Enriched weakness

J. Rosický*

International Category Theory Conference, Genova 2010

^{*}Joint work with S. Lack

Definition. Let \mathcal{E} be a class of morphisms in a symmetric monoidal closed category \mathcal{V} . Let $f : A \to B$ be a morphism in a \mathcal{V} -category \mathcal{K} . We say that an object C from \mathcal{K} is f-injective over \mathcal{E} when the induced morphism

$$\mathcal{K}(f,C):\mathcal{K}(B,C)\to\mathcal{K}(A,C)$$

is in \mathcal{E} .

Given a class \mathcal{F} of morphisms in \mathcal{K} , C is \mathcal{F} injective over \mathcal{E} if it is f-injective for all $f \in \mathcal{F}$. \mathcal{F} -Inj will denote the full subcategory of \mathcal{K} consisting of \mathcal{F} -injective objects.

Examples. (1) For \mathcal{E} = isomorphisms, one gets the classical enriched orthogonality.

(2) For $\mathcal{V} = \mathbf{Set}$ and $\mathcal{E} =$ surjections, one gets the classical injectivity.

Proposition 1. \mathcal{F} -**Inj** is closed in \mathcal{K} under any class Φ of limits for which \mathcal{E} is closed in \mathcal{V}^2 under Φ -limits.

Proposition 2. \mathcal{F} -**Inj** is closed in \mathcal{K} under any class Φ of colimits for which

- (1) \mathcal{E} is closed under Φ -colimits;
- (2) K(A, -) preserves Φ-colimits for any object A which is the domain or the codomain of a morphism in F.

Let $G: \mathcal{K} \to \mathcal{L}$ be \mathcal{V} -functor. We say that a family of morphisms

$$(\eta_L: L \to UFL)_{L \in \mathcal{L}}$$

makes F a weak left adjoint to G if the induced morphisms

$$\mathcal{K}(FL, K) \xrightarrow{G} \mathcal{K}(GFL, GK) \xrightarrow{\mathcal{K}(\eta_L, GK)} \mathcal{K}(L, GK)$$

are in \mathcal{E} .

Of course, F does not need to be a functor.

Given \mathcal{V} -functors $D : \mathcal{D} \to \mathcal{K}$ and $H : \mathcal{D}^{\mathrm{op}} \to \mathcal{V}$, $H *_w D$ is a weak colimit of D weighted by H if the induced morphism

$$\mathcal{K}(H *_w D, K) \to [\mathcal{D}^{\mathrm{op}}, \mathcal{V}](H, \mathcal{K}(D, K))$$

is in \mathcal{E} .

The right choice for enriching classical injectivity is $\mathcal{E} =$ pure epimorphisms.

The reason is that the latter are precisely filtered colimits of split epimorphisms. One has to assume that \mathcal{V} is locally finitely presentable as a closed category. This means that the underlying ordinary category \mathcal{V}_0 is locally finitely presentable and the full subcategory of finitely presentable objects is closed under the monoidal structure.

Theorem 1. The following conditions are equivalent for a full subcategory \mathcal{A} of a locally presentable \mathcal{V} category:

- (1) $\mathcal{A} = \mathcal{F}$ -Inj for a set \mathcal{F} ;
- (2) \mathcal{A} is accessible, accessibly embedded, and closed under products and finite cotensors;
- (3) \mathcal{A} is accessibly embedded and weakly reflective.

Theorem 2. The following are equivalent for a \mathcal{V} -category \mathcal{A} :

- (1) \mathcal{A} is accessible and weakly cocomplete;
- (2) \mathcal{A} is accessible and has products and finite cotensors;
- (3) \mathcal{A} is a small injectivity class in some locally presentable \mathcal{V} -category;
- (4) \mathcal{A} is weakly reflective, accessibly embedded subcategory of $[\mathcal{C}, \mathcal{V}]$ for some small \mathcal{V} -category \mathcal{C} ;
- (5) \mathcal{A} is equivalent to the category of models of a $(\lim_{t \to \infty} \mathcal{E})$ -sketch.

A \mathcal{V} -functor is a model of a (limit, \mathcal{E})-sketch if it preserves specified limits and sends specified morphisms to pure epimorphisms. Now, take $\mathcal{V} = \mathbf{Cat}$ and $\mathcal{E} = \text{equivalences}$.

Theorem 3. The following conditions are equivalent for a full subcategory \mathcal{A} of a locally presentable 2category:

- (1) $\mathcal{A} = \mathcal{F}$ -Inj for a set \mathcal{F} ;
- (2) \mathcal{A} is accessible, accessibly embedded, closed under flexible limits and 2-replete;
- (3) \mathcal{A} is accessible, accessibly embedded, weakly reflective and 2-replete.

Flexible limit $\{H, D\}$ is a limit weighted by a retract $H : \mathcal{D} \to \mathbf{Cat}$ of some G' where ' denotes left adjoint to the inclusion

$$[\mathcal{D},\mathbf{Cat}]
ightarrow \mathrm{Psd}[\mathcal{D},\mathbf{Cat}]$$

where $Psd[\mathcal{D}, Cat]$ denotes the 2-category of 2-functors, pseudonatural transformations and modifications.

If \mathcal{K} has all flexible limits then it has all pseudolimits:

$$\{H,D\}_p \cong \{H',D\}$$

Theorem 4. The following are equivalent for a \mathcal{V} -category \mathcal{A} :

- (1) \mathcal{A} is a small injectivity class in some locally presentable 2-category;
- (2) \mathcal{A} is equivalent to the category of models of a $(\lim_{t \to \infty} \mathcal{E})$ -sketch.

One does not have the analogy of Theorem 2 here: the full subcategory of **Cat** consisting of the terminal category and the free-living isomorphism is accessible, accessible embedded and weakly reflective but does not have flexible limits.

But one has the analogies of Theorems 1 and 2 for the choice of $\mathcal{V} = \mathbf{Cat}$ and $\mathcal{E} =$ retract equivalences. Products and finite cotensors are replaced by flexible limits.

Notice that both pure epimorphisms and retract equivalences are right parts of weak factorization systems in **Cat** and that retracts equivalences are pure epimorphisms.