Good colimits, weak factorization systems and model categories

J. Rosický

joint work with M. Makkai and L. Vokřínek

Murcia 2013

Definition 1. Given a class \mathcal{X} of morphisms in a category \mathcal{K} , we define \mathcal{X} -*cellular* morphisms as transfinite compositions of pushouts of morphisms from \mathcal{X} and \mathcal{X} -*cofibrations* as retracts of \mathcal{X} -cellular morphisms.

We use the notation $cell(\mathcal{X})$ and $cof(\mathcal{X})$ for the classes of \mathcal{X} -cellular morphisms and \mathcal{X} -cofibrations. Po(\mathcal{X}) denotes the class of pushouts of morphisms from \mathcal{X} .

If \mathcal{K} is a locally presentable category and \mathcal{X} a set then $(cof(\mathcal{X}), \mathcal{X}^{\Box})$ is a functorial weak factorization system where \mathcal{X}^{\Box} consists of morphisms having the right lifting property for each morphism in \mathcal{X} .

In this case we say that $(\mathcal{K}, cof(\mathcal{X}))$ is a *combinatorial* category.

An object K is called \mathcal{X} -cofibrant if the unique morphism $0 \to K$ from the initial object is an \mathcal{X} -cofibration.

Let \mathcal{K} be a Grothendieck category and \mathcal{S} a class of objects in \mathcal{K} . An \mathcal{S} -monomorphism is defined as a monomorphism with the cokernel in \mathcal{S} .

If (A, B) is a small generated cotorsion pair then (K, A-Mono) is a combinatorial category.

Cofibrant objects are precisely objects from \mathcal{A} .

If $S \subseteq K$ is closed under retracts then (K, S-Mono) is a combinatorial category iff S is deconstructible (Saorín, Šťovíček).

A functor $F : \mathcal{K} \to \mathcal{L}$ between combinatorial categories is called *combinatorial* if it preserves colimits and cofibrations.

Any combinatorial functor is a left adjoint.

COMB will denote the 2-category of combinatorial categories, combinatorial functors and natural transformations.

COMB is legitimate but not locally small and is equipped with the 2-functor $U : \text{COMB} \rightarrow \text{LOC}$ to the 2-category LOC of locally presentable categories, colimit preserving functors and natural transformations.

Let **CMOD** denote the 2-category of combinatorial model categories, left Quillen functors and natural transformations.

CMOD is legitimate but not locally small and is equipped with the 2-functors $V_1, V_2 : \text{CMOD} \to \text{COMB}$, $V_1(\mathcal{K}) = (\mathcal{K}, \mathcal{C})$ and $V_2(\mathcal{K}) = (\mathcal{K}, \mathcal{C}_0)$ where \mathcal{C} is the class of cofibrations and \mathcal{C}_0 is the class of trivial cofibrations.

A poset P is good if it is well-founded and has the least element \perp . Well-ordeder sets and shape posets for pushouts are good.

An element $x \in P$ is *isolated* if there is a top element x^- strictly below x.

A non-isolated element distinct from \perp is called *limit*.

A good diagram $D: P \to \mathcal{K}$ is such that Dx is a colimit of the restriction of D on elements strictly below x for each limit x.

The *composition* of *D* is the component δ_{\perp} of the colimit cocone.

Links of D are morphisms $D(x^- \rightarrow x)$ for x isolated.

Proposition 1. (Lurie) Let \mathcal{X} be a class of morphisms in a cocomplete category \mathcal{K} . Then the composition of a good diagram with links in $Po(\mathcal{X})$ belongs to cell(\mathcal{X}).

Corollary 1. Let $(\mathcal{L}, \mathcal{R})$ be a weak factorization system in a category \mathcal{K} . Then the composition of a good diagram with links in \mathcal{L} belongs to \mathcal{L} .

A good poset is κ -good if all its initial segments $\downarrow x$ have cardinality $< \kappa$.

Theorem 1. Let \mathcal{K} be a cocomplete category, κ a regular cardinal and \mathcal{X} a class of morphisms with κ -presentable domains. Then every \mathcal{X} -cellular morphism is a composition of a κ -good κ -directed diagram with links in Po(\mathcal{X}).

This result may be called a *fat small object argument* because it replaces a thin transfinite composition containing large objects by a fat good composition of small objects.

Corollary 2. Let \mathcal{K} be a cocomplete category, κ a regular cardinal and \mathcal{X} a class of morphisms between κ -presentable objects. Then any \mathcal{X} -cofibrant object is a κ -filtered colimit of κ -presentable \mathcal{X} -cofibrant objects.

For \mathcal{X} -cellular objects, the claim follows from Theorem 1. The extension to \mathcal{X} -cofibrant objects uses [Makkai, Paré]. If $(\mathcal{A}, \mathcal{B})$ is a finitely generated cotorsion pair of R-modules then each object from \mathcal{A} is a filtered colimit of finitely presentable objects from \mathcal{A} (Angereli-Hügel, Trlifaj). **Theorem 2.** Let \mathcal{K} be a locally κ -presentable category, κ an uncountable regular cardinal and \mathcal{X} a class of morphisms between κ -presentable objects. Then any \mathcal{X} -cofibrant object is a κ -good, κ -directed colimit of κ -presentable \mathcal{X} -cofibrant objects.

In this situation, we say that $(\mathcal{K}, cof(\mathcal{X}))$ is κ -combinatorial. $cof_{\kappa}(\mathcal{X})$ will denote \mathcal{X} -cofibrations between κ -presentable objects. Theorem 2 follows from Theorem 1 by using the result of Lurie:

 $\operatorname{cof}(\mathcal{X}) = \operatorname{cell}(\operatorname{cof}_{\kappa}(\mathcal{X}))$

Let \mathcal{P} be the class of projective *R*-modules. \mathcal{P} -monomorphisms are cofibrantly generated by $0 \rightarrow R$. Cofibrant objects are precisely projective modules. Following Theorem 2, every projective module is an \aleph_1 -good \aleph_1 -directed colimit of \aleph_1 -presentable projective modules where all links are \mathcal{P} -monomorphisms. This implies the theorem of Kaplansky: every projective module is a coproduct of countably generated projective modules. This also shows that Theorem 2 is not valid for \aleph_0 .

The 2-category **LOC** has all PIE-limits, i.e., products, inserters and equifiers (Makkai, Paré). Consequently, its has all lax limits and all pseudolimits. All these limits are calculated in **CAT**.

Theorem 3. COMB has PIE-limits preserved by U.

Corollary 3. (Lurie) Let \mathcal{K} be a combinatorial category and \mathcal{C} a small category. Then $\mathcal{K}^{\mathcal{C}}$ is combinatorial (with respect to pointwise cofibrant morphisms).

Corollary 4. (Šťovíček) Let C be a deconstructible class in a Grothendieck category \mathcal{K} . Then C(C) is deconstructible in $C(\mathcal{K})$.

 $C(\mathcal{K})$ denotes the category of complexes in \mathcal{K} .

While Šťovíček uses generalized Hill lemma, we replace it by good colimits.

Corollary 5. Let $T : \mathcal{K} \to \mathcal{K}$ be a colimit preserving monad on a combinatorial category \mathcal{K} . Then Alg(T) is combinatorial.

Corollary 6. (Becker) Let $T : \mathcal{K} \to \mathcal{K}$ be a colimit preserving monad on a Grothendieck category \mathcal{K} and \mathcal{C} a deconstructible class in \mathcal{K} . Then the class of T-algebras with the underlying object in \mathcal{C} is deconstructible.

Theorem 4.(Barwick) **CMOD** has lax limits preserved by $V_1, V_2 : \text{CMOD} \rightarrow \text{COMB}.$

Problem. Does **CMOD** have PIE-limits? Equivalently, does **CMOD** have pseudopullbacks?

Proposition 2. V₂ preserves PIE-limits (pseudopullbacks).

 V_2 has a left adjoint sending $(\mathcal{K}, \mathcal{X})$ to $(\mathcal{K}, \mathcal{X}, \mathcal{X})$.

We have an example of a pseudopullback in **CMOD** which is not preserved by V_1 .

Let \mathcal{K} be the standard model category of simplicial sets. Let $t: 0 \to 1$ and \mathcal{L} be the model structure on simplicial sets where $\operatorname{cof}(\{t\})$ is the class of cofibrations and any morphism is a weak equivalence. Let \mathcal{K}_t be the trivial model structure in \mathcal{K} (any morphism is a trivial cofibration) and \mathcal{K}_d be the discrete model structure (any morphism is a trivial fibration). Then the intersection of \mathcal{K} and \mathcal{L} over \mathcal{K}_t is \mathcal{K}_d . Since $V_1(\mathcal{L}) \subseteq V_1(\mathcal{K})$, this intersection is not preserved by V_1 .