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Abstract

Investigating dual local presentability of some topological and uniform classes, a new procedure is developed
for factorization of maps defined on subspaces of products and a new characterization of local presentability
is produced. The factorization is related to large cardinals and deals, mainly, with realcompact spaces.
Instead of factorization of maps on colimits, local presentability is characterized by means of factorization
on products.
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1. Introduction

During his fruitful mathematical life, W.W.Comfort was often interested in both investigation and ap-
plications of dependence of continuous mappings from products on smaller numbers of coordinates – the
first such publication seems to be [7] from 1972, the last one [6] from 2012, and many others in between.
The so-called dually locally presentable categories deal with more general factorizations of maps on limits of
λ-directed inverse systems. We were able to reduce those conditions to special factorizations of maps from
products. In this case large cardinals play a role and a new procedure for getting factorizations had to be
developed.

Locally presentable categories were defined by P.Gabriel and F.Ulmer in [10] and a new view and com-
prehensive theory was given by M.Makkai and R.Paré in [18], and by J.Adámek and J.Rosický in [2] (see
the last section of the present paper for more details). Most applications were to algebraic structures since
topological structures are rarely locally presentable. Because of dualities between topological and algebraic
structures (like the Stone or Gelfand dualities between compact spaces and algebras), some categories dual
to topological ones were shown to be locally presentable. That lead to a question whether local presentability
of dual categories to topological structures can be handled directly without using algebraic structures. The
present paper shows that the answer is affirmative and, in fact, more general results can be obtained by
those inner topological methods. We shall also deal with a weaker notion, namely near local presentability
defined and investigated in [22].

After recalling in the next section some concepts from set theory, category theory and topological struc-
tures we describe a characterization of dual (nearly) locally presentable subclasses of Hausdorff topological
and uniform spaces (we shall see that for non-Hausdorff spaces dual local presentability is not interest-
ing). Then we apply that characterization to topological and uniform spaces, mainly to classes generated
by reals. The last section gives categorical background concerning local presentability and shows that our
characterization of dual (nearly) local presentability for topological structures holds in general categories.
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2. Generalities

References to basic facts used in the present paper are [1] for category theory, [17] and [8] for set theory,
[9] and [16] for topological and uniform or proximity spaces. We now recall some other concepts or those
used frequently in the sequel, at first from set theory.

It seems there are various definitions of µ-strongly compact cardinals. We use the one from [4]. A filter
F is κ-complete (κ an infinite cardinal), if

⋂
F ′ ∈ F for any F ′ ⊂ F with |F ′| < κ. Some of the next

definitions of large cardinals can be defined for ω, too (e.g., measurable cardinals in [8]). We need those
cardinals to be uncountable and add that condition to the definitions.

Definition 1. A cardinal λ with λ > µ > ω is said to be µ-strongly compact if every λ-complete filter on
any set extends to a µ-complete ultrafilter.

An uncountable cardinal λ is said to be strongly compact if every λ-complete filter on any set extends to
a λ-complete ultrafilter.

An uncountable cardinal λ is said to be measurable if there is a free λ-complete ultrafilter on λ.

Clearly, if λ is µ-strongly compact and λ′ > λ then λ′ is µ-strongly compact, too. If λ is regular ω1-
strongly compact, it is bigger or equal to the first measurable cardinal m1. If the existence of ω1-strongly
compact is consistent, it is consistent that m1 is ω1-strongly compact (then it is strongly compact) – see [4].

We use a standard notation [A]<κ for the set of all subsets of A of cardinalities smaller than κ.

We shall now briefly recall basics concerning local presentability. For more details and other related
notions in category theory see the last section.

For an infinite cardinal λ, an ordered set (I,<) is said to be λ-directed if every J ⊂ I with |J | < λ is
followed by some iJ ∈ I, i.e., j < iJ for every j ∈ J . A λ-directed system in a category K is a collection
{Xi, πi,j}I where I is a λ-directed ordered set, Xi are objects of K and the morphisms πi,j : Xi → Xj , i < j,
have properties: πi,i = 1Xi , πj,k ◦ πi,j = πi,k whenever i < j < k (i.e., {Xi, πi,j}I is a subcategory of K).

Definition 2. A cocomplete category K is locally λ-presentable, where λ is a regular cardinal, if the following
two conditions are satisfied:

1. K has a strong generator B, where B is a set;

2. for each B ∈ B, the hom-functor hom(B,−) : K → Set preserves colimits of λ-directed systems.

A category C is said to be locally presentable if it is locally λ-presentable for some λ.
If, instead of the condition (2) the following weaker condition (2’) is satisfied, the category is said to be

nearly locally λ-presentable.

2’. for each B ∈ B, the hom-functor hom(B,−) : K → Set preserves λ-directed colimits expressing a
coproduct as a λ-directed colimit of its subcoproducts having index sets of cardinalities smaller than λ.

Section 6 gives more categorical details and relations. It is explained there that C is locally presentable if
it satisfies the condition 1 and, for some regular cardinal µ, the condition 2 for µ-directed systems {Xi, πi,j}I
with monomorphisms πi.j . In the next section the previous definitions will be described using topological
language in a dual situation.

Objects satisfying the second condition (2) (or (2’)) are called λ-presentable (or nearly λ-presentable,
resp.).

Recall that a class B is a generator of K if for any two different morphisms f, g : X → Y in K there
exists B ∈ B and a morphism ϕ : B → X with fϕ 6= gϕ.

A generator B is strong if for every monomorphism f : X → Y that is not an isomorphism there exists
B ∈ B and a morphism B → Y that does not factorize via f .

The above condition 2 means that for a colimit ki : Ki → K in K of a λ-directed system {Ki, kij}I and
any morphism f : B → K there exists i ∈ I and g : B → Ki (in a sense unique) such that kig = f .
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We say that a category is dually (nearly) locally presentable if its dual (i.e., opposite) category is (nearly)
locally presentable. The authors of [10] call those categories locally corepresentable.

In the sequel, all subcategories will be full and isomorphism closed. When we write f : X → Y we have
always in mind a morphism from the category we are working in (thus a continuous map when we work in
Top).

In topological structures we shall deal with dual notions from the previous part. To specify that we
consider limits of directed systems, we use the notion inverse system as described in [9]. In topological
or uniform spaces and their productive and complete subcategories, a limit (X, {πi}) of an inverse system
{Xi, πi,j}I will be regarded as the subspace of

∏
I Xi consisting of all threads, i.e., of points {xi} having the

property πi,j(xi) = xj whenever i > j. The maps πi : X → Xi are the projections. A role of the fact that
the inverse system is λ-directed will be used in Lemma 3.3. If J is cofinal in I then the limit of {Xi, πi,j}J
is isomorphic to X.

A continuous map f : X → Y on a subspace of a product
∏
I Xi of topological or uniform spaces is said

to depend on J ⊂ I if f(x) = f(y) provided x, y ∈ X,prJ(x) = prJ(y). One also says that f depends on |J |
coordinates or on less than κ coordinates if |J | < κ. It is equivalent to existence of a map g : prJ(X)→ Y
such that f = g prJ (i.e., f factorizes via prJ(X)). The map g need not be continuous. If g is continuous
one says that the factorization is continuous or that f depends on J continuously. In case X =

∏
I Xi, the

factorization is always continuous. The factorizations of uniformly continuous mappings which we use are
always uniformly continuous.

If Ai ⊂ Xi, i ∈ I, and A =
∏
iAi ⊂

∏
I Xi, then by R(A) we denote the set {i ∈ I;Ai 6= Xi}. So, for

canonical neighborhoods U of points in products we have |R(U)| < ω.
A productive and complete subcategory C of Hausdorff topological or uniform spaces is called simple if

it has a strong cogenerator.
A topological space X is said to be pseudo-κ-compact for an infinite cardinal κ if every discrete system

of nonvoid open sets in X has cardinality less than κ.
Except at the beginning of Section 4 all the spaces under consideration will be Hausdorff.

3. Dually locally presentable classes of topological structures

We shall now transfer Definition 2 of (near) local presentability to dual situations and, moreover to
categories of Hausdorff topological or uniform spaces. In this section we assume C is a complete and
productive subcategory of the category of either all Hausdorff topological spaces (Top2) or all Hausdorff
uniform spaces (Unif2). In our applications, C will be usually epireflective, i.e., closed hereditary and
productive in Top2 or Unif2.

If C is dually nearly locally presentable it must have a strong cogenerator (Definition 2, item 1) that is
a set of objects. In many categories, that set can be assumed to consist of one object (see ). In our special
case the proof is simple.

Proposition 3.1. The category C has a strong cogenerator A that is a set of spaces iff there exists a space
A in C such that every space from C can be embedded into a power of A as a closed subspace.

Proof. Assume first that a set A of spaces is a strong cogenerator of C and denote A =
∏
P∈A P . We want

to show that every X ∈ C embeds onto a closed subspace of a power of A, in fact into AC(X,A). Since A
is a cogenerator, morphisms X → P, P ∈ A, distinguish points of X, thus C(X,A) distinguishes points of
X. So, the canonical map ι : X → AC(X,A) is an injection. Consider the range-restriction ι′ : X → ι(X),
where the closure is in the power. Then ι′ is an epimorphism in C and every f : X → A extends to a map
f ′ : AC(X,A) → A (the extension is the f -th projection). Consider a map g : X → P0, P0 ∈ A. The diagonal
product of the map g and of some constant maps X → P, P ∈ A, P 6= P0 is a map f : X → A. An extended
map f ′ : AC(X,A) composed with the projection A → P gives an extension of g to AC(X,A) and, thus, a
factorization of g via ι′. That implies (strong cogenerator property) that ι′ is an isomorphism, i.e., ι is an
embedding onto a closed subspace of the power.
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Assume conversely that every space from C can be embedded into a power of A as a closed subspace.
We want to show that A is a strong cogenerator of C. Clearly, A is a generator. It remains to show that if
f : X → Y is an epimorhisms (i.e., f(X) is dense in Y ) and every g : X → A facorizes via f then f is an
isomorphism. Because of that factorization, we may assume that f is an injection, thus that X is a dense
subset of Y with possibly a finer topology than the restriction of Y to X. The factorization then means
that every g : X → A extends uniquely to f ′ : Y → A, which gives a canonical set-isomorphism between
C(X,A) and C(Y,A). We get that the composition X → Y → AC(Y,A) is an embedding onto a close set,
which implies that the first map X → Y must be an embedding onto a closed set, thus an isomorphism in
C.

The next assertion concerns the second item of Definition 2 and says that we may again restrict a
cogenerator set to a single space. It is a special case of [10], Th.6.2, and [2], Th.1.6). For convenience of
readers, a simple proof of our special case is added for item 2, the item 2’ is its special case.

Proposition 3.2. Let A be a strong cogenerator in C and for every P ∈ A the functor C(−, P ) maps λ-
directed limits into colimits in Set, where λ > |A|. Then C(−,

∏
P∈A P ) maps λ-directed limits into colimits

in Set.

Proof. Our assumption means that for each P ∈ A, if X is a limit of a λ-directed system {Xi, πi,j}I , then
C(X,P ) is a colimit of the system {C(Xi, P ), π∗i,j} in Set, i.e., C(X,P ) =

⋃
C(Xi, P )/ ∼, where ∼ is the

known equivalence generated by {π∗i,j}. We want to show the same is true for taking A =
∏
P∈A P instead

of P . The condition for P means that for every f : X → P there exists i ∈ I and g ∈ C(Xi, P ) such that
f = g ◦ πi. For any f : X → A and every P ∈ A there exists iP and gP ∈ C(XiP , P ) with prP ◦ f = gP ◦ πi.
There exists j > iP , P ∈ A, since λ > |A| and the system {Xi, πi,j}I is λ-directed. Take the product
g :

∏
AXiP →

∏
A P = A of maps gP : XiP → P and the diagonal product h : Xj →

∏
AXiP . Then

f = g ◦ h ◦ π∗j , which completes the proof (see the following commutative diagram).

X

Xj

∏
AXiP A

XiP P

π∗
j

f

π∗
ip

π∗
jiP

h g

priP
prP

gP

We now know that for C to be dually nearly locally presentable or dually locally presentable it suffices
to consider a single space A as a strong cogenerator. Consequently, the class C must consist of the so-called
A-compact spaces, i.e., of spaces isomorphic to closed subspaces of powers of A. It remains to simplify
the condition about preserving limits. At first an almost trivial result about a limit of a λ-directed system
expressed by means of products.

Lemma 3.3. Let X be a limit of a λ-directed inverse system {Xi, πi,j}I in C and pri : X → Xi be maps
onto dense subsets of Xi. Then for any J ∈ [I]<λ and any iJ ∈ I such that iJ > j for all j ∈ J one has
πiJ ,J(XiJ ) ⊂ prJ(X), where πiJ ,J : XiJ →

∏
J Xj is the diagonal product of all πiJ ,j : XiJ ,j → Xj.

Proof. Since X is the set of all threads x = {xi}I (πi,j(xi) = xj whenever i > j) one has prJ(x) = {xj}J
and πiJ ,J(xij ) = {πiJ ,j(xiJ )}J = {xj}J . Thus πiJ ,JpriJ = prJ and, hence, πiJ ,J(priJ (X)) ⊂ prJ(X).

Consequently, πiJ ,J(priJ (X)) ⊂ prJ(X). Since priJ (X) = XiJ , the proof is finished.

We can now prove the basic assertion used in the sequel in Top2 and Unif2. We say that λ-directed limits
in C preserve epimorphisms if C has the following property:
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(*) if X is the limit of a λ-directed inverse system {Xi, πi,j}I then πi(X) = Xi, i ∈ I, provided πi,j(Xi) =
Xj for all i > j;

Clearly, the condition is satisfied for |I| < λ. If µ > λ and λ-directed limits in C preserve epimorphisms,
then µ-directed limits preserve epimorphisms. The condition (*) for any infinite λ holds in the class of
compact spaces (see, e.g., [9], Corollary 3.2.15). It does not hold in the class of realcompact spaces for
λ < m1. To show that, it suffices to take a metric space X of cardinality at least λ and smaller than m1

having the property that every complement of a set P ∈ [X]<λ is dense in X. Those complements form a
λ-directed inverse system of realcompact spaces with empty limit and dense connecting maps (inclusions).
For instance, the Banach space `2(λ) satisfies the required conditions.

Every dual locally λ-presentable category has the property (*). In fact, it has a stronger property, namely
limit of epimorphisms between two λ-directed systems is an epimorphism, as follows from uniqueness of such
limits and from the fact the category has a cogenerator satisfying the property 2 of Definition 2 (see the end
of Section 6 for proofs).

Theorem 3.4. The category C is dually locally presentable iff there exist a regular cardinal λ and A ∈ C
such that

1. λ-directed limits in C preserve epimorphisms;

2. every X ∈ C can be embedded as a closed subspace into some power Aκ;

3. if X ∈ C is a closed subspace of a power AI then every f ∈ C(X,A) (uniformly) continuously factorizes
via prJ(X) for some J ⊂ I, |J | < λ.

Proof. Assume first that C is dually locally presentable. By the previous consideration there exist a regular
cardinal λ such that the condition 1 holds, and a space A satisfying the condition 2 and such that C(−, A) :
C → Set maps λ-directed limits to colimits. If X is a closed subspace of AI then (X, {prJ}J∈[I]<λ) is a

limit of the λ-directed system {prJ(X),prJK} where J,K ∈ [I[<λ, J ⊃ K. That implies the validity of the
condition 3.

Assume converwsely that the conditions 1–3 hold for a regular cardinal λ. Then A is a strong cogenerator
of C and we must show that C(−, A) : C → Set sends λ-directed limits to colimits. Let (X, {pri}) be the limit
of a λ-directed inverse system {Xi, πij}. As explained in Introduction (in more details in Section 6) we may

assume that all πi,j are epimorphisms, i.e., πi,j(Xi) = Xj . By the condition 2, each Xi may be considered
as a closed subspace of some power AJi and, thus, X is a closed subspace of

∏
I A

Ji . Take some f ∈ C(X,A)
– by the condition 3 it depends on some J ⊂

∐
I Ji, |J | < λ. Then in the original product

∏
I Xi the map

f depends on K = {i ∈ I, J ∩ Ji 6= ∅} that has cardinality smaller than λ. There is a continuous map
g : prJ(X)→ A with f = g ◦ prJ(X). Since the map

∏
K Xi → AJ induces the map h : prK(X)→ prJ(X),

we get a map g ◦ h : prK(X)→ A with g ◦ h ◦ prK = f . The condition 1 allows to use the previous Lemma
to get that f factorizes via XiK , where iK precedes all i ∈ K, which finishes the proof. The procedure is
shown in the next commutative diagram.

X
∏
I Xi A

∐
I Ji

prK(X) prJ(X)

∏
K Xi AJ

A

f

prK

prJ

gh

h

g
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Corollary 3.5. Let λ-directed limits in C preserve epimorphisms for some λ. An epireflective subcategory
of C is dually locally presentable iff it is simple, generated by some A, and the condition 3 from Proposition
3.4 holds for A.

Corollary 3.6. If the epireflective hull of a space A is dually locally presentable, then any of its productive
and complete subcategory is dually locally presentable.

The situation for dually nearly locally presentable classes is simpler. In this case the condition 2’ of
Definition 2 means that every f :

∏
I Xi → B,B ∈ B, in C depends on less than λ coordinates. A

disadvantage is we cannot restrict factorizations to powers of A as in Theorem 3.4. We get the following
characterization.

Theorem 3.7. The category C is dually nearly locally λ-presentable iff there exists A ∈ C such that

1. every X ∈ C can be embedded as a closed subspace into some power Aκ;

2. for any collection {Xi}I of spaces from C, every f ∈ C(
∏
I Xi, A) depends on less than λ coordinates.

We want to notice that the above results hold for non-Hausdorff spaces, too. Instead of closed subspaces
one must take extremal closed subspaces (i.e., the embedding is an extremal monomorphism). The last
section contains those results formulated in general categories.

4. Topological spaces

Although we assumed Hausdorff separation in the previous section we start with several easy situations
under weaker separations. For the next three paragraphs we assume that C is a complete and productive
subcategory of Top. If C is dually nearly locally presentable, it contains with its strong cogenerator A some
subspaces of all powers Aκ. In this section, A will be an at least two-point space and our subcategory
consists of extremally closed subspaces of powers Aκ

If C contains a non-T0-space then any strong cogenerator of C contains an at least two-point l indiscrete
subspace B. For any product of at least two two-point spaces there exists a map on the product into B
that does not factorize via a proper subset of coordinates. Consequently, such a category cannot be dually
nearly locally presentable.

If C contains a T0-space X that is not a T1-space then X contains the Sierpinski space S as a subspace
(recall, that Sierpinski space is the two-point space {0, 1} with open point 0 and not open point 1). Then
S is a retract of X and every continuous map from SI extends continuously to XI . For every at least
two-point set I there exists a continuous map f : SI → S not factorizable via a proper subset of I. Indeed,
it suffices to take f(x) = 1 at the point x having all its coordinates equal to 1, and f(x) = 0 for the other
cases. Consequently, C is not dually nearly locally presentable.

Let C consist of T1-spaces. If C contains a class of spaces with cofinite topology of arbitrary large
cardinality, then C has not a cogenerator. We do not know if epireflective hulls of infinite T1-spaces with
cofinite topology are nearly locally presentable.

From now on we assume C to be a subcategory of Hausdorff spaces. H.Herrlich (see [11]) constructed
an example of a reflective subcategory C of Hausdorff spaces consisting of some but not all closed subspaces
of powers of A. That category consists of powers of a strongly rigid compact space and is dually locally
presentable. We shall not investigate such extremal classes. We assume C consists of all spaces embeddable
as closed subspaces of powers Aκ for a given at least two-point Hausdorff space A (such spaces are called
A-compact according S. Mrówka). In that case we denote the subcategory as C(A). If |A| ≤ 1 then C(A)
consists of at most one-point spaces and, thus, is dually locally presentable.
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As we see from Theorem 3.4, we need factorization results for continuous maps defined on products or
their subspaces. There exist many publications dealing with such factorizations. In addition to the publica-
tions by W.W.Comfort mentioned at the beginning, we may mention survey papers [13, 14]. Known results
are sufficient to investigate dual local presentability of compact spaces and dual near local presentability of
realcompact spaces. For dual local presentability of realcompact spaces, a new factorization procedure must
be developed. We shall see that existence of large cardinals is a necessary condition for some classes to be
dually locally presentable. Those large cardinals help us to use different factorization procedures than the
classical ones. Since our main interest is the class of realcompact spaces, our procedure will be adjusted to
that situation. At first we look at the easiest case, namely compact spaces.

4.1. Compact spaces

Let A be a compact space. For some dual categories of compact spaces it is known that they are
locally presentable. The proofs use either dualities with algebraic structures (e.g., in [2]) or use inner
topological properties only but not Theorem 3.4 (e.g., in [10]). For any compact space A we can prove that
any productive and complete class of A-compact spaces is dually locally presentable using the procedure
mentioned above. For that we need some factorization results. The first factorization for mappings defined
on compact subsets of products was proved by Y.Mibu in [21] by means of the Stone-Weierstrass theorem.
So, only maps into products of real lines can be used. We shall use another result proved by G.Vidossich for
wu(A) = ω in [23]. That result is for uniform spaces but compact spaces form a productive full subcategory
of uniform spaces. Recall that uniform weight wu(X) of a uniform space X is the least infinite cardinal of
a base of uniform covers of X (or of uniform neighborhoods of ∆X).

Theorem 4.1. (G.Vidossich) For every uniformly continuous map f from a subspace X of a product
∏
I Xi

of uniform spaces into a uniform space Y there exists some J ⊂ I, |J | ≤ wu(Y ), and a uniformly continuous
map g : prJ(X)→ A with f = g ◦ prJ .

As an easy application of the preceding theorem we get the following desired result.

Theorem 4.2. If A is a compact space then C(A) is dually locally w(A)+-presentable.

Proof. As we already mentioned, the condition 1 of Theorem 3.4 is satisfied for compact spaces. The
second condition holds because we consider the category C(A). For the third condition, let X be a compact
subspace of a power Aκ and f : X → A be a continuous map. Then f is uniformly continuous with respect
to the unique uniformities on our spaces. By the above Vidossich theorem, f depends continuously on w(A)
coordinates.

Basic examples are compact zero-dimensional spaces for A = 2 and all compact spaces for A = [0, 1].
There are many other different examples starting with various continua A.

4.2. Realcompact spaces

Take for A a realcompact space. The situation for that case is much more complicated. From that
reason we shall restrict our consideration to the categories either of all realcompact Hausdorff spaces (i.e.,
to R-compact spaces) or to N-compact spaces. We are not aware of a result asserting the class of all zero-
dimensional realcompact spaces is simple. A.Mysior proved in [19] that the class is not simple provided m1

does not exist. Our next procedures need existence of m1 and that is the reason why we take N-compact
spaces instead of zero-dimensional realcompact spaces.

One result about dual local presentability of realcompact spaces is known from [2].

Theorem 4.3. Assuming Vopěnka’s principle, the category of realcompact spaces is dually locally pre-
sentable.

Proof. The category of all realcompact spaces is isomorphic to the dual of the full subcategory of the category
Ring of rings; the full embedding sends a realcompact space X to its ring C(X) of continuous functions
X → R. Thus the claim follows from [2] 6.6 and 6.14.
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Vopěnka’s principle is a very strong condition on existence of large cardinals. We shall use our previous
procedure to consider validity of Theorem 4.3 under weaker conditions. Nevertheless, some large cardinals
will be needed. At first we look at dual near local presentability. A convenient factorization result is the
following one due to N.Noble and S.Ulmer in [20]:

Theorem 4.4. [Noble,Ulmer] The following conditions are equivalent for a nontrivial product of completely
regular spaces

∏
I Xi, |I| ≥ κ, κ has uncountable cofinality:

1.
∏
I Xi is pseudo-κ-compact;

2. every continuous f :
∏
I Xi → R depends on less than κ coordinates.

Instead of R one can take any space having its diagonal as intersection of countably many closures of
open sets (Gδ-diagonal). It is easy to modify the proof for Y with G<κ diagonal. If the range is discrete
then the assumption on cofinality of κ is not needed.

Theorem 4.5. The category of realcompact spaces is dually nearly locally presentable iff measurable cardinals
exist.

Proof. Assume first that m1 exists. By Noble-Ulmer theorem, R satisfies the condition 2 of Theorem 3.7 for
κ = m1 since every realcompact space is pseudo-m1-compact. Since R is a strong generator for the class of
realcompact spaces, the result follows.

Suppose m1 does not exist and take any infinite cardinal κ. If the cofinality of κ is uncountable, the
Noble-Ulmer theorem asserts there is a continuous map f : Dκ → R not depending on less than κ coordinates
(we take for D a discrete space of cardinality κ – thus D is realcompact). Since R is homeomorphic to (0, 1),
we may assume the range of f to be a part of [0, 1]. Since [0, 1] can be embedded into any strong generator
of C it implies no strong generator satisfies the condition 2 of Theorem 3.7 for any λ.

Looking at the proof we are able to prove more.

Theorem 4.6. Let C be a complete productive subcategory of C(A), where A is a realcompact non-compact
space. Then C is dually nearly locally presentable iff a measurable cardinal m > |A| exists.

Proof. If such m exists then every continuous map f :
∏
I Xi → A,Xi ∈ C, depends on less than m

coordinates. Indeed,
∏
I Xi as a realcompact space is pseudo-m1-compact, thus pseudo-m-compact. By the

above Noble-Ulmer theorem, every continuous map g :
∏
I Xi → R depends on less than m coordinates.

Since A embeds into Rκ for some κ < m, our f depends on less than m coordinates.
Let there be no measurable cardinal m > |A|. Since A is non-compact, it contains a copy of N as

a subspace. Take a discrete space D of any cardinality κ > |A| with uncountable cofinality. Since the
product Dκ is not pseudo-κ-compact, using the Noble-Ulmer theorem again, there exists a continuous map
f : Dκ → N (and thus to A) not depending on less than κ coordinates. Consequently, C cannot be dually
nearly locally presentable.

Now, we shall investigate dual local presentability of a category C that is either the category C(R) of
all realcompact spaces or C(N) of all N-compact spaces. For mappings defined on subspaces of products,
the situation is much more complicated and modifications of Theorem 4.4 do not suffice to prove requested
results. There are some results that allow one decrease of cardinality of index sets in case the mappings
are continuous on the so called (κ, κ)-compact subspaces of products (see [14]). After finitely many steps of
using that procedure it stops either at a cardinality we need for our factorization or at a cardinality where
assumptions for decreasing the index set fail. The latter situation happens when cofinality of the cardinality
of the index set is too small, namely when that cardinality is bigger than some λ and its cofinality is less
than λ (here, λ is the cardinal from Theorem 3.4).

We know from Theorem 4.5 that C is not locally presentable provided no measurable uncountable cardinal
exists. Thus in the next part of this section, we assume m1 exists. In fact, we shall assume even more, namely
existence of ω1-strongly compact cardinals. Since Vopěnka’s principle implies existence of strongly compact
and many other large cardinals, our result is a strengthening of Theorem 4.3.

We need some auxiliary results.
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Lemma 4.7. If X is a closed subspace of a product
∏
κXα then X =

⋂
{pr−1α (prα(X));α ∈ S} for any

cofinal set S in κ.

Proof. It suffices to show that for any x ∈
∏
κXα \X there is some α ∈ S with prα(x) /∈ prα(X). Take a

canonical neighborhood U of x disjoint with X and some α ∈ S with R(U) ⊂ α. Then prαU ∩ prα(X) = ∅,
which implies the requested relation.

In the next results we must use ω1-strongly compact cardinals. The result does not hold for λ ≤ m1.

Lemma 4.8. If λ is an ω1-strongly compact cardinal then λ-directed limits in C preserve epimorphisms.

Proof. Let X be the limit of a λ-directed inverse system {Xi, πi,j}I of realcompact spaces Xi and continuous

maps πi,j : Xi → Xj with πi,j(Xi) = Xj . Assume there exists i0 ∈ I such that pri0(X) 6= Xi0 so that there

is a nonvoid open Hi0 in Xi0 with Hi0 ∩ pri0(X) = ∅. We may assume i0 is the smallest element of I. For

any i take Hi = π−1i,i0(Hio). Then Hi 6= ∅ and Hi ∩ pri(X) = ∅ for any i. The collection {pr−1i (Hi)}I is a
base of a λ-complete filter in

∏
iXi. By our assumption, it can be extended to an ω1-complete ultrafilter X .

Since the product is realcompact, X converges to a point x ∈
∏
I Xi. For any i the image pri(X ) converges

to pri(x) = xi and similarly for j. Since πi,jpri = prj for i > j we get πi,j(xi) = xj , which implies x ∈ X.

But pri0(x) ∈ Hi0 that is disjoint with pri0(X) – a contradiction.

Let X be a topological space, x ∈ X and F be a filter in X. We say that x is a Gδ-accumulation point
of F if it is an accumulation point of F in the Gδ-topology of X, i.e., if {Un}N is a family of neighborhoods
of x then

⋂
Un meets every member of F .

We are now ready to prove the main result of this section. Realize that if X is a realcompact space and
X is an ω1-complete ultrafilter in X, then X converges in X. Indeed, X converges to a point ξ ∈ υ(|X|)
and the continuous extension ι : υ(|X|) → X of 1X : |X| → X maps ξ to a limit of X in X (here υ is the
Hewitt-Nachbin realcompactification).

Theorem 4.9. If ω1-strongly compact cardinals exist then the classes of all realcompact or of all N-compact
Hausdorff spaces are dually locally presentable.

Proof. Let A equal either to N or to R and take a regular ω1-strongly compact cardinal λ. We know from
Lemma 4.8 that λ-directed limits in C(A) preserve epimorphisms so that it remains to check the condition
3 from Theorem 3.4. To show that, take some closed subspace X of a power Aκ and some continuous
f : X → A.

Claim 1. The map f depends on less than λ coordinates.
Suppose f does not depend on less than λ coordinates so that the sets

CJ = {x ∈ X; there is y ∈ X such that prJ(x) = prJ(y), f(x) 6= f(y)} .

are nonempty for every J ∈ [κ]<λ and CJ ⊂ CK for J ⊃ K. The collection {CJ ; J ∈ [κ]<λ} is a base of a
λ-complete filter F on the set X since ⋂

i∈I
CJi ⊃ C⋃

I Ji

and |
⋃
I Ji| < λ provided |I| < λ. Thus F extends to an ω1-complete ultrafilter X on the set X. Since

X is realcompact, X converges in the space X to a point z. Moreover, for every countable collection
{Un}N of neighborhoods of z the intersection

⋂
N Un ∩ P ∩ X is non-empty for any P ∈ X . Since A is

first countable, there are canonical canonical neighborhoods Un of z in Aκ that f(
⋂
Un ∩X) = {f(z)} and

prα(
⋂
Un) = prα(z) for α ∈ R(

⋂
Un). Denote J = R(

⋂
Un) and take a point x ∈ CJ ∩

⋂
Un. There exists

some y ∈ X with prJ(x) = prJ(y), f(x) 6= f(y). But then y ∈
⋂
Un (since prJ(x) = prJ(y)) and, thus,

f(y) = f(z) = f(x) – a contradiction.
Claim 2. The map f depends continuously on less than λ coordinates.
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By Claim 1 there exists J0 ∈ [κ]<λ such that for each J ∈ J = {J ∈ [κ]<λ, J ⊃ J0} there exists a mapping
fJ : prJ(X)→ A with f = fJ ◦ prJ . Assume that no fJ is continuous and define

CJ = {x ∈ X; fJ is not continuous at prJ(x)} .

Then CJ 6= ∅, CJ ⊂ X for every J ∈ J and CJ ⊂ CK for J ⊃ K. The collection {CJ} is a base
of a λ-complete filter that can be extended to an ω1-complete ultrafilter Y. Similarly as in the proof
of Claim 1 we get an Gδ-accumulation point z of Y in X, a corresponding Gδ-set U , a countable set J
and a point x ∈ U ∩ CJ . Since fJ is not continuous at prJ(x) there exists a net {ui}I in X such that
prJ(ui) → prJ(x), fJ(prJ(ui)) 9 fJ(prJ(x)). The first relation implies f(ui) → f(z) and the second one
f(ui) 9 f(x) – a contradiction since f(z) = f(x).

Claim 3. There exists some J ∈ [κ]<λ, such that fJ : prJ(X) → A can be continuously extended to
prJ(X).
By Claim 2 there exists J1 ∈ [κ]<λ on which f depends continuously. Take the set J = {J ∈ [κ]<λ, J ⊃ J1}
and assume Claim 3 does not hold for any J ∈ J . We denote

CJ = {x ∈ pr−1J (prJ(X)); fJ does not extend continuously to prJ(x)} .

Then CJ 6= ∅ for every J ∈ J and CJ ⊂ CK for J ⊃ K. Now we have CJ ∩ X = ∅. Nevertheless, the
accumulation point z of an ω1-complete ultrafilter extending {CJ} belongs to X since (use Lemma 4.7 for
the last equality):

z ∈
⋂
J
CJ =

⋂
J

pr−1J (prJ(CJ)) ⊂
⋂
J

pr−1J (prJ(X)) = X .

Again we find corresponding Gδ-set U as in the proof of Claim 1 and x ∈ CJ ∩ U . Since fJ cannot be
continuously extended to prJ(x) there exists a net {up} in X such that prJ(up)→ prJ(x), fJ(prJ(up)) does
not converge in N. But again the construction of U, x gives f(up)→ f(z) – a contradiction.

5. Uniform and proximity spaces

Subcategories of Unif containing a non-Hausdorff space are not dually nearly locally presentable (strong
cogenerators contain nontrivial indiscrete subspaces). In this section we restrict our investigation to Haus-
dorff spaces. We shall identify the category of precompact spaces with proximity spaces and denote it by
Prox.

The category of all uniform spaces is not simple, thus it is not dually nearly locally presentable. Also the
category of all precompact spaces is not simple. To show that, take the topological spaces Pκ = [0, 1]κ \ {1}
for regular uncountable κ. Those spaces have unique uniformity (thus a unique precompact uniformity). It
is shown in [12] that every precompact space embeds as a closed subspace into a power of some Pκ but Pλ
does not embed as a closed subspace into power of Pκ for any κ < λ.

We must look for simple epireflective subcategories of uniform spaces, i.e. for classes of uniform spaces
embeddable into powers of a given uniform space as closed subspaces. The situation will be simpler than
in topological spaces because of the Vidossich factorization theorem 4.1. It implies directly the next result
(use Theorem 3.7).

Theorem 5.1. Every simple epireflective subcategory of Hausdorff uniform spaces is dually nearly locally
presentable.

As a consequence, we get dual near local presentability of some subcategories of Unif2. To distinguish
between closed subspaces of powers Aκ when A is a topological space or a uniform space, we shall use
the term A-complete spaces for the latter case instead of A-compact spaces. Thus R-complete spaces are
uniform spaces that are uniformly homeomorphic to closed subspaces of powers of the uniform space R.
Those spaces coincide with complete spaces having a base composed of countable linear covers – [15]. If
we consider R as a proximity space (i.e., the precompact modification pR of the metric space R) we shall
also use the term R-complete proximity spaces instead of pR-complete spaces. Those proximal spaces X
are proximally complete in the sense of J.M.Smirnov, i.e., any Cauchy filter with respect to a uniformity
inducing the proximity of X converges in X.
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Corollary 5.2. 1. The class of R-complete uniform spaces is dually nearly locally presentable.

2. The class of R-complete proximity spaces is dually nearly locally presentable.

For local presentability the situation is not so simple. Unlike the case in topological spaces, the factor-
ization condition 3 in Theorem 3.4 is now easy, but problems with the condition 1 remain.

Using dualities with algebraic structures, one gets the following result corresponding to Theorem 4.3. In
the next proof we denote by γX a completion of X, i.e., a compactification of X provided X is precompact.

Theorem 5.3. Assuming Vopěnka’s principle the class of R-complete proximity spaces is dually locally
presentable.

Proof. Any R-complete proximity space X induces a realcompact topological space. The category of prox-
imity spaces is isomorphic to the category K whose objects are triples (X, γX, f) where f : X → γX is
the embedding of X into its completion, i.e., f makes X a dense subspace of a compact space γX. Mor-
phisms (X, γX, f) → (X ′, γX ′, f ′) of K are uniformly continuous maps g : X → X ′. Consider the functor
G : Kop → Ring→ sending (X, γX, f) to the monomorphism C(f) : C(γX) → C(X). This makes Kop

isomorphic to a full subcategory of the category Ring→ of morphisms of rings. Since the latter is locally
presentable, the result follows from [2] 6.6 and 6.14.

We shall now improve the previous result assuming existence of ω1-strongly compact cardinal instead of
Vopěnka’s principle. It remains to show that the condition 1 of Theorem 3.4 holds. The proof is similar to
that of Lemma 4.8.

Lemma 5.4. Let C be either the category of R-complete uniform spaces or the category of R-complete
proximity spaces. If λ is an ω1-strongly compact cardinal then λ-directed limits in C preserve epimorphisms.

Proof. Let X be the limit of a λ-directed inverse system {Xi, πi,j}I in C, where πi,j : Xi → Xj satisfy

πi,j(Xi) = Xj whenever i > j. Assume there exists i0 ∈ I such that pri0(X) 6= Xi0 so that there is a

nonvoid open Hi0 in Xi0 with Hi0 ∩ pri0(X) = ∅. We can assume i0 is the smallest element of I. For any

i take Hi = π−1i,i0(Hio). Then Hi 6= ∅ and Hi ∩ pri(X) = ∅. The collection {pr−1i (Hi)}I is a base of a
λ-complete filter in

∏
iXi. By our assumption, it can be extended to a ω1-complete ultrafilter X . Assume

X converges to a point x ∈
∏
I Xi. For any i the image pri(X ) converges to xi Since πi,jpri = prj for i > j,

we get πi,j(xi) = xj , which implies x ∈ X and that contradicts the assumption xi0 /∈ pri0(X).
If Xi are R-complete uniform spaces, the product

∏
I Xi is complete and has a base of at most countable

uniform covers. Since X is ω1-complete, it is Cauchy in the product and, thus converges.
The case of R-complete proximity spaces can be proved similarly using proximal completeness. Since

proximal completeness is not so standard as uniform completeness, we shall use another procedure dealing
with Unif instead of Prox. Let Xi be closed subspaces of powers (pR)Ji and denote J =

∐
Ji.. Then

∏
I Xi

is a closed subspace of the power (pR)J . The embedding Xi → (pR)Ji is uniformly continuous if regarded
as the map of the uniformly discrete space |Xi| → RJi so that the product map

∏
I |Xi| → RJ is uniformly

continuous and so is that map e(
∏
I |Xi|) → RJ , where e is the modification taking all countable uniform

covers as the new base. Since X is ω1-complete, it is a Cauchy filter in e(
∏
I |Xi|) and, thus, converges in

RJ and in (pR)J . Since
∏
I Xi is closed in (pR)J , X converges in

∏
I Xi, which was to prove.

Using Lemma 5.4 and the Vidossich Theorem 4.1 we get the next result.

Theorem 5.5. Assume an ω1-strongly compact cardinal exists.

1. The class of R-complete uniform spaces is dually locally presentable.

2. The class of R-complete proximity spaces is dually locally presentable.
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Remark. There is the question whether the assumption on existence of an ω1-strongly compact cardinal
can be removed in the preceding theorem. The corresponding situation in topological spaces had two reasons
why large cardinals had to be used. The first one was Theorem 4.5 showing that existence of measurable
cardinals is needed. That reason cannot be used in uniform spaces because the corresponding Theorem
5.1 holds without assuming existence of large cardinals. The second reason follows from the fact that for
λ < m1 the condition 1 in Theorem 3.4 is not satisfied for realcompact spaces, as described in the paragraph
preceding that theorem. That procedure cannot be directly modified to R-complete uniform spaces since
every complete space is closed in any bigger space.

6. Locally presentable categories

Recall that a cocomplete category K is locally λ-presentable, where λ is a regular cardinal, if it has a
strong generator consisting of λ-presentable objects. An object A is λ-presentable if its hom-functor

hom(A,−) : K → Set

preserves λ-directed colimits. This means that for any λ-directed colimit ki : Ki → K in K and any
morphism f : A → K there exists i ∈ I and g : A → Ki such that kig = f . Moreover, this factorization
is essentially unique in the sense that if f = kig and f = kih, then kijg = kijh for some i ≤ j (where
kij : Ki → Kj is a morphism of our directed diagram).

An object is presentable if it is λ-presentable for some regular cardinal λ. Similarly, a category is locally
presentable if it is locally λ-presentable for some regular cardinal λ. Locally presentable categories are
precisely those categories which can be axiomatized by limit sentences in an infinitary first-order logic.
They include varieties and quasivarieties of algebras. More can be found in [2], the original reference is [10].

Recall that a strong generator is a small full subcategory A of K such that the functor EA : K → SetA
op

,
EK = K(−,K), is faithful and conservative (= reflects isomorphisms). A generator A of K is strong if and
only if for each object K and each proper subobject of K there exists a morphism A → K with A ∈ A
which does not factorize through that subobject.

Recall that an epimorphism f : K → L is strong if each commuting square

L B

K A

v

f

u

g

such that g is a monomorphism has a diagonal fill-in, i.e., a morphism t : L→ A with tf = u and gt = v. A
category is weakly co-wellpowered if any object has only a set of strong quotients. Any locally presentable
category is weakly co-wellpowered, in fact, even co-wellpowered.

In a category with coproducts and pullbacks, A is a strong generator if and only if every object is a strong
quotient of a coproduct of objects from A (following, e.g., [3] 6.3 and the fact that strong and extremal
epimorphisms coincide).

An object A is λ-generated if its hom-functor hom(A,−) preserves λ-directed colimits of monomorphisms.
Here, the essential unicity of a factorization is automatic. An object is generated if it is λ-generated for
some λ. A cocomplete category is locally λ-generated if it is strongly co-wellpowered and has a strong
generator consisting of λ-generated objects. A locally generated category is locally λ-generated for some λ.
Any locally λ-presentable category is clearly locally λ-generated. Conversely and not so evidently, a locally
λ-generated category is locally presentable but not necessarily for the same λ (see [10], or [2]).

Nearly locally presentable categories were introduced in [22] as a generalization of locally presentable
ones. The idea is to replace λ-presentable objects by nearly λ-presentable ones. This means the their hom-
functor hom(A,−) preserves only very special λ-directed colimits, namely those expressing a coproduct∐
I Ki as a λ-directed colimit of its λ-small subcoproducts

∐
J Kj , i.e., |J | < λ. Then a cocomplete category
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is nearly locally λ-presentable if it is strongly co-wellpowered and has a strong generator consisting of nearly
λ-presentable objects. Any locally λ-presentable category is nearly locally λ-presentable.

This definition simplifies if coproduct injections are monomorphisms. Then A is nearly λ-presentable
if every for every morphism f : A →

∐
I Ki there is a subset J of I of cardinality less that λ such that f

factorizes through subcoproduct injection
∐
J Kj →

∐
I Ki.

6.1. More about locally generated categories

Following [1] (and the fact that strong and extremal epimorphisms coincide), every locally generated
category has a (strong epimorphism, monomorphism) factorization (by such factorizations we mean a fac-
torization system in the sense of [1]).

Lemma 6.1. Let K be a locally λ-generated category, ki : Ki → K a λ-directed colimit of monomorphisms
and li : Ki → L a compatible cocone of monomorphisms. Then the induced morphism t : K → L is a
monomorphism.

Proof. It suffices to show that, for two morphisms u, v : A→ K with a λ-generated domain, tu = tv implies
u = v. This follows from the fact that there exists i ∈ I and u′, v′ : A→ Ki such that u = kiu

′ and v = kiv
′.

Since liu
′ = tkiu

′ = tkiv
′ = liv

′, we have u′ = v′ and thus u = v.

Lemma 6.2. Let K be a locally λ-generated category, ki : Ki → K a λ-directed colimit of monomor-

phisms, h : K → L a strong epimorphism and Ki
hi−−−→ Li

li−−→ L (strong epimorphism, monomorphism)
factorization of hki. Then h is a λ-directed colimit of hi in the category K→ of morphisms in K

Proof. Any morphism kij : Ki → Kj of the starting diagram induces the unique monomorphism lij : Li → Lj
such that lijhi = hjkij and lj lij = li for each i ≤ j in I. Thus li : Li → L is a cocone on a λ-directed
diagram. Let li : Li → colimLi be a colimit of this diagram and t : colimLi → L the induced morphism.
Since lihi is a cocone of the starting diagram, there is the unique morphism g : K → colimLi such that
gki = lihi for each i in I. Thus g = colimhi in K→. Since tgki = tlihi = lihi = hki for each i in I, we
have tg = h. Following 6.1, t is a monomorphism. Since h is an extremal epimorphism, t is an isomorphism.
Thus h = colimhi.

Definition 3. Let K be a cocomplete category having a (strong epimorphism, monomorphism) factorizations
and λ be a cardinal. We say that an object A has the λ-factorization property if for any strong epimorphism
h :

∐
i∈I

Ki → K and any morphism f : A→ K there is a subset J ⊆ I, |J | < λ and a morphism g : A→ KJ

such that f = mJg; here ∐
j∈J

Kj
eJ−−−→ KJ

mJ−−−→ K

is a (strong epimorphism, monomorphism) factorization of the composition huJ where uJ :
∐
j∈J

Kj →
∐
i∈I

Ki

is the subcoproduct injection.

Proposition 6.3. Let K be a locally λ-generated category. Then an object A has the λ-factorization property
if and only if it is λ-generated.

Proof. Assume that A has the λ-factorization property and consider a λ-directed colimit ki : Ki → K
of monomorphisms and a morphism f : A → K. Since K is locally λ-generated, Ki : Ki → K are
monomorphisms. We have a strong epimorphism h :

∐
i∈I

Ki → K giving the colimit as a quotient of a

coproduct. This means that hui = ki for each i in I; here ui : Ki →
∐
i∈I

Ki are coproduct injections.

Let f = mJg be given by the factorization property. Since I is λ-directed, J has an upper bound iJ in
I. We get the induced morphism t :

∐
j∈J

Kj → KiJ . This means that tvj = kjiJ for each coproduct injection

vj : Kj →
∐
j∈J

Kj . We have

huJvj = huj = kj = kiJkjiJ = huiJkjij = huiJ tvj
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for each j in J . Hence huJ = huiJ t. Thus

mJeJ = huJ = huiJ t = kijt

Following the diagonalization property, there is p : KJ → KiJ such that kiJp = mJ and peJ = t. Thus
f = mJg = kiJpg. Consequently A is λ-generated.

Conversely, assume that A is λ-generated and consider a strong epimorphism h :
∐
i∈I

Ki → K and a

morphism f : A → K. Express
∐
i∈I

Ki as a λ-directed colimit of its λ-small subcoproducts uJ :
∐
j∈J

Kj →∐
i∈I

Ki. Let eJhJ be a (strong epimorphism, monomorphism) factorization of huJ :
∐
j∈J

Kj →
∐
i∈I

Ki.

Following 6.2, h = colimhJ in K→. Thus f factorizes through some mJ , which proves that A has the
λ-factorization property.

Remark 6.4. The implication that an object with a λ-factorization property is λ-generated only needs
that λ-directed colimits preserve monomorphisms in the sense that, given a λ-directed diagram (kij : Ki →
Kj)i≤j∈I of monomorphisms, then the colimit cocone ki : Ki → K consists of monomorphisms. Any locally
λ-generated category even has a stronger property: given λ-directed diagrams (kij : Ki → Kj)i≤j∈I and
(lij : Li → Lj)i≤j∈I of monomorphisms and compatible monomorphisms hi : Ki → Li then the induced
morphism h : K → L on colimits is a monomorphism.

Corollary 6.5. A cocomplete category K is locally λ-generated if and only if

1. λ-directed colimits preserve monomorphisms and

2. K contains a strong generator A consisting of objects having the λ-factorization property.
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[2] Adámek J., Rosický J., Locally Presentable and Accessible Categories, Cambridge Univ.Press 1994.
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[14] Hušek M., Mappings from products, Topological structures II, Math.Center Tracts Amsterdam 115 (1979), 131–145.
[15] Isbell J.R., Euclidean and weak uniformities, Pacific J. Math. 8 (1958), 67–86.
[16] Isbell J.R., Uniform Spaces, Amer. Math. Soc., Providence 1964.
[17] T. Jech, Set Theory, Academic Press 1987.
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