
ON HOMOTOPY VARIETIES

J. ROSICKÝ∗

Abstract. Given an algebraic theory T , a homotopy T -algebra
is a simplicial set where all equations from T hold up to homotopy.
All homotopy T -algebras form a homotopy variety. We will give a
characterization of homotopy varieties analogous to the character-
ization of varieties.

1. Introduction

Algebraic theories were introduced by Lawvere (see [31] and also
[32]) in order to provide a convenient approach to study algebras in
general categories. An algebraic theory is a small category T with fi-
nite products. Given a category K with finite products, a T -algebra
in K is a finite product preserving functor T → K. Algebras in the
category Set of sets are usual many-sorted algebras. Algebras in the
category SSet of simplicial sets are called simplicial algebras and they
can be also viewed as simplicial objects in the category of algebras in
Set. In homotopy theory, one often needs to consider algebras up to
homotopy – a homotopy T -algebra is a functor A : T → SSet such
that the canonical morphism

A(X1 × · · · ×Xn) → A(X1) × · · · ×A(Xn)

is a weak equivalence for each finite product X1 × · · · × Xn in T .
These homotopy algebras have been considered in recent papers [5],
[6] and [8] but the subject is much older (see, e.g., [15], [7], [37] or
[41]). It is natural to consider simplicial algebraic theories, i.e., small
simplicial categories T with finite products. Homotopy algebras are
then simplicial functors T → SSet preserving finite products up to a
weak equivalence.

Given an algebraic theory T , we get the category Alg(T ) of all T -
algebras in Set. There is a characterization of categories equivalent to
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Alg(T ) for some algebraic theory T proved by Lawvere in the single-
sorted case which can be immediately extended to the general case (cf.
[2], 3.25). Recent papers [3] and [1] characterized Alg(T ) by using sifted
colimits. These colimits generalize filtered ones – while a category D is
filtered if colimits over D commute with finite limits in Set, a category
D is sifted if colimits over D commute with finite products in Set. The
category Alg(T ) precisely consists of sifted colimits of hom-functors in
SetT , i.e., it is a free completion of T op under sifted colimits.

Given a simplicial algebraic theory T , homotopy T -algebras form
a simplicial category. Our aim is a characterization of simplicial cate-
gories of homotopy T -algebras analogous to the just mentioned charac-
terization of categories Alg(T ). To achieve it, we have to use homotopy
colimits which can be defined in simplicial categories as a special case
of weighted colimits. A category D is homotopy sifted if homotopy co-
limits over D commute with finite products in SSet. Homotopy sifted
categories coincide with totally coaspherical categories in the sense of
[36]. Every simplicial category K has a homotopy category Ho(K) but
these homotopy categories are well behaved only if hom-sets of K are
Kan complexes. We will call such simplicial categories fibrant. The
category SSetT of all simplicial functors T → SSet carries a projec-
tive (= Bousfield-Kan) model category structure. We will denote by
HAlg(T ) the full subcategory of SSetT consisting of those homotopy
T -algebras which are both fibrant and cofibrant in this model category
structure. Then HAlg(T ) is a fibrant simplicial category and our main
result characterizes fibrant simplicial categories weakly equivalent (in
the sense of Definition 2.2) to HAlg(T ) for some fibrant simplicial alge-
braic theory T . It makes possible to recognize that a fibrant simplicial
category K is given by a fibrant simplicial algebraic theory T and even
to reconstruct T from K.

Categories Alg(T ) of algebras of usual algebraic theories are included
in a broader class of locally finitely presentable categories (see [2]). In
fact, the later are precisely categories of models of finite limit theories
T . It means that T is a small category with finite limits and a T -
model is a functor T → Set preserving finite limits. In the same
way, we can include categories of homotopy T -algebras into homotopy
locally (finitely) presentable categories. These categories were recently
considered in [40], [43], [44], [33] and [34]. Lurie [33] introduced ho-
motopy accessible and homotopy locally presentable categories under
the name of accessible ∞-categories and presentable ∞-categories. He
worked with CW-complexes instead of simplicial sets and homotopy
coherent functors in the sense of [18] and obtained a homotopy Giraud
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theorem characterizing homotopy Grothendieck toposes. In the recent
work [34], he has written his theory in the language of quasi-categories
of Joyal (cf. [27] and [28]). Simpson [40] introduced a generaliza-
tion of homotopy locally presentable categories using the language of
Segal categories and characterized them as categories of fibrant and
cofibrant objects of cofibrantly generated model categories. By Dugger
[22], homotopy locally presentable categories correspond in this way to
combinatorial model categories (i.e., cofibrantly generated and locally
presentable). Toën and Vezzosi [43] and [44] used the language of Segal
categories to deal with homotopy Grothendieck toposes. There is also
an unpublished text of Rezk [39] about homotopy toposes.

This work was motivated by the first paper of Lurie [33]. Our simpli-
cial approach could be extended to cover general homotopy accessible
categories. They should correspond to categories of homotopy models
of theories specified by both homotopy limits and homotopy colimits.
In the recent paper [35], Lurie considers homotopy algebras in the con-
text of quasi-categories as well. In particular, his Proposition 12.2
corresponds to our characterization of categories of homotopy algebras
(his work appeared only after our paper was completed and submitted
for a publication). Let us add that our simplicial approach is very close
to a purely model theoretic one. In fact, one cannot expect that the
category of homotopy T -algebras carries a model category structure be-
cause it is neither complete nor cocomplete. Instead, one can introduce
a model category structure on SSetT whose fibrant objects are just ho-
motopy T -algebras. This model category structure is a left Bousfield
localization of the projective one and was considered by Bergner [8]
in the case of ordinary algebraic theories. We show that a simplicial
model category M is Quillen equivalent to this model category of ho-
motopy T -algebras if and only if the simplicial category of fibrant and
cofibrant objects in M is weakly equivalent to HAlg(T ). The author
is grateful to the anonymous referee for suggesting a possible model
theoretic formulation.

In the second section of this paper, we recall simplicial categories
and their homotopy theory. In particular, we introduce the basic con-
cept of a fibrant homotopy colimit. The third section deals with sim-
plicial presheaves, i.e., with simplicial categories SSetC

op

where C is
a small simplicial category. This category is equipped with the pro-
jective model category structure. We show that if C is fibrant then
simplicial presheaf which is both cofibrant and fibrant in this model
category structure is homotopy equivalent to a fibrant homotopy coli-
mit of hom-functors. It is based on Dugger [21] and makes the fibrant
simplicial category Pre(C) of these simplicial presheaves analogous to
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the usual category of set-valued presheaves in the classical theory. The
forth section contains our characterization of fibrant simplicial cate-
gories of homotopy T -algebras and, in the last section, we do the same
for homotopy models of finite homotopy limit theories.

2. Simplicial categories

A simplicial category K is a category enriched over the category
SSet of simplicial sets. This means that hom-objects hom(K,L) are
simplicial sets equipped with compositions

cK,L,M : hom(K,L) × hom(L,M) → hom(K,M)

and units

∆0 → hom(K,K).

The underlying category K0 of K has the sets hom0(K,L) of points (=
0-simplices) of hom(K,L) as hom-sets. We will often speak about mor-
phisms K → L having elements of hom0(K,L) in mind. Any morphism
f : K → L induces the simplicial map

hom(M, f) : hom(M,K) → hom(M,L)

given as the composition of

cM,K,L(idhom(M,K) ×f) : hom(M,K) × ∆0 → hom(M,L)

with the isomorphism

hom(M,K) ∼= hom(M,K) × ∆0.

Given simplicial categories K and L, a simplicial functor F : K → L
is equipped with simplicial maps

FK,L : hom(K,L) → hom(FK,FL)

compatible with composition and unit. A simplicial natural transfor-

mation ϕ : F → G between simplicial functors is given by morphisms
ϕK : FK → GK for each K in K such that the following diagram
commutes for each pair of objects K1, K2 of K

hom(K1, K2)
FK1,K2

//

GK1,K2

��

hom(FK1, FK2)

hom(FK1,ϕK2
)

��

hom(GK1, GK2)
hom(ϕK1

,GK2)
// hom(FK1, GK2)

(see [25], or [10] for basic facts about enriched categories in general).
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Given simplicial functors D : D → K and G : D → SSet, the limit

K of D weighted by G is defined by a simplicial isomorphism natural
in X

hom(G, hom(X,D)) ∼= hom(X,K);

hom’s are always taken in appropriate simplicial categories. On the
left side, it is the simplicial category of simplicial functors from D to
SSet (see [10]) where hom(X,D) : D → SSet is the composition of D
and hom(X,−). Analogously, a colimit K of D : D → K weighted by
G : Dop → SSet is given by a simplicial natural isomorphism

hom(G, hom(D,X)) ∼= hom(K,X).

Recall that a tensor of a simplicial set V and an object K of a
simplicial category K is an object V ⊗K given by a simplicial natural
isomorphism

hom(V ⊗K,L) ∼= hom(V, hom(K,L)).

Dually, a cotensor KV is given by

hom(L,KV ) ∼= hom(V, hom(L,K)).

Model categories are taken in the sense of [26] or [25]. A simplicial

model category is a model category which is a simplicial category whose
simplicial hom-sets are homotopically well behaved (see [25] or [24] for
the precise definition). By [22], every combinatorial model category
is Quillen equivalent to a simplicial model category. Recall that a
model category M is called combinatorial if the category M is locally
presentable (cf. [2]) and its model structure is cofibrantly generated.

There are well developed concepts of simplicial locally presentable
categories and simplicial accessible categories (cf. [30], [11] and [12]).
Simplicial locally presentable categories are equivalent to categories
of models of weighted limit theories while simplicial accessible cate-
gories are equivalent to categories of models of theories specified by
both weighted limits and weighted colimits. The desired concepts of
homotopy locally presentable categories and homotopy accessible ca-
tegories should be based on homotopy limits and homotopy colimits.
In simplicial model categories, the definition of homotopy limits and
homotopy colimits adopted in [25], 18.1.8 and 18.1.1 make them a spe-
cial case of weighted limits and weighted colimits (see [25], 18.3.1);
this observation goes back to [13]. The corresponding weights form a
homotopy invariant approximations of constant diagrams at a point.
The same definitions work in any simplicial category; in what follows,
B(X ) denotes the nerve of the category X .
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Definition 2.1. Let K be a simplicial category, D a small category
and D : D → K a functor. Then the simplicial homotopy colimit

hocolimsD of D is defined as the colimit of D weighted by

B((− ↓ D)op) : Dop → SSet .

The simplicial homotopy limit holims D of D is defined as the limit
of D weighted by

B(D ↓ −) : D → SSet .

Every simplicial category K has the homotopy category Ho(K); its
objects are the same as that of K and

homHo(K)(K,L) = π0(homK(K,L)),

i.e., the set of morphisms from K to L in Ho(K) is the set of connected
components of the simplicial set of morphisms from K to L in K. A
morphism of K is called a homotopy equivalence if it is an isomorphism
in Ho(K). We will use the notation K ≃ L for homotopy equivalent
objects while K ∼= L will be kept for isomorphic objects.

In SSet, the just defined homotopy equivalences coincide with the
usual ones. But the homotopy category of SSet in our sense is not
the usual homotopy category of simplicial sets where isomorphisms are
weak equivalences. In order to get the right homotopy category, one
has to replace SSet by the simplicial category S of fibrant simplicial
sets (i.e., of Kan complexes). Since homotopy equivalences coincide
with weak equivalences here, simplicial Ho(S) is equivalent to the usual
Ho(SSet).

Every simplicial functor F : K → L induces the functor

Ho(F ) : Ho(K) → Ho(L).

Definition 2.2. A simplicial functor F : K → L is called a weak

equivalence if

(1) the induced morphisms hom(K1, K2) → hom(F (K1), F (K2))
are weak equivalences for all objects K1 and K2 of K and

(2) each object L of Ho(L) is isomorphic in Ho(L) to Ho(F )(K) for
some object K of K.

These weak equivalences are often called DK-equivalences because
they were first described by Dwyer and Kan in [23]. They are a part
of a model category structure on the category SCat of small simplicial
categories and simplicial functors (see [9]). Fibrations are simplicial
functors F : C → D satisfying two conditions (F1) and (F2) where the
first one says that the simplicial maps hom(A,B) → hom(FA, FB)
are fibrations of simplicial sets. In the special case when D is the
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terminal simplicial category, (F1) says that hom-sets hom(A,B) are
fibrant simplicial sets. Since (F2) is automatic in this case, a small
simplicial category C is fibrant in this model category structure if and
only if it has all hom(A,B) fibrant.

Definition 2.3. A simplicial category K will be called fibrant if all its
hom-objects hom(A,B) are fibrant simplicial sets.

For a simplicial model category M, Int(M) will denote its full sub-
category consisting of objects which are both cofibrant and fibrant.
Int(M) is a fibrant simplicial category and its homotopy category
Ho(Int(M)) in the simplicial sense is equivalent to Ho(M) in the model
category sense (see [25]). Recall that we have denoted Int(SSet) by S.
Fibrant simplicial categories coincide with categories enriched over S.

The category S is closed in SSet under simplicial homotopy limits
and under coproducts but it is not closed under simplicial homotopy
colimits in general. In order to get an appropriate concept of a homo-
topy colimit for S, we have to apply a fibrant replacement functor

Rf : SSet → S

to the simplicial homotopy colimit. We will call this new homotopy
colimit fibrant and denote it by hocolimf . Hence, given a diagram
D : D → S, we have

hocolimf D = Rf(hocolims D).

This definition does not depend on a choice of a fibrant replacement
functor because the resulting fibrant homotopy colimits are always ho-
motopy equivalent. From the model category point of view, there is
no difference between hocolims D and hocolimf D because both objects
are weakly equivalent.

Let M be an arbitrary simplicial model category and consider a
diagram D : D → Int(M). We define its fibrant homotopy colimit

hocolimf D as Rf (hocolimsD) where Rf is a fibrant replacement func-
tor in M. Since hocolimsD is cofibrant (see [25], 18.5.2), its fibrant
replacement is both fibrant and cofibrant. Analogously, we define a fi-

brant homotopy limit holimf D as a cofibrant replacement Rc(holims D).
Since contravariant hom-functors of fibrant objects preserve weak equi-
valences between cofibrant objects (see [25], 9.3.3), the simplicial sets
hom(hocolimf D,A) and hom(hocolimsD,A) are weakly equivalent for
any fibrant object A from M. Since both of these simplicial sets are
fibrant (see [25], 9.3.1.(2)), they are homotopy equivalent. We get that

hom(hocolimf D,A) ≃ hom(hocolimsD,A) ∼= holims hom(D,A)



8 J. ROSICKÝ

for any fibrant object A of M. Analogously we obtain the formula

hom(A, holimf D) ≃ holims hom(A,D)

for any cofibrant object A of M.

Definition 2.4. Let K be a fibrant simplicial category, D a category
and consider a diagram D : D → K. We say that holimf D is a fibrant

homotopy limit of D if there are homotopy equivalences

δA : hom(A, holimf D) → holims hom(A,D)

which are simplicially natural in A.
Analogously, we define fibrant homotopy colimit hocolimf D of D by

the existence of homotopy equivalences

δA : hom(hocolimf D,A) → holims hom(D,A).

which are simplicially natural in A.

In particular, we have the formulas

hom(A, holimf D) ≃ holims hom(A,D)

and

hom(hocolimf D,A) ≃ holims hom(D,A).

We will see in 3.1(a) that holimf D is determined uniquely up to a
homotopy equivalence. In the case when K = Int(M) for a simplicial
model category M, this definition coincides with the previous one.

Remark 2.5. By the enriched Yoneda lemma, the simplicial natu-
ral transformation δ in the definition of the fibrant homotopy limit is
uniquely determined by the image of idholimf D in the maping

δholimf D : hom(holimf D, holimf D) → holims hom(holimf D,D).

This image uniquely corresponds to the morphism

δ̃ : B(D ↓ −) → hom(holimf D,D)

which can be understood as an analogy of the limit cone for a usual
limit. We will sometimes denote fibrant homotopy limits as pairs
(holimf D, δ̃).

Analogously, the simplicial natural transformation δ in the defini-
tion of the fibrant homotopy colimit is uniquely determined by the
morphism

δ̃ : B(− ↓ D)op → hom(D, hocolimf D)

playing the rôle of a colimit cocone.
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Definition 2.6. Let F : K → L be a simplicial functor between fibrant
simplicial categories. We say that F preserves the fibrant homotopy
limit of a diagramD : D → K if (F holimf D,F δ̃) is a fibrant homotopy
limit of FD.

Analogously we define the preservation of fibrant homotopy colimits.

Definition 2.7. Let G : K → L and F : L → K be simplicial functors
between fibrant simplicial categories. We say that F is homotopy left

adjoint to G if there are morphisms

ϕK,L : hom(L,GK) → hom(FL,K)

and
ψK,L : hom(FL,K) → hom(L,GK)

which are simplicially natural in K and L and such that ψK,L is a
homotopy inverse to ϕK,L for each K in K and L in L.

It implies that the induced functor Ho(F ) is left adjoint to Ho(G).

3. Simplicial presheaves

Let C be a small simplicial category and consider the simplicial cate-
gory SSetC

op

of simplicial functors Cop → SSet. We have the Yoneda
embedding

YC : C → SSetC
op

given by Y (C) = hom(−, C). The category SSetC
op

has all weighted
colimits and all weighted limits and the Yoneda embedding YC makes
it the free completion of C under weighted colimits. It also preserves
all existing weighted limits (cf. [29]). Dually,

Y C = Y
op
Cop : C → (SSetC)op

is the free completion of C under weighted limits and preserves all
existing weighted colimits. These free completions exist for an arbitrary
simplicial category – one has to take small simplicial functors into
SSet, i.e., small weighted (co)limits of hom-functors (see [19]).

For a small simplicial category C, SSetC
op

is a simplicial combinato-
rial model category with respect to the projective (= Bousfield-Kan)
model category structure. It means that weak equivalences and fibra-
tions are pointwise. (Trivial) cofibrations are then described in the
following way. We have the evaluation functors EC : SSetC

op

→ SSet,
C ∈ C; EC(F ) = F (C). They are precisely the hom-functors

EC = hom(hom(−, C),−).

Each evaluation functor EC has a simplicial left adjoint

FC = −⊗ hom(−, C).
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Now, cofibrations are cofibrantly generated by images in FC , C ∈ C, of
(generating) cofibrations in SSet and the same for trivial cofibrations.
This procedure is described in [25], 11.6.1, for an ordinary category C
and [17] extends it to the simplicial category of small simplicial functors
Cop → SSet for an arbitrary simplicial category C. The consequence is
that all hom-functors hom(−, C) are cofibrant.

Remark 3.1. (a) Let K be a fibrant simplicial category and assume
that L1 and L2 are fibrant homotopy limits of a diagram D : D →
K. Let K0 be a small full subcategory of K containing both L1 and
L2. Then the hom-functors hom(−, L1) and hom(−, L2) are weakly

equivalent in the projective model category SSetK
op

0 with the functor
holims hom(−, D) restricted on K0. Since they are cofibrant and fi-
brant, they are homotopy equivalent and thus L1 and L2 are homotopy
equivalent.

(b) More generally, assume that we have an object K in K and a
morphism

k : B(D ↓ −) → hom(K,D).

In the same way as in 2.5, k = α̃ for a simplicial natural transformation

α : hom(−, K) → holims hom(−, D).

Let K0 be a small full subcategory of K containing both holimf D and
K. Let

γ : RcH → H

be a cofibrant replacement in SSetK
op

0 of the restrictionH of the functor
hom(−, holimf D) to Kop

0 . Since hom-functors are cofibrant, there are
simplicial natural transformations

δ′ : hom(−, holimf D) → RcH

and

α′ : hom(−, K) → RcH

such that δ = γ · δ′ and α = γ ·α′. Since γ and δ are weak equivalences,
δ′ is a weak equivalence and thus a homotopy equivalence because both
hom(−, holimf D) and RcH are cofibrant and fibrant. A homotopy in-
verse of δ′ composed with α′ gives a simplicial natural transformation

ᾱ : hom(−, K) → hom(−, holimf D)

and thus a morphism K → holimf D. This justifies our claim (cf. 2.5)

that δ̃ plays the rôle of a limit cone.
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(c) Consider diagrams D1, D2 : D → K and a natural transformation
ϕ : D1 → D2. Then the composition

α = holims hom(−, ϕ) · δ1 : hom(−, holimf D1) → holims hom(−, D2)

induces (via (b)) a morphism

holimf ϕ : holimf D1 → holimf D2.

If ϕ is a pointwise homotopy equivalence then α is a pointwise homo-
topy equivalence and thus α′ and ᾱ are pointwise homotopy equiva-
lences. Hence holimf ϕ is a homotopy equivalence.

We have shown that fibrant homotopy limits are homotopy invariant.
Dually, the same is true for fibrant homotopy colimits.

Theorem 3.2. Let C be a small simplicial category. Then every object

of SSetC
op

is weakly equivalent to a simplicial homotopy colimit of hom-

functors tensored with ∆n, n = 1, 2, . . . .

Proof. Let C be a small simplicial category and Ĉ be the full subca-
tegory of SSetC

op

whose objects are functors ∆n ⊗ hom(−, C) where
n = 0, 1, 2, . . . and C ∈ C. Then the codomain restriction

G : C → Ĉ

of the Yoneda embedding is a free completion of C under tensors with
∆n, n = 1, 2, . . . . There is a one-to-one correspondence between sim-
plicial functors

A : C → SSetop

and simplicial functors

A′ : Ĉ → SSetop

preserving tensors with ∆n, n = 1, 2, . . . . It yields a full embedding

G∗ : SSetC
op

→ SSetĈ
op

given by

G∗(A) = ((Aop)′)op.

G∗ makes SSetC
op

equivalent with the full subcategory of SSetĈ
op

con-
sisting of simplicial functors

B : Ĉop → SSet

with

B(∆n ⊗ C) = B(C)∆n

for n = 1, 2, . . . and C ∈ C. Moreover, G∗ has a simplicial left adjoint
G∗ given by restrictions G∗(B) = B ·Gop.
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Consider the underlying ordinary category Ĉ0 of Ĉ and let

F : Ĉ0 → Ĉ

be the embedding. It yields a functor

F ∗ : SSetĈ
op

→ SSetĈ
op

0

given by restrictions, i.e., F ∗(B) = BF op. The functor F ∗ has a sim-
plicial left adjoint

F! : SSetĈ
op

0 → SSetĈ
op

which is the weighted colimit preserving functor induced by the com-
position

Y
Ĉ
· F : Ĉ0 → SSetĈ

op

.

Since each simplicial functor B : Ĉop → SSet from the image of G∗

preserves cotensors with ∆n, the action BC,D,n of the simplicial map

BC,D : hom(D,C) → hom(B(C), B(D))

on n-simplices is equal to the action BC,∆n⊗D,0 of

BC,∆n⊗D : hom(∆n ⊗D,C) → hom(B(C), B(∆n ⊗D))

on points. Consequently, F ∗ is a full embedding on these simplicial
functors B, which means that the composition

F ∗G∗ : SSetC
op

→ SSetĈ
op
0

is a full embedding. Since this composition has a simplicial left adjoint
G∗F!, the category SSetC

op

is isomorphic to a reflective full subcategory

of SSetĈ
op

0 .
We have

(G∗F!)(hom(−,∆n ⊗ C)) = G∗(hom(−,∆n ⊗D)) = ∆n ⊗ hom(−, C).

The second equation follows from the fact that the object ∆n ⊗ C

in Ĉ taken as the functor Cop → SSet is precisely ∆n ⊗ hom(−, C).

Since, following [21], 2.6, each simplicial functor Ĉop
0 → SSet is weakly

equivalent to a simplicial homotopy colimit of hom-functors, it remains
to prove that the composition G∗F! preserves weak equivalences. The
functor G∗ preserves weak equivalences because they are pointwise and
G∗ is given by restrictions. Since F! is a left Quillen functor, it preserves
weak equivalences between cofibrant objects. We will show that it pre-
serves all weak equivalences.

There is another simplicial functor

F̃ ∗ : SSetĈ
op

→ SSetĈ
op

0
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with a simplicial left adjoint

F̃! : SSetĈ
op

0 → SSetĈ
op

which preserves weak equivalences. These functors are described in
[24], Proposition IX.2.10 (in a different notation because the inverse
image F ∗ is denoted by F∗ in [24]). In the proof of this proposition,
there is found a pointwise homotopy equivalence

̺ : F ∗ → F̃ ∗;

it means that ̺A : F ∗(A) → F̃ ∗(A) are homotopy equivalences for each

A in SSetĈ
op

. The adjunction induces the morphism

σ : F̃! → F!

such that
hom(σB, A) · ϕA,B = ϕ̃A,B · hom(B, ̺A)

where
ϕA,B : hom(B,F ∗(A)) → hom(F!(B), A)

and
ϕ̃A,B : hom(B, F̃ ∗(A)) → hom(F̃!(B), A)

denote the adjunction isomorphisms. Since hom-functors both pre-
serve and reflect homotopy equivalences, σ is a pointwise homotopy
equivalence. Consequently, F! preserves weak equivalences. �

We have extended [21], 2.9, from ordinary categories to simplicial
categories C.

Lemma 3.3. Let G : K → L be a simplicial functor between fibrant

simplicial categories and F : L → K its homotopy left adjoint. Then F

preserves fibrant homotopy colimits and G preserves fibrant homotopy

limits.

Proof. Let D : D → K be a diagram. We get simplicial natural trans-
formations

hom(F hocolimf D,−) → hom(hocolimf D,G(−)),

hom(hocolimf D,G(−)) → holims hom(D,G(−))

and
hom(hocolimf FD,−)) → holims hom(FD,−)

whose components are homotopy equivalences. Since compatible weak
equivalences between diagrams of fibrant objects induce a weak equiv-
alence of their simplicial homotopy limits, the functors

hom(F hocolimf D,−)
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and
hom(hocolimf FD,−)

are weakly equivalent and thus homotopy equivalent. This implies
that F preserves fibrant homotopy colimits. The statement about G is
dual. �

Definition 3.4. Let C be a small fibrant simplicial category. We put

Pre(C) = Int(SSetC
op

).

Pre(C) precisely consists of simplicial functors Cop → S which are
cofibrant objects in the projective model category structure on SSetC

op

.
Since C is fibrant, all hom-functors hom(−, C) belong to Pre(C) because
they are always cofibrant in SSetC

op

. Thus we get the Yoneda embe-
dding

YC : C → Pre(C).

Theorem 3.5. Let C be a small fibrant simplicial category. Then every

object of Pre(C) is homotopy equivalent to a fibrant homotopy colimit

of hom-functors.

Proof. Let F belong to Pre(C). By 3.2, F is weakly equivalent to a sim-
plicial homotopy colimit of functors ∆n ⊗ hom(−, C). Thus F is cofi-
brant and, by applying the fibrant replacement functor Rf to this ho-
motopy colimit and using [25], 18.5.3, we get that F is homotopy equiv-
alent to a fibrant homotopy colimit of functors Rf (∆n ⊗ hom(−, C)).
Since the simplicial maps un : ∆0 → ∆n sending the unique point of
∆0 to the point 0 in ∆n are weak equivalences,

un ⊗ id : ∆n ⊗ hom(−, C) → ∆0 ⊗ hom(−, C) ∼= hom(−, C)

are weak equivalences as well (see [25], 9.3.9 (1a)). Hence the mor-
phisms Rf(un⊗ id) are homotopy equivalences. We have proved that F
is homotopy equivalent to a fibrant homotopy colimit of hom-functors.

�

Remark 3.6. We will show that both fibrant homotopy limits and
fibrant homotopy colimits in Pre(C) are are pointwise. Consider a
diagram D : D → Pre(C). Then we have

(holimf D)(C) = hom(hom(−, C), holimf D)

≃ holims hom(hom(−, C), D)

≃ holims D(C) = holimf D(C).

In the case of colimits, we have

(hocolimf D)(C) = (Rf hocolims D)(C)
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and

hocolimf D(C) = Rf(hocolimsD(C)) = Rf((hocolims D)(C)).

Since weak equivalences are pointwise in SSetC
op

, (RfA)(C) is weakly
equivalent to Rf (A(C)) for each A in SSetC

op

. Since fibrations are
pointwise as well, the both simplicial sets are fibrant and thus they are
homotopy equivalent. Hence

(hocolimf D)(C) ≃ hocolimf D(C).

Since
EC = hom(hom(−, C),−),

hom-functors hom(−, C) are homotopy absolutely presentable in the
sense that their hom-functors

hom(hom(−, C),−) : Pre(C) → S

preserve all fibrant homotopy colimits. Consequently, Pre(C) does not
only have fibrant homotopy colimits and but also every object of Pre(C)
is a fibrant homotopy colimit of homotopy absolutely presentable ob-
jects.

Definition 3.7. An object K of a fibrant simplicial category K is called
homotopy finitely presentable provided that its hom-functor

hom(K,−) : K → S

preserves filtered fibrant homotopy colimits.

Recall that filtered homotopy colimits are homotopy colimits of dia-
grams D : D → K where D is a filtered category (cf. [2]) and finite
homotopy limits are homotopy limits of diagrams D → K where D has
finitely many morphisms.

Definition 3.8. A finite category D will be called genuinely finite if
B(D) is a finitely presentable simplicial set.

Proposition 3.9. In S, filtered fibrant homotopy colimits commute

with genuinely finite fibrant homotopy limits.

Proof. The statement means that, given a diagram D : I × J → S

with I filtered and J genuinely finite, the canonical morphism

c : hocolimf
I

holimf
J

D(i, j) → holimf
J

hocolimf
I

D(i, j)

is a homotopy equivalence. By [14], XII., 3.5(ii), filtered simplicial
homotopy colimits are weakly equivalent to filtered colimits in SSet.
Since S is closed in SSet under filtered colimits, filtered fibrant homo-
topy colimits in S are homotopy equivalent with filtered colimits. Since
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each genuinely finite category D has all simplicial sets B(D ↓ d), d ∈ D
finitely presentable, the result is a consequence of the fact that filtered
colimits commute with finite weighted limits in SSet (see [11]). �

The published version of this paper claims that 3.9 is true for all
finite homotopy limits. The author is grateful to Daniel Davis for a
correspondence about this subject and for sending counter-examples
due to Takeshi Torii. Later, a simple counter-example was found by
Lukáš Vokř́ınek.

Proposition 3.10. Let K be a fibrant simplicial category. Then a gen-

uinely finite fibrant homotopy colimit of homotopy finitely presentable

objects is homotopy finitely presentable.

Proof. Let J : J → K a genuinely finite diagram with homotopy
finitely presentable values. We have to prove that hocolimf J is ho-
motopy finitely presentable. Let I : I → K be a filtered diagram.
Then, by 3.9, we have

hom(hocolimf J, hocolimf I) ≃ holimf hom(J, hocolimf I)

≃ holimf
J

hocolimf
I

hom(J, I)

≃ hocolimf
I

holimf
J

hom(J, I)

≃ hocolimf hom(hocolimf J, I).

Thus hocolimf J is homotopy finitely presentable. �

4. Homotopy varieties

Consider a category K with binary products and diagramsD1 : D1 →
K and D2 : D2 → K. We form the diagram

D1 ×D2 : D1 ×D2 → K

by means of the formula (D1 × D2)(d1, d2) = D1d1 × D2d2 (do not
confuse it with the product functor D1 ×D2 → K×K).

Definition 4.1. Let K be a fibrant simplicial category having fibrant
homotopy colimits and binary products. We say that fibrant homotopy

colimits distribute over binary products in K provided that

hocolimf(D1 ×D2) ≃ hocolimf D1 × hocolimf D2

for every pair of diagrams D1 : D1 → K and D2 : D2 → K.

Proposition 4.2. In S, fibrant homotopy colimits distribute over bi-

nary products.
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Proof. Consider diagrams D1 : D1 → S and D2 : D2 → S. Since
the functor − × Y : SSet → SSet has the simplicial right adjoint
hom(Y,−), it preserves simplicial homotopy colimits. Thus simplicial
homotopy colimits distribute over binary products in SSet. Hence it
suffices to know that a product w1 × w2 of weak equivalences w1 and
w2 in SSet is a weak equivalence. This fact can be deduced as follows.

Since the geometric realization functor | | : SSet → K to the full
subcategory K of the category of topological spaces consisting of com-
pactly generated spaces preserves finite limits (see [26], 3.2.4), we have
|w1 × w2| = |w1| × |w2|. Now w is a weak equivalence in SSet iff |w|
is a weak equivalence in K and the product of weak equivalences in K

is a weak equivalence by [25], 18.5.3 (because products are homotopy
limits and all objects are fibrant in K). �

Definition 4.3. A small category D will be called homotopy sifted

provided that fibrant homotopy colimits over D commute in S with
finite products.

Explicitly, D is homotopy sifted iff it is nonempty (thus fibrant ho-
motopy colimits over D commute with the empty product) and, given
diagrams D1, D2 : D → S, then the canonical morphism

hocolimf(D1 ⊗D2) → hocolimf D1 × hocolimf D2

is a homotopy equivalence. Here, the diagram D1 ⊗ D2 : D → S is
given by

(D1 ⊗D2)(d) = D1d×D2d.

In fact, D1 ⊗D2 is the product of D1 and D2 in SSetD.
The following theorem is analogous to the characterization of sifted

colimits (see [3]). Recall that a functor F : K → L is called homotopy

final provided that for every object L of L the comma-category L ↓ F is
aspherical, i.e., its nerve B(L ↓ F ) is weakly equivalent to the point (see
[25], 19.6.1). Every homotopy final functor is final because the latter
means that all comma-categories L ↓ F are non-empty and connected.

Theorem 4.4. A small category D is homotopy sifted iff D is nonempty

and the diagonal functor ∆ : D → D ×D is homotopy final.

Proof. Given diagrams D1, D2 : D → S, we have

D1 ⊗D2 = (D1 ×D2)∆.

By [25], 19.6.7 and 19.6.12, ∆ is homotopy final iff the induced map

hocolimsD∆ → hocolims D
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is a weak equivalence for every diagram D : D × D → SSet. This is
clearly the same as

hocolimf D∆ → hocolimf D

being a homotopy equivalence for every diagram D : D × D → S.
Consequently, D is homotopy sifted provided that ∆ is homotopy final.
Conversely, since the proof of [25], 19.6.12 only uses functors

D = hom((d1, d2),−) = hom(d1,−) × hom(d2,−),

∆ is homotopy final whenever D is homotopy sifted. �

Remark 4.5. (a) A category D is homotopy sifted iff all comma-
categories (d1, d2) ↓ ∆, where d1, d2 are objects from D, are aspherical.
Hence D is homotopy sifted iff Dop is totally aspherical in the sense of
[36], 1.6.3.

(b) By 3.9, each filtered category is homotopy sifted. But it also
follows from the fact that every filtered category D is aspherical because
it is a filtered colimit of categories d ↓ D having the initial object (see
[38]).

(c) Every category D with finite coproducts is homotopy sifted (see
[36], 7.4). It immediately follows from the fact that d1∐d2 is the initial
object in (d1, d2) ↓ D.

(d) Every homotopy sifted category is sifted because ∆ is final pro-
vided that it is homotopy final.

(e) Recall that a reflexive coequalizer is defined a coequalizer of a pair
of morphisms h, k : A→ B which have a common section m : B → A,
i.e., such that hm = km = idB; such pairs are called reflexive (see
[3]). A fibrant homotopy reflexive coequalizer is defined as a fibrant ho-
motopy coequalizer of a reflexive pair. Reflexive coequalizers form an
important kind of sifted categories (see [3]). But they are not homotopy
sifted – a direct inspection shows that the comma category (A,A) ↓ D
is not aspherical (it is connected but not 2-connected); D denotes a
reflexive pair.

(f) The reflexive pair is the full subcategory of the category ∆op

consisting of ordinals 1, 2. The whole category ∆op is homotopy sifted
following [36], 1.6.13. Fibrant homotopy colimits of diagrams over ∆op

correspond to geometric realization of simplicial objects in [35].

Definition 4.6. An object K of a fibrant simplicial category K is called
homotopy strongly finitely presentable provided that its hom-functor
hom(K,−) : K → S preserves homotopy sifted fibrant homotopy coli-
mits.
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Remark 4.7. By 4.5(b), every homotopy strongly finitely presentable
object is homotopy finitely presentable.

Proposition 4.8. A finite coproduct of homotopy strongly finitely pre-

sentable objects is homotopy strongly finitely presentable.

Proof. The proof is analogous to that of 3.10. �

Proposition 4.9. Let G : K → L be a simplicial functor between fi-

brant simplicial categories which has a homotopy left adjoint F : L →
K. Then F preserves homotopy strongly finitely presentable objects

provided that G preserves homotopy sifted fibrant homotopy colimits.

Proof. Assume that G preserves homotopy sifted fibrant homotopy co-
limits. We have to show that for each homotopy strongly finitely pre-
sentable object L of L the object FL is homotopy strongly finitely
presentable as well.

Let D be a homotopy sifted category and consider a diagram D :
D → K. We have

hom(FL, hocolimf D) ≃ hom(L,G(hocolimf D))

≃ hom(L, hocolimf GD)

≃ hocolimf hom(L,GD)

≃ Rf hocolims hom(L,GD)

≃ Rf hocolims hom(FL,D)

≃ hocolimf hom(FL,D).

Hence FL is homotopy strongly finitely presentable in K. �

Definition 4.10. A fibrant simplicial category K will be called a ho-

motopy variety provided that it has fibrant homotopy colimits and has
a set A of homotopy strongly finitely presentable objects such that eve-
ry object of K is a homotopy sifted fibrant homotopy colimit of objects
from A.

Proposition 4.11. Let C be a small fibrant simplicial category. Then

the category Pre(C) is a homotopy variety.

Proof. Let C̄ be the closure of Y (C) under finite coproducts in Pre(C).
By 3.6 and 4.8, each object of C̄ is homotopy strongly finitely pre-
sentable in Pre(C). For each object A in Pre(C), the comma-category
C̄ ↓ A has finite coproducts. By 4.5(c), C̄ ↓ A is homotopy sifted. Since
A is the fibrant homotopy colimit of the projection C̄ ↓ A → Pre(C)
(see 3.5), the category Pre(C) is a homotopy variety. �
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Definition 4.12. A simplicial algebraic theory is defined as a small
fibrant simplicial category T having finite products.

A homotopy T -algebra is a simplicial functor A : T → S belonging
to Pre(T op) such that the canonical morphism

A(X1 × · · · ×Xn) → A(X1) × · · · ×A(Xn)

is a homotopy equivalence for each finite product X1 × · · · ×Xn in T .
We will denote by HAlg(T ) the full subcategory of Pre(T op) consist-

ing of all homotopy T -algebras.

Example 4.13. Let T0 be the algebraic theory of one binary operation
m. It means that T0 has objects X0, X1, . . . , Xn, . . . and morphisms
are generated by m : X2 = X1 × X1 → X1. Then a T0-algebra A

is a simplicial set A(X1) equipped with a binary operation A(m) :
A(X1) × A(X1) → A(X1). Let T1 be the simplicial algebraic theory
obtained from T0 by adding a one-dimensional simplex to hom(X3, X1)
from the point m(m × id) to m(id×m). It means that we have the
corresponding simplicial map

h : ∆1 → hom(X3, X1).

Given a T1-algebra A, we get the composition

∆1 → hom(X3, X1) → hom(A(X1)
3, A(X1))

of h with AX3,X1
. This composition corresponds to the simplicial map

∆1 ×A(X3) → A(X1)

which is a homotopy from A(m)(A(m) × id) to A(m)(id×A(m)). In
this way we can get strongly homotopy associative algebras of [41] as
algebras for a suitable simplicial algebraic theory. Homomorphisms of
these algebras strictly preserve the multiplication.

On the other hand, if T2 is the algebraic theory of one associative bi-
nary operation then homotopy T2-algebras are simplicial sets equipped
with a homotopy associative multiplication and homomorphisms pre-
serve the operation up to homotopy.

Proposition 4.14. Let T be a simplicial algebraic theory. Then the

simplicial category HAlg(T ) is closed in Pre(T op) both under fibrant

homotopy limits and homotopy sifted fibrant homotopy colimits.

Proof. Consider a diagram D : D → HAlg(T ). Since fibrant homotopy
limits in Pre(C) are pointwise (see 3.6), we have

(holimf
d

Dd)(X1 × · · · ×Xn) ≃ holimf
d

Dd(X1 × · · · ×Xn)

≃ holimf
d

Dd(X1) × · · · × holimf
d

Dd(Xn).
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Thus HAlg(T ) is closed in Pre(T op) under fibrant homotopy limits.
Since homotopy sifted fibrant homotopy colimits commute in S with fi-
nite products, we analogously prove that HAlg(T ) is closed in Pre(T op)
under homotopy sifted fibrant homotopy colimits. �

We are now in a position to characterize simplicial categories which
are weakly equivalent (in the sense of Definition 2.2) to some HAlg(T ).

Theorem 4.15. A fibrant simplicial category K is a homotopy variety

if and only if it is weakly equivalent to HAlg(T ) for some simplicial

algebraic theory T .

Proof. I. Let T be a simplicial algebraic theory. Consider a finite prod-
uct diagram

pi : X1 × · · · ×Xn → Xi i = 1, . . . , n

in T . Let

mX1...Xn
: hom(X1,−) ∐ · · · ∐ hom(Xn,−) → hom(X1 × · · · ×Xn,−)

be the morphism induced by

hom(pi,−) : hom(Xi,−) → hom(X1 × · · · ×Xn,−).

Let A : C → S be a functor belonging to Pre(T op). Since

hom(hom(X1 × · · · ×Xn,−), A) ∼= A(X1 × · · · ×Xn)

and

hom(hom(X1,−) ∐ · · · ∐ hom(Xn,−), A) ∼= A(X1) × · · · × A(Xn),

the functor A is a homotopy T -algebra iff hom(mX1...Xn
, A) is a homo-

topy equivalence for each finite product diagram in T .
Let Z be the set of all morphisms mX1...Xn

. Recall that an object A
of SSetT is homotopy orthogonal to Z if

map(mX1...Xn
, A)

is a weak equivalence for each mX1...Xn
from Z (see [25], 17.8.5). Here,

map(B,A) denotes a homotopy function complex. Let Z⊥ be the full
subcategory of SSetT consisting of all fibrant objects homotopy or-
thogonal to Z. Since map(B,A) is weakly equivalent to hom(B,A)
whenever B is cofibrant and A is fibrant and all morphisms from Z
have cofibrant domains and codomains, we have

HAlg(T ) = Pre(T op) ∩ Z⊥.
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By [16], 1.1, there is a functor L : SSetT → Z⊥ preserving weak
equivalences and equipped with a simplicial natural transformation

η : Id → L

which is idempotent up to homotopy and, moreover, map(ηK ,M) is a
weak equivalence for all K in SSetT and M in Z⊥.

Consider a diagram D : D → HAlg(T ) and a T -algebra A. We have
(where Rc denotes a cofibrant replacement functor in SSetT )

hom(RcL(hocolimf D), A) ≃ map(RcL(hocolimf D), A)

≃ map(L(hocolimf D), A)

≃ map(hocolimf D,A)

≃ hom(hocolimf D,A)

≃ holims hom(D,A).

Thus RcL(hocolimf D) is a fibrant homotopy colimit of D in HAlg(T ).
Hence HAlg(T ) has fibrant homotopy colimits.

Since HAlg(T ) is closed in Pre(T op) under homotopy sifted fibrant
homotopy colimits (see 4.14) and hom-functors are homotopy abso-
lutely presentable in Pre(T op) (see 3.6), hom-functors are homotopy
strongly finitely presentable in HAlg(T ). By repeating the argument
from the proof of 4.11, we show that HAlg(T ) is a homotopy variety.

II. Let K be a homotopy variety and A be a set from 4.10. Let Ā
be the closure of A (considered as the full subcategory of K) under
finite coproducts in K. By 4.8, each object of Ā is homotopy strongly
finitely presentable in K. Put T = (Ā)op. Then T is a simplicial
algebraic theory. Let

E : K → SSetT

be the simplicial functor given by

E(K) = hom(−, K)

where the hom-functor is restricted to Ā. Since K is fibrant, E has
fibrant values. Let K be an object of K and express it as a homotopy
sifted fibrant homotopy colimit of a diagram D : D → A. Then, for
each A in Ā we have

E(K)(A) = hom(A, hocolimf D) ≃ hocolimf hom(A,D)

= Rf hocolims hom(A,D) = Rf hocolims ED(A)

and

(hocolimf ED)(A) = (Rf hocolimsED)(A) ≃ Rf hocolims ED(A)
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(see 3.6 for the last step). Hence E preserves homotopy sifted fibrant
homotopy colimits of objects from Ā. It implies that E has cofibrant
values as well and that the codomain restriction of E is the functor

K → HAlg(T )

which, by 3.5, satisfies condition (2) from 2.2. We will show that

E : K → HAlg(T )

is a weak equivalence.
Consider objects K1 and K2 from K and express them as homotopy

sifted fibrant homotopy colimits Ki = hocolimf Di of Di : Di → A
where i = 1, 2. Then we have

hom(K1, K2) ≃ hom(hocolimf D1, hocolimf D2)

≃ holims hom(D1, hocolimf D2)

≃ holims hocolimf hom(D1, D2)

≃ holims hocolimf hom(hom(−, D1), hom(−, D2))

≃ holims hom(hom(−, D1), hocolimf hom(−, D2))

≃ hom(hocolimf hom(−, D1), hocolimf hom(−, D2))

≃ hom(hom(−, hocolimf D1), hom(−, hocolimf D2))

≃ hom(EK1, EK2).

Here, we have used the homotopy invariance of simplicial homotopy
colimits, the enriched Yoneda lemma, the homotopy absolute presen-
tability of hom-functors in Pre(Ā) (see 3.6) and homotopy strong finite
presentability of objects from A. Hence E satisfies condition (1) from
2.2. �

Definition 4.16. Let C be a small fibrant simplicial category. Then
HSind(C) will denote the full subcategory of Pre(C) consisting of ho-
motopy sifted fibrant homotopy colimits of hom-functors.

Theorem 4.17. Let C be a small fibrant simplicial category having fi-

nite coproducts. Then the simplicial categories HAlg(Cop) and HSind(C)
are weakly equivalent.

Proof. Since homotopy sifted fibrant homotopy colimits commute with
finite products in S, we always have

HSind(C) ⊆ HAlg(Cop).

Conversely, we know that each object from HAlg(Cop) is a homotopy
sifted fibrant homotopy colimit of finite coproducts of hom-functors
(see the proof of 4.15). Since L(mX1...Xn

) is a weak equivalence for each
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morphism mX1...Xn
from this proof (see [20], 1.C.5), each object from

HAlg(Cop) is homotopy equivalent to an object from HSind(C). �

As a consequence, we get that HSind(C) has all homotopy sifted fi-
brant homotopy colimits. HSind(C) is analogous to the free completion
Sind(C) of a category C under sifted colimits introduced in [3].

Let T be a simplicial algebraic theory. Consider the left Bousfield
localization of the projective model category structure on SSetC

op

with
respect to the set Z from the proof of 4.15. The resulting model cate-
gory will be called the model category for homotopy T -algebras. It was
considered in [8] in the case of an ordinary algebraic theory. There is
proved in [5] and [8] that each homotopy T -algebra is weakly equivalent
to a strict T -algebra in this model category structure.

As a consequence of 4.15 we get the following characterization of
model categories for homotopy algebras.

Corollary 4.18. A simplicial model category M is Quillen equiva-

lent to the model category for homotopy T -algebras for some simplicial

algebraic theory T if and only if Int(M) is a homotopy variety.

Proof. Let T be a simplicial algebraic theory and M the model cate-
gory for homotopy T -algebras. Then M is simplicial and Int(M) =
HAlg(T ) is a homotopy variety. Conversely, let M be a simplicial mo-
del category such that Int(M) is a homotopy variety. Let A be a set
from 4.10 considered as the full subcategory of M and put T = Aop.
Then T is a simplicial algebraic theory. Since SSetA is the free com-
pletion of T under weighted colimits and M has all weighted colimits
(cf. [10], 6.6.14), there is a unique simplicial functor

F : SSetA → M

such that FYT is the embedding of A to M. Moreover, F is simplicially
left adjoint to

E : M → SSetA

where E(M) is the restriction of hom(−,M) to A. E is a right Quillen
functor because, for a (trivial) fibration h : M1 →M2,

hom(A, h) : hom(A,M1) → hom(A,M2)

is a (trivial) fibration for each A from Int(M) (see [25], 9.3.1 and 9.3.2).
We know from the second part of the proof of 4.15 that E induces a
weak equivalence of simplicial categories Int(M) and HAlg(T ). Conse-
quently, E induces an equivalence of their homotopy categories, which
implies that E is a Quillen equivalence. �
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Using 3.6, one gets the following results which are analogous to 4.15
and 4.18.

Theorem 4.19. A fibrant simplicial category K is weakly equivalent

to Pre(C) for some small fibrant simplicial category C if and only if it

has fibrant homotopy colimits and has a set A of homotopy absolutely

presentable objects such that every object of K is a fibrant homotopy

colimit of objects from A.

Corollary 4.20. A simplicial model category M is Quillen equivalent

to the model category SSetC
op

for some small fibrant simplicial category

C if and only Int(M) has a set A of homotopy absolutely presentable

objects such that every object of Int(M) is a fibrant homotopy colimit

of objects from A.

5. Homotopy locally finitely presentable categories

Definition 5.1. A fibrant simplicial category K will be called homo-

topy locally finitely presentable provided that it has fibrant homotopy
colimits and has a set A of homotopy finitely presentable objects such
that every object of K is a filtered fibrant homotopy colimit of objects
from A.

Proposition 5.2. Let C be a small fibrant simplicial category. Then

the category Pre(C) is homotopy locally finitely presentable.

Proof. Following 3.5, each object K in Pre(C) is a fibrant homotopy
colimit of objects from C. Since a fibrant homotopy colimit can be
expressed as a filtered fibrant homotopy colimit of finite fibrant homo-
topy colimits, K is a filtered fibrant homotopy colimit of finite fibrant
homotopy colimits of objects from C.

Let Bn(X ) be the n-truncated nerve of a category X , which is the
simplicial subset of B(X ) containing all non-degenerated simplices ∆k,
k ≤ n of B(X ) and all degenerated ones. In fact, Bn(X ) is a retract
of B(X ) and and B(X ) is a filtered colimit of Bn(X ), n = 1, 2 . . . .
Consider a finite diagram D → K. Then the weight G = B((− ↓ D)op)
giving the simplicial homotopy colimit of D is a filtered colimit of
weights Gn = Bn((− ↓ D)op), n = 1, 2 . . . . Let colimGn

D be the
colimit of D weighted by Gn, n = 1, 2 . . . . Since each Bn(X ) is a
retract of B(X ), colimGn

D is cofibrant and colimGD is a colimit of
the chain of colimGn

D, n = 1, 2, . . . . Since the replacement functor Rf

preserves filtered colimits, M = hocolimf D is a colimit of the chain of
objects Mn = Rf(colimGn

D) belonging to Pre(C). We will show that
each object Mn is homotopy finitely presentable in Pre(C).
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Let J : J → K be a filtered diagram. We have

hom(Mn, hocolimf J) ≃ hom(colimGn
D, hocolimf J)

≃ hom(colimGn
D, colim J)

∼= limGn
hom(D, colim J)

∼= limGn
colim hom(D, J)

∼= colim limGn
hom(D, J)

≃ colim hom(colimGn
D, J)

≃ hocolimf hom(colimGn
D, J)

≃ hocolimf hom(Mn, J).

Here, we used the fact that simplicial sets Bn((− ↓ D)op) are finitely
presentable.

We have proved that K is a fibrant homotopy filtered colimit of
fibrant homotopy filtered colimits of homotopy finitely presentable ob-
jects Mn. It is easy to see that K is a filtered fibrant homotopy colimit
of Mn. �

Definition 5.3. A finite homotopy limit theory is defined as a small
fibrant simplicial category T having all genuinely finite fibrant homo-
topy limits.

A homotopy T -model is a simplicial functor A : T → S belonging to
Pre(T op) and preserving genuinely finite fibrant homotopy limits.

We will denote by HMod(T ) the full subcategory of Pre(T op) con-
sisting of all homotopy T -models.

Proposition 5.4. Let T be a finite homotopy limit theory. Then the

simplicial category HMod(T ) is closed in Pre(T op) both under fibrant

homotopy limits and filtered fibrant homotopy colimits.

Proof. It is analogous to that of 4.14 (using 3.9). �

Theorem 5.5. A fibrant simplicial category K is homotopy locally fi-

nitely presentable if and only if it is weakly equivalent to HMod(T ) for

some finite homotopy limit theory T .

Proof. We proceed analogously as in the proof of 4.15.
I. Let T be a finite homotopy limit theory. We replace the morphisms

mX1...Xn
from the proof of 4.15 by morphisms

mD : hocolimf hom(D,−) → hom(holimf D,−)

for each genuinely finite diagram D → T . By the dual of 3.1(b), mD

corresponds to the morphism

m̄D : B((− ↓ Dop)op) → hom(hom(D,−), hom(holimf D,−)).



ON HOMOTOPY VARIETIES 27

Since the domain of m̄D is isomorphic to B(D ↓ −) and the codomain
to hom(holimf D,D), m̄D corresponds to the morphism

m̃D : B(D ↓ −) → hom(holimf D,D).

Now, in order to define mD, we take the morphism δ̃D from 2.5 for
m̃D. Like in the proof of 4.15, we know that the functor RcL preserves
fibrant homotopy colimits. Because of 5.2, it suffices to show that
objects RcLMn are homotopy finitely presentable in HMod(T ). Since
HMod(T ) is closed in Pre(T op) under a fibrant homotopy colimit of
each filtered diagram J : J → HMod(T ) (see 5.4), we have

hom(RcLMn, hocolimf J) ≃ hom(Mn, hocolimf J)

≃ hocolims hom(Mn, J)

≃ hocolims hom(RcLMn, J)

≃ hocolimf hom(RcLMn, J).

Here, the first and the third weak equivalence is analogous to the cal-
culation at the end of I. in the proof of 4.15 and the second equivalence
follows from Mn being homotopy finitely presentable (see the proof of
5.2).

II. Let K be homotopy locally finitely presentable simplicial category
and A be the set from 5.1. Let Ā be the closure of A under genuinely
finite fibrant homotopy colimits in K. By 3.10, each object from Ā
is homotopy finitely presentable in K. Now, we put T = (Ā)op and
proceed analogously as in the proof of 4.15. �

Corollary 5.6. A homotopy locally finitely presentable category has all

fibrant homotopy limits.

Proof. It follows from 5.5 and 5.4. �

Definition 5.7. By a homotopy finite limit sketch is meant a triple
H = (T ,L, σ) consisting of a small fibrant simplicial category T , a set
L of genuinely finite diagrams in T and an assignment σ of a morphims

σ(D) : B(D ↓ −) → hom(XD, D)

in SSetD to each diagram D ∈ L.
By a homotopy model of H is meant a simplicial functor A : T → S

belonging to Pre(T op) and sending σ(D) to δ̃D for each D ∈ L.
We will denote by HMod(H) the full subcategory of Pre(T op) con-

sisting of all homotopy models of H.

Remark 5.8. Every homotopy finite limit theory is a homotopy finite
limit sketch. Since the part I. of the proof of 5.5 is valid for each
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homotopy finite limit sketch H, HMod(H) is always homotopy locally
finitely presentable.

Proposition 5.9. Every homotopy variety is homotopy locally finitely

presentable.

Proof. Since each simplicial algebraic theory is a homotopy finite limit
sketch, the result follows from 5.5. �

Definition 5.10. Let C be a small fibrant simplicial category. Then
HInd(C) will denote the full subcategory of Pre(C) consisting of filtered
fibrant homotopy colimits of hom-functors.

Theorem 5.11. Let C be a small fibrant simplicial category having gen-

uinely finite fibrant homotopy colimits. Then the simplicial categories

HInd(C) and HMod(Cop) are weakly equivalent.

Proof. Since filtered fibrant homotopy colimits commute with genuinely
finite fibrant homotopy limits in S (see 3.9), we always have

HInd(C) ⊆ HMod(Cop).

Conversely, we know that each object from HMod(Cop) is a filtered
fibrant homotopy colimit of genuinely finite fibrant homotopy colimits
of hom-functors (using 3.5). Since L(mD) is a weak equivalence for each
morphisms mD from the proof of 5.5 (see [20], 1.C.5), each object from
HMod(Cop) is homotopy equivalent to an object from HInd(C). �

As a consequence, we get that HInd(C) has all filtered fibrant homo-
topy colimits. Hence it is analogous to the free completion Ind(C) of a
category C under filtered colimits introduced in [4].

Let T be a finite homotopy limit theory. Consider the left Bousfield
localization of the projective model category structure on SSetC

op

with
respect to the set Z consisting of morphisms mD from the proof of
5.5. The resulting model category will be called the model category

for homotopy T -models. As a consequence of 5.5 we get the following
characterization of these model categories.

Corollary 5.12. A simplicial model category M is Quillen equivalent

to the model category for homotopy T -models for some finite homo-

topy limit theory T if and only if Int(M) is homotopy locally finitely

presentable.

Remark 5.13. Everything in this section can be done for an arbitrary
regular cardinal λ instead of ω. It means that we work with homotopy
λ-filtered fibrant homotopy colimits and compare homotopy locally λ-
presentable categories with categories of models of λ-small homotopy
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limit theories. The distinction between finite and genuinely finite ho-
motopy limits will disappear here.
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