
SPECIAL REFLEXIVE GRAPHS IN MODULAR VARIETIES
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Abstract. We investigate a special kind of reflexive graphs in any congruence

modular variety. When the variety is Maltsev these special reflexive graphs

are exactly the internal groupoids, when the variety is distributive they are
the internal reflexive relations. We use these internal structures to give some

characterizations of Maltsev, distributive and arithmetical varieties.

Introduction

A variety of universal algebras is congruence modular if all algebras have modular
lattice of congruences. An important aspect of modular varieties is that they admit
a good theory of commutators of congruences [10], [9], [6], [15]. Any congruence
is an internal reflexive graph, actually a groupoid, and the importance of internal
categorical structures in commutator theory has been pointed out in various recents
papers [2], [3], [5], [11], [12], [17], [18], [19]. The purpose of this paper is to prove
some properties of these internal structures which make it possible to characterize
important classes of modular varieties.

Given a modular variety V of universal algebras, one can consider the category
RG(V) of (internal) reflexive graphs in V: the objects in this category are diagrams
of the form

X1

d //

c //
X0

eoo

with d ◦ e = 1X0 = c ◦ e. The homomorphism d represents the domain, c the
codomain and e the reflexivity of the reflexive graph. In any modular variety
a reflexive graph is equipped with at most one internal groupoid structure. A
reflexive graph X as above is underlying a groupoid structure if and only if the
kernel congruences R[d] and R[c] have trivial commutator and they permute [8]:

(1) [R[d], R[c]] = ∆X1 and (2) R[d] ◦R[c] = R[c] ◦R[d]

(∆X1 is the smallest congruence on X1). Let us denote by Grpd(V) the category
of internal groupoids in V and by RG+(V) the category of reflexive graphs in V
satisfying only property (1), that we call special reflexive graphs.

The characterisation of internal groupoids we just recalled says in particular that
there are embeddings U : Grpd(V) → RG+(V) and V : RG+(V) → RG(V). It is
not difficult to see that both these functors actually have left adjoints

Grpd(V)
U

// RG+(V)⊥
Foo

V
// RG(V),⊥

Goo
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so that U and V are inclusions of reflective subcategories.
In the present paper we prove that these adjunctions allow one to distinguish

three classes of modular varieties. We first show that RG+(V) is always a sub-
variety of the variety of internal reflexive graphs RG(V). As a consequence, we
show that a modular variety is Maltsev precisely when Grpd(V) is a subvariety of
RG(V), and it is distributive precisely when RG+(V) is equivalent to the category
of reflexive relations. Thus, when a variety is arithmetical, namely when it satisfies
both these conditions, the category RG+(V) is equivalent to the category Cong(V)
of congruences in V. Finally, a characterization of arithmetical varieties can be
given: a modular variety V is arithmetical if and only if Cong(V) is a subvariety of
RG(V).

1. Internal reflexive graphs

In this section we briefly recall some basic internal categorical structures that
will play a central role in the following. C will denote a category with finite limits.

An internal reflexive graph X is a diagram

X1

d //

c //
X0

eoo

in C satisfying the identities d◦ e = 1X0 = c◦ e. An arrow in the category RG(C) of
(internal) reflexive graphs in C is a pair of arrows (f0, f1) in C making the diagram

X1

d //

c //

f1

��

X0
eoo

f0

��
Y1

δ //
γ //

Y0
εoo

commute. An internal reflexive graph X has an internal groupoid structure when
there is an arrow m : X1×X0 X1 → X1, the composition, and an arrow i : X1 → X1,
the inversion, satisfying the usual axioms of a groupoid:

(1) m ◦ (1X1 , e ◦ c) = 1X1 = m ◦ (e ◦ d, 1X1) (unit axiom)
(2) d ◦ p1 = d ◦m and c ◦ p2 = c ◦m (m has the right domain and codomain)
(3) m ◦ (1X1 ×X0 m) = m ◦ (m×X0 1X1) (associativity)
(4) d ◦ i = c, c ◦ i = d, m ◦ (1X1 , i) = e ◦ d and m ◦ (i, 1X1) = e ◦ d (inverse).

An arrow in the category Grpd(C) of internal groupoids in C is an arrow (f0, f1)
in RG(C) which is also required to respect the composition: this means that the
diagram

X1 ×X0 X1

mX

��

f2

//Y1 ×Y0 Y1

mY

��
X1

f1 //Y1

must commute.
We shall be interested in a structure which is intermediate between the one of

internal reflexive graph and the one of internal groupoid. This structure, that we
call a special reflexive graph, is deeply related to the notion of pseudogroupoid
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which appears in commutator theory [12]. In order to explain this structure, we
need to fix some notations.

Any reflexive graph X in C naturally determines the equivalence relations

R[d]

p1 //
p2 //

X1
εoo

and

R[c]

p1 //
p2 //

X1
εoo

which are the kernel pairs of d and c, respectively.
We can then consider the following pullback:

R[d]�R[c] //

��

R[c]×R[c]

(p1×p2,p1×p2)

��
R[d]×R[d]

(p1,p1)×(p2,p2)
// X1 ×X1 ×X1 ×X1

In the set-theoretical context R[d]�R[c] is the subobject of X4
1 corresponding to

the four-tuples (f, g, k, h) of elements of X1 (= edges of the reflexive graph) with
the appropriate domain and codomain:

fR[d]g, kR[d]h, fR[c]k and gR[c]h.

An element (f, g, k, h) in R[d]�R[c] will be then pictured as follows:

f
??�������

g
��?

??
??

??

k

__???????

h����
��

��
�

Via the obvious projections, the object R[d]�R[c] determines a double equivalence
relation on R[d] and R[c], namely an equivalence relation in the category of equiv-
alence relations:

R[d]�R[c]

π3,4

��

π1,2

��

π1,3 //

π2,4
// R[c]

p2

��

p1

��
R[d]

p1 //

p2
// X1

This double equivalence relation, which is the largest one on R[d] and R[c], is called
the parallelistic double equivalence relation on R[d] and R[c] [5].

We shall denote by sd : R[d] → R[d]�R[c] and sc : R[c] → R[d]�R[c] the arrows
giving the reflexivity of the double equivalence relation R[d]�R[c] on R[d] and R[c].
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Accordingly, sd applied to a pair of edges f and g with the same domain will give

f
??�������

g
��?

??
??

??

f
__???????

g
����

��
��

�

while sc applied to a pair of edges h and k with the same codomain will give

h

??�������

h ��?
??

??
??

k

__???????

k����
��

��
�

1.1. Definition. An internal reflexive graph in C is special if there is an arrow
µ : R[d]�R[c] → X1 in C satisfying the following properties:

(1) d ◦ µ = d ◦ p2 ◦ π3,4 and c ◦ µ = c ◦ p1 ◦ π1,2

(2) µ is independent of the third variable
(3) µ ◦ sd = p1 ◦ π1,2 and µ ◦ sc = p1 ◦ π1,2

In terms of elements (via the Yoneda embedding) these axioms simply say that
(1) µ(f, g, k, h) is “parallel” to k, namely µ(f, g, k, h) has the same domain and

the same codomain as k:

f
??�������

g
��?

??
??

??

µ(f,g,k,h)
__???????

h����
��

��
�

(2) µ(f, g, k, h) = µ(f, g, k′, h)
(3) µ(f, g, f, g) = f and µ(f, f, k, k) = k

1.2. Remark. From now on we shall call arrows the edges of a reflexive graph.
Any arrow f : A → B in X1 gives rise to two elements in R[d]�R[c]:

f
??�������

1A ��?
??

??
??

f
__???????

1A����
��

��
�

and

1B

??�������

1B ��?
??

??
??

f
__???????

f����
��

��
�
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The arrow µ : R[d]�R[c] → X1 allows one to “compose” f with 1A and with 1B :
by axiom 3 one gets

µ(f, 1A, f, 1A) = f and µ(1B , 1B , f, f) = f,

namely the usual identity axiom. However, in general, one can only compose those
composable pairs of arrows

A
f // B

g // C

for which there exists an arrow k having the same domain as f and the same
codomain as g:

A
f //

k

��
B

g // C

When this is the case, one defines m(f, g) = µ(g, 1B , k, f).

1.3. Remark. The notion of special reflexive graph is a simplified version of the
notion of reflexive graph with a pseudogroupoid structure in the sense of Janelidze
and Pedicchio on R[d] and R[c].

We shall denote by RG+(C) the category of special reflexive graphs in C, where
arrows are required to respect the structure: the diagram

R[d]�R[c]

µX

��

f

//R[d]�R[c]

µY

��
X1

f1 //Y1

should commute.
Clearly, any internal groupoid is a special reflexive graph: if m : X1×X0 X1 → X1

is the multiplication of the groupoid structure, i its inversion and

f
??�������

g
��?

??
??

??

k

__???????

h����
��

��
�

an element in R[d]�R[c], one then sets µ(f, g, k, h) = m(f,m(i(g), h)).
Via this natural interpretation one sees that the inclusion U : Grpd(C) → RG+(C)

is always full, but the forgetful functor V : RG+(C) → RG(C) is not full, in general.
When the category C is locally finitely presentable, then the previous functors

have left adjoints:

1.4. Proposition. Let C be a locally finitely presentable category. Then we have
the adjunctions

Grpd(C)
U

// RG+(C)⊥
Foo

V
// RG(C).⊥

Goo
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Proof. It is not difficult to check that any limit of special reflexive graphs in C is
a special reflexive graph. Since filtered colimits commute with finite limits, this is
also the case for a filtered colimit of special reflexive graphs. Now, when C is locally
finitely presentable, so is the functor category RG(C). The categories Grpd(C) and
RG+(C) can be seen as models for the respective finite limit sketches, and therefore
they are locally finitely presentable (see Proposition 1.53 in [1]). Following Theorem
1.66 in [1] the functors U : Grpd(C) → RG+(C) and V : RG+(C) → RG(C) are right
adjoints. �

2. Modular varieties

In this section we shall prove that, when V is a variety of universal algebras,
then the category RG+(V) is itself equivalent to a variety, actually a subvariety of
RG(V).

Let us first recall that a variety V of universal algebras is congruence modular
when, for any algebra X in V, the lattice of congruences on X is modular: for any
R,S, T in Con(X) if T ≤ R then R ∧ (S ∨ T ) = (R ∧ S) ∨ T .

2.1. Examples. Any Maltsev variety [20] is modular, hence in particular the
varieties of groups, quasigroups, rings, Heyting algebras, Lie algebras and crossed
modules. Also any distributive variety is modular, as for instance the varieties of
lattices, or of median algebras [9].

In any modular variety, the condition characterizing special reflexive graphs can
be expressed in terms of commutators [12] [2]. Indeed, a reflexive graph X is special
if and only if the commutator is trivial: [R[d], R[c]] = ∆X1 . The internal groupoids
can be also characterized by a simple condition:

2.2. Theorem. [8] For a reflexive graph X the following conditions are equivalent:

(1) X has a unique groupoid structure;
(2) [R[d], R[c]] = ∆X1 and R[d] ◦R[c] = R[c] ◦R[d].

We can now state our new results:

2.3. Proposition. If V is a modular variety, then RG+(V) is a subvariety of the
variety RG(V).

Proof. Whenever V is a variety of universal algebras, the category RG(V) is itself
equivalent to a variety. In order to prove it, let W be the variety whose theory has
the same operations as V together with two additional unary operations s and t
satisfying the following conditions: s ◦ t = t, t ◦ s = s and both operations s and
t are homomorphisms in V. One can define a functor K : RG(V) → W sending a
reflexive graph

X1

d //

c //
X0

eoo

to the algebra X1 in W, where the two additional unary operations are s = e ◦ d
and t = e ◦ c. The functor K is defined on arrows by K(f0, f1) = f1.

It is not difficult to check that K is essentially surjective on objects. For this,
let us remark that given any algebra A in W equipped with unary operations s and
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t, it is clear that s and t have the same regular image, that we denote by I. The
algebra A is then isomorphic to K(X) where X is the reflexive graph

A

δ //
γ // I
εoo

where ε ◦ δ = s and ε ◦ γ = t. Since K is clearly fully faithful, the functor K is an
equivalence of categories.

On the other hand, in the modular context, a multiplication µ : R[d]�R[c] →
X1 is unique, when it exists (Theorem 2.12 in [2]). Moreover, the embedding
V : RG+(V) → RG(V) is full, and its left adjoint F : RG(V) → RG+(V) is given
by the quotient of X1 by the congruence [R[d], R[c]]:

X1

d //

c //

η

��

X0
eoo

X1
[R[d],R[c]]

δ //
γ //

X0.
εoo

Indeed, the universal property of the commutator asserts that [R[d], R[c]] is the
smallest congruence T with the property that in the canonical quotient φ : X1 → X1

T
one has that [φ(R[d]), φ(R[c])] = ∆X1

T
.

The unit (1X0 , η) of the adjunction is clearly a regular epimorphism in RG(V),
hence RG+(V) is closed in RG(V) under subobjects.

Let us then prove that RG+(V) is also closed in RG(V) under regular quotients.
For this, let (f0, f1) be a regular epimophism from X to Y in RG(V), with X a
special reflexive graph:

X1

d //

c //

f1

��

X0
eoo

f0

��
Y1

δ //
γ //

Y0
εoo

There is an arrow f̃ from R[d] to R[δ] induced by the universal property of the
kernel pair:

R[d]

f̃

��

p2
//

p1 //
X1

(1)f1

��

d // X0

f0

��
R[δ]

p2
//

p1 //
Y1

δ
// Y0

Now, let i ◦ q be the regular epi-monomorphic factorization of f̃ . The square (1) is
easily checked to be a pushout because d, δ are split epimorphisms and f0 and f1

are regular epis. This implies that δ is the coequalizer of p1 ◦ i and p2 ◦ i, so that
R[δ] = f1(R[d]), where the right-hand side of the equality represents congruence
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generated by f1(R[d]). In any modular variety the commutator preserves the regular
“direct images”, namely if f1 is a regular epi, then

f1[R[d], R[c]] = [f1(R[d]), f1(R[c])].

Accordingly,

[R[δ], R[γ]] = [f1(R[d]), f1(R[c])]

= f1[R[d], R[c]]

= f1(∆X1)
= ∆Y1 ,

and Y is a special reflexive graph as well. �

2.4. Corollary. For a modular variety V the following conditions are equivalent:
(1) V is Maltsev;
(2) Grpd(V) is a subvariety of RG(V).

Proof. 1. ⇒ 2. Thanks to Theorem 2.2 we already know that RG+(V) ' Grpd(V),
since in a Maltsev variety the condition R[d] ◦R[c] = R[c] ◦R[d] is always satisfied.
One then concludes by the previous proposition.

2. ⇒ 1. If Grpd(V) is closed in RG(V) under subobjects, then in particular any
reflexive relation

R

d //

c // X
eoo

in V is then a groupoid, since it is a subobject of the largest congruence

X ×X

p1 //
p2 // X
eoo

�

2.5. Example. We are now going to consider the important example when V is
the Maltsev variety Grp of groups. Let us first recall that an object in the category
PX-Mod of precrossed modules is an arrow

α : A → B

in the category of groups with an action of B on A, written ba for any a ∈ A and
b ∈ B, satisfying the axiom α(ba) = bα(a)b−1. An arrow (f0, f1) : (α, A,B) →
(α′, A′, B′) in PX-Mod is a pair of homomorphisms of groups making the square

A

f1

��

α
// B

f0

��
A′

α
// B′

commute and such that f0(b)f1(a) = f1(ba). A precrossed module is a crossed
module [21] when, furthermore, α(a)a′ = aa′a−1. We write X-Mod for the full
subcategory of PX-Mod whose objects are crossed modules.

It is well-known [4] that the category X-Mod is equivalent to the category
Grpd(Grp) of internal groupoids in the category of groups, whereas the category
PX-Mod is equivalent to the category RG(Grp) of internal reflexive graphs in
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groups. The category X-Mod can then be seen as a subvariety of the variety PX-
Mod. The same is true, much more generally, for the so-called “internal crossed
modules” in any semi-abelian variety [13].

3. Distributive varieties

In this section we use the previous results to characterize distributive and arith-
metical varieties.

We begin by recalling a useful result relating the congruence distributivity to a
property of the commutator:

3.1. Theorem. [6] For a modular variety V the following properties are equivalent:

(1) V is distributive;
(2) [R,S] = R ∧ S for any pair of congruences R and S on any X in V.

Let RR(V) denote the category of reflexive relations in V, and let Eq(V) be the
category of equivalence relations in V (=congruences). Since the commutator of two
congruences is always contained in the intersection [R,S] ≤ R ∧ S, the category
RR(V) is a (full) subcategory of RG+(V). On the other hand, the category Eq(V)
is a full subcategory of Grpd(V). Then the following result holds (the equivalence
of the conditions 1. and 3. is known, and it was proved in [19]):

3.2. Proposition. For a modular variety V the following conditions are equivalent:

(1) V is distributive;
(2) RR(V) ' Rg+(V);
(3) Eq(V) ' Grpd(V).

Proof. 1. ⇒ 2. follows from Theorem 3.1.
2. ⇒ 3. Any internal groupoid is a special reflexive graph, hence a reflexive

relation, and then an equivalence relation.
3. ⇒ 1. It suffices to prove that for any congruence relation T one has that

[T, T ] = T . Indeed, from this fact it will follow that for any R and S on X

R ∧ S = [R ∧ S, R ∧ S] ≤ [R,S] ≤ R ∧ S

thus V is distributive by Theorem 3.1.
For this, let us consider a congruence T on X and the canonical quotient X

[T,T ] :

[T, T ]
//
// X

q // X
[T,T ]

Since [T, T ] ≤ T , there is an arrow g : X
[T,T ] →

X
T such that g ◦ q = f , where

f is the quotient X → X
T . Moreover, the direct image q(T ) of T along q is a

congruence, and the universal property of the commutator gives [q(T ), q(T )] = ∆.
This implies that there is a connector [3] on q(T ) and q(T ), namely an arrow
p : q(T )× X

[T,T ]
q(T ) → X

[T,T ] such that

(1) (x, p(x, y, z)) ∈ q(T ) and (z, p(x, y, z) ∈ q(T )
(2) p(x, y, y) = x and p(x, x, y) = y
(3) p(x, y, p(z, u, v) = p(p(x, y, z), u, v)
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One can then costruct the canonical groupoid associated with this connector, which
is defined as follows: the underlying reflexive graph is given by

q(T )× X
[T,T ]

q(T )
p1 //
p3 //

X
[T,T ]

εoo

where p1(x, y, z) = x, p3(x, y, z) = z, ε(x) = (x, x, x). For any composable pair of
triples ((x, y, z), (z, u, v)) in R[p1]q(T )× X

[T,T ]
q(T )R[p3] one then defines

m((x, y, z), (z, u, v)) = (x, p(y, z, u), v)

and

i(x, y, z) = (z, p(z, y, x), x).

One can then check that in this way the reflexive graph just defined is equipped
with a structure of internal groupoid. By assumption it is then an equivalence
relation, so that the pair of arrows p1 and p3 are jointly monic. Now, for any (x, y)
in q(T ) the elements (x, y, y) and (x, x, y) are both in q(T ) × X

[T,T ]
q(T ). Since the

pair of arrows p1 and p3 are jointly monic, it follows that x = y, q(T ) = ∆ and
[T, T ] = T , as desired. �

4. Arithmetical varieties

A variety is arithmetical if it is both Maltsev and distributive. This is the case
exactly when there is a ternary term p(x, y, z) satisfying the axioms p(x, y, y) = x,
p(x, x, y) = y and p(x, y, x) = x (the Pixley axiom). Among the examples of
such varieties let us mention Heyting algebras, boolean algebras and von Neumann
regular algebras.

4.1. Proposition. Let V be a modular variety. Then the following conditions are
equivalent:

(1) V is arithmetical;
(2) Eq(V) is a subvariety of RG(V).

Proof. 1. ⇒ 2. By Proposition 3.2 one knows that Eq(V) ' Grpd(V). The result
then follows from Corollary 2.4.

2. ⇒ 1. Let us consider any reflexive relation

R

d //

c // X
eoo

in V. Since it is a subobject of the equivalence relation

X ×X

p1 //
p2 // X
eoo

it is itself an equivalence relation, and V is Maltsev.
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On the other hand, any internal groupoid X is a quotient of an equivalence
relation canonically built from X

R[d]

p1 //
p2 //

s

��

X1
eoo

c

��
X1

d //

c //
X0

eoo

where s is the arrow (internally) sending a pair of arrows (α, β) with the same
domain to the composite s(α, β) = β ◦ α−1. Now, Eq(V) is closed in RG(V) under
quotients, hence X is an equivalence relation and the forgetful functor W : Eq(V) →
Grpd(V) is surjective on objects, hence an equivalence. By Proposition 3.2 the
variety V is distributive, and this completes the proof. �
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