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Definition. Let E be a class of morphisms in a sym-

metric monoidal closed category V. Let f : A → B

be a morphism in a V-category K. We say that an

object C from K is f -injective over E when the in-

duced morphism

K(f, C) : K(B,C) → K(A,C)

is in E .

Given a class F of morphisms in K, C is F-

injective over E if it is f -injective for all f ∈ F .

F-Inj will denote the full subcategory of K consist-

ing of F-injective objects.

Examples. (1) For E = isomorphisms, one gets the

classical enriched orthogonality.

(2) For V = Set and E = surjections, one gets the

classical injectivity.

2



Proposition 1. F-Inj is closed in K under any class

Φ of limits for which E is closed in V2 under Φ-limits.

Proposition 2. F-Inj is closed in K under any class

Φ of colimits for which

(1) E is closed under Φ-colimits;

(2) K(A,−) preserves Φ-colimits for any object A

which is the domain or the codomain of a mor-

phism in F .
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Let G : K → L be V-functor. We say that a family

of morphisms

(ηL : L → UFL)L∈L

makes F a weak left adjoint to G if the induced mor-

phisms

K(FL, K) G−→ K(GFL,GK)
K(ηL,GK)−−−−−−−→ K(L,GK)

are in E .

Of course, F does not need to be a functor.

Given V-functors D : D → K and H : Dop → V,

H ∗w D is a weak colimit of D weighted by H if the

induced morphism

K(H ∗w D,K) → [Dop,V](H,K(D,K))

is in E .
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The right choice for enriching classical injectivity is

E = pure epimorphisms.

The reason is that the latter are precisely filtered col-

imits of split epimorphisms. One has to assume that

V is locally finitely presentable as a closed category.

This means that the underlying ordinary category

V0 is locally finitely presentable and the full subcat-

egory of finitely presentable objects is closed under

the monoidal structure.

Theorem 1. The following conditions are equivalent

for a full subcategory A of a locally presentable V-

category:

(1) A = F-Inj for a set F ;

(2) A is accessible, accessibly embedded, and closed

under products and finite cotensors;

(3) A is accessibly embedded and weakly reflective.
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Theorem 2. The following are equivalent for a V-

category A:

(1) A is accessible and weakly cocomplete;

(2) A is accessible and has products and finite coten-

sors;

(3) A is a small injectivity class in some locally

presentable V-category;

(4) A is weakly reflective, accessibly embedded sub-

category of [C,V] for some small V-category C;

(5) A is equivalent to the category of models of a

(limit, E)-sketch.

A V-functor is a model of a (limit, E)-sketch if it pre-

serves specified limits and sends specified morphisms

to pure epimorphisms.
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Now, take V = Cat and E = equivalences.

Theorem 3. The following conditions are equivalent

for a full subcategory A of a locally presentable 2-

category:

(1) A = F-Inj for a set F ;

(2) A is accessible, accessibly embedded, closed

under flexible limits and 2-replete;

(3) A is accessible, accessibly embedded, weakly

reflective and 2-replete.

Flexible limit {H,D} is a limit weighted by a retract

H : D → Cat of some G′ where ′ denotes left adjoint

to the inclusion

[D,Cat] → Psd[D,Cat]

where Psd[D,Cat] denotes the 2-category of 2-functors,

pseudonatural transformations and modifications.

If K has all flexible limits then it has all pseudolimits:

{H,D}p
∼= {H ′, D}
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Theorem 4. The following are equivalent for a V-

category A:

(1) A is a small injectivity class in some locally

presentable 2-category;

(2) A is equivalent to the category of models of a

(limit, E)-sketch.

One does not have the analogy of Theorem 2 here:

the full subcategory of Cat consisting of the terminal

category and the free-living isomorphism is accessi-

ble, accessible embedded and weakly reflective but

does not have flexible limits.

But one has the analogies of Theorems 1 and 2 for

the choice of V = Cat and E = retract equivalences.

Products and finite cotensors are replaced by flexible

limits.

Notice that both pure epimorphisms and retract equi-

valences are right parts of weak factorization systems

in Cat and that retracts equivalences are pure epi-

morphisms.
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