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Abstract In this work, we discuss the higher order tensors
appearing in high angular resolution diffusion tensor imag-
ing and we have tested two segmentation methods, the Rie-
mannian spectral clustering and the deformable models, us-
ing several projections of the 4th order tensors to the 2nd or-
der ones, and diverse similarity measures on them. High an-
gular resolution diffusion imaging has proved its effective-
ness in modeling white matter brain structures along with
the fiber intersection regions, which is of high importance in
brain research. Along with other known projections, we ob-
serve that the diagonal components of the flattened 4th order
tensors also live in the well known Riemannian symmetric
space of symmetric positive definite matrices. We discuss
and compare several natural approximations of the distance
on the latter space to be used in clustering and segmentation
algorithms. The results show that some of the projections
unfold the geometry of the higher order tensors very well
and we also propose the exploitation of the spherical linear
interpolation spectral quaternion metric, which proves to be
very effective. The latter claims are supported by experimen-
tal comparison of the effectiveness of our algorithms with
the more usual logarithmic Euclidean and spectral quater-
nionic metrics, in particular in presence of noise. Our meth-
ods allow to distinguish individual objects in complex struc-
tures with high curvatures and crossings.
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1 Introduction

This work addresses the problem of segmentation of the
white matter fiber structures like corpus callosum, cingu-
lum etc. Anatomy of these structures has clinical importance
in diagnosing and observing the progression of neuro dis-
eases. Following [1], the Diffusion Tensor Imaging (DTI)
gained importance because of its better precision than the
conventional Magnetic Resonance Imaging (MRI). Diffu-
sion of water molecules in complex microstructures is de-
scribed by Gaussian distribution. The Gaussian modeling
provides positive definite second order tensors, [2], since
diffusion is a physical process. Thus, the estimated second
order tensors lie in the Riemannian symmetric space of sym-
metric positive definite matrices (SPD). For nearly two de-
cades, several works used various metrics suitable for pro-
cessing data in this geometric space [3,4,5,6,7,8]. At the
same time, this approach is known for its inability to model
heterogeneous regions where two or more fibers cross, merge
or touch (intra voxel complexity).

There are two main approaches to the analysis of the
data – the Apparent Diffusion Coefficients (ADC) profile,
and the methods based on the q-space.

The intra voxel complexity of fibers has been modeled
by the diffusion spectral imaging, [9], and the Q-ball, [10],
both examples of q-space based methods. For segmenting
the voxels, earlier techniques also used the scalar measure
representation of tensors, but the lacking directional infor-
mation produced inaccurate results. The works [11],[12] are
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based on the level-set and the geometric flow based DTI seg-
mentation methods.

Based on the ADC profile, a model called High Angu-
lar Resolution Diffusion Imaging (HARDI), [13],[14], was
proposed to describe the complexity of diffusion. In [15], the
authors considered the representation of the Oriented Distri-
bution Functions (ODFs) as a mixture of von Mises-Fisher
distributions.

The work [16] showed that representing dMRI data can
help in separating fiber tracts in 5D nonlinear space, which is
not possible when dealing with the problem in 3D. The work
[17] performs the segmentation in q-space using diffusion
maps and the region based surface evolution of HARDI [18].
The works [19,20] showed that the square root reparametri-
zation of ODFs lies on the unit Hilbert sphere in the (infinite
dimensional) Riemannian manifold of probability measures.
The data can be then mapped to low dimensions for cluster-
ing.

The work [21] employed the fuzzy class membership
framework to deal with the partial volume issues which arise
due to sharing of voxels by structures, e.g. cingulum with
anisotropic corpus callosum and isotropic ventricles. The
fuzzy membership can account for uncertainty in the deci-
sion of segmentation at a voxel, while the crisp segmenta-
tion produces inaccurate results. Based on sparse theory, the
method called Sparse Subspace Clustering (SSC), [22,23],
is able to deal with intersecting subspaces. In those works,
the fiber bundles are supposed to lie in separate 1D/2D sub-
manifolds, depending upon the number of intersecting fibers.

Higher order tensors can be used to model the under-
lying complex structures. These positive definite tensors of
any order can be represented as homogenous polynomials,
[24]. The advantage of using polynomial representation is
that they allow linear transformation to spherical harmonic
form representation, [27,26,25], and it is easy to find the
maxima of the ADC profiles. As a result, the coefficients of
higher order tensors project linearly to the lower order tensor
coefficients, [26].

Only a limited number of works address segmentation
of HARDI based data, in particular the higher order ten-
sors. The works [27,28] provide mathematical evidence that
non-Gaussian diffusion causes non-exponential signal de-
cay. The ADC profiles are based upon exponential signal de-
cay assumption. Thus, more than six degrees of freedom are
redundant (as in DTI). The maximum of diffusivity has mis-
alignment with actual fiber directions which is due to the
b-value and the less known micro level interactions of wa-
ter molecules with cellular components [28]. The later work
[29] resolved this issue by aligning this mis match in the
higher order ADC profiles using symmetric positive definite
Cartesian tensors CT-ODF. The ADC profiles are popular
clinically because of the observation that its value decreases
with onset of ischemia [30]. The rotational invariants of the

high order tensors showed interesting potential for new bio-
markers with better robustness, [31,32,33].

In segmentation applied to intersecting regions, the ori-
entations of the individual tensors are not relevant, since we
consider the region as a whole. Therefore, the key idea in the
present work is to exploit the geometry of the 2nd order ten-
sors to segment fields of higher order tensors. We propose a
novel approach which does not need to blow up the dimen-
sions of submanifolds because of the intra voxel complex-
ity. We have considered the problem in the form of Rieman-
nian manifold clustering. However, this approach requires
an effective anisotropy preserving metric to accurately ac-
count for the degree of anisotropies in the presence of non-
uniformity. Our approach currently uses the 4th order ten-
sors in the experiments but the method should be extendable
to higher orders. Our contributions include the following:

1. We exploit the observation that the diagonal components
of the flattened 4th order tensors are positive definite. We
utilize the fact that the components lie in a well known
Riemannian symmetric space. We compare the effect of
this projection with two other well known projections.

2. We deal with the important issue how to extract the fiber
bundle structure over the image space. Spectral cluster-
ing is used, where the weight terms of the affinity ma-
trix are designed to account for spatial continuity of the
fiber structures. An algorithm is provided here to get
the weight parameters for geodesic distance which effec-
tively deals with wide range of configurations. We also
suggest an effective adjustment to the spatial distance to
increase the robustness of the method.

3. We modify the Spectral Quaternion (SQ) metric to Spher-
ical Linear Interpolation (slerpSQ) metric. The reason is
that slerpSQ produces smoother interpolating curve in
the underlying geometric space and so it is closer to the
geodesic distance. Our experiments reveal that slight im-
provement in the segmentation results speaks in favor of
the slerpSQ.

This work also provides a survey on the behavior of three
similarity measures on different projections from the 4th
order to the 2nd order tensors. The segmentation methods
based on the spectral clustering for intersecting fibers and
the global curve evolution for curved fibers are used. Our
experimental results show the effectiveness of the methods
under extrinsic similarity metrics. We use a bank of syn-
thetic images with various complexity of fibers and their in-
tersections. For illustration, we also add segmentation on a
real image.
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2 Diffusion modeling

ADC profile estimation can be achieved using spherical har-
monics and fitting higher order tensors to the spherical data
obtained in various gradient directions.

The general Stejskal-Tanner formula for the observed
signal strength in a pulse sequence (diffusive attenuation)
and the related diffusion tensor coefficients are

S = S0 exp(−bD(g)),

D(g) =
3

∑
j1=1

3

∑
j2=1

3

∑
j3=1
· · ·

3

∑
jn=1

D j1 j2 j3··· jng j1g j2g j3 · · ·g jn ,

where D j1··· jn are the coefficients of n-th order, while g j are
components of the unit gradient vector g, b is the diffusion
weighting factor, and S0 is the signal acquired without any
diffusion gradients. For example, in 3D g = (gx gy gz)

T and
we write D j1 j2 j3 j4 for the 4th order tensor in Einstein’s no-
tation (and all ji are x, y or z). The least square estimation
doesn’t ensure positive diffusion profile. Methods proposed
in [34,24,35] ensure positive semi-definiteness of the ten-
sors.

A k-th order tensor has got 3k coefficients. Under the re-
quired symmetry, however, the number of independent com-
ponents is reduced to Nk =

1
2 (k+1)(k+2).

One reason to use higher order tensors is that they en-
code the geometry of diffusion without requiring spherical
harmonic transform to compute them from diffusion pro-
files. Another advantage is pointed out in [26]. Once coeffi-
cients of higher order tensor are evaluated, lower order ten-
sor coefficients can be simply obtained by linear projections.
The symmetric and positive tensors can be expressed as co-
efficients pi jk of polynomial of degree 4 with homogeneity
condition i+ j+k = 4. Here, i, j,k also represents the degree
of monomials gi

xg j
ygk

z . The coefficients of D and the polyno-
mial coefficients satisfy the relation pi jk =

4!
i! j!k! D j1 j2 j3 j4 .

In our numerical experiments (in particular dealing with
the synthetic data), we use the general framework proposed
in [24] to estimate coefficients of positive definite tensor of
any order.

In [21], the motivational illustration showed that it is not
encouraging to use the Gaussian model for second order ten-
sors directly, because mean of anisotropic tensors can be
isotropic. In our method, in order to extract these regions
properly, a similarity measure must be choosen which could
discern between different anisotropic tensors.

3 The Projections

Appropriate mappings projecting the 4th order tensors into
positive definite 2nd order tensors are required.

3.1 A Linear Projection of 4th Order Tensors to 2nd Order

One of good possibilities how to project the 4th order tensor
was introduced in [26]. It is a simple linear relation but, un-
fortunately, it suffers a loss of orientation information. The
expressions to evaluate independent coefficients of second
order from the 4th order tensor come from the spherical har-
monics representations of the Laplace series for the coeffi-
cients of D and best data fitting.

Dxx =
3
35 (9Dxxxx +8Dxxyy +8Dxxzz−Dyyyy−Dzzzz−2Dyyzz)

Dyy =
3
35 (9Dyyyy +8Dxxyy +8Dyyzz−Dxxxx−Dzzzz−2Dxxzz)

Dxx =
3
35 (9Dzzzz +8Dxxzz +8Dyyzz−Dxxxx−Dyyyy−2Dxxyy)

Dxy =
6
7 (Dxxxy +Dyyyx +Dzzxy)

Dxz =
6
7 (Dxxxz +Dzzzx +Dyyxz)

Dyz =
6
7 (Dyyyz +Dzzzy +Dxxyz).

The details can be found in [26]. In the sequel, we write L
for this projection.

3.2 Decomposition of Flattened 4th Order Tensors

In material science, it is common to use 6D second order ten-
sor representation for classification of materials and it was
proposed to be used in DTI application in [36]. This iso-
morphic mapping can be viewed as an isometry, [37]. The
6× 6 representation however leads to loss of angular fea-
tures, [38]. Another disadvantage is that it is not possible to
represent 6D rotation using quaternions as employed in the
spectral approach discussed below.

Flattening of the tensor comes naturally by considering
matrix generalization of scalars and viewing R3n

as

R3n
= R3n−2⊗R32

.

This identity retains geometry of underlying fibers and it
is an isometry too. It enjoys the symmetric positive semi-
definite property. Thus, a general nth order tensor T (n) can
be expressed as a matrix of (n−2)nd order tensors:

T (n) =

T (n−2)
xx T (n−2)

xy T (n−2)
xz

T (n−2)
yx T (n−2)

yy T (n−2)
yz

T (n−2)
zx T (n−2)

zy T (n−2)
zz


and, for example the left upper corner element in the 4th
order tensor is

T (2)
xx =

Dxx(xx) Dxx(xy) Dxx(xz)
Dxx(xy) Dxx(yy) Dxx(yz)
Dxx(xz) Dxx(yz) Dxx(zz)

 .

For symmetric fourth order tensors, there are 15 indepen-
dent coefficients Di jkl , where the subscripts take values x,y,z
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Fig. 1: (a) curved fiber intersection (synthetic data), (b) x-diagonal component, (c) y-diagonal component, (d) sum of x and y
diagonal components, i.e. the D projection (e) the E projection, (f) the L projection

with repetitions allowed. The coefficients can be estimated
considering any even order tensor equivalent to homogenous
polynomials in three variables, [24].

Notice that if n = 4, the result is a 9×9 symmetric ma-
trix. Three of its eigenvalues are zero due to linear depen-
dencies and there are the six further eigen vectors, all with
positive eigenvalues, [38]. The components of the principal
eigen vector, corresponding to maximum eigenvalue, form
a second order tensor called Eigentensor. The work [38]
showed that such six independent eigentensors have the po-
tential to reveal multifiber directions.

We call the projection to the principal Eigentensor E.

3.3 The Diagonal Components

The diagonal components obtained above retain geometri-
cal information of the full tensor as shown in Figure 1, (b)
and (c). The empirical observation that the diagonal compo-
nents themselves are SPDs can be easily checked theoret-
ically. Indeed, the flattened 4th order tensor viewed as the
9× 9 matrix T with columns and rows ordered as dealing
with a decomposable tensor Ti jk` = D1

i jD
2
k` with two second

order tensors D1 and D2, displays the same symmetries as
the flattened symmetric 3× 3 matrices. This means the 4th

column copies the 2nd one, the 7th copies the 3rd one, the
8th copies the 6th one, etc. Thus the eigenvectors of T will
again enjoy the structure of flattened 3× 3 symmetric ma-
trices. Three of them will be zero (due to the repetition of
some columns) and the remaining six ones correspond to
the eigenvalues of the 6× 6 matrix T ′ obtained from T by
forgetting the repeated columns.

At the same time, the positive eigenvalues from the above
spectral decomposition coincide with those 6 eigenvalues of
T ′. In particular we know that T ′ is positive definite and thus,
by the Sylvester criterion, all the principal minors of T ′ are
positive. In particular, the top left symmetric 3× 3 matrix
must be a SPD. Finally, the same must be true for the re-
maining diagonal blocks since the ordering of the blocks is
given by our preferred order of coordinates, so it cannot have
any impact on their properties.

Notice, a sum of two positive definite quadratic forms is
again positive definite and so any linear combination of the
diagonal SPDs with positive coefficients is positive definite,
too. In 2D field representation, we consider the sum of the
T (2)

xx and T (2)
yy components, i.e. a field of SPDs.

In the sequel, this projection will be denoted by D.

Figure 1 illustrates the behavior of all the above men-
tioned projections on a simple fiber crossing case. For cross-
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ing regions the cluster of second order tensors is to be seg-
mented as a separate region, but we want to see the other
two disjoint parts of the same fiber in one region.

The synthetic images are created by a simulation of the
signal generated with b = 1500s/mm2 and S0 = 1 with 21
gradient directions uniformly distributed over the sphere.
Adaptive kernel method is used to create two fiber config-
urations as in [39]. The positivity of the higher order tensors
is maintained according to [34]. The orientation of the fibers
is color coded.

4 Metrics on the Space of Symmetric Positive Definite
Matrices

The Symmetric Positive Definite (SPD) matrices form a man-
ifold carrying the structure of a Riemannian symmetric space.
Geometrically, these matrices form the cone S+n in Rn2

, a
manifold carrying an intrinsic Riemannian metric. We are
interested in the case of n = 3, where the dimension of S+3 is
six.

4.1 Useful Metrics on S+n

Affine Invariant metric. The space S+n comes equipped with
the natural action of the general linear group GL(n), well
known from the algebra of quadratic forms. If g ∈ GL(n)
and p ∈ S+n , then the action is

p 7→ gpgT .

Thus, S+n is a homogeneous space. If we restrict the action
to the orthogonal subgroup SO(n) in GL(n), then the action
is still transitive and each of its orbits contains exactly one
diagonal matrix, up to the ordering of the diagonal elements.
Requesting a metric invariant with respect to this action, we
have to define it in terms of distance N(p) of the matrix from
the identity, while the general distance function should be

dist(p,q) = N(p−1q).

Remind, S+n is the isomorphic exponential image of the vec-
tor space of all symmetric matrices. This suggests to define

N(p)2 = ‖ log p‖2 =
n

∑
i=1

(logσi)
2,

where σi are the eigenvalues of p, i.e. the diagonal elements
of the unique diagonal matrix in the orbit of p.

Indeed, this provides a well defined Riemannian metric
which is extremely important and widely used in both theory
and practice, cf. [3,4,5]. Unfortunately, for our purposes,
this metric is computationally too expensive and, moreover,
it does not allow to handle the isotropy and rotation part sep-
arately. Therefore, there are many known approximations of
this metric which are effectively used in practical problems.

The Log-Euclidean metric. Matrix exponential is a diffeo-
morphism from the space of all symmetric matrices in the
embedding space Rn2

to our 2nd order tensor space S+n . The
authors of [40] suggested a commutative Lie group structure
on S+n by taking only the linear terms in the matrix product
expression via the logarithm:

p1 • p2 = exp(log(p1)+ log(p2)) (1)

dist(p1, p2)
2 = trace

(
(log(p1)− log(p2))

2 ), (2)

while the shortest interpolation curve between two tensors
p1 and p2 is

p(t) = exp
(
(1− t) log(p1) + t log(p2)

)
, t ∈ [0,1]. (3)

This extrinsic metric is an approximation of the intrinsic
affine invariant metric and it is a very popular metric in DTI
processing. We shall call it LogE. It is invariant to simi-
larity transformation (scaling followed by rotation or trans-
lation). LogE interpolation curve given by (3) provides a
closed form mean for two or more tensors.

Thus, the computations of distances and means become
easy in three steps: Take mapping log from the tensor space
S+n to the euclidean space of symmetric matrices, process
the mapped data (symmetric matrices) there, finally use the
exponential map exp to map the data back to the manifold
S+n .

The Spectral metric. For the first time, [41] used the spectral
treatment for regularization of noisy diffusion tensors. The
key idea is to treat eigenvalues and eigenvectors of a SPD
matrix separately. Let us restrict to the space S+ in dimen-
sion 3.

If we restrict the group acting on S+ to the special or-
thogonal group SO(3) (the group of all rotations in R3 with
the axis through the origin), then the matrix transposition
coincides with the inverse and we may write the 2nd order
tensors as p = uΛuT with u ∈ SO(3) and Λ a diagonal ma-
trix containing all the eigenvalues of p. Thus, we may con-
sider the tensors in S+ as couples (u,Λ) and write the inter-
polation curve between any two tensors p1 = (u1,Λ1) and
p2 = (u2,Λ2) as

p(t) = u(t)Λ(t)u(t)T (4)

u(t) = u1 exp
(
t log(uT

1 u2)
)

(5)

Λ(t) = exp
(
(1− t) log(Λ1)+ t log(Λ2)

)
. (6)

This interpolation curve is a geodesic in the space of the Lie
group G = SO(3)×D+(3), where D+(3) is the group of
diagonal matrices with positive elements. This Lie group is
a 4-1 covering of S+, i.e. there is a locally invertible map
G→ S+, such that each image point has got exactly four
preimages.

These preimages of p differ by three distinct orientations
originated by rotation by angle π around the principle axes
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Fig. 2: The pictures show the interpolation between two anisotropic tensors (depicted as ellipsoids in 3D) with eigenvalues
(15,5,5) and (25,5,5) and angular difference 4

5 π between the principal eigenvectors; the two pictures on the first line
illustrate the loss of anisotropy via the LogE metric (on the right), while the slerpSQ is very satisfactory (on the left); the
other picture shows the angular difference of principle eigenvectors for the n = 8 values of the interpolation parameter along
the horizontal axis. Notice the optimal behavior of the slerpSQ case, only slight difference between the slerpSQ and SQ
metrics, and the failure of the LogE one.

of the ellipsoid associated to the SPD p and one due to the
identity. Let U be one such 4-tuple associated to u2 ∈ SO(3).
Then the distance between the rotations u1 and u2 is defined
as

dist(u1,u2) = min
u∈U

dist(u1,u) = min
u∈U
‖ log(u1uT )‖. (7)

The calculations here require four matrix exp and log oper-
ations.

The distance on D+(3) is defined as in the Euclidean
Log approach and we may consider the product metric on
SO(3)×D+(3).

4.2 The Spectral Quaternion and the Spherical Linear
Interpolation Spectral Quaternion Metric

The spectral quaternion (SQ) metric, [42], is based on the
linear interpolation and it uses an inner-product based metric
for rotation space (coming from the natural scalar product on
quaternions). Essentially, this is the above discussed spectral
metric, handled via the 2-1 covering of the orthogonal group
by unit quaternions. The Hopf-Rinow-De Rham theorem in-
dicates that among all possible geodesics between any two
points on a complete Riemannian manifold there exists at
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least one geodesic with minimum length which can be con-
sidered as distance between two points.

We propose a modification of the SQ metric, the so called
spherical interpolation spectral quaternionic (slerpSQ) met-
ric. Motivated by the techniques in robotics and animation,
we define the slerpSQ interpolation qm between two unit
quaternions q1 and q2 as follows. First we posit

θ = arccos(|q1 ·q2|), θ ∈ [0,π/2],

where · means the standard scalar product on quaternions,
and then we define (q1 6=±q2)

qm(q1,q2, t) =
sin((1− t)θ)

sinθ
q1 +

sin(tθ)
sinθ

q2. (8)

Notice θ defines distance on the sphere of the unit quater-
nions, cf. [43]. We denote it dslerpSQ. The interpolation (8) is
defined as the constant speed path along the principal circle
on the sphere of unit quaternions and it allows for effec-
tively computing weighted means qm for any finite number
of tensors. Notice the computational advantage of skipping
the renormalization step compared to SQ.

Let us notice that SQ and slerpSQ are topologically equiv-
alent distances on the unit quaternions, [43],

dSQ
2 = 2

(
1− cos(dslerpSQ)

)
.

The SQ metric evaluates essentially the chordal distance of
quaternions on the unit sphere. However, these two distances
are not bounded equivalent since dSQ(q′,q) converges to 0 at
a slower rate than dslerpSQ if q′→ q, [43].

Both dSQ and dslerpSQ, when considered on unit quater-
nions are actually only pseudometrics (e.g. the slerpSQ dis-
tance of q and −q is zero), but this ambiguity disappears
once we project to the rotation group.

Slerp also produces smoother curves in quaternion space
and the resulting geodesics are closer to the geodesic dis-
tance in the Lie group SO(3)×D+(3). Figure 2 shows this
behavior and compares to much worth performance of the
LogE metric. Actually, the interpolation shown at the Fig-
ure 2 combines the difference in the rotational part and the
eigenvalue part, taking them with the same weights for both
SQ and slerpSQ. In general, this requires special attention,
see below.

4.3 Similarity Measures and Algorithms

Anisotropy carries useful information and requires to be pre-
served during processing of second order tensors in many
applications (e.g. in brain research). More importantly, for
our purposes, the true distance between two tensors p1 and
p2 should be rather a weighted combination dΛ +αdQ of
the D+(3) distance of the components Λ1 and Λ2 and the
distance of the rotational components u1 and u2 (where we

consider either dQ = dslerpSQ or dQ = dSQ). The smaller the
anisotropy is, the less relevant is the rotational component.

To account for the tensors with negligible difference be-
tween the maximal and minimal eigenvalues, a smooth tran-
sition function is proposed in [42] (in our experiments, we
use the value β = 0.6):

f (x) =
(βx)4

1+(βx)4 ,

to be combined with the so called Hilbert Anisotropy

HA(p) = log
λmax

λmin
,

reflecting the difference between the maximal and minimal
eigenvalues of the symmetric positive definite matrix p. The
weighting function is then defined by

α(p1, p2) = f
(
min(HA(p1),HA(p2))

)
. (9)

The LogE metric simply provides the approximation to
the distance of two tensors and does not allow for distin-
guishing the eigenvector and eigenvalue parts, which is the
advantage of the spectral decomposition. Working with SQ
or slerpSQ, we evaluate the similarity measure by the Al-
gorithm 2 below. This similarity measure is not a distance
between two tensors but it provides a good approximation
respecting the anisotropy.

We need to compute the weighted means with respect
to the above metrics. Remind that there are four rotations
representing a given tensor, so using quaternions to deal with
them, we arrive at eight quaternions q associated to a given
tensor p. We shall write Q for this set of eight associated
quaternions.

Algorithm 1. Weighted Mean
Input: Set of tensors pi, i = 1, . . .N, with weights wi, such
that ∑wi = 1.
Output: pµ , the mean tensor.

1. Find the spectral decomposition of all N tensors, pi =

uiΛiuT
i and get quaternions qi representing ui.

2. Evaluate the three components of the weighted mean Λµ

of the eigenvalue part, λµ,k = exp
(
∑

N
i=1 wi log(λi,k)

)
, k =

1,2,3.
3. Select the reference quaternion qref of the tensor which

maximizes wiHA(pi), i = 1, . . . ,N.
4. With respect to qref, the realigned quaternions are given

by qa
i = argminqi∈Qi arccos(|qref ·qi|).

5. If dealing with slerpSQ, then the weighted mean qµ is
given by the equation (8) (modified for N elements), i.e.
qµ = qm. If we consider the SQ metric then we set qm =

arg max
qi∈Qi

(qref ·qa
i ) and normalize to qµ = qm

|qm| .

6. Compute rotation matrix uµ from qµ .
7. Finally, pµ = uµΛµ ut

µ .
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Algorithm 2. Distance Approximation
Input: Tensors p1 and p2.
Output: The distance (similarity measure) dist(p1, p2).

1. Find spectral decomposition of the tensors and get quater-
nions representing their rotation matrices.

2. The distance between eigenvalues is given by:
d2

Λ
= exp

(
∑i | log λi(p1)

λi(p2)
|2
)
.

3. The weighting factor is given by: α(p1,p2) = f (x) by
equation (9), where x = min(HA(p1),HA(p2)).

4. With q1 as the reference quaternion, the realigned quater-
nion is calculated as qa

2 = arg min
q2∈Q2

arccos(|q1 ·q2|), and

dslerpSQ = arccos(|q1 ·qa
2|), while dSQ = ‖q1−qa

2‖.
5. dist(p1, p2) = α(p1, p2)dQ +dΛ .

In all our experiments, we use algorithms 1 and 2 for
evaluating mean and distance measures for both SQ and
slerpSQ, respectively. When we compare with the LogE met-
ric we use the obvious formulae instead of the latter algo-
rithms.

The next algorithm computes the relevant normalization
of the second order tensor data which will be essential be-
low. Since we observe the log normal distribution on the
tensor space, [44], we first transform the data into a vector
space by the matrix logarithm, then we compute the standard
variance and finally transform this variance to the original
log normal distribution.

Algorithm 3. Variance of SPD Tensors
Input: The N second order tensors ti, i = 1, . . . ,N.
Output: The variance w.

1. Take matrix logarithms log ti of the data ti.
2. Compute the arithmetic mean of the matrices log ti

µ = ∑
N
i=1

log ti
N .

3. We set
ν =

∥∥∑
N
i=1

(log ti−µ)2

N

∥∥.
4. The back transformation provides w = log

(
1+ ν

‖µ|2
)
.

5 Segmentation Methods

5.1 Riemannian manifold clustering

Clustering multiple sub-manifolds can be done through non-
linear dimensionality reduction methods (NLDR). A set of
points belonging to a non-linear manifold lying in higher
dimensional (Euclidean) space can be mapped to lower di-
mension so that the distances in the projections mimic rea-
sonably the original distances in the big space. Finally, the
points mapped to lower dimension can be clustered using
traditional methods like k-means.

The local NLDR techniques like Local Linear Embed-
ding (LLE) and Hessian LLE, involve k nearest neighbors

(k-NN). When dealing with bundles of fibers, the neighbor-
ing tensors may belong to different or the same fibers in-
dependent of their diffusion properties. Therefore, locality
preserving Laplacian Eigenmap method (LE), [45], is used
which does not involve evaluation of neighboring tensors.

The weights in the prospective affinity matrix are con-
structed by the following expression using both the appro-
priate similarity measure on the tensors and the spatial terms
to account for the structural continuity of the fibers. The ele-
ments of the affinity matrix W ∈ Rn⊗Rn measures similar-
ity between the tensors at the voxels in the region of interest
(the shape of W is motivated by the heat kernel, and n is the
total number of points belonging to the region of interest)

wi j = exp
(
−

dist(pi, p j)
2

wg
− ‖i− j‖2

we

)
. (10)

Here pi and p j are the tensor field values at the voxel posi-
tions i and j, respectively, while ‖i− j‖ is the modified Eu-
clidean distance between the voxels, i 6= j, ‖i− j‖2 = i j +

k
i j

,
where i j is the square of the Euclidean distance and k reflects
the number of neighbors whose distance we want to blow
up slightly. In our experiments we used k = 33. Moreover,
in our experiments, we = 1 and wg is uniformly computed
by Algorithm 3 above. This means we normalize the tensors
pi to have the variance one. Notice, wii = 1 for all i while
0 < wi j < 1 for all i 6= j.

The LE method is based on working with projections
of n points into R minimizing the objective function F =

∑i, j(yi−y j)
2wi j, where y=(yi) are the vectors of the prospec-

tive projections.
Clearly, F = 2yT Dy− 2yTWy where D is the diagonal

matrix with the diagonal element vector equal to the sum of
all columns in W . Thus, we deal with the well known graph
Laplacian

L = D−W (11)

and our problem reduces to an eigenvalue problem for the
positive semidefinite matrix L (notice that Ly = 0 whenever
all components of y are equal). The requested projection to
n points in Rd for all voxels i is then given by viewing the
d normalized eigenvectors with the smallest non-zero eigen-
values as n points in Rd .

In our experiments, the standard k-means technique is
applied to the first three eigenvectors y (i.e. d = 3) for clus-
tering. All the synthetic data consist of n = 256 voxels.

The individual steps of the entire clustering procedure
are listed in algorithm 4. The results on the following syn-
thetic image for various projections and metrics are illus-
trated in Figure 3.
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Fig. 3: Results with diverse metrics and projections. The rows show the LogE, SQ, and slerpSQ metrics, from top to bottom,
while the L projection appears in the first two columns, first without and then with the noise, and finally, the last two columns
show the same for the D projection. The colors are chosen randomly.

The image was created with additional random back-
ground noise (introducing randomness in partial fractions
of the voxels, still nearly anisotropic), cf. [39]. The corre-
sponding image without noise shows the same voxels in the
fibers and uniform anisotropic background.

Algorithm 4. Laplacian Eigenmap Clustering
Input: Field of n fourth order tensors lying in the manifold
embedded in high dimension.

Output: Segmentation of voxels into regions with background,
structural fibers and their intersections.

1. Project the 4th order tensors onto 2nd order ones by one
of the methods described above.

2. Compute the affinity matrix W with weights given by
(10), using the similarity measure as approximation for
the geodesic distance.

3. Compute the graph Laplacian (11) of the affinity matrix.
4. Perform the eigen decomposition with respect to L and

take the first three normalized eigenvectors, representing
the voxels as the set S of n points in R3.

5. Perform k-means clustering on the projection S⊂ R3.

Our experiments revealed much higher robustness when
the similarity measure involves the slightly blown up Eu-
clidean distance between the neighboring voxels, both with
respect to the curvature of the fibers and the noise in the data.
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Fig. 4: The pictures show various original synthetic images (without any noise) followed by the segmentation into four
regions using the slerpSQ metric, D projection, and the uniform approach via Algorithm 4.

On Figure 4, six configurations of synthetic images, with
two fibers each, are segmented successfully using slerpSQ
and D projection.

The Figure 5 illustrates the effectivity of the segmenta-
tion on a (noisy) real image, with two or four regions. Be-
cause of different shape and resolution of the data, the pa-
rameter we in (10) was tuned up appropriately.

We have also tested the robustness of the clustering with
respect to the noise added to the background data under
different projections and metrics. We created a bank of 15
different configurations with 20 randomly changed back-
grounds each. The table on the left provides the overview
of the accuracy of average segmentations achieved. For two
crossing fibers there are 4 parts of them to be recognized. If
at least three of these parts are decided correctly in the seg-
mented regions, we assign the accuracy value 1. It turned out
that the Eigentensor projection does not obey the positive
definiteness once the background noise is added. Thus the
experiment completely failed for this projection. The table
on the right compares the SQ and slerpSQ metric under the
D projection with the more strict accuracy evaluation when
the accuracy value is 1 only in the case of all four regions
segmented properly.

L D E
SQ 0.66 0.97 fails

SlerpSQ 0.69 0.98 fails
LogE 0.763 0.67 fails

D
SQ 84.33

SlerpSQ 86.33

5.2 Deformable Models

We have also tested the effectiveness of the similarity mea-
sures based on slerpSQ and SQ distances in other situations.
In particular we employ the Algorithms 1 and 2 for curve
segmentation. Partial results were reported in [46].

In deformable models/snakes, [47] introduced an energy
function to evolve the curve, which was fast but has diffi-
culty in handling topological changes. Evolution of curves
is guided by curvature motion and edge function. In [48,49,
50] edges act as evolving and stopping terms for the curve
as the value of the edge function is zero near the boundaries
of the object.

The disadvantage of these edge based methods is their
inability to deal with noise, because the Gaussian is also
smoothing the boundaries in the process of smoothing the
noise. Other shortcoming is that it requires the initial curve
to be placed near to the boundary of the object of interest.
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Fig. 5: Results on noisy real image of Corpus Callossum segmented into two and four regions under SQ metric (left)
and slerpSQ (right). The real image is obtained with single shell, b=1500s/mm2, 64 gradient directions voxel of size
2mmx2mmx2mm, with total size 114x114x70. Our algorithms run on cut out section of Corpus Callossum with size
44x48x23. Slice with x = 30 is shown here.

In [51], Osher and Sethian used level-sets to deal with
the topological changes during curve evolution, i.e., the evolv-
ing curve is embedded in a hypersurface in a higher dimen-
sional space.

The Chan-Vese model, [52], is based on the Mumford-
Shah model, [53], and it evolves the curve without requiring
edges as stopping conditions. Their formulation uses the en-
ergy based on first moments of energy distribution in the
interior and exterior regions of the curve, which is repre-
sented as a level of a surface. If φ is the defining equation of
the surface having the curve as its zero level, then the curve
evolution is governed by the gradient of φ ,

∂φ

∂ t
= |∇φ |F (12)

where F is the speed of the curve evolution. Various choices
of the function F exist in the literature.

We propose to exploit the spectral quaternion based sim-
ilarity measures in the approach. In our experiments, we use
the Mumford-Shah energy functional based model, where F
is the curvature of the level curve passing through the point
in question. The minimization of the Mumford-Shah energy
pushes the evolving curve to boundary of the object. It en-

ables to segment the objects with or without boundaries, and
with even discontinuous boundaries, and it is robust to noise.

Region based techniques work well for the objects with
uniform features but fail if subregions of the object have
non-uniformity. Aside of the global techniques, we use the
local energy functional for fiber bundle segmentation for 3D
DTI, [54,55]. In the original work, the authors used Log-
Euclidean metric and they advocated the improvement under
a better similarity measures/metric. In [56], the authors used
variational technique on diverse manifold valued images.

We use the SQ and slerpSQ similarity measures for evo-
lution of global curve to test segmentation of curved fiber
structures. The results indicate much better performance of
the algorithm compared to the LogE metric, cf. Fig. 6.

6 Results and discussions

We have tested two segmentation methods, the Riemannian
spectral clustering and the deformable models, on 2nd order
projections of 4th order tensors, mainly on synthetic images.
The framework [39] is used to obtain multiple fiber configu-
rations. Various shapes of fibers and their intersections were
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Fig. 6: We illustrate the behavior of the deformable model algorithm on two synthetic images (one with constant curvature
of the edges, the other with high curvature parts). The global version of the contour evolution is applied to the second order
tensor fields obtained by the D projections from the fourth order ones. Green curves shows the results under the slerpSQ
metric, black curves stay for SQ, while the results for LogE are red. In both cases performance under slerpSQ and SQ is
comparable, whereas LogE is unable to evolve in high curvature regions, but slerpSQ runs faster in such cases.

tested. We checked the applications of three projections and
three diverse metrics on many simulated images.

While the linear projection L and the eigentensor pro-
jection E are well known, we add the simple D projection,
based on the observation that the diagonal blocks in the flat-
tened 4th order tensors are always positive definite. We also
suggest to use the slerpSQ modification of the SQ metric
(while the SQ metric was proposed in [42], the former one
was used e.g. in gaming).

Figure 3 illustrates the results using two projections D
and L and the three metrics LogE, SQ, and slerpSQ, with
and without background noise. Notice, the E projection was
not involved since it failed with the noisy images. We also
created a bank of 15 images, with random noise added 20
times each, and compared the quality of the segmentations,
see the two tables above.

Moreover, we tested the deformable models with the same
projections and metrics.

As expected, both the spectral quaternion based metrics
performed much better in both models, with slightly better
results for slerpSQ.

We also implemented a modification of the affinity ma-
trix in the LE map definition. The improvement consists
in increasing the considered distance of very near voxels
slightly. At the same time, we introduced uniform normal-
ization of constants in the definition of the affinity matrix.

As a consequence, the method got much more robust and
allows to compare the results uniformly.

For some cases, in spite of spatial regularization, inaccu-
rate extractions are to be expected. Involvement of an expert
(user interaction) is capable to resolve the problem by propa-
gating affinities across the regions as in [23]. We shall come
back to this approach in near future.

Another perspective enhancement of our study is to lift
the 3D images to the extended 5D space of positions and ori-
entations (the quotient of the group of Euclidean motions),
[57]. In this larger space, we may define a metric suitable
for connectivity measurement in DW-MRI images in a form
of sub-Riemannian metric, [58], or a sub-Finslerian quasi
metric, [59].

Diffusion Kurtosis Imaging (DKI) is a promising modal-
ity in classification of damage of tissues due to disease and
injury. DKI data is useful in segregating regions of white
matter, gray matter, and Cortico Spinal Fluid (CSF), [60].
Our work can be of importance in segmentation of DKI data
as DKI involves both 2nd order diffusion tensors and 4th
order kurtosis tensors. We shall come back to this in future
work.
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26. Özarslan E., Mareci T.H., Generalized DTI and analytical rela-
tionships between DTI and HARDI. MRM. Nov; 50(5), 955–965
(2003)

27. Descoteaux M., Angelino E., Fitzgibbons S, Deriche R., Ap-
parent diffusion coefficients from high angular resolution diffu-
sion imaging: Estimation and applications. Magnetic Resonance
in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine 56, no. 2: 395-410 (2006)

28. Liu C., Bammer R., Moseley M.E., Limitations of apparent diffu-
sion coefficient-based models in characterizing non-gaussian dif-
fusion. Magn. Reson. Med. 2005 Aug;54(2):419-428 (2005)

29. Weldeselassie Y.T., Barmpoutis A., Atkins M.S., Symmetric
positive-definite Cartesian tensor orientation distribution func-
tions (CT-ODF). Med. Image Comput. Assist. Interv. 13 (Pt
1):582-589 (2010)

30. Le Bihan D., Apparent diffusion coefficient and beyond: what dif-
fusion MR imaging can tell us about tissue structure. Radiology
Aug; 268(2):318-22 (2013)

31. Ghosh A., Papadopoulo T., Deriche R., Biomarkers for HARDI:
2nd & 4thorder tensor invariants. In: ISBI, pp. 2629 (2012).

32. Ghosh A., Papadopoulo T., Deriche R., Generalized invariants of
a 4th order tensor: building blocks for new biomarkers in dMRI.
Proceedings of the Computation Diffusion MRI Workshop at the
MICCAI Conference (2012)

33. Nice F., Gur Y., Johnson C.R., Generalized HARDI invariants by
method of tensor contraction. In: IEEE Symposium on Biomedical
Imaging. Beijing, China (2014)

34. Barmpoutis A. et al. Regularized Positive-Definite Fourth-Order
Tensor Field Estimation from DW-MRI. NeuroImage, Vol. 45(1
sup.1), Page(s): 153-162 (2009)

35. Ghosh A., Deriche R., Moakher M., Ternary quartic approach
for positive 4th order diffusion tensors revisited. ISBI, 618–621
(2009)

36. Basser P.J., Pajevic S., Spectral decomposition of a 4th-order co-
variance tensor: Applications to diffusion tensor MRI, Signal Pro-
cessing, Volume 87, Issue 2, (2007)



14 Sumit Kaushik, Jan Slovák

37. Moakher M., Fourth-order cartesian tensors: Old and new facts,
notions and applications. The Quarterly Journal of Mechanics and
Applied Mathematics, (2008)

38. Jayachandra M.R., Rehbein N., Herweh C., Heiland S., Fiber
Tracking of Human Brain Using Fourth-Order Tensor and High
Angular Resolution Diffusion Imaging. Magnetic Resonance in
Medicine 60:1207–1217 (2008)

39. Barmpoutis A. et al., Adaptive kernels for multi-fiber reconstruc-
tion. In the Proceedings of IPMI, pp. 338-349 (2009)

40. Arsigny V. et. al., A Log–Euclidean framework for statistics on
diffeomorphisms, Proc. of the 9th International Conference on
Medical Image Computing and Computer Assisted Intervention
(MICCAI’06) (2006)

41. Tschumperle, D., Deriche, R., Diffusion tensor regularization with
constraints preservation. Computer Vision and Pattern Recogni-
tion, IEEE Computer Society Conference on, 1, p. 948 (2001)

42. Collard A., Bonnabel S., Phillips C., Sepulchre R., An anisotropy
preserving metric for DTI processing. International Journal of
Computer Vision, Volume 107 Issue 1, 58-74 (2014)

43. Huynh D.Q., Metrics for 3D rotations: comparison and analysis.
J. Math. Imaging Vis., 35 (2) pp. 155-164 (2009)

44. Schwartzman A., Lognormal Distributions and Geometric Aver-
ages of Symmetric Positive Definite Matrices. International Sta-
tistical Review, 84, 3, 456486 (2016)

45. Belkin M., Niyogi P., Laplacian eigenmaps for dimensional-
ity reduction and data representation. Neural Comput. 15(6),
1373–1396 (2003)

46. Kaushik, S., Slovák, J., DTI Segmentation Using Anisotropy Pre-
serving Quaternion Based Distance Measure, in Campilho et al.
(Eds.): ICIAR 2018, LNCS 10882, pp. 81–89 (2018)

47. Kass M., Witkin A., Terzopoulos D., Snakes: active contour mod-
els. Int. J. Comput. Vis., vol. 1, pp. 321–331 (1987)

48. Malladi R., Sethian J.A., Vemuri B.C., Shape modeling with
front propagation: a level set approach. IEEE Trans. Pattern Anal.
Mach. Intell., 17 (2) pp. 158–175 (1995)

49. Caselles V., Kimmel R., Sapiro G., Geodesic active contours. Int.
J. Comput. Vision, 22 (1) pp. 61–79 (1997)

50. Malladi R., Sethian J.A., Vemuri B.C., Shape modeling with
front propagation: a level set approach. IEEE Trans. Pattern Anal.
Mach. Intell., 17 (2) pp. 158–175 (1995)

51. Osher S., Sethian J., Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton-Jacobi formulations. J.
Comput. Phys, vol. 79, pp. 12–49 (1988)

52. Chan T., Vese L., Active contours without edges. IEEE Trans. Im-
age Process., vol. 10, no. 2, pp. 266–277 (2001)

53. Mumford, D., Shah, J., Optimal approximation by piecewise
smooth functions and associated variational problems. Comm.
Pure Appl. Math. 42 577–685 (1989)

54. Lankton S., Tannenbaum A., Localizing region-based active con-
tours. IEEE Trans. Image Process., 17 (11) pp. 2029–2039 (2008)

55. Lankton S., Melonakos J., Malcolm J., Dambreville S., Tannen-
baum A., Localized statistics for DW-MRI fiber bundle segmenta-
tion.805, 2016. In Proc. 21st CVPR Workshops, pages 1–8 (2008)

56. Bansal S., Tatu A., Active Contour Models for Manifold Valued
Image Segmentation. J. Math. Imaging Vis. 52, 2, 303–314 (2015)

57. Duits R., Dela Haije T., Creusen E., Ghosh A., Morphological and
Linear Scale Spaces for Fiber Enhancement in DW-MRI. JMIV,
46(3), pp. 326–368 (2013)

58. Duits R., Ghosh A., Dela Haije T., Mashtakov A., On sub-
Riemannian geodesics in SE(3) whose spatial projections do not
have cusps. JDCS, 22(4), pp. 771–805 (2016)

59. Portegies J., Meesters S., Ossenblok P., Fuster A., Florack L.,
Duits R., Brain Connectivity Measures via Direct Sub-Finslerian
Front Propagation on the 5 D Sphere Bundle of Positions and Di-
rections, preprint (2018)

60. Bista S., Zhuo J., Gullapalli R.P., Varshney A., Visual knowledge
discovery for diffusion kurtosis datasets of the human brain. in Vi-
sualization and Processing of Higher Order Descriptors for Mul-
tiValued Data. Cham, Switzerland: Springer, 2015, pp. 213–234
(2015)


	Introduction
	Diffusion modeling
	The Projections
	Metrics on the Space of Symmetric Positive Definite Matrices 
	Segmentation Methods
	Results and discussions

