1, p2,

dLogE(p1, p2) = ‖ log(p1)− log(p2)‖. (13)

The studies [24][35][36] also indicate that LogE metric is
better in preserving anisotropy measure. The white matter
is modelled as a tensor with an anisotropy. This measure
is crucial in evaluation of statistics of tensors, white mat-
ter tractography and segmentation. The spectral similarity
measures perform even better, but we are using the affine
and LogE metrics to compare the projections here.
We use the Lapacian Eigen Map (LE) for projecting the

non linear data to lower dimension. For this projection
affinity matrix is computed as:

wij = exp
(
−dist(pi, pj)2

σ2 − ‖i− j‖
2

we

)
(14)

The first term evaluates affinity between data in Rieman-
nian space whereas the 2nd term provides similarity in
the image space (with ‖i − j‖ being a suitably blown-
up Euclidean distance ensuring robustness with respect to
noise). These terms ensure extraction of the fiber structure
from the background. The variance is evaluated respecting
the log-normal distribution of the SPD diffusion tensor
data [34]. The coefficient we is experimentally chosen and
depends upon the size of window.

(a) 30◦ (b) 45◦

(c) 75◦ (d) 90◦

Fig. 1: 4th order ODF with various angle differences between
the two fibers

V. Experiment and Results
We simulated synthetic images (64 Gradient direction

with b=1500 s/mm2 ) using adaptive kernel method [38].
The Fig. 1 (a)-(d) shows 4th order tensor ODF where angle
difference between the two fibers are 30◦,45◦,75◦ and 90◦.
The maxima of these ODFs does not necessarily align with
actual underlying fibers. Another issue with these ODFs is
fuzziness in the maxima. If we observe Fig.1 (a) and (b)
the pointing circle in red indicates the maxima at angles in
between the range. These maxima are at wrong position,
right positions are indicated by the blue circle.
Fig. 3 displays fiber orientation error in the presence of
Rician noise at various angle differences between the two
fibers. The vertical bar shows standard deviation for 50



TABLE I: Execution time for DC vs. CT-FOD methods

Comparison Table
Angle Difference
between underlying
fibers

00 10 20 30 40 50 60 70 80 90 100 110 120

Time in Sec
DC Method 0.0014 0.0013 0.0011 0.0012 0.0095 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001
CT ODFs 3.1437 1.7980 2.0849 1.6177 1.6555 2.0732 2.0209 2.0216 2.1774 1.6799 2.0444 2.1078 2.1189

TABLE II: Segmentation of the fiber and background (Dice coefficient)

Metric
Method/
Rician Noise
Level

Back Ground Fiber 1

0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08

Affine
3D Mapping 1.000 0.994 0.995 0.998 0.998 1.000 0.970 0.973 0.995 0.995
6D Mapping 0.937 0.984 0.950 0.985 0.953 0.874 0.937 0.862 0.940 0.860

LogE
3D Mapping 0.967 0.983 0.975 0.996 0.984 0.906 0.939 0.909 0.955 0.911
6D Mapping 0.948 0.982 0.967 0.956 0.949 0.852 0.937 0.844 0.911 0.875

(a)

Fig. 2: Comparison of DC vs. CT-FOD

repeated experiments at each level of noise. The principal
eigenvectors of the diagonal components (DC) can discern
directions of maximum diffusion.
The CT-FOD method is based on the signal deconvolu-

tion [17]. This approach uses a subroutine to find maxima
of the reoriented ODFs. We compared evolution of such
maxima with our method. These maximas are directions
of prominent diffusion directions. We generated ODFs for
two fibers crossing at known angles and estimated fiber
orientation error due to the DC and CT-FOD approach. The

(a) 30◦ (b) 45◦.

(c) 75◦ (d) 90◦

Fig. 3: Standard deviation of orientation error in the presence
of Rician noise



(a) Tensor Field Real Image (b) Rectangular section shown in (a)

Fig. 4: Real Image

(a) 3D, Affine (b) 6D, Affine

(c) 3D, LogE (d) 6D, LogE

Fig. 5: Segmentation result

comparison is shown in Fig. 2. The performance of both the
methods is similar within angle-difference range 70◦-110◦

but for angle-differences outside this range the DC method
performs better than CT-FOD. In all cases, the DC method
shows lower orientation errors. As we approach within the
above range their performances converge.
Table I displays the relative execution time. This experi-

ment is conducted on machine with 16 GB RAM and Pro-
cessor Intel(R) Core(TM) i5-7500 CPU @ 2.70GHz 2.71GHz
The DC method is about 103 times faster. The independent
15 coefficients are arranged at fixed positions, thus compu-
tation of the three diagonal components is straightforward.
Consequently, it jumps the optimization step which needs
to find the maxima of ODF in CT-FOD method.
Table II shows average segmentation results in terms of

Dice coefficients under various levels of Rician noise. We
created a data bank of 30 synthetic configurations having
one (curved/linear) fiber. The performance of 3D 2nd order
mapping with affine metric is slightly better than all other
combinations. We performed similar tests including crossing
fibers with different complexities. The comparison of the
projections and metrics results in the same conlusion.
We have also performed similar tests on real images. See

Fig. 4, 5 for one example. Again, the 3D 2nd order affine
metric choice outperforms the others.

VI. Conclusion

The experiments have shown that the 6D projection of
4th order tensors is more sensitive to noise than the 3D
projection. Previous work of the authors [34] showed that
the 3D DC projections, together with the spectral metrics
perform, even better.
In segmentation application, crossing regions are consid-

ered as a unit, therefore, the orientation of individual fibers
has no effect on the outcome. The diagonal components of
the flattened 4th order tensor effectively reveal the direc-
tions of maximum diffusion. We are looking forward to see
how the eigenvectors of these components can be used in
tracking the fibers in heterogeneous regions.
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