Class-combinatorial model categories

J. Rosický*

International Category Theory Conference, Calais 2008

^{*}Joint work with B. Chorny

Definition. A category \mathcal{K} is called λ -class-accessible, where λ is a regular cardinal, provided that

- (1) \mathcal{K} has λ -filtered colimits,
- (2) K has a class A of λ-presentable objects such that every object of K is a λ-filtered colimit of objects from A.

B. Banaschewski and H. Herrlich introduced these categories in 1976 – it means long ago the appearence of Makkai and Paré.

A category is *class-accessible* if it is λ -class-accessible for some regular cardinal λ . A complete and cocomplete λ -class-accessible category is called *locally* λ *class-presentable*. A category is *locally class-presentable* is it is locally λ -class-presentable for some regular cardinal λ . Each λ -accessible category is λ -class-accessible. Since each locally presentable category is complete, each locally λ -presentable category is locally λ -class-presentable.

Given a category \mathcal{A} , $\mathcal{P}(\mathcal{A})$ will denote the category of small presheaves on \mathcal{A} , i.e. functors $F : \mathcal{A}^{\mathrm{op}} \to \mathbf{Set}$ which are small colimits of hom-functors. Of course, for a small category \mathcal{A} , each F is small.

The category $\mathcal{P}(\mathcal{A})$ is always finitely class-accessible because each small presheaf is a small filtered colimit of finite colimits of hom-functors and the latter are finitely presentable. $\mathcal{P}(\mathcal{A})$ is always cocomplete but not necessarily complete. For instance, it does not have a terminal object in the case when \mathcal{A} is a large discrete category (it means that it has a proper class of objects and the only morphisms are the identities). It explains why we added completeness into the definition of a locally class-presentable category. Given a category \mathcal{A} , let $\mathbf{Ind}_{\lambda}(\mathcal{A})$ be the full subcategory of $\mathcal{P}(\mathcal{A})$ consisting of small λ -filtered colimits of hom-functors. $\mathbf{Ind}_{\lambda}(\mathcal{A})$ is always λ -class-accessible. In fact, each λ -class-accessible category \mathcal{K} is equivalent to $\mathbf{Ind}_{\lambda}(\mathcal{A})$ for \mathcal{A} being the full subcategory of \mathcal{K} consisting of λ -presentable objects.

A functor $F : \mathcal{K} \to \mathcal{L}$ is called λ -class-accessible (where λ is a regular cardinal) if \mathcal{K} and \mathcal{L} are λ class-accessible categories and F preserves λ -filtered colimits. A λ -class-accessible functor preserving λ presentable objects is called *strongly* λ -class-accessible. F is called (*strongly*) class-accessible if it is (strongly) λ -class-accessible for some regular cardinal λ .

Each accessible functor is strongly accessible but this does not generalize to class-accessible functors.

Proposition. Let λ be a regular cardinal and F: $\mathcal{K} \to \mathcal{M}$ and $G : \mathcal{L} \to \mathcal{M}$ (strongly) λ -class-accessible functors. Then their pseudopullback

is a λ^+ -class-accessible category and the functors $\overline{F}, \overline{G}$ are (strongly) λ^+ -class accessible.

The analogous result holds for equifiers and I believe that class-accessible categories are closed under lax limits. **Definition.** A class \mathcal{C} of morphisms of a category \mathcal{K} is called *locally small* if, for each morphism f in \mathcal{K} , there is a subset \mathcal{S} of \mathcal{C} such that each morphism $g \to f$ in \mathcal{K}^{\to} with $g \in \mathcal{C}$ factorizes as

$$g \to h \to f$$

with $h \in \mathcal{S}$.

Each set \mathcal{C} of morphisms is locally small.

Theorem. Let \mathcal{K} be a locally class-presentable category, \mathcal{C} a locally small class of morphisms of \mathcal{K} and assume that there is a regular cardinal λ such that each morphism from \mathcal{C} has a λ -presentable domain. Then $(\operatorname{cof}(\mathcal{C}), \mathcal{C}^{\Box})$ is a weak factorization system in \mathcal{K} .

Given a weak factorization system $(\mathcal{L}, \mathcal{R})$, then the class \mathcal{L} is always locally small.

Corollary. Let \mathcal{K} be a locally class-presentable category, \mathcal{C} a locally small class of morphisms of \mathcal{K} . Let λ be a regular cardinal such that each morphism from \mathcal{C} has a λ -presentable domain. Then $\mathbf{Inj}(\mathcal{C})$ is weakly reflective and closed under λ -filtered colimits in \mathcal{K} .

But $Inj(\mathcal{C})$ does not need to be class-accessible.

Theorem. Let \mathcal{K} be a locally class-presentable category, \mathcal{C} a locally small class of morphisms of \mathcal{K} and assume that there is a regular cardinal λ such that each morphism from \mathcal{C} has a λ -presentable domain and codomain. Then $(\operatorname{colim}(\mathcal{C}), \mathcal{C}^{\perp})$ is a factorization system in \mathcal{K} .

Corollary. Let \mathcal{K} be a locally λ -class-presentable category, \mathcal{C} a locally small class of morphisms of \mathcal{K} such that each morphism from \mathcal{C} has a λ -presentable domain and codomain. Then $\mathbf{Ort}(\mathcal{C})$ is reflective and closed under λ -filtered colimits in \mathcal{K} . Moreover, $\mathbf{Ort}(\mathcal{C})$ is locally λ -class-presentable.

Definition Let \mathcal{K} be a locally class-presentable category. A weak factorization system $(\mathcal{L}, \mathcal{R})$ in \mathcal{K} is called *cofibrantly class-generated* if $\mathcal{L} = cof(\mathcal{C})$ for a locally small class \mathcal{C} of morphisms having λ -presentable domains and codomains (for some regular cardinal λ).

Definition. A model category is called *class-combinatorial* if its underlying category \mathcal{K} is locally classpresentable and both (cofibrations, trivial fibrations) and (trivial cofibrations, fibrations) are cofibrantly class-generated weak factorization systems.

Each combinatorial model category is class-combinatorial.

Given a simplicial category \mathcal{A} , then the category of small simplicial presheaves $\mathcal{A}^{\mathrm{op}} \to \mathbf{SSet}$ with the projective model category structure is class-combinatorial. **Theorem.** Let \mathcal{K} be a class-combinatorial model category and \mathcal{W} its class of weak equivalences. Then the inclusion of \mathcal{W} in $\mathcal{K}^{\rightarrow}$ is a class-accessible functor. In particular, \mathcal{W} is a class-accessible category.

For combinatorial model categories, this result was claimed by J. H. Smith. Last year, I gave a proof based on the fact that homotopy equivalences are the full image of an acccessible functor and using a pseudopullback

where R is the replacement functor.

A. Stanculescu informed me that J. Lurie gave a simpler proof based on a pseudopullback

where F gives the fibration part in the (trivial cofibration, fibration) factorization and \mathcal{F} denotes trivial fibrations.

Since \mathcal{F} is not necessarily class-accessible in a class-combinatorial setting, I have to combine both mine and Lurie's proof here. Mine yields (2) and Lurie's (1) in the definition of a class-accessible category.

Our goal has been to develop the theory of left Bousfield localizations in the class-combinatorial setting. We have some particular result for simplicial classcombinatorial model categories.