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In 1991, LeBrun exploited Salamon’s twistor correspondence and
found a large class of metrics on R*"** with special holonomy
Sp(1)Sp(n), cf. his paper On complete quaterninonic-Kahler
manifolds in Duke.

He interpreted the disk B*"** ~ Sp(n+1,1)/Sp(1)Sp(n) and his
class was parameterized by one holomorphic function on the
twistor space 2 C CP(2n + 3).
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found a large class of metrics on R*"** with special holonomy
Sp(1)Sp(n), cf. his paper On complete quaterninonic-Kahler
manifolds in Duke.

He interpreted the disk B*"** ~ Sp(n+1,1)/Sp(1)Sp(n) and his
class was parameterized by one holomorphic function on the
twistor space 2 C CP(2n + 3).

A bit later, Biquard desribed the induced structures, the so called
quaternionic contact structures on the boundary more carefully, cf.
Métriques d’Einstein asymptotiquement symétriques, Astérisque
265 (2000).

He also showed that each real analytic qc structure on a manifold
M is the conformal boundary at innity of a (germ) unique
quaternionic Kahler metric deffined in a small neighborhood of M.
In particular, it was immediately known that there are large
families of examples there.
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In the three lectures G-structures with prescribed symmetry at the
Geometry and Physics in Srni, January 2015, Bryant delivered a
detailed exposition how to use the Cartan-Kahler theory when
describing the generality of geometric structures. See
http://conference.math.muni.cz/srni/index.php?id=2015

for the full texts of the lectures.
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In the three lectures G-structures with prescribed symmetry at the
Geometry and Physics in Srni, January 2015, Bryant delivered a
detailed exposition how to use the Cartan-Kahler theory when
describing the generality of geometric structures. See
http://conference.math.muni.cz/srni/index.php?id=2015

for the full texts of the lectures.

Ivan Minchev thought one could proceed this way in the case of
the gc-structures. This meant, he wanted to recover completely
the Chern-Moser approach to CR-structures in order to get the

necessary data for the Cartan's test.

| will describe the result of this quest.
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Geometric structures as EDS
[ elelelele]

We adopt the following ranges of indices: 1 < a, b,c,d,e < n,

1 < s </, where £ and n are some fixed positive integers.
Problem: Given a set of real analytic functions CZ_ : R® — R with
b = —CZ, find linearly independent one-forms w?, defined on a
domain Q C R", and a mapping u = (u°) : Q — R’ so that the

equations

1
dw? = —5(."§’C(u)wb/\<.uC (1)

are satified everywhere on Q.
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We regard any such two solutions as equivalent and we are
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We adopt the following ranges of indices: 1 < a, b,c,d,e < n,

1 < s </, where £ and n are some fixed positive integers.
Problem: Given a set of real analytic functions CZ_ : R® — R with
b = —CZ, find linearly independent one-forms w?, defined on a
domain Q C R", and a mapping u = (u°) : Q — R’ so that the

equations

1
dw? = —5(."§’C(u)wb/\<.uC (1)

are satified everywhere on Q.

The problem is diffeomorphism invariant in the sense that if (w?, u)
is any solution of (1) defined on Q C R” and & : Q" — Q is a
diffeomorphism, then (®*(w?), ®*(u)) is a solution of (1) on Q'
We regard any such two solutions as equivalent and we are
interested in the following question:

How many non-equivalent solutions does a given problem of this
type admit?
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EDS reformulation

We set
N = GL(n,R) x R" x R

with the projections
p=(pd): N— GL(n,R), x=(x?): N - R", u=(v°): N > R
Further set w? % Jo dx®, and consider the differential ideal J on
N generated by the set of two-forms
1
T2 % g+ EC[?C(U) wb A we.
Then, the solutions of (1) are precisely the n-dimensional integral

manifolds of J on which the restriction of the n-form w! A -+ A w"
is nowhere vanishing.
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In our equations dw? = —3 CZ.(u) wP A w€, the functions CZ_ play
the role curvature. Their derivatives are driven by the Bianchi
identities and, thus, they are quadratic. In order to employ the
Cartan-Kahler theory we need to replace the quadratic terms by
some linear objects. Thus we posit the following two assumptions:
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In our equations dw? = —3 CZ.(u) wP A w€, the functions CZ_ play

the role curvature. Their derivatives are driven by the Bianchi
identities and, thus, they are quadratic. In order to employ the
Cartan-Kahler theory we need to replace the quadratic terms by
some linear objects. Thus we posit the following two assumptions:

Assumption |: Let us assume that there exist a real analytic
mapping F = (F$) : R — R for which

a
d(Cngb Aw®) = aé’;g”(dus + Fi(u) wd) AP AWE (2
Assumption Il:  On the integral manifolds of J, the RHS of (2)
has to vanish, which is a system of algebraic equations for the
unknown I-forms du® (for a fixed u). We assume that it is
non-degenerate, i.e, that equations yield du® € span{w?}. As a
consequence, at any u, the set of all solutions du® is parameterized
by a certain vector space. We will assume that the dimension of
this vector space is a constant D (independent of u).
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J is a differential ideal, thus it is algebraically generated by the
forms T2 and dT?. By (2), we have
0C?
2dT? = 565“) (dus + Fj(u)wd) AwP AwE +2CE TP Aws (3)
u
and therefore, J is algebraically generated by T2 and the 3-forms
—a def 0CE.(u)

B (dus + Fj(u)wd> AwP A we.
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J is a differential ideal, thus it is algebraically generated by the
forms T2 and dT?. By (2), we have
0C?
2dT? = abc(“) (dus + FS,(U)wd) AwP Aw€ +2CE TP Awe (3)

US
and therefore, J is algebraically generated by T2 and the 3-forms

_, def OCE (u
=2 = ﬂ (dus + Fj(u)wd> A wP A we.
ous
If we take Q7 to be some other basis of one-forms for the vector
space span{w?}, we can express the forms =7 as

=P =N AQPAQC, (4)

where T3 _ are linear combinations of the linearly independent
one-forms
{du® + F5(u)w? : s=1,... n}.
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Next, define vq(u), va(u), ..., vo(u), non-negative integers for any
fixed u, as follows:
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The Cartan’s test

Next, define vq(u), va(u), ..., vo(u), non-negative integers for any
fixed u, as follows: vi(u) =0,

vd(u):rank{l'lzc(u) ca=1,...,n, 1§b<c§d}
— rank{l'lzc ca=1,...,n, 1§b<c§d—1};
for1<d<n-1, and
Vo(u) =4 — rank{ e ta=1l...n, 1§b<c§n—1}.

If, for every u € R’, one can find a basis Q2 of span{w?} for which
the Cartan's Test

vi(u) +2vo(u) + - + nvy(u) = D, (5)

is satisfied (remind D is the constant dimension from the above
Assuption II), then the system (1) is said to be in involution.
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The latter method of computation for the Cartan's character

sequence of an ideal is based on the big Bryant et al EDS book,
Proposition 1.15.

Theorem (Cartan, essentially, see the Bryant et al EDS book)

If the system is in involution, then for any ug, there exists a
solution (w?, u) of (1) defined on a neighborhood Q of 0 € R" for
which u(0) = up and

dus|0 = Fj(uo)wd|o.




Geometric structures as EDS
oooooe

The latter method of computation for the Cartan's character
sequence of an ideal is based on the big Bryant et al EDS book,
Proposition 1.15.

Theorem (Cartan, essentially, see the Bryant et al EDS book)

If the system is in involution, then for any ug, there exists a
solution (w?, u) of (1) defined on a neighborhood Q of 0 € R" for
which u(0) = up and

dus|0 = Fj(uo)wd|o.

Moreover, in certain sense (see again the EDS book for a more
precise formulation):

The generality of the solutions

Different solutions (w?, u) of (1), modulo diffeomorphisms, depend
on vi(u) functions of k variables, where vy(u) is the last
non-vanishing integer in the Cartan’s sequence vi(u), ..., va(u).
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The flat model

The spheres appear as Klein models G — G/P in many ways, e.g.
the conformal Riemannian sphere S” € RP"*!, the CR-sphere
§2m+tl © CP"*!, and the quaternionic contact sphere

S§4nt3  HP"+1, respectively, or other nice homogeneous spaces in
the cases of other than positive definite signatures.

All these geometries appear as boundaries of domains, carrying a
lot of information — let us mention the conformal horizons in
mathematical physics, the boundaries of domains in complex
analysis and function theory, and the boundaries of
quaternionic-Kahler domains.
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The flat model

The spheres appear as Klein models G — G/P in many ways, e.g.
the conformal Riemannian sphere S” € RP"*!, the CR-sphere
§2m+tl © CP"*!, and the quaternionic contact sphere

S§4nt3  HP"+1, respectively, or other nice homogeneous spaces in
the cases of other than positive definite signatures.

All these geometries appear as boundaries of domains, carrying a
lot of information — let us mention the conformal horizons in
mathematical physics, the boundaries of domains in complex
analysis and function theory, and the boundaries of
quaternionic-Kahler domains.

The regular Cartan geometries modelled on the hypersphere in
HP™? are called the quaternionic contact geometries.
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The corresponding Lie algebras enjoy very similar algebraic
structures with |2|-gradings where go further splits as b & g;, as
indicated symbolically in the matrix (the  entries mean those
computed from the symmetries of the matrix)

b |g1]| 92
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The corresponding Lie algebras enjoy very similar algebraic
structures with |2|-gradings where go further splits as b & g;, as
indicated symbolically in the matrix (the  entries mean those
computed from the symmetries of the matrix)

b |g1]| 92
g-1|@ | *
g2 | * | *

The corresponding Lie algebras g are so(p+ 1,9 + 1),
su(p+1,9+1), and sp(p+1,g+1). Thus viewing them as matrix
algebras over K = R, C, H], they always have columns and rows of
width 1, n, 1, respectively, and h =K, g1 = K", g1 = K™, g2 is
the imaginary part of K (thus vanishing in the case K = R) and g
is the algebra of the same type as g of signature (p, q).
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Quaternionic contact geometries

Following the work of Biquard, this is a type of geometric structure
describing the Carnot-Carathéodory geometry of the boundary at
infinity of quaternionic Kahler manifolds. From the point of view
of Cartan geometry, this is an instance of parabolic geometries.
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of Cartan geometry, this is an instance of parabolic geometries.

Notice, the first conomology H(g/p, g) appears only in negative
homogeneities, thus the entire geometry is completely defined by
the distribution T~'M C TM of codimension three. This means
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Quaternionic contact geometries

Following the work of Biquard, this is a type of geometric structure
describing the Carnot-Carathéodory geometry of the boundary at
infinity of quaternionic Kahler manifolds. From the point of view
of Cartan geometry, this is an instance of parabolic geometries.

Notice, the first conomology H(g/p, g) appears only in negative
homogeneities, thus the entire geometry is completely defined by
the distribution T~'M C TM of codimension three. This means
that if there were a pre-quaternionic vector space structure on
T—1M for which an algebraic bracket

[, Jag: A°T~IM — TM/T 1M would be an imaginary part of a
hermitian form, then this structure is essentially unique.

Notice, the latter assumption is quite rigid. For example, on
hypersurfaces in H"*! we obtain the Levi form compatible with the
inherited quaternionic structures if and only if the hypersurface is
locally isomorphic to the 3-Sasakian sphere S#713,
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The definition of the geometry

Let M be a (4n+ 3)-dimensional manifold and H be a smooth
distribution on M of codimension three. The pair (M, H) is said to
be a quaternionic contact structure if around each point of M
there exist 1-forms 71, 12, 3 with the common kernel H, a positive
definite inner product g on H, and endomorphisms Iy, I, I3 of H,
satisfying

(h)? = (k)
dns(X,Y)

(/3)2 = _idHa /]_ /2 = _I2 /1 — I37 (6)
2g(1sX,Y) forall X,Y € H.
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The definition of the geometry

Let M be a (4n+ 3)-dimensional manifold and H be a smooth
distribution on M of codimension three. The pair (M, H) is said to
be a quaternionic contact structure if around each point of M
there exist 1-forms 71, 12, 3 with the common kernel H, a positive
definite inner product g on H, and endomorphisms Iy, I, I3 of H,
satisfying

(h)?=(h)?=(k)?=—idy, hh=-hlh=18k (6)
dns(X,Y) =2g(IX,Y) forall X,Y € H.

As well known, if dim(M) > 7, one can always find, locally, a triple
&1, &, &3 of Reeb vector fields on M satisfying for all X € H,

ns(&e) =07, ns(&e, X) = —dne(&s, X) (7)

(67 being the Kronecker delta).
In dimension 7, the existence of Reeb vector fields is our additional
integrability condition on the qc structure.
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The Cartan connection (I.M. & J.S., AGAG, 2017)

The existence of the unique Cartan connection with co-closed
curvature is well known. But in order to apply the Cartan-Kahler
theory, we need explicit formulae and knowledge of the structure of
the complete curvature and its derivatives.
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the type ky : A’g_1 — go. The complete curvature is given as a
value of a differential operator on kp.
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The Cartan connection (I.M. & J.S., AGAG, 2017)

The existence of the unique Cartan connection with co-closed
curvature is well known. But in order to apply the Cartan-Kahler
theory, we need explicit formulae and knowledge of the structure of
the complete curvature and its derivatives.

The harmonic curvature has got only one component, which is of
the type ky : A’g_1 — go. The complete curvature is given as a
value of a differential operator on kp.

By general arguments (due to A. Cap, including BGG machinery),
or by direct experiment, it turns out that the curvature cannot
have non-trivial values in all the slots indicated by zero:

Olg1]0
0gp| *
0] x| %
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The procedure

Consequently, we may proceed in the following steps:

e Find partial prolongation of the structure equations to the
principal fiber bundle Py — M with the structure algebra H
with the normalized structure equations.
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the prolongation P; — Py by normalizing the structure
equations so that the other two curvature slots vanish, as
expected.
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equivariance properties as well as co-closed curvature.
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e Compute (and parameterize) the differentials of the curvature
components explicitly (will be necessary for the Cartan-Kahler
approach).
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The procedure

Consequently, we may proceed in the following steps:

e Find partial prolongation of the structure equations to the
principal fiber bundle Py — M with the structure algebra H
with the normalized structure equations.

@ Work further on Py and construct the complete coframe on
the prolongation P; — Py by normalizing the structure
equations so that the other two curvature slots vanish, as
expected.

@ Observe that the coframe has got the uniqueness and
equivariance properties as well as co-closed curvature.

e Compute (and parameterize) the differentials of the curvature
components explicitly (will be necessary for the Cartan-Kahler
approach).

(All this is available in the AGAG paper.)
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Brief account on the computations

The small Greek indices «, 3,7, ... have got the range 1,...,2n,
whereas the indices s, t, k, I, m are running from 1 to 3.

R*" is considered with its standard inner product (,) and a
quaternionic structure induced by the identification R*” = H" with
the quaternion coordinate space H", i.e. we fix triple J1, J», J3 of
complex structures which are Hermitian with respect to (,) and
satisfy 1 b = —h Sy = 3.

The complex vector space C*" then splits as a direct sum of +i
and —i eigenspaces, C*" = W @ W, with respect to the complex
structure J1. The complex 2-form ,

m(u,v) def (Jou,v) + i{Jzu,v), u,v e C*,

has type (2,0) with respect to Ji, i.e., it satisfies
w(hu,v) =7(u, hv) = in(u,v).



The qc structures
Further, fix an (, )-orthonormal basis

{eq €W, e5 € W, ¢q = Ca,
with dual basis {¢®, ¢®} so that
m=cel A4 2 Ae™2 44 e" A e Then
<v>:ga59a®65+gaﬁea®€5, 7T=7ragea/\eﬁ
with
L fag 1, ifa+tn=4

- = O =— , T = —Tr = —17 f — + n
gaﬁ gﬁa {07 If “ # ﬁ v - 0 IOt:erWie
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Further, fix an (, )-orthonormal basis

{eq €W, e5 € W, ¢q = Ca,

with dual basis {¢®, ¢®} so that
m=el N4 e Ne™2 4 4 e" Ae® Then

<7>:ga5€a®65+g@565‘®65, W:WageaAeﬁ
with

1, if a+n=
1, ifa=0 1 i 5 +ﬁ
3 =83, = , Tag = —Taa =< —1, ifa= n
8B =800 " o, ifaxp pe _
0, otherwise.
We also introduce a complex antilinear endomorphism j of tensor
algebra of R*", which takes a tensor with components

Ty . O

3 _ _ —_ 5’1 &k T1 Tl - _
()T)m---akfh--ﬂ/--- = g Moy Moy Mg Mg oo To1..50mn.

01...0kTL...T[...
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The Py step

If (M, H) is a qc manifold, defined in terms of 7s, /s, g, and

1, 72, 73, then there exists a natural principle bundle 79 : Pp — M
with structure group CSO(3) = R* x SO(3) whose local sections
are precisely the triples of 1-forms (11,12, 73) satisfying (6).
Further, on Py we obtain a global triple of canonical one-forms
which we denote again by (11,72,73). The exterior derivatives of
the canonical one-forms are

di = —po A1 — g2 A1 + 93 Aipa + 2ig,5 0% A 0° ]
dna = —po A2 — @3 A+ 01 Az + g 0% A O° + 75507 A 6O°
dns = —@o Az — @1 A2+ 2 Ay — ima 0% AP + iTrag@E“A@E,
(8)
where ©g, 1, p2, 3 are some (local, non-unique) real one-forms
on Py, 0% are some (local, non-unique) complex and semibasic
one-froms on Pg.
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Towards the P; prolongation

One can show that, if G, $1, B, B3, 6% are any other one-forms
(with the same properties as g, p1, ¥2, ©3,0<) that satisfy (8),
then

(60 = U36° + irny + 1 r? (112 + ims)
Po = 9o+ 2Uszr70° + 2U5,r70° + A + Aomp + Az
$1 =1 — 2iUs5170% + 2iU3,r70% + 2151711 — A3tz + Ao,
P2 =2 = 2mor UGrT0P — 2m5zUZr70% + Ay + 2151712 — Aaa,
\@3 = @3 + 2Ty UngHB — 2imsz Ugﬁ@ﬁ — Ao+ Amp + 2r5ron3,
(9)

where Ug, r®, As are some appropriate functions; A1, Ao, A3 are
real, and {U§} € Sp(n) C End(R*").

The functions Ug, r® and s give a parametrization of a Lie group
diffeomorphic to Sp(n) x R4™3.
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The P; bundle and the canonical coframe

There is a canonical principle bundle 71 : Py — Py whose local
sections are the one-forms g, ©1, ¥2, p3,0% on Py satisfying (8).
We use g, v1, 2, p3,0% to denote also the induced canonical
(global) one-forms on the principal bundle P;. Then, on Py, there
exists a unique set of complex one-forms I',3, »* and real
one-forms 11,15, 13 so that

Fag =Tgas  (iMNas =Tap- (10)
and the following equations hold true:
do™ = —igp™ Ay — w27 A (2 + inz) — T Top A 68 — %(cpo + i) N O

—373(p2 + itp3) A 07

do = —th1 At — 2 A — b3 Az — 23 A 0° — 265 A 07
dipr = —p2 A o3 — W2 A3 + U3 A + 2idp A 0° = 2ip5 A 67
dpp = —p3 A1 — s A+ 1 Az — 21,67 A OP — 27,507 N OP i
dps = =1 A2 — 1 Amp 4 b2 Ay + 2ime,¢7 N 0P — 2im 507 N 6P,

(11)
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The complete structure equations on P;

The latter one-forms {ns}, {6}, {vo}, {¢s} {Tag}t {0%} {¥s}
represent the components of the canonical Cartan connection
corresponding to a fixed splitting of the relevant Lie algebra

sp(n+1,1) =g 2@ g1 SR @ sp(1) ® sp(n) D1 © go.

90

We have seen big part of the structure equations already, the
remaining ones will display the curvatures components

Sa,@’yé» Vaﬁ’ya ’Coz,37 Mocﬁa eaa g_fcw fPa Qa R

satisfying:
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(1) Each of the arrays {8a8+s}, {Vagy}s {Las}, {Mags} is totally
symmetric in its indices.
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(1) Each of the arrays {8a8+s}, {Vagy}s {Las}, {Mags} is totally
symmetric in its indices.

(1) We have

(jL)aﬁ = Laﬂ (12)
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(1) Each of the arrays {8a8+s}, {Vagy}s {Las}, {Mags} is totally
symmetric in its indices.

(1) We have
(iS)apys = Sapys
(jL)aﬁ = Laﬂ (12)
R=1R.

(111) The exterior derivatives of the connection one-forms o3, ¢q
and s are given by
dlap = =77 Tao ATrg+273(5 A 05 — ¢5 AOg) + 275 (da A 05 — b5 AOa)
77 Sape 07 NG 4 (vam 07 + 13 % Vors m) A
— i3 Vape 07 A (m2+ in3) + i(V)apy 07 A (12 — in3)

—iLag(m+im) A (m —im)+Magm A (m2 4+ in3) + (iM)agm A (2 — ins),
(13)
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1 ) 1 , ; 3 _ 4
dpa = 5((,004’!@1)/\(1)04+§7Ta"{(‘p27’303)/\¢77ﬂ-g ra”_Y/\(z)’Yigwl/\ea
: - _ .
— 5 Man (Y2 — i3) NO7 — im§ Varno 07 N O° + Many 07 A +7G L5507 A

+ iLar 07 A (m2 — im3) — ig Mao 07 A (m2 + in3) — Ca(m2 + im3) A (n2 — in3)
+ Ha m A (7]2 + ’773) + iTao ce mA (772 - i773)7

dy1 = o A1 *@2/\1/13+903/\1/12*4/%/\@+4W§LWU6’WA05+4CWGVAW1
+4C5 07 Ay — 4imsz C7 07 A (2 + inm3) + 4imye €7 07 A (12 — ins)
+ P A (2 + in3) + Pou A (2 — in3) + iR (2 + ing) A (2 — i),
dyp +idps = (po —ip1) A (Y2 + ihs) +i(p2 + ip3) A
+ 41,567 A @0 + 4ind M,507 A0
+ 4i7'rf_/ C5 07 Am— 435607 Am
— 4iC5 07 A (2 + im3) — 4i7'rf_; Hz 67 A (2 — in3)
iRy A (2 + im3) + Qi A (n2 — ing) — P (2 + i) A (m2 — in3).



The qc structures
00000000000000e

Structure of the curvature

All the potentially nonzero curvature components of &, as just
deduced, are listed in the table:

homogeneity the cochains object in structure eq.

2 g-1Ag_1— sp(n) Sapys

3 g—2®g-1— sp(n) Vasy

3 g-1/Ng-1 01 Vs

4 go2ANg_2— 5p(n) Laﬁ; Maﬁ

4 g2®g-1— 01 Lap Mags

4 g-1/Ng-1— @ Lag, Mag

5 g2/Ng-—2— 01 Cao, Ha

5 g2@0¢g-1— 02 ea’g{a

6 g2Ng_2— go P, QR

Notice that it is the 9*x = 0 normalization which enforces several
potentially different components to coincide.
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Essentially finished followup paper with |.M.

Now we come to the Cartan test quest.

In order to show that the Assumptions | and |l on the geometric
structures via EDS holds true, we may observe that the Bianchi
identities imply that the one-forms expressing the differentials of
the curvature functions belong to the linear span of 71, n2, 13, 0<,
6% (quite lengthy and technical, all already in the AGAG paper).
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Essentially finished followup paper with |.M.

Now we come to the Cartan test quest.

In order to show that the Assumptions | and |l on the geometric
structures via EDS holds true, we may observe that the Bianchi
identities imply that the one-forms expressing the differentials of
the curvature functions belong to the linear span of 71, n2, 13, 0<,
6% (quite lengthy and technical, all already in the AGAG paper).

Furthermore, if we are considering the Bianchi identities as a
system of algebraic equations for the unknown one-forms expressing
the differentials of the curvature functions, then the solutions may
be parametrized by elements of a certain vector space.
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More explicitly, on Pj, there exist unique, globally defined, complex
valued functions

Aa,@'ydea ‘Ba,é"yﬁ? ea,@'yéy Da,ﬁ’ya Eaﬁ'ya ?a,B'w 904,37 xa,@a
Yas: Zags N1)a, N2)a, (N3)a, Na)as Ns5)a, Us, Ws  (14)

so that:

(1) Each of the arrays {Aagyset {Bagysts {Casyst {Dasy}
{€apy} {Fapr}. {Gasrt, {Xash {Yap}, {Zas} is totally
symmetric in its indices.

(1) The differentials of all the curvature components are expressed
in a linear way by means of the latter tensors and the curvature
and the coframe.
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More explicitly, on Pj, there exist unique, globally defined, complex
valued functions

Aa,@'ydea ‘Ba,é"yﬁ? ea,@'yéy Da,ﬁ’ya Eaﬁ'ya ?a,B'w 904,37 xa,@a
Yas: Zags N1)a, N2)a, (N3)a, Na)as Ns5)a, Us, Ws  (14)

so that:

(1) Each of the arrays {Aagyset {Bagysts {Casyst {Dasy}
{€apy} {Fapr}. {Gasrt, {Xash {Yap}, {Zas} is totally
symmetric in its indices.

(1) The differentials of all the curvature components are expressed
in a linear way by means of the latter tensors and the curvature
and the coframe.

This concludes, that the qc structures might be discussed via the
Cartan test.
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For the (real) dimension D of the vector space determined by (14),
we calculate

2 4 2 2 2 2 1
D:2< ”5+ >+4< ";3>+6< "; >+8< ”2+ )+20n+12

- 12—5(2n +5)(2n+ 3)(n+ 3)(n + 2)(n + 1).

In order to show that our exterior differential system J is in
involution — which would allow us to apply the Cartan’s Third
Theorem to it — we need to compute the character sequence
Vi, V2, V3, ..., Vq, of the system and show that the Cartan’s test

D:V1+2V2+3V3+"'+dlvd1

is satisfied, where di = (2n+ 5)(n + 2) is the dimension of P;.
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A lengthy and technical computation shows (1 < A < n)

va=3(A—1)(A —2n—4)(A —2n —5)
Vatr = 3(n+A—1)(n—A+4)(n—\+5)

Wn+l = 12n

Vony2 = 6n+3

Von43 = 2n+2

Vnysa = Wp45 = ... = Vg = 0.

Moreover, the Cartan test works!!!
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A lengthy and technical computation shows (1 < A < n)

va=3(A—1)(A —2n—4)(A —2n —5)
Vatr = 3(n+A—1)(n—A+4)(n—\+5)
Vopty1 = 12n

Vony2 = 6n+3

Von43 = 2n+2

Vopts = Vopys = ... = Vg = 0.

Moreover, the Cartan test works!!!

n=1
D=2%-7-54-3.-2=112
0:14+1-20+2-10+3-12+4-9+5-4 =112
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A lengthy and technical computation shows (1 < A < n)

va=3(A—1)(A —2n—4)(A —2n —5)
Vatr = 3(n+A—1)(n—A+4)(n—\+5)
Vopty1 = 12n

Vony2 = 6n+3

Von43 = 2n+2

Vopts = Vopys = ... = Vg = 0.

Moreover, the Cartan test works!!!

n=1

D=2%-7-54-3.-2=112
0:14+1-20+2-10+3-12+4-9+5-4 =112
n=2:

D=2-9-7-5-4-3=504
1-0+2-21+3-30+4-30+5-24+6-15+7-6 = 504.
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The generality of the quaternionic contact structures

The quaternionic contact structures in dimension 4n+ 3 depend on
2n + 2 functions of 2n + 3 variables.
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The generality of the quaternionic contact structures

Theorem

The quaternionic contact structures in dimension 4n+ 3 depend on
2n + 2 functions of 2n + 3 variables.

o
Moreover, given some arbitrary complex numbers 8° s v

By’
Lﬂ J\/[ GOiH P°, Q°, fR A2 e agw QW, Dagv,
a,B'y 9a,8 Xq af’ H (N )ar (N )ocr (N3)Ou (N4)0u

(No)a, uo W° depending tota/ly symmetrically on the indices
1<a,8,7,0 < 2iand satisfiyng (i8°)apys = Sgpys:

(1£°)ap = Lopr R° = R°, there exists a real analytic qc structure
defined in a neighborhood Q of 0 € R*"*3 such that for some
point u € Py with wo(m1(u)) = 0 the curvature functions and their
derivatives are given by these complex numbers.
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The generality of the quaternionic contact structures

Theorem

The quaternionic contact structures in dimension 4n+ 3 depend on
2n + 2 functions of 2n + 3 variables.

Moreover, given some arbitrary complex numbers 8° s VZM,
L:ﬂ J\/[O GOO I, Pe, Q°, CRO Ao e 0@75' alivé’ ZQW
afy’ 9a,8 Xq af’ H (N )ar (N )ocr (N3)Ou (N4)0u
(No)a, uo W° depending tota/ly symmetrically on the indices
1<a,B,7,0< 2iand satisfiyng (i8°)apys = 8(01675'
(1£°)ap = Lopr R° = R°, there exists a real analytic qc structure
defined in a neighborhood Q of 0 € R*"*3 such that for some
point u € Py with wo(m1(u)) = 0 the curvature functions and their
derivatives are given by these complex numbers.

It is interesting to compare this to an old result by Claude LeBrun
(Duke Math. J., August 1991) where he finds a nontrivial

Aefarmation of the Aliaterninic cantact ctriictiire an the enherea
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